WorldWideScience

Sample records for kisspeptin fiber density

  1. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Tena-Sempere, Manuel; Franceschini, Isabelle

    2013-01-01

    cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC......-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing...... contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats....

  2. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  3. Hyperalgesic activity of kisspeptin in mice

    Directory of Open Access Journals (Sweden)

    Spampinato Simona

    2011-11-01

    Full Text Available Abstract Background Kisspeptin is a neuropeptide known for its role in the hypothalamic regulation of the reproductive axis. Following the recent description of kisspeptin and its 7-TM receptor, GPR54, in the dorsal root ganglia and dorsal horns of the spinal cord, we examined the role of kisspeptin in the regulation of pain sensitivity in mice. Results Immunofluorescent staining in the mouse skin showed the presence of GPR54 receptors in PGP9.5-positive sensory fibers. Intraplantar injection of kisspeptin (1 or 3 nmol/5 μl induced a small nocifensive response in naive mice, and lowered thermal pain threshold in the hot plate test. Both intraplantar and intrathecal (0.5 or 1 nmol/3 μl injection of kisspeptin caused hyperalgesia in the first and second phases of the formalin test, whereas the GPR54 antagonist, p234 (0.1 or 1 nmol, caused a robust analgesia. Intraplantar injection of kisspeptin combined with formalin enhanced TRPV1 phosphorylation at Ser800 at the injection site, and increased ERK1/2 phosphorylation in the ipsilateral dorsal horn as compared to naive mice and mice treated with formalin alone. Conclusion These data demonstrate for the first time that kisspeptin regulates pain sensitivity in rodents and suggest that peripheral GPR54 receptors could be targeted by novel drugs in the treatment of inflammatory pain.

  4. Kisspeptin/Kisspeptin Receptor System in the Ovary

    Directory of Open Access Journals (Sweden)

    Kai-Lun Hu

    2018-01-01

    Full Text Available Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic–pituitary–gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.

  5. Kisspeptin system in ovariectomized mice: Estradiol and progesterone regulation.

    Science.gov (United States)

    Marraudino, Marilena; Martini, Mariangela; Trova, Sara; Farinetti, Alice; Ponti, Giovanna; Gotti, Stefano; Panzica, GianCarlo

    2018-06-01

    The kisspeptin system is clustered in two main groups of cell bodies (the periventricular region, RP3V and the arcuate nucleus, ARC) that send fibers mainly to the GnRH neurons and in a few other locations, including the paraventricular nucleus, PVN. In physiological conditions, gonadal hormones modulate the kisspeptin system with expression changes according to different phases of the estrous cycle: the highest being in estrus phase in RP3V and PVN (positive feedback), and in ARC during the diestrus phase (negative feedback). In this work we wanted to study these hormonal fluctuations during the estrous cycle, investigating the role played by progesterone (P) or estradiol (E 2 ), alone or together, on the kisspeptin system. Gonadectomized CD1 female mice were treated with P, E 2 or both (E 2  + P), following a timing of administration that emulates the different phases of estrous cycle, for two cycles of 4 days. As expected, the two cell groups were differentially affected by E 2 ; the RP3V group was positively influenced by E 2 (alone or with the P), whereas in the ARC the administration of E 2 did not affect the system. However P (alone) induced a rise in the kisspeptin immunoreactivity. All the treatments significantly affected the kisspeptin innervation of the PVN, with regional differences, suggesting that these fibers arrive from both RP3V and ARC nuclei. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Kisspeptin and Puberty in Mammals

    Science.gov (United States)

    Terasawa, Ei; Guerriero, Kathryn A.; Plant, Tony M.

    2014-01-01

    Since the discovery of the G-protein coupled receptor (kisspeptin receptor) and its ligand, kisspeptin, our understanding of the neurobiological mechanisms that govern the pituitary-gonadal axis has evolved dramatically. In this chapter, we have reviewed progress regarding the relationship between kisspeptin and puberty, and have proposed a novel hypothesis for the role of kisspeptin signaling in the onset of this crucial developmental event. According to this hypothesis, although kisspeptin neurons in the arcuate nucleus (ARC) are critical for puberty, this is simply because these cells are an integral component of the hypothalamic GnRH pulse generating mechanism that drives intermittent release of the decapeptide, as an increase in GnRH is obligatory for the onset of puberty. In our model, ARC kisspeptin neurons play no “regulatory” role in controlling the timing of puberty. Rather, as a component of the neural network responsible for GnRH pulse generation, they subserve upstream regulatory mechanisms that are responsible for the timing of puberty. PMID:23550010

  7. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse.

    Science.gov (United States)

    Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E

    2015-07-01

    Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.

  8. Kisspeptin and energy balance in reproduction.

    Science.gov (United States)

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  9. Kisspeptin Expression in Guinea Pig Hypothalamus: Effects of 17β-Estradiol

    Science.gov (United States)

    Bosch, Martha A.; Xue, Changhui; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17β-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle. PMID:22173890

  10. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available The major structural component of a blood clot is a meshwork of fibrin fibers. It has long been thought that the internal structure of fibrin fibers is homogeneous; that is, the protein density and the bond density between protofibrils are uniform and do not depend on fiber diameter. We performed experiments to investigate the internal structure of fibrin fibers. We formed fibrin fibers with fluorescently labeled fibrinogen and determined the light intensity of a fiber, I, as a function of fiber diameter, D. The intensity and, thus, the total number of fibrin molecules in a cross-section scaled as D1.4. This means that the protein density (fibrin per cross-sectional area, ρp, is not homogeneous but instead strongly decreases with fiber diameter as D-0.6. Thinner fibers are denser than thicker fibers. We also determined Young’s modulus, Y, as a function of fiber diameter. Y decreased strongly with increasing D; Y scaled as D-1.5. This implies that the bond density, ρb, also scales as D-1.5. Thinner fibers are stiffer than thicker fibers. Our data suggest that fibrin fibers have a dense, well-connected core and a sparse, loosely connected periphery. In contrast, electrospun fibrinogen fibers, used as a control, have a homogeneous cross-section.

  11. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis.

    Science.gov (United States)

    Zmora, Nilli; Stubblefield, John David; Wong, Ten-Tsao; Levavi-Sivan, Berta; Millar, Robert Peter; Zohar, Yonathan

    2015-09-01

    The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning. © 2015 by the Society for the Study of Reproduction, Inc.

  12. Comparison of the effects of peripherally administered kisspeptins

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bentsen, Agnete H; Ansel, Laura

    2008-01-01

    examined the acute effect on serum levels of free testosterone in the adult male mouse after systemic administration of kisspeptins with different lengths of both human and mouse origin. Mouse kisspeptin-10 and -52 dose-dependently increased serum testosterone, and both peptides showed similar potency...... and efficacy. Human kisspeptin-10 and kisspeptin-54 evoked robust increase in serum testosterone, with the same potency as for mouse kisspeptins. Other members of the RFRP family of peptides, i.e. RFRP-1 and -3 were inactive. Time-course experiments revealed that the longer forms had a slower onset of action...

  13. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    Science.gov (United States)

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  14. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty

    Directory of Open Access Journals (Sweden)

    Maria Manfredi-Lozano

    2016-10-01

    POMC fibers and ARC Kiss1 neurons while blockade of α-MSH signaling suppressed Kiss1 expression in the ARC of pubertal rats. Conclusions: Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological regulation of puberty onset. Keywords: α-MSH, Kisspeptin, Leptin, Metabolism, DREADDs, Puberty

  15. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  16. Plasma kisspeptin levels in male cases with hypogonadism.

    Science.gov (United States)

    Kotani, Masato; Katagiri, Fumihiko; Hirai, Tsuyoshi; Kagawa, Jiro

    2014-01-01

    The hypothalamic hormone kisspeptin (metastin) regulates human reproduction by modulating gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is detected in peripheral blood, although GnRH is not. In this study, we measured plasma kisspeptin levels in four male cases with hypogonadism and seven normal male controls using enzyme immunoassay (EIA) to elucidate the clinical implications of kisspeptin levels in male hypogonadism. The results showed a variety of plasma kisspeptin levels: 6.0 fmol/mL in a male with isolated hypogonadotropic hypogonadism (IHH), 43.2 fmol/mL in a male with Kallmann's syndrome, 40.7 fmol/mL in a male with azoospermia, 323.2 fmol/mL in a male with hypergonadotropic hypogonadism, and 12.3 ± 2.5 fmol/mL (mean ± SD) in seven normal controls. Except for the case with IHH, the plasma kisspetin levels were elevated in the three cases with Kallmann's syndrome, azoospermia, and hypergonadotropic hypogonadism. The reason why the three cases had high values was their lesions were downstream of the kisspeptin neuron in the hypothalamic-pituitary-gonadal axis, suggesting that elevated kisspeptin levels were implicated in hypothalamic kisspeptin secretion under decreased negative feedback of gonadal steroids. The result that the plasma kisspeptin levels were decreased by gonadotropin therapy in the case with Kallmann's syndrome supported this hypothesis. In conclusion, to measure plasma kisspeptin levels could be useful for better understanding of male hypogonadism.

  17. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  18. Kisspeptins: bridging energy homeostasis and reproduction

    DEFF Research Database (Denmark)

    Castellano, Juan M; Bentsen, Agnete H; Mikkelsen, Jens D

    2010-01-01

    RH neurons. This review recapitulates the experimental evidence obtained to date, mostly in laboratory rodents, supporting the function of kisspeptins in bridging energy balance and reproduction, with special emphasis on recent developments in this field, such as the recognition of mTOR (mammalian target...

  19. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  20. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  1. The neuroanatomy of the kisspeptin system in the mammalian brain

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Simonneaux, Valerie

    2008-01-01

    , little data are available about the localization of kisspeptin neurons in the brain, and in particular the projection patterns of kisspeptin containing axons implicated in regulation of the hypothalamo-pituitary gonadal axis. This review covers the current information about the localization of kisspeptin...... neurons in the mammalian brain and discusses the facts and artifacts of the methods of their detection. The available data suggest that kisspeptins are synthesized in neurons in the anteroventral periventricular nucleus and the arcuate nucleus. Both populations are considered to be involved in control...

  2. Preliminary Study of Linear Density, Tenacity, and Crystallinity of Cotton Fibers

    Directory of Open Access Journals (Sweden)

    Yongliang Liu

    2014-07-01

    Full Text Available An investigation of the relationships among fiber linear density, tenacity, and structure is important to help cotton breeders modify varieties for enhanced fiber end-use qualities. This study employed the Stelometer instrument, which is the traditional fiber tenacity reference method and might still be an option as a rapid screening tool because of its low cost and portable attributes. In addition to flat bundle break force and weight variables from a routine Stelometer test, the number of fibers in the bundle were counted manually and the fiber crystallinity (CIIR was characterized by the previously proposed attenuated total reflection-sampling device based Fourier transform infrared (ATR-FTIR protocol. Based on the plots of either tenacity vs. linear density or fiber count vs. mass, the fibers were subjectively divided into fine or coarse sets, respectively. Relative to the distinctive increase in fiber tenacity with linear density, there was an unclear trend between the linear density and CIIR for these fibers. Samples with similar linear density were found to increase in tenacity with fiber CIIR. In general, Advanced Fiber Information System (AFIS fineness increases with fiber linear density.

  3. [Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].

    Science.gov (United States)

    Zhuo, Qi

    2013-10-01

    Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.

  4. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction.

    Science.gov (United States)

    Wu, Min; Dumalska, Iryna; Morozova, Elena; van den Pol, Anthony; Alreja, Meenakshi

    2009-10-06

    A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.

  5. Kisspeptin modulates sexual and emotional brain processing in humans.

    Science.gov (United States)

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  6. Kisspeptins: bridging energy homeostasis and reproduction

    DEFF Research Database (Denmark)

    Castellano, Juan M; Bentsen, Agnete H; Mikkelsen, Jens D

    2010-01-01

    and reproduction have been the subject of considerable attention; however, our understanding of the neurobiological basis for this phenomenon is still incomplete. In mid 1990s, the adipose-hormone, leptin, was proven as an essential signal for transmitting metabolic information onto the centers governing puberty......RH neurons. This review recapitulates the experimental evidence obtained to date, mostly in laboratory rodents, supporting the function of kisspeptins in bridging energy balance and reproduction, with special emphasis on recent developments in this field, such as the recognition of mTOR (mammalian target...

  7. High-Capacity Transmission Using High-Density Multicore Fiber

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2017-01-01

    There have been intense research activities on SDM technologies including SDM fibers, MC-, MM-amplifiers, DEMUXs/DEMUXs with record-breaking transmission demonstrations up to 2 Pbit/s. 100 (20 dB) SDM gain, i.e. 10 Pbit/s per fiber will be a short-term goal in order for the new fibers to be consi......There have been intense research activities on SDM technologies including SDM fibers, MC-, MM-amplifiers, DEMUXs/DEMUXs with record-breaking transmission demonstrations up to 2 Pbit/s. 100 (20 dB) SDM gain, i.e. 10 Pbit/s per fiber will be a short-term goal in order for the new fibers...... to be considered for installation in the future systems although the far long term demand should be transporting 1 Ebit/s per fiber over 1000 km meaning Zbit/s-km. Cost effective network capability such as ADM and XC should also be investigated based on the new SDM schemes. In the 10-20 years time frame, we need...

  8. High density thoria-silica-metal (III) oxide fibers

    International Nuclear Information System (INIS)

    1974-01-01

    Transparent refractory fibers, at least 50% thoria and additionally containing silica and metal(III) oxides, particularly Al 2 O 3 and B 2 O 3 or Cr 2 O 3 are made by shaping and dehydratively gelling, particularly by extruding in air, viscous aqueous thoria solutions or sols containing colloidal silica with boric acid-stabilized aluminum acetate, or additionally chromium acetate or colloidal Cr 2 O 3 , and heating the resulting gelled fibers in a controlled manner to decompose and volatilize undesired constituents and convert fibers to refractory fibers which are useful to form, for example, refractory fabrics, or as reinforcement for composites. The fabrics are heat resistant. A special application is X-ray protective clothing

  9. The Emerging Role(s for Kisspeptin in Metabolism in Mammals

    Directory of Open Access Journals (Sweden)

    Andrew Wolfe

    2018-04-01

    Full Text Available Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary–gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin’s diverse array of functions will be highlighted.

  10. Kisspeptin Expression in the Human Infundibular Nucleus in Relation to Sex, Gender Identity, and Sexual Orientation

    NARCIS (Netherlands)

    Taziaux, Melanie; Staphorsius, Annemieke S; Ghatei, Mohammad A; Bloom, Stephen R; Swaab, Dick F; Bakker, Julie

    CONTEXT: Since the discovery of its central role in reproduction, our functional neuroanatomical knowledge of the hypothalamic kisspeptin system is predominantly based on animal studies. Although sex differences in kisspeptin expression have been shown in humans in adulthood, the developmental

  11. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.

    2015-01-01

    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  12. Incorporation of waste and fiber kaolin caroa panels in Medium Density Fiberboard - MDF

    International Nuclear Information System (INIS)

    Bezerra, A.F.C.; Santana, L.N.L.; Neves, G.A.; Carvalho, L.H. de; Lopes, F.F.M.

    2012-01-01

    Medium-density panels are composites molded under high temperature and pressure which have physical and mechanical properties similar to those of solid wood. Their composition includes eucalyptus grandis fibers and pinus elliotii fibers, but other fibers can be used such as caroa fibers. The goal of this work was to manufacture panels which kaolin waste and caroa fibers and compare their physical, chemical and mechanical of these panels with a others. Both residue and the fibers were characterized by: differential thermal analysis, thermal gravimetric analysis and Xray diffraction. Through the process of pressing the test specimens were fabricated, test samples were evaluated by three point bending, internal bond, water absorption and swelling in thickness. The samples have low levels of thickness swelling, flexural strength and higher tensile and absorption content relative to commercial MDF. (author)

  13. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  14. Association between plasma kisspeptin levels and adolescent gynecomastia.

    Science.gov (United States)

    Aluclu, Mustafa Arif; Sen, Selcuk; Cevik, Muazez

    2016-01-01

    Gynecomastia is defined as benign proliferation of male breast glandular tissue. To date, the pathophysiology of adolescent gynecomastia (AG) remains unclear. Kisspeptin is a polypeptide that plays an important role in the regulation of the hypothalamic-pituitary-gonadal hormonal axis. In this study, we investigated whether there is a relationship between kisspeptin and AG. This study included 40 males between 9 and 18 years of age diagnosed with gynecomastia. The control group consisted of 30 young healthy males in the same age range. The participants were evaluated with respect to anthropometric measurements (age, height, body weight, body mass index, breast and pubic stages and testicular volume). The levels of kisspeptin, follicle-stimulating hormone, luteinizing hormone, estradiol (E2), testosterone (T), and ratio of E2 to T were measured in both groups. The mean age was 13.8 years. There were no differences between the groups in terms of anthropometric parameters, plasma gonadotropin levels, estrogen levels, and E2/T (P > 0.05). Plasma kisspeptin (0.77 and 0.54 ng/mL, P < 0.05) and T (253.9 ng/dL and 117.9 ng/dL) levels were significantly higher in the AG group than in the control group (P < 0.001). Kisspeptin levels are an important factor in AG.

  15. Association between plasma kisspeptin levels and adolescent gynecomastia

    Directory of Open Access Journals (Sweden)

    Mustafa Arif Aluclu

    2016-01-01

    Full Text Available Background: Gynecomastia is defined as benign proliferation of male breast glandular tissue. To date, the pathophysiology of adolescent gynecomastia (AG remains unclear. Kisspeptin is a polypeptide that plays an important role in the regulation of the hypothalamic-pituitary-gonadal hormonal axis. In this study, we investigated whether there is a relationship between kisspeptin and AG. Materials and Methods: This study included 40 males between 9 and 18 years of age diagnosed with gynecomastia. The control group consisted of 30 young healthy males in the same age range. The participants were evaluated with respect to anthropometric measurements (age, height, body weight, body mass index, breast and pubic stages and testicular volume. The levels of kisspeptin, follicle-stimulating hormone, luteinizing hormone, estradiol (E2, testosterone (T, and ratio of E2 to T were measured in both groups. Results: The mean age was 13.8 years. There were no differences between the groups in terms of anthropometric parameters, plasma gonadotropin levels, estrogen levels, and E2/T (P > 0.05. Plasma kisspeptin (0.77 and 0.54 ng/mL, P < 0.05 and T (253.9 ng/dL and 117.9 ng/dL levels were significantly higher in the AG group than in the control group (P < 0.001. Conclusion: Kisspeptin levels are an important factor in AG.

  16. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  17. A Fiber-Optic System Generating Pulses of High Spectral Density

    Science.gov (United States)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  18. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  19. Fiber density estimation from single q-shell diffusion imaging by tensor divergence.

    Science.gov (United States)

    Reisert, Marco; Mader, Irina; Umarova, Roza; Maier, Simon; Tebartz van Elst, Ludger; Kiselev, Valerij G

    2013-08-15

    Diffusion-weighted magnetic resonance imaging provides information about the nerve fiber bundle geometry of the human brain. While the inference of the underlying fiber bundle orientation only requires single q-shell measurements, the absolute determination of their volume fractions is much more challenging with respect to measurement techniques and analysis. Unfortunately, the usually employed multi-compartment models cannot be applied to single q-shell measurements, because the compartment's diffusivities cannot be resolved. This work proposes an equation for fiber orientation densities that can infer the absolute fraction up to a global factor. This equation, which is inspired by the classical mass preservation law in fluid dynamics, expresses the fiber conservation associated with the assumption that fibers do not terminate in white matter. Simulations on synthetic phantoms show that the approach is able to derive the densities correctly for various configurations. Experiments with a pseudo ground truth phantom show that even for complex, brain-like geometries the method is able to infer the densities correctly. In-vivo results with 81 healthy volunteers are plausible and consistent. A group analysis with respect to age and gender show significant differences, such that the proposed maps can be used as a quantitative measure for group and longitudinal analysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of fiber geometry on macroscale friction of ordered low-density polyethylene nanofiber arrays.

    Science.gov (United States)

    Lee, Dae Ho; Kim, Yongkwan; Fearing, Ronald S; Maboudian, Roya

    2011-09-06

    Ordered low-density polyethylene (LDPE) nanofiber arrays are fabricated from silicon nanowire (SiNW) templates synthesized by a simple wet-chemical process based on metal-assisted electroless etching combined with colloidal lithography. The geometrical effect of nanofibrillar structures on their macroscale friction is investigated over a wide range of diameters and lengths under the same fiber density. The optimum geometry for contacting a smooth glass surface is presented with discussions on the compromise between fiber tip-contact area and fiber compliance. A friction design map is developed, which shows that the theoretical optimum design condition agrees well with the LDPE nanofiber geometries exhibiting high measured friction. © 2011 American Chemical Society

  1. Kisspeptin and Metabolism: The Brain and Beyond

    Directory of Open Access Journals (Sweden)

    Monika Dudek

    2018-04-01

    Full Text Available Apart from the well-established role of kisspeptin (Kp in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.

  2. Kisspeptin and Metabolism: The Brain and Beyond.

    Science.gov (United States)

    Dudek, Monika; Ziarniak, Kamil; Sliwowska, Joanna H

    2018-01-01

    Apart from the well-established role of kisspeptin (Kp) in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC) of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.

  3. Kisspeptin, unexplained infertility and embryo implantation

    Directory of Open Access Journals (Sweden)

    Aaida Mumtaz

    2017-03-01

    Full Text Available Background Kisspeptin (KP is a neuropeptide that causes the release of the gonadotropin releasing hormone, which controls hypothalamo pituitary ovarian axis and exerts a number of peripheral effects on reproductive organs. The primary objective of this study was to compare baseline KP levels in females with different types of infertility and identify possible correlations with risk of failure to conceive, preclinical abortion and pregnancy after intracytoplasmic sperm injection (ICSI. Materials and Methods A longitudinal cohort study was carried out from August 2014 until May 2015 by recruiting 124 female patients undergoing ICSI, after obtaining ethical approval from the Australian Concept Infertility Medical Center. Cause of infertility due to male, female and unexplained factors was at a frequency of 32 (24%, 33 (31% and 59 (45% among the individuals respectively. KP levels were measured by ELISA assay before the initiation of the ICSI treatment protocol. Outcome of ICSI was categorized into three groups of non-pregnant with beta-human chorionic gonadotropin (β-hCG25 mIU/ml and no cardiac activity, and clinical pregnancy declared upon confirmation of cardiac activity. Results based on cause of infertility and outcome groups were analyzed by one-way ANOVA. Results Females with unexplained infertility had significantly lower levels of KP when compared with those with male factor infertility (176.69 ± 5.03 vs. 397.6 ± 58.2, P=0.001. Clinical pregnancy was observed in 28 (23% females of which 17 (71% had a female cause of infertility. In the non-pregnant group of 66 (53% females, common cause of infertility was unexplained 56(85%. A weak positive correlation of KP levels with fertilized oocytes and endometrial thickness was observed (P=0.04 and 0.01 respectively. Conclusion Deficiency of KP in females with unexplained infertility was associated with reduced chances of implantation after ICSI.

  4. Kisspeptin Expression in the Human Infundibular Nucleus in Relation to Sex, Gender Identity, and Sexual Orientation.

    OpenAIRE

    Taziaux, Mélanie; Staphorsius, Annemieke S.; Ghatei, Mohammad A.; Bloom, Stephen R.; Swaab, Dick F.; Bakker, Julie

    2016-01-01

    CONTEXT: Since the discovery of its central role in reproduction, our functional neuroanatomical knowledge of the hypothalamic kisspeptin system is predominantly based on animal studies. Although sex differences in kisspeptin expression have been shown in humans in adulthood, the developmental origin of this sex difference is unknown. OBJECTIVES: Our objectives were to determine the following: 1) when during development the sex difference in kisspeptin expression in the infundibular nucleus w...

  5. Role of Kisspeptin and Neurokinin B in Puberty in Female Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Ei Terasawa

    2018-04-01

    Full Text Available In human patients, loss-of-function mutations in the genes encoding kisspeptin (KISS1 and neurokinin B (NKB and their receptors (KISS1R and NK3R, respectively result in an abnormal timing of puberty or the absence of puberty. To understand the neuroendocrine mechanism of puberty, we investigated the contribution of kisspeptin and NKB signaling to the pubertal increase in GnRH release using rhesus monkeys as a model. Direct measurements of GnRH and kisspeptin in the median eminence of the hypothalamus with infusion of agonists and antagonists for kisspeptin and NKB reveal that kisspeptin and NKB signaling stimulate GnRH release independently or collaboratively by forming kisspeptin and NKB neuronal networks depending on the developmental age. For example, while in prepubertal females, kisspeptin and NKB signaling independently stimulate GnRH release, in pubertal females, the formation of a collaborative kisspeptin and NKB network further accelerates the pubertal increase in GnRH release. It is speculated that the collaborative mechanism between kisspeptin and NKB signaling to GnRH neurons is necessary for the complex reproductive function in females.

  6. Kisspeptin Expression in the Human Infundibular Nucleus in Relation to Sex, Gender Identity, and Sexual Orientation.

    Science.gov (United States)

    Taziaux, Melanie; Staphorsius, Annemieke S; Ghatei, Mohammad A; Bloom, Stephen R; Swaab, Dick F; Bakker, Julie

    2016-06-01

    Since the discovery of its central role in reproduction, our functional neuroanatomical knowledge of the hypothalamic kisspeptin system is predominantly based on animal studies. Although sex differences in kisspeptin expression have been shown in humans in adulthood, the developmental origin of this sex difference is unknown. Our objectives were to determine the following: 1) when during development the sex difference in kisspeptin expression in the infundibular nucleus would emerge and 2) whether this sex difference is related to sexual orientation or transsexuality. Postmortem hypothalamic tissues were collected by The Netherlands Brain Bank, and sections were stained for kisspeptin by immunohistochemistry. Hypothalami of 43 control subjects were categorized into three periods: infant/prepubertal (six girls, seven boys), adult (11 women, seven men), and elderly (six aged women, six aged men). Eight male-to-female (MTF) transsexuals, three HIV(+) heterosexual men, and five HIV(+) homosexual men were also analyzed. We estimated the total number of kisspeptin-immunoreactive neurons within the infundibular nucleus. Quantitative analysis confirmed that the human infundibular kisspeptin system exhibits a female-dominant sex difference. The number of kisspeptin neurons is significantly greater in the infant/prepubertal and elderly periods compared with the adult period. Finally, in MTF transsexuals, but not homosexual men, a female-typical kisspeptin expression was observed. These findings suggest that infundibular kisspeptin neurons are sensitive to circulating sex steroid hormones throughout life and that the sex reversal observed in MTF transsexuals might reflect, at least partially, an atypical brain sexual differentiation.

  7. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    Science.gov (United States)

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  8. Kisspeptin stimulates growth hormone release by utilizing Neuropeptide Y pathways and is dependent on the presence of ghrelin

    Science.gov (United States)

    Although kisspeptin is the primary stimulator of gonadotropin releasing hormone secretion and therefore the hypothalamic-pituitary gonadal axis, new findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Central delivery of kisspep...

  9. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    Science.gov (United States)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  10. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  11. Optimization of E r-density profile for efficient pumping and high signal gain in Erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Arzi, E.; Hassani, A.; Esmaili Seraji, F.

    2000-01-01

    Recently, the Erbium-Doped Fiber Amplifier has been shown to have a great potentiality in Fiber-Optics Communication. A model is suggested for calculating the E r-density profile, using the propagation and rate equations of a homogeneous two-level laser medium in Erbium-Doped Fiber Amplifier, such that efficient pumping and high signal gain is achieved for different fiber waveguide structure. The result of this numerical calculation shows that the gain, compared with the gain of the existing Erbium-Doped Fiber Amplifier, is higher by a factor of 3.5. This model is applicable in all active waveguides and any other dopant as well

  12. Magnetic resonance fiber density mapping of age-related white matter changes

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Ganslandt, Oliver; Salomonowitz, Erich; Buchfelder, Michael; Hammen, Thilo; Bachmair, Johanna; Eberhardt, Knut

    2012-01-01

    Objectives: To introduce fiber density mapping (FDM) for investigation of age-related white matter (WM) changes and to compare its capabilities with conventional diffusion tensor imaging (DTI) post-processing. Methods: DTI data with 1.9 mm 3 isotropic voxels were acquired from 44 healthy volunteers (18–88 years) at 3 T. FDM is a 3-step approach which includes diagonalization of the diffusion tensor, fiber reconstruction for the whole brain, and calculation of fiber density (FD) values. Maps of fractional anisotropy (FA) and mean diffusivity (MD) were additionally calculated. Voxel-based analyses were performed to determine volume clusters of significant correlation with age. Bivariate linear regression models and Hotelling–Williams tests were used to detect significant differences between correlations. Results: FDM detected a larger WM volume affected by age-related changes concomitant with fewer significant clusters compared to FA and MD. This indicates that WM alterations due to normal aging occur rather globally than locally. FD values showed a significant stronger correlation with age in frontal lobes (prefrontal and precentral gyrus), limbic lobes (cingulate and parahippocampal gyrus), the corpus callosum (genu) and temporal lobes. Conclusions: FDM shows higher sensitivity for detection of age-related WM changes because it includes all surrounding fiber structures into the evaluation of each DTI data voxel.

  13. Magnetic resonance fiber density mapping of age-related white matter changes

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas, E-mail: andi@nmr.at [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Ganslandt, Oliver [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Salomonowitz, Erich [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Buchfelder, Michael [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Hammen, Thilo [Department of Neurology, Epilepsy Center, University of Erlangen-Nuremberg, Schwabachanlage 6, D-90429 Erlangen (Germany); Bachmair, Johanna [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Eberhardt, Knut [Krankenhaus Schloss Werneck, MRT-Kompetenzzentrum, Balthasar-Neumann-Platz 1, D-97440 Werneck (Germany)

    2012-12-15

    Objectives: To introduce fiber density mapping (FDM) for investigation of age-related white matter (WM) changes and to compare its capabilities with conventional diffusion tensor imaging (DTI) post-processing. Methods: DTI data with 1.9 mm{sup 3} isotropic voxels were acquired from 44 healthy volunteers (18–88 years) at 3 T. FDM is a 3-step approach which includes diagonalization of the diffusion tensor, fiber reconstruction for the whole brain, and calculation of fiber density (FD) values. Maps of fractional anisotropy (FA) and mean diffusivity (MD) were additionally calculated. Voxel-based analyses were performed to determine volume clusters of significant correlation with age. Bivariate linear regression models and Hotelling–Williams tests were used to detect significant differences between correlations. Results: FDM detected a larger WM volume affected by age-related changes concomitant with fewer significant clusters compared to FA and MD. This indicates that WM alterations due to normal aging occur rather globally than locally. FD values showed a significant stronger correlation with age in frontal lobes (prefrontal and precentral gyrus), limbic lobes (cingulate and parahippocampal gyrus), the corpus callosum (genu) and temporal lobes. Conclusions: FDM shows higher sensitivity for detection of age-related WM changes because it includes all surrounding fiber structures into the evaluation of each DTI data voxel.

  14. Development in High-Density Cobra Fiber Positioners for the Subaru Telescope's Prime Focus Spectrometer

    Science.gov (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.; Seiffert, Mic D.; Dekany, Richard G.; Ellis, Richard S.; Smith, Roger S.

    2012-01-01

    The Prime Focus Spectrograph (PFS) is a fiber fed multi-object spectrometer for the Subaru Telescope that will conduct a variety of targeted surveys for studies of dark energy, galaxy evolution, and galactic archaeology. The key to the instrument is a high density array of fiber positioners placed at the prime focus of the Subaru Telescope. The system, nicknamed "Cobra", will be capable of rapidly reconfiguring the array of 2394 optical fibers to the image positions of astronomical targets in the focal plane with high accuracy. The system uses 2394 individual "SCARA robot" mechanisms that are 7.7mm in diameter and use 2 piezo-electric rotary motors to individually position each of the optical fibers within its patrol region. Testing demonstrates that the Cobra positioner can be moved to within 5 micrometers of an astronomical target in 6 move iterations with a success rate of 95%. The Cobra system is a key aspect of PFS that will enable its unprecedented combination of high-multiplex factor and observing efficiency on the Subaru telescope. The requirements, design, and prototyping efforts for the fiber positioner system for the PFS are described here as are the plans for modular construction, assembly, integration, functional testing, and performance validation.

  15. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  16. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  17. Role of amygdala kisspeptin in pubertal timing in female rats.

    Directory of Open Access Journals (Sweden)

    Daniel A Adekunbi

    Full Text Available To investigate the mechanism by which maternal obesity disrupts reproductive function in offspring, we examined Kiss1 expression in the hypothalamic arcuate (ARC and anteroventral periventricular (AVPV nuclei, and posterodorsal medial amygdala (MePD of pre-pubertal and young adult offspring. Sprague-Dawley rats were fed either a standard or energy-dense diet for six weeks prior to mating and throughout pregnancy and lactation. Male and female offspring were weaned onto normal diet on postnatal day (pnd 21. Brains were collected on pnd 30 or 100 for qRT-PCR to determine Kiss1 mRNA levels. Maternal obesity increased Kiss1 mRNA expression in the MePD of pre-pubertal male and female offspring, whereas Kiss1 expression was not affected in the ARC or AVPV at this age. Maternal obesity reduced Kiss1 expression in all three brain regions of 3 month old female offspring, but only in MePD of males. The role of MePD kisspeptin on puberty, estrous cyclicity and preovulatory LH surges was assessed directly in a separate group of post-weanling and young adult female rats exposed to a normal diet throughout their life course. Bilateral intra-MePD cannulae connected to osmotic mini-pumps for delivery of kisspeptin receptor antagonist (Peptide 234 for 14 days were chronically implanted on pnd 21 or 100. Antagonism of MePD kisspeptin delayed puberty onset, disrupted estrous cyclicity and reduced the incidence of LH surges. These data show that the MePD plays a key role in pubertal timing and ovulation and that maternal obesity may act via amygdala kisspeptin signaling to influence reproductive function in the offspring.

  18. The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System

    Science.gov (United States)

    Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.

    2018-05-01

    An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.

  19. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M

    2010-01-01

    -IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center......Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function...

  20. Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects

    DEFF Research Database (Denmark)

    Castellano, J M; Bentsen, A H; Romero, M

    2010-01-01

    , was suggested as potential target for transmitting immune-mediated repression of the gonadotropic axis during acute inflammation, and yet key facets of such a phenomenon remain ill defined. Using lipopolysaccharide S (LPS)-treated male rats as model of inflammation, we document herein the pattern......-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake...... and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center...

  1. Mapping of kisspeptin fibres in the brain of the pro-oestrus rat

    DEFF Research Database (Denmark)

    Desroziers, E; Mikkelsen, J; Simonneaux, V

    2010-01-01

    rat brain by comparing precisely the immunoreactive pattern obtained with two antibodies: one specifically directed against kisspeptin-52 (Kp-52), the longest isoform, and the other directed against kisspeptin-10 (Kp-10) whose sequence is common to all putative mature isoforms. With both antibodies......, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular...... terminalis were only recognised by antibody anti-Kp-10, suggesting that anti-Kp-10 may recognise a wider range of kisspeptin isoforms than anti-Kp-52 or cross-react with molecules other than kisspeptin in rat tissue. Overall, these results illustrate the variety of projection sites of kisspeptin neurones...

  2. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E

    2015-01-01

    OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic...... signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...

  3. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  4. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    International Nuclear Information System (INIS)

    Youssef, Ahmed M.; El-Gendy, Ahmed; Kamel, Samir

    2015-01-01

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated

  5. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Ahmed M., E-mail: amyoussef27@yahoo.com [Packing and Packaging Materials Department, National Research Center, Dokki, P.C. 12622, Cairo (Egypt); El-Gendy, Ahmed; Kamel, Samir [Cellulose and Paper Department, National Research Center, Dokki, Cairo (Egypt)

    2015-02-15

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated.

  6. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals.

    Directory of Open Access Journals (Sweden)

    Francesco Andreozzi

    Full Text Available To evaluate if plasma kisspeptin concentrations are associated with insulin secretion, as suggested by recent in vitro studies, independently of confounders. 261 nondiabetic subjects were stratified into tertiles according to kisspeptin values. Insulin secretion was assessed using indexes derived from oral glucose tolerance test (OGTT. After adjusting for age, gender, and BMI, subjects in the highest (tertile 3 kisspeptin group exhibited significantly lower values of insulinogenic index, corrected insulin response (CIR30, and Stumvoll indexes for first-phase and second-phase insulin release as compared with low (tertile 1 or intermediate (tertile 2 kisspeptin groups. Univariate correlations between kisspeptin concentration and metabolic variables showed that kisspeptin concentration was significantly and positively correlated with age, blood pressure, and 2-h post-load glucose, and inversely correlated with BMI, and waist circumference. There was an inverse relationship between kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion. A multivariable regression analysis in a model including all the variables significantly correlated with kisspeptin concentration showed thar age (β = -0.338, P<0.0001, BMI (β = 0.272, P<0.0001, 2-h post-load glucose (β = -0.229, P<0.0001, and kisspeptin (β = -0.105, P = 0.03 remained associated with insulinogenic index. These factors explained 34.6% of the variance of the insulinogenic index. In conclusion, kisspeptin concentrations are associated with insulin secretion independently of important determinants of glucose homeostasis such as gender, age, adiposity, 2-h post-load glucose, and insulin sensitivity.

  7. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons

    Directory of Open Access Journals (Sweden)

    Tomoko eSoga

    2016-03-01

    Full Text Available Kisspeptin, a newly discovered neuropeptide regulates gonadotropin-releasing hormone (GnRH. Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by kiss1 gene is a 145-amino acid- protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein coupled receptor 54 (GPR54 has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP labelled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP–GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1nM treatment for 36h on GnRH migration. Furthermore to determine kisspeptin-induced molecular pathways related with apoptosis, and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser captured EGFP–GnRH neurons by real time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd 26 in EGFP–GnRH neurons was up-regulated by the exposure to kisspeptin. These studies suggest that ankrd26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.

  8. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle...... between muscle fiber diameter, muscle fiber type distribution, or capillary density and degree of neuropathy or muscle strength for either patient group. Muscle fiber diameter and the proportion of Type II fibers were greater for T1D patients than both T2D patients and controls. The T2D patients had fewer...

  9. Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals.

    Science.gov (United States)

    Okamura, Hiroaki; Yamamura, Takashi; Wakabayashi, Yoshihiro

    2013-05-01

    The hypothalamo-pituitary-gonadal (HPG) axis is the regulatory system for reproduction in mammals. Because secretion of gonadotropin-releasing hormone (GnRH) into the portal vessels is the final step at which the brain controls gonadal activities, the GnRH neuronal system had been thought to be central to the HPG axis. A newly discovered neural peptide, kisspeptin, has opened a new era in reproductive neuroendocrinology. As shown in a variety of mammals, kisspeptin is a potent endogenous secretagogue of GnRH, and the kisspeptin neuronal system governs both the pulsatile GnRH secretion that drives folliculogenesis, spermatogenesis and steroidogenesis, and the GnRH surge that triggers ovulation in females. The kisspeptin neuronal system is therefore considered a master player in the central control of mammalian reproduction, and kisspeptin and related substances could therefore be valuable for the development of novel strategies for the management of fertility in farm animals. To this end, the present review aimed to summarize the current research on kisspeptin signaling with a focus on domestic animals such as sheep, goats, cattle, pigs and horses. © 2013 Japanese Society of Animal Science.

  10. Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye.

    Science.gov (United States)

    Kinard, Krista I; Smith, A Gordon; Singleton, J Robinson; Lessard, Margaret K; Katz, Bradley J; Warner, Judith E A; Crum, Alison V; Mifflin, Mark D; Brennan, Kevin C; Digre, Kathleen B

    2015-04-01

    We used in vivo corneal confocal microscopy to investigate structural differences in the sub-basal corneal nerve plexus in chronic migraine patients and a normal population. We used a validated questionnaire and tests of lacrimal function to determine the prevalence of dry eye in the same group of chronic migraine patients. Activation of the trigeminal system is involved in migraine. Corneal nociceptive sensation is mediated by trigeminal axons that synapse in the gasserian ganglion and the brainstem, and serve nociceptive, protective, and trophic functions. Noninvasive imaging of the corneal sub-basal nerve plexus is possible with in vivo corneal confocal microscopy. For this case-control study, we recruited chronic migraine patients and compared them with a sex- and age-similar group of control subjects. Patients with peripheral neuropathy, a disease known to be associated with a peripheral neuropathy, or prior corneal or intraocular surgery were excluded. Participants underwent in vivo corneal confocal microscopy using a Heidelberg Retinal Tomography III confocal microscope with a Rostock Cornea Module. Nerve fiber length, nerve branch density, nerve fiber density, and tortuosity coefficient were measured using established methodologies. Migraine participants underwent testing of basal tear production with proparacaine, corneal sensitivity assessment with a cotton-tip applicator, measurement of tear break-up time, and completion of a validated dry eye questionnaire. A total of 19 chronic migraine patients and 30 control participants completed the study. There were no significant differences in age or sex. Nerve fiber density was significantly lower in migraine patients compared with controls (48.4 ± 23.5 vs. 71.0 ± 15.0 fibers/mm2 , P dry eye syndrome. We found that in the sample used in this study, the presence of structural changes in nociceptive corneal axons lends further support to the hypothesis that the trigeminal system plays a critical role

  11. Role of Kisspeptin and Neurokinin B in Puberty in Female Non-Human Primates

    OpenAIRE

    Ei Terasawa; Ei Terasawa; James P. Garcia; Stephanie B. Seminara; Kim L. Keen

    2018-01-01

    In human patients, loss-of-function mutations in the genes encoding kisspeptin (KISS1) and neurokinin B (NKB) and their receptors (KISS1R and NK3R, respectively) result in an abnormal timing of puberty or the absence of puberty. To understand the neuroendocrine mechanism of puberty, we investigated the contribution of kisspeptin and NKB signaling to the pubertal increase in GnRH release using rhesus monkeys as a model. Direct measurements of GnRH and kisspeptin in the median eminence of the h...

  12. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  13. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  14. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  15. Interactions between prolactin and kisspeptin to control reproduction.

    Science.gov (United States)

    Donato, Jose; Frazão, Renata

    2016-01-01

    Prolactin is best known for its effects of stimulating mammary gland development and lactogenesis. However, prolactin is a pleiotropic hormone that is able to affect several physiological functions, including fertility. Prolactin receptors (PRLRs) are widely expressed in several tissues, including several brain regions and reproductive tract organs. Upon activation, PRLRs may exert prolactin's functions through several signaling pathways, although the recruitment of the signal transducer and activator of transcription 5 causes most of the known effects of prolactin. Pathological hyperprolactinemia is mainly due to the presence of a prolactinoma or pharmacological effects induced by drugs that interact with the dopamine system. Notably, hyperprolactinemia is a frequent cause of reproductive dysfunction and may lead to infertility in males and females. Recently, several studies have indicated that prolactin may modulate the reproductive axis by acting on specific populations of hypothalamic neurons that express the Kiss1 gene. The Kiss1 gene encodes neuropeptides known as kisspeptins, which are powerful activators of gonadotropin-releasing hormone neurons. In the present review, we will summarize the current knowledge about prolactin's actions on reproduction. Among other aspects, we will discuss whether the interaction between prolactin and the Kiss1-expressing neurons can affect reproduction and how kisspeptins may become a novel therapeutic approach to treat prolactin-induced infertility.

  16. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility.

    Science.gov (United States)

    Navarro, Victor M; Tena-Sempere, Manuel

    2011-09-13

    The neurohormonal control of reproduction involves a hierarchical network of central and peripheral signals in the hypothalamic-pituitary-gonadal (HPG) axis. Development and function of this neuroendocrine system is the result of a lifelong delicate balance between endogenous regulators and environmental cues, including nutritional and metabolic factors. Kisspeptins are the peptide products of KISS1, which operate via the G-protein-coupled receptor GPR54 (also known as Kiss1R). These peptides have emerged as essential upstream regulators of neurons secreting gonadotropin-releasing hormone (GnRH), the major hypothalamic node for the stimulatory control of the HPG axis. They are potent elicitors of gonadotropin secretion in various species and physiological settings. Moreover, Kiss1 neurons in the hypothalamus participate in crucial features of reproductive maturation and function, such as brain-level sex differentiation, puberty onset and the neuroendocrine regulation of gonadotropin secretion and ovulation. Cotransmitters of Kiss1 neurons, such as neurokinin B, with roles in controlling the HPG axis have been identified by genetic, neuroanatomical and physiological studies. In addition, a putative role has been proposed for Kiss1 neurons in transmitting metabolic information to GnRH neurons, although the precise mechanisms are as yet unclear. In this Review, we present the major reproductive features of kisspeptins, especially their interplay with neurokinin B and potential roles in the metabolic control of puberty and fertility, and suggest new avenues for research.

  17. The human dorsal spinocerebellar tract: myelinated fiber spectrum and fiber density in controls, autosomal dominant spinocerebellar atrophy, Huntington's chorea, radiation myelopathy, and diseases with peripheral sensory nerve involvement

    Energy Technology Data Exchange (ETDEWEB)

    Ringelstein, E.B.; Schroeder, J.M.

    1982-01-01

    The human dorsal spinocerebellar tract (DSCT) was evaluated morphometrically in 14 control cases of different age and sex using semithin sections of epon-embedded cross sections from the C3, T5, and T10 segments of the spinal cord. A bimodal fiber spectrum was revealed with one peak at 2-3 microns, and a second, broader peak at about 6-8 microns. Fiber density at C3 was 11,188 fibers/mm2 and at T5, 11,156 fibers/mm2. Regression analysis relating fiber density to age disclosed a highly significant loss of myelinated fibers at T5 amounting to about 2.5% per decade. A severe reduction of fiber density and a distinct change in the fiber spectrum with predominant loss of large myelinated fibers were noted in a case of autosomal dominant spinocerebellar atrophy with late onset, and, to a lesser degree, in a case of Huntington's chorea. A subtotal loss of fibers with a persistent normal distribution of fiber sizes was observed rostral to a focus of severe radiation myelopathy, indicating Wallerian degeneration of large numbers of fibers, and a reduction of fiber diameters caudal to the lesion, suggesting retrograde fiber change. By contrast, no primary or transneural changes in the DSCT were detected in six cases of long-term alcoholism, carcinomatous sensory neuropathy, and neurofibromatosis in spite of the involvement of numerous nerve roots.

  18. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge

    Directory of Open Access Journals (Sweden)

    Claudia C. Luhrs

    2014-05-01

    Full Text Available Samples of carbon nano-fiber foam (CFF, essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDX, Surface area analysis (BET, and Thermogravimetric Analysis (TGA. Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.

  19. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge.

    Science.gov (United States)

    Luhrs, Claudia C; Daskam, Chris D; Gonzalez, Edwin; Phillips, Jonathan

    2014-05-08

    Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance v ers us strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.

  20. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    International Nuclear Information System (INIS)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-01-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  1. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    Science.gov (United States)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  2. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge

    DEFF Research Database (Denmark)

    Williams, Wilbur P; Jarjisian, Stephan G; Mikkelsen, Jens D

    2011-01-01

    In spontaneously ovulating rodents, the preovulatory LH surge is initiated on the day of proestrus by a timed, stimulatory signal originating from the circadian clock in the suprachiasmatic nucleus (SCN). The present studies explored whether kisspeptin is part of the essential neural circuit...... linking the SCN to the GnRH system to stimulate ovulation in Syrian hamsters (Mesocricetus auratus). Kisspeptin neurons exhibit an estrogen-dependent, daily pattern of cellular activity consistent with a role in the circadian control of the LH surge. The SCN targets kisspeptin neurons via vasopressinergic...... of ovulatory control with interactions among the circadian system, kisspeptin signaling, and a GnRH gating mechanism of control....

  4. THE EFFECT OF DIAMETER ON THE MECHANICAL-PROPERTIES OF AMORPHOUS-CARBON FIBERS FROM LINEAR LOW-DENSITY POLYETHYLENE

    NARCIS (Netherlands)

    PENNING, JP; LAGCHER, R; PENNINGS, AJ

    The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor

  5. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  6. Kisspeptin and the seasonal control of reproduction in hamsters

    DEFF Research Database (Denmark)

    Simonneaux, Valérie; Ansel, Laura; Revel, Florent G

    2008-01-01

    -expressing neurons, which were recently shown to be implicated in the regulation of GnRH release. Hamsters are seasonal rodents which are sexually active in long photoperiod and quiescent in short photoperiod. The photoperiodic information is transmitted to the reproductive system by melatonin, a pineal...... hormone whose secretion is adjusted to night length. The photoperiodic variation in circulating melatonin has been shown to synchronize reproductive activity with seasons, but the mechanisms involved in this effect of melatonin were so far unknown. Recently we have observed that Kiss1 mRNA level...... in the arcuate nucleus of the Syrian hamster is lower in short photoperiod, when animals are sexually quiescent. Notably, intracerebroventricular infusion of Kiss1 gene product, kisspeptin, in hamsters kept in short photoperiod is able to override the inhibitory photoperiod and to reactivate sexual activity...

  7. Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis.

    Science.gov (United States)

    Jayasena, Channa N; Nijher, Gurjinder M K; Chaudhri, Owais B; Murphy, Kevin G; Ranger, Amita; Lim, Adrian; Patel, Daksha; Mehta, Amrish; Todd, Catriona; Ramachandran, Radha; Salem, Victoria; Stamp, Gordon W; Donaldson, Mandy; Ghatei, Mohammad A; Bloom, Stephen R; Dhillo, Waljit S

    2009-11-01

    Kisspeptin is a critical regulator of normal reproductive function. A single injection of kisspeptin in healthy human volunteers potently stimulates gonadotropin release. However, the effects of kisspeptin on gonadotropin release in women with hypothalamic amenorrhea (HA) and the effects of repeated administration of kisspeptin to humans are unknown. The aim of this study was to determine the effects of acute and chronic kisspeptin administration on gonadotropin release in women with HA. We performed a prospective, randomized, double-blinded, parallel design study. Women with HA received twice-daily sc injections of kisspeptin (6.4 nmol/kg) or 0.9% saline (n = 5 per group) for 2 wk. Changes in serum gonadotropin and estradiol levels, LH pulsatility, and ultrasound measurements of reproductive activity were assessed. On the first injection day, potent increases in serum LH and FSH were observed after sc kisspeptin injection in women with HA (mean maximal increment from baseline within 4 h after injection: LH, 24.0 +/- 3.5 IU/liter; FSH, 9.1 +/- 2.5 IU/liter). These responses were significantly reduced on the 14th injection day (mean maximal increment from baseline within 4 h postinjection: LH, 2.5 +/- 2.2 IU/liter, P < 0.05; FSH, 0.5 +/- 0.5 IU/liter, P < 0.05). Subjects remained responsive to GnRH after kisspeptin treatment. No significant changes in LH pulsatility or ultrasound measurements of reproductive activity were observed. Acute administration of kisspeptin to women with infertility due to HA potently stimulates gonadotropin release, but chronic administration of kisspeptin results in desensitization to its effects on gonadotropin release. These data have important implications for the development of kisspeptin as a novel therapy for reproductive disorders in humans.

  8. Evaluation of wood structure using GPR with FO method - Effect of moisture, fibers direction and density

    Science.gov (United States)

    Chinh Maï, Tien; Reci, Hamza; Sbartaï, Zoubir Mehdi; Pajewski, Lara; Marciniak, Marian

    2017-04-01

    This work deals with the potential of GPR method in the evaluation of wood structure in relation with density of wood (different wood species), the orientation of fibers and water content (Maï et al., 2015; Reci et al., 2016). The system of measurements is the georadar type (GPR-ground penetrating radar) composed of an electromagnetic signal generator (SIR 3000 of GSSI), and one couple of antennas, one Transmitter (T) and a Receiver (R) of 1.5GHz center frequency, located in the same box in a fixed distance of 6cm. Six wood samples are tested, three samples of Epicea and three samples of Pine. To compare and analyze the results of dielectric constants, we have used the data on three principal directions (Transvesal, Longitudinal and Radial). We note that the dielectric constant of wood increases with the moisture by mass as a consequence of increasing polarization and the conduction phenomena. This effect is more distinguished when the electric field is polarized parallel to the fibers than in perpendicular direction. The smallest contrasts are observed in the radial direction. We conclude that is more appropriate to evaluate the water content along the parallel direction of fibers. In this case we observe the maximum of contrasts of dielectric contrasts between dry and humidity states. Differences on dielectric constant, spectras and amplitudes are taken between different wood samples. Knowing that the dielectric constant is related to the capacity of polarizing (dependent on the water quantity), the increasing of water content could explain the difference of values obtained for the dielectric constants between two kinds of wood. Acknowledgement The Authors are grateful to COST - European Cooperation in Science and Technology (www.cost.eu) for funding the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). We acknowledge also the French National Research Agency (ANR) for supporting this study through the Xylo-plate project

  9. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2018-03-01

    Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin

  10. Geometrical separation method for lipoproteins using bioformulated-fiber matrix electrophoresis: size of high-density lipoprotein does not reflect its density.

    Science.gov (United States)

    Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu

    2011-02-01

    The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.

  11. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes

    Science.gov (United States)

    Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo

    2014-12-01

    Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.

  12. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  13. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  14. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Science.gov (United States)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  15. Metabolic control of puberty: roles of leptin and kisspeptins.

    Science.gov (United States)

    Sanchez-Garrido, Miguel A; Tena-Sempere, Manuel

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". Reproduction is an energy-demanding function. Accordingly, puberty is metabolically gated, as a means to prevent fertility in conditions of energy insufficiency. In addition, obesity has been shown to impact the timing of puberty and may be among the causes for the earlier trends of pubertal age reported in various countries. The metabolic control of puberty in such a spectrum of situations, ranging from energy deficit to extreme overweight, is the result of the concerted action of different peripheral hormones and central transmitters that sense the metabolic state of the organism and transmit this information to the various elements of the reproductive axis, mainly the GnRH neurons. Among the peripheral signals involved, the adipose hormone, leptin, is known to play an essential role in the regulation of puberty, especially in females. Yet, although it is clear that the effects of leptin on puberty onset are predominantly permissive and mainly conducted at central (hypothalamic) levels, the primary sites and mechanisms of action of leptin within the reproductive brain remain unsolved. In this context, neurons expressing kisspeptins, the products of the Kiss1 gene that have emerged recently as essential upstream regulators of GnRH neurons, operate as key sensors of the metabolic state and funnel of the reproductive effects of leptin. Yet, much debate has arisen recently on whether the putative actions of leptin on the Kiss1 system are actually indirect and/or may primarily target Kiss1-independent pathways, such as those originating from the ventral premmamilary nucleus. Moreover, evidence has been presented for extra-hypothalamic or peripheral actions of leptin, including direct gonadal effects, which may contribute to the metabolic control of reproduction in extreme body weight conditions. In this work, we will critically review the experimental evidence supporting a role of leptin, kisspeptin

  16. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  17. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  18. Longitudinal Development of Cortical Thickness, Folding, and Fiber Density Networks in the First 2 Years of Life

    OpenAIRE

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, ...

  19. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  20. Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-09-01

    Full Text Available Our previous studies showed that kisspeptin-10 (Kp-10 injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG, high density of lipoprotein-cholesterol (HDL-C and low density of lipoprotein-cholesterol (LDL-C were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1, acetyl coenzyme A carboxylase α (ACCα, carnitine palmitoyltransferase 1 (CPT1, 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR and stearyl coenzyme A dehydrogenase-1 (SCD1 mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

  1. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  2. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  3. beta-Sheet aggregation of kisspeptin-10 is stimulated by heparin but inhibited by amphiphiles

    DEFF Research Database (Denmark)

    Nielsen, Søren Bang; Franzmann, Magnus; Basaiawmoit, Rajiv V

    2010-01-01

    The murine 10-residue neurohormone kisspeptin (YNWNSFGLRY) is an important regulator of reproductive behavior and gonadotrophin secretion. It is known to form a random coil in solution, but undergoes a structural change in the presence of membranes although the nature of this change is not fully...

  4. Peripheral kisspeptin reverses short photoperiod-induced gonadal regression in Syrian hamsters by promoting GNRH release

    DEFF Research Database (Denmark)

    Ansel, L; Bentsen, A H; Ancel, C

    2011-01-01

    In seasonal breeders, reproduction is synchronised by day length via the pineal hormone melatonin. In short winter days (short day, SD), the Syrian hamster displays a complete gonadal atrophy together with a marked reduction in expression of kisspeptins (Kp), a family of potent hypothalamic stimu...

  5. Multiple kisspeptin receptors in early Osteichthyans provide new insights into the evolution of this receptor family

    DEFF Research Database (Denmark)

    Pasquier, J.; Lafont, A._G.; Jeng, S.-R.

    2012-01-01

    Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present ...

  6. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    Science.gov (United States)

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Incorporation of waste and fiber kaolin caroa panels in Medium Density Fiberboard - MDF; Incorporacao de residuos de caulim e fibras de caroa em paineis de media densidade- MDF

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A.F.C.; Santana, L.N.L.; Neves, G.A.; Carvalho, L.H. de; Lopes, F.F.M., E-mail: anaflavia.dema@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2012-07-01

    Medium-density panels are composites molded under high temperature and pressure which have physical and mechanical properties similar to those of solid wood. Their composition includes eucalyptus grandis fibers and pinus elliotii fibers, but other fibers can be used such as caroa fibers. The goal of this work was to manufacture panels which kaolin waste and caroa fibers and compare their physical, chemical and mechanical of these panels with a others. Both residue and the fibers were characterized by: differential thermal analysis, thermal gravimetric analysis and Xray diffraction. Through the process of pressing the test specimens were fabricated, test samples were evaluated by three point bending, internal bond, water absorption and swelling in thickness. The samples have low levels of thickness swelling, flexural strength and higher tensile and absorption content relative to commercial MDF. (author)

  8. Mechanical and Electrical Characterization of Novel Carbon Nano Fiber Ultralow Density Foam

    Science.gov (United States)

    2013-12-01

    reinforced epoxy with 60 vol percent of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers . [28-32... Poisson ratio of 0.137.................................................................................................................54 xiv...were employed to determine relaxation modulus, stability over time, Poisson ratio , stress and strain versus resistance, gauge factor, etc. The data

  9. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    Science.gov (United States)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  10. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana).

    Science.gov (United States)

    Neuman-Lee, Lorin; Greives, Timothy; Hopkins, Gareth R; French, Susannah S

    2017-03-01

    The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  12. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    International Nuclear Information System (INIS)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-01-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ≤0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ≤0.2 dB. [copyright] 2001 Optical Society of America

  13. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-06-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band ({lt}5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is {minus}110 dB/Hz, with uncertainty {le}0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by {le}0.2 dB. {copyright} 2001 Optical Society of America

  14. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice.

    Science.gov (United States)

    Adekunbi, D A; Li, X F; Lass, G; Shetty, K; Adegoke, O A; Yeo, S H; Colledge, W H; Lightman, S L; O'Byrne, K T

    2018-03-01

    The posterodorsal medial amygdala (MePD) is a neural site in the limbic brain involved in regulating emotional and sexual behaviours. There is, however, limited information available on the specific neuronal cell type in the MePD functionally mediating these behaviours in rodents. The recent discovery of a significant kisspeptin neurone population in the MePD has raised interest in the possible role of kisspeptin and its cognate receptor in sexual behaviour. The present study therefore tested the hypothesis that the MePD kisspeptin neurone population is involved in regulating attraction towards opposite sex conspecifics, sexual behaviour, social interaction and the anxiety response by selectively stimulating these neurones using the novel pharmacosynthetic DREADDs (designer receptors exclusively activated by designer drugs) technique. Adult male Kiss-Cre mice received bilateral stereotaxic injections of a stimulatory DREADD viral construct (AAV-hSyn-DIO-hM 3 D(Gq)-mCherry) targeted to the MePD, with subsequent activation by i.p. injection of clozapine-N-oxide (CNO). Socio-sexual behaviours were assessed in a counter-balanced fashion after i.p. injection of either saline or CNO (5 mg kg -1 ). Selective activation of MePD kisspeptin neurones by CNO significantly increased the time spent by male mice in investigating an oestrous female, as well as the duration of social interaction. Additionally, after CNO injection, the mice appeared less anxious, as indicated by a longer exploratory time in the open arms of the elevated plus maze. However, levels of copulatory behaviour were comparable between CNO and saline-treated controls. These data indicate that DREADD-induced activation of MePD kisspeptin neurones enhances both sexual partner preference in males and social interaction and also decreases anxiety, suggesting a key role played by MePD kisspeptin in sexual motivation and social behaviour. © 2018 The Authors. Journal of Neuroendocrinology published by John Wiley

  15. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  16. The Two Populations of Kisspeptin Neurons Are Involved in the Ram-Induced LH Pulsatile Secretion and LH Surge in Anestrous Ewes.

    Science.gov (United States)

    Fabre-Nys, Claude; Cognié, Juliette; Dufourny, Laurence; Ghenim, Meriem; Martinet, Stephanie; Lasserre, Olivier; Lomet, Didier; Millar, Robert P; Ohkura, Satoshi; Suetomi, Yuta

    2017-11-01

    Exposure to a ram during spring stimulates luteinizing hormone (LH) secretion and can induce ovulation in sexually quiescent ewes ("ram effect"). Kisspeptin (Kiss) present in the arcuate nucleus (ARC) and the preoptic area (POA) is a potent stimulators of LH secretion. Our aim was to investigate whether Kiss neurons mediate the increase in LH secretion during the ram effect. With double immunofluorescent detection, we identified Kiss neurons (Kiss IR) activated (Fos IR) by exposure to a ram for 2 hours (M2) or 12 hours (M12) or to ewes for 2 hours (C). The density of cells Kiss + Fos IR and the proportion of Kiss IR cells that were also Fos IR cells were higher in M2 and M12 than in C in ARC (P populations of Kiss neurons are involved in the ram-induced pulsatile LH secretion and in the LH surge. Copyright © 2017 Endocrine Society.

  17. Particle passage kinetics and neutral detergent fiber degradability of silage of pineapple waste (aerial parts under different packing densities

    Directory of Open Access Journals (Sweden)

    Graciele Araújo de Oliveira Caetano

    2014-01-01

    Full Text Available The objective of this study was to determine the kinetics of in situ degradability parameters of the dry matter (DM and neutral detergent fiber (NDF and the passage of materials originating from the ensilage of the waste from pineapple cultivation (aerial parts. The four treatments utilized were silage of pineapple waste compacted at 600, 700, 900 and 1000 kg/m³. After ensiling the material from the pineapple cultivation, the particle-transit and rumen-degradation kinetics were analyzed. For the analysis of particle transit, chromium was utilized as a marker to mark the fiber. Passage rates were determined by retrieving the markers in the feces of the animals. In the degradation assay, samples were incubated in nylon bags for 0, 6, 18, 48 and 96 hours. The behavior observed in the regression curves of the variables analyzed describes high correlation between them, i.e., the time during which the silage is retained in the rumen influences its digestibility and its degradation rate. Although the silage compacted at 900 kg/m³ shows a larger potentially digestible fraction, it is recommended that it be ensiled at a compaction density of approximately 750 kg/m³ due to the lower cost and shorter mean retention time in the rumen-reticulum and rumen fill, thereby increasing the ruminal degradation and passage dynamics.

  18. Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Min Yu

    2018-01-01

    Full Text Available The effect of individual and combined particleboard dust (PB dust and basalt fibers (BFs on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.

  19. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity.

    Science.gov (United States)

    Asaba, Akari; Osakada, Takuya; Touhara, Kazushige; Kato, Masahiro; Mogi, Kazutaka; Kikusui, Takefumi

    2017-08-01

    Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Kisspeptin levels in idiopathic hypogonadotropic hypogonadism diagnosed male patients and its relation with glucose-insulin dynamic.

    Science.gov (United States)

    Öztin, Hasan; Çağıltay, Eylem; Çağlayan, Sinan; Kaplan, Mustafa; Akpak, Yaşam Kemal; Karaca, Nilay; Tığlıoğlu, Mesut

    2016-12-01

    Male hypogonadism is defined as the deficiency of testosterone or sperm production synthesized by testicles or the deficiency of both. The reasons for hypogonadism may be primary, meaning testicular or secondary, meaning hypothalamohypophyseal. In hypogonadotropic hypogonadism (HH), there is indeficiency in gonadotropic hormones due to hypothalamic or hypophyseal reasons. Gonadotropin-releasing hormone (GnRH) is an important stimulant in releasing follicular stimulant hormone (FSH), mainly luteinizing hormone (LH). GnRH omitted is under the effect of many hormonal or stimulating factors. Kisspeptin is present in many places of the body, mostly in hypothalamic anteroventral periventricular nucleus and arcuate nucleus. Kisspeptin has a suppressor effect on the metastasis of many tumors such as breast cancer and malign melanoma metastases, and is called "metastin" for this reason. Kisspeptin is a strong stimulant of GnRH. In idiopathic hypogonadotropic hypogonadism (IHH) etiology, there is gonadotropic hormone release indeficiency which cannot be clearly described. A total of 30 male hypogonatropic hypogonadism diagnosed patients over 30 years of age who have applied to Haydarpasa Education Hospital Endocrinology and Metabolic Diseases Service were included in the study. Compared to the control group, the effect of kisspeptin on male patients with hypogonatropic hypogonadism and on insulin resistance developing in hypogonadism patients was investigated in our study. A statistically significant difference was detected between average kisspeptin measurements of the groups (p hypogonadism and has less effect on insulin resistance.

  1. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  2. Fiber intake, not dietary energy density, is associated with subsequent change in BMI z-score among sub-groups of children

    DEFF Research Database (Denmark)

    Kring, Sofia I Iqbal; Heitmann, Berit L

    2008-01-01

    OBJECTIVE: Results from short-term studies demonstrate that energy density influences energy intake, but in children and adolescents the long-term effects of energy density and obesity development are sparse. We examined the longitudinal relationship between dietary energy density, fiber intake...... to collect dietary energy intake. Overweight was defined as 1.05 SD, equivalent to the 85th percentile, of age- and sex-specific BMI z-score reference values. RESULTS: An inverse association between fiber intake and subsequent excess weight gain was observed among the normal weight boys. In overweight boys......, there was a direct association with excess weight gain. A high energy intake was associated with a higher weight gain among overweight than among normal-weight boys. No significant association between dietary energy density and subsequent excess weight change was seen. The prevalence of overweight increased from 27...

  3. Measuring and engineering the atomic mass density wave of a Gaussian mass-polariton pulse in optical fibers

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2018-02-01

    Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.

  4. Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats.

    Science.gov (United States)

    Yamada, S; Uenoyama, Y; Kinoshita, M; Iwata, K; Takase, K; Matsui, H; Adachi, S; Inoue, K; Maeda, K-I; Tsukamura, H

    2007-05-01

    Follicular development and ovulation are suppressed during lactation in various mammalian species, mainly due to the suppression of pulsatile GnRH/LH secretion. Metastin (kisspeptin-54), a KiSS-1 gene product, is an endogenous ligand for GPR54, a G-protein-coupled receptor, and suggested to play a critical role in regulating the gonadal axis. The present study therefore aims to determine whether metastin (kisspeptin-54)-GPR54 signaling in discrete brain areas is inhibited by the suckling stimulus that causes suppression of LH secretion in lactating rats. Quantitative RT-PCR revealed that the KiSS-1 mRNA level was significantly lower in the arcuate nucleus (ARC)-median eminence region in lactating ovariectomized (OVX) and estrogen-treated OVX rats than in nonlactating controls. KiSS-1 mRNA in the anteroventral periventricular nucleus was kept at a low level in both lactating and nonlactating rats despite estrogen treatment. GPR54 mRNA levels were significantly lower in lactating than nonlactating rats in the anteroventral periventricular nucleus, but the levels in lactating mothers of the preoptic area and ARC-median eminence were comparable with nonlactating controls. Although KiSS-1 mRNA-expressing cells or metastin (kisspeptin-54) immunoreactivities were densely located in the ARC of nonlactating controls, few were found in the ARC of lactating OVX animals. Various doses of metastin (kisspeptin-54) (0.02, 0.2, and 2 nmol) injected into the third ventricle caused a significant increase in LH secretion in both lactating and nonlactating OVX rats, suggesting that lactating rats are responsive to metastin (kisspeptin-54) stimulus. Thus, the present study demonstrated that KiSS-1 mRNA/metastin (kisspeptin-54) expression is inhibited in the ARC by the suckling stimulus, suggesting that the inhibition is most probably involved in suppressing LH secretion in lactating rats.

  5. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  6. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  7. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats

    Directory of Open Access Journals (Sweden)

    Junlin eZhang

    2013-05-01

    Full Text Available Manipulation of serotonin (5HT during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM. Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8-21. After animals reach adulthood (>90 days, OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs, these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.

  8. Plasma kisspeptin and ghrelin levels are independently correlated with physical activity in patients with anorexia nervosa.

    Science.gov (United States)

    Hofmann, Tobias; Elbelt, Ulf; Haas, Verena; Ahnis, Anne; Klapp, Burghard F; Rose, Matthias; Stengel, Andreas

    2017-01-01

    While physical hyperactivity represents a frequent symptom of anorexia nervosa and may have a deleterious impact on the course of the disease, the underlying mechanisms are poorly understood. Since several food intake-regulatory hormones affect physical activity, the aim of the study was to investigate the association of physical activity with novel candidate hormones (kisspeptin, ghrelin, oxyntomodulin, orexin-A, FGF-21, R-spondin-1) possibly involved in patients with anorexia nervosa. Associations with psychometric parameters and body composition were also assessed. We included 38 female anorexia nervosa inpatients (body mass index, BMI, mean ± SD: 14.8 ± 1.7 kg/m 2 ). Physical activity was evaluated using portable armband devices, body composition by bioelectrical impedance analysis. Blood withdrawal (hormones measured by ELISA) and psychometric assessment of depressiveness (PHQ-9), anxiety (GAD-7), perceived stress (PSQ-20) and disordered eating (EDI-2) were performed at the same time. Patients displayed a broad spectrum of physical activity (2479-26,047 steps/day) which showed a negative correlation with kisspeptin (r = -0.41, p = 0.01) and a positive association with ghrelin (r = 0.42, p = 0.01). The negative correlation with oxyntomodulin (r = -0.37, p = 0.03) was lost after consideration of potential confounders by regression analysis. No correlations were observed between physical activity and orexin-A, FGF-21 and R-spondin-1 (p > 0.05). Kisspeptin was positively correlated with BMI and body fat mass and negatively associated with the interpersonal distrust subscale of the EDI-2 (p  0.05). In conclusion, kisspeptin is inversely and ghrelin positively associated with physical activity as measured by daily step counts in anorexia nervosa patients suggesting an implication of these peptide hormones in the regulation of physical activity in anorexia nervosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A second dose of kisspeptin-54 improves oocyte maturation in women at high risk of ovarian hyperstimulation syndrome: a Phase 2 randomized controlled trial.

    Science.gov (United States)

    Abbara, Ali; Clarke, Sophie; Islam, Rumana; Prague, Julia K; Comninos, Alexander N; Narayanaswamy, Shakunthala; Papadopoulou, Deborah; Roberts, Rachel; Izzi-Engbeaya, Chioma; Ratnasabapathy, Risheka; Nesbitt, Alexander; Vimalesvaran, Sunitha; Salim, Rehan; Lavery, Stuart A; Bloom, Stephen R; Huson, Les; Trew, Geoffrey H; Dhillo, Waljit S

    2017-09-01

    Can increasing the duration of LH-exposure with a second dose of kisspeptin-54 improve oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS)? A second dose of kisspeptin-54 at 10 h following the first improves oocyte yield in women at high risk of OHSS. Kisspeptin acts at the hypothalamus to stimulate the release of an endogenous pool of GnRH from the hypothalamus. We have previously reported that a single dose of kisspeptin-54 results in an LH-surge of ~12-14 h duration, which safely triggers oocyte maturation in women at high risk of OHSS. Phase-2 randomized placebo-controlled trial of 62 women at high risk of OHSS recruited between August 2015 and May 2016. Following controlled ovarian stimulation, all patients (n = 62) received a subcutaneous injection of kisspeptin-54 (9.6 nmol/kg) 36 h prior to oocyte retrieval. Patients were randomized 1:1 to receive either a second dose of kisspeptin-54 (D; Double, n = 31), or saline (S; Single, n = 31) 10 h thereafter. Patients, embryologists, and IVF clinicians remained blinded to the dosing allocation. Study participants: Sixty-two women aged 18-34 years at high risk of OHSS (antral follicle count ≥23 or anti-Mullerian hormone level ≥40 pmol/L). Setting: Single centre study carried out at Hammersmith Hospital IVF unit, London, UK. Primary outcome: Proportion of patients achieving an oocyte yield (percentage of mature oocytes retrieved from follicles ≥14 mm on morning of first kisspeptin-54 trigger administration) of at least 60%. Secondary outcomes: Reproductive hormone levels, implantation rate and OHSS occurrence. A second dose of kisspeptin-54 at 10 h following the first induced further LH-secretion at 4 h after administration. A higher proportion of patients achieved an oocyte yield ≥60% following a second dose of kisspeptin-54 (Single: 14/31, 45%, Double: 21/31, 71%; absolute difference +26%, CI 2-50%, P = 0.042). Patients receiving two doses of kisspeptin-54 had a variable LH

  10. Effect of progesterone on kisspeptin and neurokinin B cell numbers in the arcuate nucleus of the female pig

    Science.gov (United States)

    Progesterone acts at the hypothalamus to inhibit LH secretion in the pig, but the mechanism for this is unknown. Kisspeptin and neurokinin B (NKB) have both been shown to influence GnRH/LH secretion and mediate steroid negative feedback in several species and to be critical for normal reproductive f...

  11. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  12. Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes

    Science.gov (United States)

    Maltby, Matthew J.; Millar, Robert P.; Hileman, Stanley M.; Nestor, Casey C; Whited, Brant; Tseng, Ashlie S.; Coolen, Lique M.; Lehman, Michael N.

    2012-01-01

    Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons. PMID:23038740

  13. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Yuan Cao

    2018-01-01

    Full Text Available Triclosan (TCS, a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH, follicle-stimulating hormone (FSH and progesterone, and gonadotrophin-releasing hormone (GnRH mRNA with the lack of LH surge and elevation of prolactin (PRL. TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV and arcuate nucleus (ARC. Moreover, the estrogen (E2-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3 and thyroxine (T4 in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH and thyroid releasing hormone (TRH. In TCS mice, the treatment with Levothyroxine (L-T4 corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  14. Dislocation density and Burgers vector population in fiber-textured Ni thin films determined by high-resolution X-ray line profile analysis

    DEFF Research Database (Denmark)

    Csiszár, Gábor; Pantleon, Karen; Alimadadi, Hossein

    2012-01-01

    distribution are determined by high-resolution X-ray diffraction line profile analysis. The substructure parameters are correlated with the strength of the films by using the combined Taylor and Hall-Petch relations. The convolutional multiple whole profile method is used to obtain the substructure parameters......Nanocrystalline Ni thin films have been produced by direct current electrodeposition with different additives and current density in order to obtain 〈100〉, 〈111〉 and 〈211〉 major fiber textures. The dislocation density, the Burgers vector population and the coherently scattering domain size...

  15. Melatonin implantation during the non-growing period of cashmere increases the cashmere yield of female Inner Mongolian cashmere goats by increasing fiber length and density

    International Nuclear Information System (INIS)

    Wu, Z.; Duan, C.; Li, Y.; Duan, T.; Mo, F.; Zhang, W.

    2018-01-01

    This study aimed to evaluate if melatonin implantation at the end of April and June was able to increase cashmere production in female Inner Mongolian cashmere goats and to search for contributing factors accounting for the melatonin increasing in cashmere production. One hundred and fifty female Inner Mongolian cashmere goats (initial body weight 37.2 ± 3.3 kg) were randomly assigned to either a control (n=75) or a treatment (n=75) group. Goats in the treatment group were implanted with melatonin (2 mg/kg of body weight) on April 30 and June 30, 2014 while goats in the control received no treatment. Melatonin implantation increased cashmere yield by 23.4% while increasing the length and density of the cashmere fiber by 19.8% and 11.4%, whereas it decreased cashmere fiber diameter by 4.4%. Melatonin treatment had no effect on doe growth, litter size or birth and weaning weights of kid. Melatonin implantation promoted cashmere yield by increasing fiber length and density without impacting the performance of goats and their offspring. Therefore, melatonin implantation during the cashmere non-growing period (late April and June) is an effective way to increase cashmere yield and improve cashmere characteristics of goats.

  16. Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat.

    Science.gov (United States)

    Roa, J; Vigo, E; Castellano, J M; Navarro, V M; Fernández-Fernández, R; Casanueva, F F; Dieguez, C; Aguilar, E; Pinilla, L; Tena-Sempere, M

    2006-06-01

    Kisspeptins, products of the KiSS-1 gene with ability to bind G protein-coupled receptor 54 (GPR54), have been recently identified as major gatekeepers of reproductive function with ability to potently activate the GnRH/LH axis. Yet, despite the diversity of functional states of the female gonadotropic axis, pharmacological characterization of this effect has been mostly conducted in pubertal animals or adult male rodents, whereas similar studies have not been thoroughly conducted in the adult female. In this work, we evaluated maximal LH and FSH secretory responses to kisspeptin-10, as well as changes in sensitivity and hypothalamic expression of KiSS-1 and GPR54 genes, in different physiological and experimental models in the adult female rat. Kisspeptin-10 (1 nmol, intracerebroventricular) was able to elicit robust LH bursts at all phases of the estrous cycle, with maximal responses at estrus; yet, in diestrus LH, responses to kisspeptin were detected at doses as low as 0.1 pmol. In contrast, high doses of kisspeptin only stimulated FSH secretion at diestrus. Removal of ovarian sex steroids did not blunt the ability of kisspeptin to further elicit stimulated LH and FSH secretion, but restoration of maximal responses required replacement with estradiol and progesterone. Finally, despite suppressed basal levels, LH and FSH secretory responses to kisspeptin were preserved in pregnant and lactating females, although the magnitude of LH bursts and the sensitivity to kisspeptin were much higher in pregnant dams. Interestingly, hypothalamic KiSS-1 gene expression significantly increased during pregnancy, whereas GPR54 mRNA levels remained unaltered. In summary, our current data document for the first time the changes in hypothalamic expression of KiSS-1 system and the gonadotropic effects (maximal responses and sensitivity) of kisspeptin in different functional states of the female reproductive axis. The present data may pose interesting implications in light of the

  17. Pubertal Escape From Estradiol Negative Feedback in Ewe Lambs Is Not Accounted for by Decreased ESR1 mRNA or Protein in Kisspeptin Neurons.

    Science.gov (United States)

    Bedenbaugh, Michelle N; D'Oliveira, Marcella; Cardoso, Rodolfo C; Hileman, Stanley M; Williams, Gary L; Amstalden, Marcel

    2018-01-01

    In this study, we investigated whether decreased sensitivity to estradiol negative feedback is associated with reduced estrogen receptor α (ESR1) expression in kisspeptin neurons as ewe lambs approach puberty. Lambs were ovariectomized and received no implant (OVX) or an implant containing estradiol (OVX+E). In the middle arcuate nucleus (mARC), ESR1 messenger RNA (mRNA) was greater in OVX than OVX+E lambs but did not differ elsewhere. Post hoc analysis of luteinizing hormone (LH) secretion from OVX+E lambs revealed three patterns of LH pulsatility: low [1 to 2 pulses per 12 hours; low frequency (LF), n = 3], moderate [6 to 7 pulses per 12 hours; moderate frequency (MF), n = 6], and high [>10 pulses per 12 hours; high frequency (HF), n = 5]. The percentage of kisspeptin neurons containing ESR1 mRNA in the preoptic area did not differ among HF, MF, or LF groups. However, the percentage of kisspeptin neurons containing ESR1 mRNA in the mARC was greater in HF (57%) than in MF (36%) or LF (27%) lambs and did not differ from OVX (50%) lambs. A higher percentage of kisspeptin neurons contained ESR1 protein in all regions of the arcuate nucleus (ARC) in OVX compared with OVX+E lambs. There were no differences in ESR1 protein among the HF, MF, or LF groups in the preoptic area or ARC. Contrary to our hypothesis, increases in LH pulsatility were associated with enhanced ESR1 mRNA abundance in kisspeptin neurons in the ARC, and absence of estradiol increased the percentage of kisspeptin neurons containing ESR1 protein in the ARC. Therefore, changes in the expression of ESR1, particularly in kisspeptin neurons in the ARC, do not explain the pubertal escape from estradiol negative feedback in ewe lambs. Copyright © 2018 Endocrine Society.

  18. Kisspeptin Signaling Is Required for the Luteinizing Hormone Response in Anestrous Ewes following the Introduction of Males

    Science.gov (United States)

    De Bond, Julie-Ann P.; Li, Qun; Millar, Robert P.; Clarke, Iain J.; Smith, Jeremy T.

    2013-01-01

    The introduction of a novel male stimulates the hypothalamic-pituitary-gonadal axis of female sheep during seasonal anestrus, leading to the resumption of follicle maturation and ovulation. How this pheromone cue activates pulsatile secretion of gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) is unknown. We hypothesised that pheromones activate kisspeptin neurons, the product of which is critical for the stimulation of GnRH neurons and fertility. During the non-breeding season, female sheep were exposed to novel males and blood samples collected for analysis of plasma LH profiles. Females without exposure to males served as controls. In addition, one hour before male exposure, a kisspeptin antagonist (P-271) or vehicle was infused into the lateral ventricle and continued for the entire period of male exposure. Introduction of a male led to elevated mean LH levels, due to increased LH pulse amplitude and pulse frequency in females, when compared to females not exposed to a male. Infusion of P-271 abolished this effect of male exposure. Brains were collected after the male effect stimulus and we observed an increase in the percentage of kisspeptin neurons co-expressing Fos, by immunohistochemistry. In addition, the per-cell expression of Kiss1 mRNA was increased in the rostral and mid (but not the caudal) arcuate nucleus (ARC) after male exposure in both aCSF and P-271 treated ewes, but the per-cell content of neurokinin B mRNA was decreased. There was also a generalized increase in Fos positive cells in the rostral and mid ARC as well as the ventromedial hypothalamus of females exposed to males. We conclude that introduction of male sheep to seasonally anestrous female sheep activates kisspeptin neurons and other cells in the hypothalamus, leading to increased GnRH/LH secretion. PMID:23469121

  19. Eel Kisspeptins: Identification, Functional Activity, and Inhibition on both Pituitary LH and GnRH Receptor Expression

    Directory of Open Access Journals (Sweden)

    Jérémy Pasquier

    2018-01-01

    Full Text Available The European eel (Anguilla anguilla presents a blockade of sexual maturation at a prepubertal stage due to a deficient production of gonadotropins. We previously initiated, in the eel, the investigation of the kisspeptin system, one of the major gatekeepers of puberty in mammals, and we predicted the sequence of two Kiss genes. In the present study, we cloned and sequenced Kiss1 and Kiss2 cDNAs from the eel brain. The tissue distributions of Kiss1 and Kiss2 transcripts, as investigated by quantitative real-time PCR, showed that both genes are primarily expressed in the eel brain and pituitary. The two 10-residue long sequences characteristic of kisspeptin, eel Kp1(10 and Kp2(10, as well as two longer sequences, predicted as mature peptides, eel Kp1(15 and Kp2(12, were synthesized and functionally analyzed. Using rat Kiss1 receptor-transfected Chinese hamster ovary cells, we found that the four synthesized eel peptides were able to induce [Ca2+]i responses, indicating their ability to bind mammalian KissR-1 and to activate second messenger pathways. In primary culture of eel pituitary cells, all four peptides were able to specifically and dose-dependently inhibit lhβ expression, without any effect on fshβ, confirming our previous data with heterologous kisspeptins. Furthermore, in this eel in vitro system, all four peptides inhibited the expression of the type 2 GnRH receptor (gnrh-r2. Our data revealed a dual inhibitory effect of homologous kisspeptins on both pituitary lhβ and gnrh-r2 expression in the European eel.

  20. Effect of Heat Drawing Process on Mechanical Properties of Dry-Jet Wet Spun Fiber of Linear Low Density Polyethylene/Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2017-01-01

    Full Text Available Polyethylene is one of the most commonly used polymer materials. Even though linear low density polyethylene (LLDPE has better mechanical properties than other kinds of polyethylene, it is not used as a textile material because of its plastic behavior that is easy to break at the die during melt spinning. In this study, LLDPE fibers were successfully produced with a new approach using a dry-jet wet spinning and a heat drawing process. The fibers were filled with carbon nanotubes (CNTs to improve the strength and reduce plastic deformation. The crystallinity, degree of orientation, mechanical properties (strength to yield, strength to break, elongation at break, and initial modulus, electrical conductivity, and thermal properties of LLDPE fibers were studied. The results show that the addition of CNTs improved the tensile strength and the degree of crystallinity. The heat drawing process resulted in a significant increase in the tensile strength and the orientation of the CNTs and polymer chains. In addition, this study demonstrates that the heat drawing process effectively decreases the plastic deformation of LLDPE.

  1. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  2. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  3. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    Science.gov (United States)

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  4. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    Science.gov (United States)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  5. Development and aging of the Kisspeptin-GPR54 system in the mammalian brain: what are the impacts on female reproductive function?

    Directory of Open Access Journals (Sweden)

    Isabelle eFranceschini

    2013-03-01

    Full Text Available The prominent role of the G protein coupled receptor GPR54 and its peptide ligand kisspeptin in the progression of puberty has been extensively documented in many mammalian species including humans. Kisspeptins are very potent GnRH secretagogues produced by two main populations of neurons located in two ventral forebrain regions, the preoptic area and the arcuate nucleus (ARC. Within the last two years a substantial amount of data has accumulated concerning the development of these neuronal populations and their timely regulation by central and peripheral factors during fetal, neonatal and peripubertal stages of development. This review focuses on the development of the Kisspeptin-GPR54 system in the brain of female mouse, rat, sheep, monkey and humans. The notion that this system represents a major target through which signals from the environment early in life can re-program reproductive function will also be discussed.

  6. Effect of a postnatal high-fat diet exposure on puberty onset, estrous cycle regularity, and kisspeptin expression in female rats

    DEFF Research Database (Denmark)

    Lie, Maria Elena Klibo; Overgaard, Agnete; Mikkelsen, Jens D

    2013-01-01

    Kisspeptin, encoded by Kiss1, plays a key role in pubertal maturation and reproduction as a positive upstream regulator of the hypothalamic-pituitary-gonadal (HPG) axis. To examine the role of high-fat diet (HFD) on puberty onset, estrous cycle regularity, and kisspeptin expression, female rats...... were exposed to HFD in distinct postnatal periods. Three groups of rats were exposed to HFD containing 60% energy from fat during the pre-weaning period (postnatal day (PND) 1-16, HFD PND 1-16), post-weaning period (HFD PND 21-34), or during both periods (HFD PND 1-34). Puberty onset, evaluated...... that postnatal HFD exposure induced irregular estrous cycles, but had no effect on puberty onset or kisspeptin....

  7. Kisspeptin-mediated regulation of testicular activity of rats under the effect of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    V. Y. Kalynovskyi

    2016-09-01

    Full Text Available There are a variety of biomedical applications of nanoparticles. They can be used as drug carriers, anti-tumor agents, biosensors and modulators of immune response. But full-scale real clinical application of nanomaterials requires a great deal of information on their safety and biotoxicity. Even traditionally harmless materials, like gold, can obtain toxic features when scaled to the nanosize. In vitro studies showed that nanoparticles can be geno- and cytotoxic, but their effects on the body as a whole remain largely a mystery. To shed some light on this, our study focused on the reproductive toxicity of nanomaterials. We synthesized 10–15 nm gold nanoparticles through the reduction of sodium tetrachloroaurate (III in an alkaline medium with the addition of sodium polyphosphate as a stabilizing agent. Next, these particles were administered intraperitoneally to young and old rats for 10 days. To test functional capabilities of the testes, we injected kisspeptin-10 or its antagonist peptide-234 intracerebroventricularly. These substances are known to stimulate or inhibit the central component of the hypothalamic-pituitary-gonadal axis respectively. After the routine histological procedures, we measured the diameter of seminiferous tubules and the nuclear cross-sectional area of Sertoli cells as markers of testicular spermatogenic activity and a cross-sectional area of the Leydig cells’ nuclei as a marker of testicular steroidogenesis. We found that injections of nanogold caused no significant changes in the young animals. At the same time, morphometric parameters of adult animals were significantly lower compared to control, although we observed no pathological changes in the tissue. Combined administration of gold nanoparticles and kisspeptin showed that the stimulatory effect of the latter was not observed at all. This is a specific feature of toxicants called “endocrine disruptors”. Moreover, we found morphological signs of

  8. A population of kisspeptin/neurokinin B neurons in the arcuate nucleus may be the central target of the male effect phenomenon in goats.

    Science.gov (United States)

    Sakamoto, Kohei; Wakabayashi, Yoshihiro; Yamamura, Takashi; Tanaka, Tomomi; Takeuchi, Yukari; Mori, Yuji; Okamura, Hiroaki

    2013-01-01

    Exposure of females to a male pheromone accelerates pulsatile gonadotropin-releasing hormone (GnRH) secretion in goats. Recent evidence has suggested that neurons in the arcuate nucleus (ARC) containing kisspeptin and neurokinin B (NKB) play a pivotal role in the control of GnRH secretion. Therefore, we hypothesized that these neurons may be the central target of the male pheromone. To test this hypothesis, we examined whether NKB signaling is involved in the pheromone action, and whether ARC kisspeptin/NKB neurons receive input from the medial nucleus of the amygdala (MeA)--the nucleus suggested to relay pheromone signals. Ovariectomized goats were implanted with a recording electrode aimed at a population of ARC kisspeptin/NKB neurons, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA) volleys, was measured. Pheromone exposure induced an MUA volley and luteinizing hormone (LH) pulse in control animals, whereas the MUA and LH responses to the pheromone were completely suppressed by the treatment with an NKB receptor antagonist. These results indicate that NKB signaling is a prerequisite for pheromone action. In ovariectomized goats, an anterograde tracer was injected into the MeA, and possible connections between the MeA and ARC kisspeptin/NKB neurons were examined. Histochemical observations demonstrated that a subset of ARC kisspeptin/NKB neurons receive efferent projections from the MeA. These results suggest that the male pheromone signal is conveyed via the MeA to ARC kisspeptin neurons, wherein the signal stimulates GnRH pulse generator activity through an NKB signaling-mediated mechanism in goats.

  9. Effects of kisspeptin1 on electrical activity of an extrahypothalamic population of gonadotropin-releasing hormone neurons in medaka (Oryzias latipes).

    Science.gov (United States)

    Zhao, Yali; Wayne, Nancy L

    2012-01-01

    Kisspeptin (product of the kiss1 gene) is the most potent known activator of the hypothalamo-pituitary-gonadal axis. Both kiss1 and the kisspeptin receptor are highly expressed in the hypothalamus of vertebrates, and low doses of kisspeptin have a robust and long-lasting stimulatory effect on the rate of action potential firing of hypophysiotropic gonadotropin releasing hormone-1 (GnRH1) neurons in mice. Fish have multiple populations of GnRH neurons distinguished by their location in the brain and the GnRH gene that they express. GnRH3 neurons located in the terminal nerve (TN) associated with the olfactory bulb are neuromodulatory and do not play a direct role in regulating pituitary-gonadal function. In medaka fish, the electrical activity of TN-GnRH3 neurons is modulated by visual cues from conspecifics, and is thought to act as a transmitter of information from the external environment to the central nervous system. TN-GnRH3 neurons also play a role in sexual motivation and arousal states, making them an important population of neurons to study for understanding coordination of complex behaviors. We investigated the role of kisspeptin in regulating electrical activity of TN-GnRH3 neurons in adult medaka. Using electrophysiology in an intact brain preparation, we show that a relatively brief treatment with 100 nM of kisspeptin had a long-lasting stimulatory effect on the electrical activity of an extrahypothalamic population of GnRH neurons. Dose-response analysis suggests a relatively narrow activational range of this neuropeptide. Further, blocking action potential firing with tetrodotoxin and blocking synaptic transmission with a low Ca(2+)/high Mg(2+) solution inhibited the stimulatory action of kisspeptin on electrical activity, indicating that kisspeptin is acting indirectly through synaptic regulation to excite TN-GnRH3 neurons. Our findings provide a new perspective on kisspeptin's broader functions within the central nervous system, through its

  10. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  11. Kisspeptin regulates ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2017-11-01

    Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic development in C. sphinx. Indeed, low serum KP abundance corresponded to reduced expression of GPR54 in ovarian luteal cells during the period of delayed development compared to normal development. In vitro and in vivo treatment with KP increased GPR54 abundance, via Extracellular signal regulated kinase and its downstream mediators, leading to increased progesterone synthesis in the ovary during delayed embryonic development. KP treatment also increased cholesterol uptake and elevated expression of Luteinizing hormone receptor and Steroid acute regulatory protein in the ovary, suggesting that elevation in circulating KP during delayed embryonic development may reactivate luteal activity. KPs may also enhance cell survival (BCL-2, reduced Caspase 3 activity) and angiogenesis (Vascular endothelium growth factor) during this period. The findings of this study thus demonstrate a regulatory role for KPs in the maintenance of luteal steroidogenesis during pregnancy in C. sphinx. © 2017 Wiley Periodicals, Inc.

  12. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  13. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Science.gov (United States)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  14. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    Science.gov (United States)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode

  15. Do energy density and dietary fiber influence subsequent 5-year weight changes in adult men and women?

    DEFF Research Database (Denmark)

    Iqbal, Sofia I; Helge, Jørn W; Heitmann, Berit L

    2006-01-01

    the associations between ED and subsequent changes in BW, and despite a general belief that ED is a major determinant of obesity, the present study did not generally lend support for an association. However, among certain subgroups, an energy-dense diet may be a risk factor for weight development.......OBJECTIVE: We examined whether associations between dietary components and, in particular, energy density (ED) predicted subsequent 5-year weight changes. RESEARCH METHODS AND PROCEDURES: The present longitudinal population study was part of the Danish World Health Organization Multinational...... Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA) and the 1936 cohort dietary studies. Effects of components were studied in relation to subsequent 5-year weight changes in 862 men and 900 women, 30 to 60 years old. Linear multiple regression analyses were conducted. RESULTS: Mean 5...

  16. Kisspeptins and RFRP-3 act in concert to synchronize rodent reproduction with seasons

    Directory of Open Access Journals (Sweden)

    Valerie eSimonneaux

    2013-02-01

    Full Text Available Seasonal mammals use the photoperiodic variation in the nocturnal production of the pineal hormone melatonin to synchronize their reproductive activity with seasons. In rodents, the short day profile of melatonin secretion has long been proven to inhibit reproductive activity. Lately, we demonstrated that melatonin regulates the expression of the hypothalamic peptides kisspeptins (Kp and RFamide-related peptide-3 (RFRP-3, recently discovered as potent regulators of GnRH neuron activity. In the male Syrian hamster, Kp expression in the arcuate nucleus is down-regulated by melatonin independently of the inhibitory feedback of testosterone. A central or peripheral administration of Kp induces an increase in pituitary gonadotropins and gonadal hormone secretion, but most importantly a chronic infusion of the peptide reactivates the photoinhibited reproductive axis of Syrian hamsters kept in short day conditions. RFRP-3 expression in the dorsomedial hypothalamus is also strongly inhibited by melatonin in a short day photoperiod. Although RFRP-3 is usually considered as an inhibitory component of the gonadotropic axis, a central acute administration of RFRP-3 in the male Syrian hamster induces a marked increase in gonadotropin secretion and testosterone production. Furthermore, a chronic central infusion of RFRP-3 in short day-adapted hamsters reactivates the reproductive axis, in the same manner as Kp. Both Kp and RFRP-3 neurons project onto GnRH neurons and both neuropeptides regulate GnRH neuron activity. In addition, central RFRP-3 infusion was associated with a significant increase in arcuate Kp expression. However, the actual sites of action of both peptides in the Syrian hamster brain are still unknown. Altogether our findings indicate that Kp and RFRP neurons are pivotal relays for the seasonal regulation of reproduction, and also suggest that RFRP neurons might be the primary target of the melatoninergic message.

  17. Temperature differentially regulates the two kisspeptin systems in the brain of zebrafish.

    Science.gov (United States)

    Shahjahan, Md; Kitahashi, Takashi; Ogawa, Satoshi; Parhar, Ishwar S

    2013-11-01

    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction. Copyright © 2013. Published by Elsevier Inc.

  18. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  19. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Science.gov (United States)

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of Kisspeptin on the Developmental Competence and Early Transcript Expression in Porcine Oocytes Parthenogenetically Activated with Different Methods

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2018-01-01

    Full Text Available Recent studies showed the modulatory effect of kisspeptin (KP on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p<0.05 and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p<0.05. MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.

  1. Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea.

    Science.gov (United States)

    Jayasena, C N; Nijher, G M K; Abbara, A; Murphy, K G; Lim, A; Patel, D; Mehta, A; Todd, C; Donaldson, M; Trew, G H; Ghatei, M A; Bloom, S R; Dhillo, W S

    2010-12-01

    Kisspeptin is a novel therapeutic target for infertility. A single kisspeptin-54 (KP-54) injection acutely stimulates the release of reproductive hormones in women with hypothalamic amenorrhea (HA), a commonly occurring condition characterized by absence of menstruation; however, twice-daily administration of KP-54 results in tachyphylaxis. We determined the time course of desensitization to twice-daily KP-54 injections, compared the effects of twice-daily and twice-weekly administration regimens of KP-54, and studied the effects of long-term twice-weekly administration of KP-54 on the release of reproductive hormones in women with HA. When KP-54 was administered twice daily, responsiveness to luteinizing hormone (LH) diminished gradually, whereas responsiveness to follicle-stimulating hormone (FSH) was nearly abolished by day 2. Twice-weekly KP-54 administration resulted in only partial desensitization, in contrast to the complete tolerance achieved with twice-daily administration. Women with HA who were treated with twice-weekly KP-54 injections had significantly elevated levels of reproductive hormones after 8 weeks as compared with treatment with saline. No adverse effects were observed. This study provides novel pharmacological data on the effects of KP-54 on the release of reproductive hormones in women with HA.

  2. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  3. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction.

    Science.gov (United States)

    Ando, Hironori; Shahjahan, Md; Kitahashi, Takashi

    2018-04-03

    The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep.

    Science.gov (United States)

    Cheng, Guanliang; Coolen, Lique M; Padmanabhan, Vasantha; Goodman, Robert L; Lehman, Michael N

    2010-01-01

    Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In addition, because sex differences in progesterone negative feedback and neurokinin B are due to the influence of testosterone (T) during fetal life, we determined whether prenatal T exposure would mimic sex differences in KNDy cells. Adult rams had nearly half the number of kisspeptin, neurokinin B, dynorphin, and progesterone receptor-positive cells in the arcuate nucleus as did females, but the percentage of KNDy cells colocalizing progesterone receptors remained high in both sexes. Prenatal T treatment also reduced the number of dynorphin, neurokinin B, and progesterone receptor-positive cells in the female arcuate nucleus; however, the number of kisspeptin cells remained high and at levels comparable to control females. Thus, sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron. In addition, the imbalance between inhibitory (dynorphin) and stimulatory (kisspeptin) neuropeptides in this subpopulation provides a potential explanation for the decreased ability of progesterone to inhibit GnRH neurons in prenatal T-treated ewes.

  5. Socially regulated reproductive development: analysis of GnRH-1 and kisspeptin neuronal systems in cooperatively breeding naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Zhou, Shuzhi; Holmes, Melissa M; Forger, Nancy G; Goldman, Bruce D; Lovern, Matthew B; Caraty, Alain; Kalló, Imre; Faulkes, Christopher G; Coen, Clive W

    2013-09-01

    In naked mole-rat (NMR) colonies, breeding is monopolized by the queen and her consorts. Subordinates experience gonadal development if separated from the queen. To elucidate the neuroendocrine factors underlying reproductive suppression/development in NMRs, we quantified plasma gonadal steroids and GnRH-1- and kisspeptin-immunoreactive (ir) neurons in subordinate adults and in those allowed to develop into breeders, with or without subsequent gonadectomy. In males and females, respectively, plasma testosterone and progesterone are higher in breeders than in subordinates. No such distinction occurs for plasma estradiol; its presence after gonadectomy and its positive correlation with adrenal estradiol suggest an adrenal source. Numbers of GnRH-1-ir cell bodies do not differ between gonad-intact breeders and subordinates within or between the sexes. As in phylogenetically related guinea pigs, kisspeptin-ir processes pervade the internal and external zones of the median eminence. Their distribution is consistent with actions on GnRH-1 neurons at perikaryal and/or terminal levels. In previously investigated species, numbers of kisspeptin-ir cell bodies vary from substantial to negligible according to sex and/or reproductive state. NMRs are exceptional: irrespective of sex, reproductive state, or presence of gonads, substantial numbers of kisspeptin-ir cell bodies are detected in the rostral periventricular region of the third ventricle (RP3V) and in the anterior periventricular (PVa), arcuate, and dorsomedial hypothalamic nuclei. Nevertheless, the greater number in the RP3V/PVa of female breeders compared with female subordinates or male breeders suggests that emergence from a hypogonadotrophic state in females may involve kisspeptin-related mechanisms similar to those underlying puberty or seasonal breeding in other species. Copyright © 2013 Wiley Periodicals, Inc.

  6. Dynamic drainage of froth with wood fibers

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...

  7. Kisspeptin-10 Enhanced Egg Production in Quails Associated with the Increase of Triglyceride Synthesis in Liver

    Directory of Open Access Journals (Sweden)

    J. Wu

    2013-08-01

    Full Text Available Our previous results showed that kisspeptin-10 (Kp-10 injections via intraperitoneal (i.p. once daily for three weeks notably promoted the egg laying rate in quails. In order to investigate the mechanism behind the effects of Kp-10 on enhancing the egg laying rate in birds, this study focused on the alternations of lipids synthesis in liver after Kp-10 injections. 75 female quails (22 d of age were allocated to three groups randomly, and subjected to 0 (control, Con, 10 nmol (low dosage, L and 100 nmol (high dosage, H Kp-10 injections via i.p. once daily for three weeks, respectively. At d 52, quails were sacrificed and sampled for further analyses. Serum E2 concentration was increased by Kp-10 injections, and reached statistical significance in H group. Serum triglyceride (TG concentrations were increased by 46.7% in L group and 36.8% in H group, respectively, but did not reach statistical significance, and TG contents in liver were significantly elevated by Kp-10 injections in a dose-dependent manner. Serum total cholesterol (Tch concentrations significantly decreased in H group, while in H group the hepatic Tch content was markedly increased. The level of non-esterified fatty acid (NEFA, apolipoprotein A1 and B (apoA1 and apoB were not altered by Kp-10 injections. The genes expression of sterol regulatory element binding protein-1 (SREBP-1, fatty acid synthetase (FAS, apolipoprotein VLDL-II (apoVLDL-II, cholesterol 7α-hydroxylase (CYP7A1 and vitellogenin II (VTG-II were significantly up-regulated by high but not low dosage of Kp-10 injection compared to the control group. However, the expression of SREBP-2, acetyl-CoA carboxylase (ACCα, malic enzyme (ME, stearoyl-CoA (Δ9 desaturase 1 (SCD1, apolipoprotein A1 (apoA1, fatty acid binding protein 2 (FABP2, 3-hydroxyl-3-methyl glutaryl-coenzyme A reductases (HMGCR, estrogen receptor α, β (ERα and β mRNA were not affected by Kp-10 treatment. In line with hepatic mRNA abundance, hepatic SREBP

  8. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 tesla.

    Science.gov (United States)

    Widjaja, E; Mahmoodabadi, S Z; Rea, D; Moineddin, R; Vidarsson, L; Nilsson, D

    2009-01-01

    Tensor estimation can be improved by increasing the number of gradient directions (NGD) or increasing the number of signal averages (NSA), but at a cost of increased scan time. To evaluate the effects of NGD and NSA on fractional anisotropy (FA) and fiber density index (FDI) in vivo. Ten healthy adults were scanned on a 1.5T system using nine different diffusion tensor sequences. Combinations of 7 NGD, 15 NGD, and 25 NGD with 1 NSA, 2 NSA, and 3 NSA were used, with scan times varying from 2 to 18 min. Regions of interest (ROIs) were placed in the internal capsules, middle cerebellar peduncles, and splenium of the corpus callosum, and FA and FDI were calculated. Analysis of variance was used to assess whether there was a difference in FA and FDI of different combinations of NGD and NSA. There was no significant difference in FA of different combinations of NGD and NSA of the ROIs (P>0.005). There was a significant difference in FDI between 7 NGD/1 NSA and 25 NGD/3 NSA in all three ROIs (PNSA, 25 NGD/1 NSA, and 25 NGD/2 NSA and 25 NGD/3 NSA in all ROIs (P>0.005). We have not found any significant difference in FA with varying NGD and NSA in vivo in areas with relatively high anisotropy. However, lower NGD resulted in reduced FDI in vivo. With larger NGD, NSA has less influence on FDI. The optimal sequence among the nine sequences tested with the shortest scan time was 25 NGD/1 NSA.

  9. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck.

    Science.gov (United States)

    Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M

    2017-08-10

    Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system

    DEFF Research Database (Denmark)

    Castellano, Juan M; Bentsen, Agnete H; Sánchez-Garrido, Miguel A

    2011-01-01

    the timing of puberty; however, the potential underlying mechanisms remain poorly defined. Here we report how changes in the pattern of postnatal feeding affect the onset of puberty and evaluate key hormonal and neuropeptide [Kiss1/kisspeptin (Kp)] alterations linked to these early nutritional manipulations...... of puberty, together with higher levels of leptin and hypothalamic Kiss1 mRNA. Conversely, postnatal underfeeding caused a persistent reduction in body weight, lower ovarian and uterus weights, and delayed vaginal opening, changes that were paralleled by a decrease in leptin and Kiss1 mRNA levels. Kisspeptin...... at puberty were similar in all groups, except for enhanced responsiveness to low doses of Kp-10 in postnatally underfed rats. In conclusion, our data document that the timing of puberty is sensitive to both overfeeding and subnutrition during early (postnatal) periods and suggest that alterations...

  11. The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep

    OpenAIRE

    Cheng, Guanliang; Coolen, Lique M.; Padmanabhan, Vasantha; Goodman, Robert L.; Lehman, Michael N.

    2009-01-01

    Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In ...

  12. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  13. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  14. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  15. Photoperiodic Co-Regulation of Kisspeptin, Neurokinin B and Dynorphin in the Hypothalamus of a Seasonal Rodent

    DEFF Research Database (Denmark)

    Bartzen-Sprauer, J; Klosen, P; Ciofi, P

    2014-01-01

    In many species, sexual activity varies on a seasonal basis. Kisspeptin (Kp), a hypothalamic neuropeptide acting as a strong activator of gonadotrophin-releasing hormone neurones, plays a critical role in this adaptive process. Recent studies report that two other neuropeptides, namely neurokinin...... (NKB) and dynorphin (DYN), are co-expressed with Kp (and therefore termed KNDy neurones) in the arcuate nucleus and that these peptides are also considered to influence GnRH secretion. The present study aimed to establish whether hypothalamic NKB and DYN expression is photoperiod......-dependent in a seasonal rodent, the Syrian hamster, which exhibits robust seasonal rhythms in reproductive activity. The majority of Kp neurones in the arcuate nucleus co-express NKB and DYN and the expression of all three peptides is decreased under a short (compared to long) photoperiod, leading to a 60% decrease......-localise with RFRP-immunoreactive neurones, and the expression of both NKB and DYN is higher under a short photoperiod, which is opposite to the short-day inhibition of RFRP expression. In conclusion, the present study shows that NKB and DYN display different photoperiodic variations in the Syrian hamster...

  16. [Expression and clinical significance of kisspeptin-1, matrix metalloproteinase-2 and vascular endothelial growth factor in tissue of colon cancer].

    Science.gov (United States)

    Wang, Wenhui; Qi, Yuanling; Xu, Qian; Ren, Haipeng

    2016-03-01

    To detect the expression of kisspeptin-1 (KISS-1), matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in the tissue of colon cancer, and analyze the relativity between KISS-1, MMP-2, VEGF and pathological characteristics of colon cancer. A total of 60 colon cancer patients and 60 patients with benign colorectal disease who received surgical treatment in our hospital from January 2009 to June 2010 were selected as observation group and control group respectively. The cancer tissue samples and excision samples collected from them were used to detect KISS-1, MMP-2 and VEGF with immunohistochemistry. The positive rates of KISS-1, MMP-2 and VEGF were 31.7%, 58.3% and 78.3% in observation group, and 73.3%, 16.7% and 33.3% in control group. The positive rate of KISS-1 in observation group was lower than that in control group (χ(2)=23.489, Pcolon cancer (χ(2)=8.997, P=0.011; χ(2)=6.163, P=0.013; χ(2)=8.519, P=0.014; χ(2)=9.160, P=0.002; χ(2)=16.577, Pclinical stage of colon cancer and provide evidence for clinical diagnosis and prognosis prediction by detecting KISS-1, MMP-2 and VEGF.

  17. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  18. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland.

    Science.gov (United States)

    Bellingham, Michelle; Fowler, Paul A; Amezaga, Maria R; Rhind, Stewart M; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M; Evans, Neil P

    2009-10-01

    Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.

  19. Actions of sex steroids on kisspeptin expression and other reproduction-related genes in the brain of the teleost fish European sea bass.

    Science.gov (United States)

    Alvarado, M V; Servili, A; Molés, G; Gueguen, M M; Carrillo, M; Kah, O; Felip, A

    2016-11-01

    Kisspeptins are well known as mediators of the coordinated communication between the brain-pituitary axis and the gonads in many vertebrates. To test the hypothesis that gonadal steroids regulate kiss1 and kiss2 mRNA expression in European sea bass (a teleost fish), we examined the brains of gonad-intact (control) and castrated animals, as well as castrated males (GDX) and ovariectomized females (OVX) that received testosterone (T) and estradiol (E 2 ) replacement, respectively, during recrudescence. In GDX males, low expression of kiss1 mRNA is observed by in situ hybridization in the caudal hypothalamus (CH) and the mediobasal hypothalamus (MBH), although hypothalamic changes in kiss1 mRNA levels were not statistically different among the groups, as revealed by real-time PCR. However, T strongly decreased kiss2 expression levels in the hypothalamus, which was documented in the MBH and the nucleus of the lateral recess (NRLd) in GDX T-treated sea bass males. Conversely, it appears that E 2 evokes low kiss1 mRNA in the CH, while there were cells expressing kiss2 in the MBH and NRLd in these OVX females. These results demonstrate that kisspeptin neurons are presumably sensitive to the feedback actions of sex steroids in the sea bass, suggesting that the MBH represents a major site for sex steroid actions on kisspeptins in this species. Also, recent data provide evidence that both positive and negative actions occur in key factors involved in sea bass reproductive function, including changes in the expression of gnrh-1/gonadotropin, cyp19b, er and ar genes and sex steroid and gonadotropin plasma levels in this teleost fish. © 2016. Published by The Company of Biologists Ltd.

  20. Is the kisspeptin system involved in responses to food restriction in order to preserve reproduction in pubertal male sea bass (Dicentrarchus labrax)?

    Science.gov (United States)

    Escobar, Sebastián; Felip, Alicia; Zanuy, Silvia; Carrillo, Manuel

    2016-09-01

    Previous works on European sea bass have determined that long-term exposure to restrictive feeding diets alters the rhythms of some reproductive/metabolic hormones, delaying maturation and increasing apoptosis during gametogenesis. However, exactly how these diets affect key genes and hormones on the brain-pituitary-gonad (BPG) axis to trigger puberty is still largely unknown. We may hypothesize that all these signals could be integrated, at least in part, by the kisspeptin system. In order to capture a glimpse of these regulatory mechanisms, kiss1 and kiss2 mRNA expression levels and those of their kiss receptors (kiss1r, kiss2r) were analyzed in different areas of the brain and in the pituitary of pubertal male sea bass during gametogenesis. Furthermore, other reproductive hormones and factors as well as the percentage of males showing full spermiation were also analyzed. Treated fish fed maintenance diets provided evidence of overexpression of the kisspeptin system in the main hypophysiotropic regions of the brain throughout the entire sexual cycle. Conversely, Gnrh1 and gonadotropin pituitary content and plasma sexual steroid levels were downregulated, except for Fsh levels, which were shown to increase during spermiation. Treated fish exhibited lower rates of spermiation as compared to control group and a delay in its accomplishment. These results demonstrate how the kisspeptin system and plasma Fsh levels are differentially affected by maintenance diets, causing a retardation, but not a full blockage of the reproductive process in the teleost fish European sea bass. This suggests that a hormonal adaptive strategy may be operating in order to preserve reproductive function in this species. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  2. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio).

    Science.gov (United States)

    Zhao, Yali; Lin, Meng-Chin A; Mock, Allan; Yang, Ming; Wayne, Nancy L

    2014-01-01

    Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an

  3. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Yali Zhao

    Full Text Available Kisspeptin1 (product of the Kiss1 gene is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while

  4. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  5. Effect of the Camelid's Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis.

    Science.gov (United States)

    El Allali, Khalid; El Bousmaki, Najlae; Ainani, Hassan; Simonneaux, Valérie

    2017-01-01

    Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF). β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.

  6. Effect of the Camelid’s Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis

    Science.gov (United States)

    El Allali, Khalid; El Bousmaki, Najlae; Ainani, Hassan; Simonneaux, Valérie

    2017-01-01

    Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF). β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus. PMID:28713816

  7. Effect of the Camelid’s Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis

    Directory of Open Access Journals (Sweden)

    Khalid El Allali

    2017-06-01

    Full Text Available Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids, ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF. In camelids, intramuscular or intrauterine administration of seminal plasma (SP was shown to induce the preovulatory luteinizing hormone (LH surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF. β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.

  8. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction

    Directory of Open Access Journals (Sweden)

    Nara Szostaczuk

    2018-03-01

    Full Text Available Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction.Methods: Three groups of male rats were studied at a juvenile age (25 days old and during adulthood (3 and 6 months old: the offspring of ad libitum fed dams (controls, the offspring of dams that were diet restricted (20% from days 1 to 12 of gestation (CR, and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk throughout lactation (CR-Leptin. The density of TyrOH-immunoreactive (TyrOH+ fibers and the levels of Tyrosine hydroxylase (TyrOH—used as potential markers of functional sympathetic innervation—were measured in stomach. Plasma leptin and ghrelin levels were also determined.Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (−46% and TyrOH levels (−47% in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%, and a lower leptin/ghrelin ratio (−28 and −37% at 3 and 6 months, respectively.Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an

  9. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Holst, Klaus; Mandrup, Karen

    2013-01-01

    Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic–pituitary–gonadal axis, and plays a key role in the in......Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic–pituitary–gonadal axis, and plays a key role.......We find that perinatal EE2 exposure did not affect Kiss1 mRNA expression in this study designed to model human exposure to estrogenic compounds, and we find only minor effects on puberty onset. Further, the Kiss1 system does not exhibit persistent changes and puberty onset is not affected after perinatal...... exposure to a pesticide mixture in this experimental setting. However, we find that the pesticide mancozeb tends to increase Kiss1 expression in the ARC, presumably through neurotoxic mechanisms rather than via classical endocrine disruption, calling for increased awareness that Kiss1 expression can...

  10. In vitro and in vivo effects of kisspeptin antagonists p234, p271, p354, and p356 on GPR54 activation.

    Directory of Open Access Journals (Sweden)

    C H J Albers-Wolthers

    Full Text Available Kisspeptins (KPs and their receptor (GPR54 or KiSS1R play a key-role in regulation of the hypothalamic-pituitary-gonadal axis and are therefore interesting targets for therapeutic interventions in the field of reproductive endocrinology. As dogs show a rapid and robust LH response after the administration of KP10, they can serve as a good animal model for research concerning KP signaling. The aims of the present study were to test the antagonistic properties of KP analogs p234, p271, p354, and p356 in vitro, by determining the intracellular Ca2+ response of CHEM1 cells that stably express human GPR54, and to study the in vivo effects of these peptides on basal plasma LH concentration and the KP10-induced LH response in female dogs. Exposure of the CHEM1 cells to KP-10 resulted in a clear Ca2+ response. P234, p271, p354, and p356 did not prevent or lower the KP10-induced Ca2+ response. Moreover, the in vivo studies in the dogs showed that none of these supposed antagonists lowered the basal plasma LH concentration and none of the peptides lowered the KP10-induced LH response. In conclusion, p234, p271, p354, and p356 had no antagonistic effects in vitro nor any effect on basal and kisspeptin-stimulated plasma LH concentration in female dogs.

  11. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function.

    Science.gov (United States)

    Song, Anying; Jiang, Shujun; Wang, Qinghua; Zou, Jianghuan; Lin, Zhaoyu; Gao, Xiang

    2017-06-01

    The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop. Copyright © 2017 Endocrine Society.

  12. Characterization of polymer concrete with natural fibers

    Science.gov (United States)

    Barbuta, M.; Serbanoiu, A. A.; Teodorescu, R.; Rosca, B.; Mitroi, R.; Bejan, G.

    2017-09-01

    In the study are presented the experimental results obtained for polymer concrete prepared with epoxy resin, aggregates, fly ash as filler and two types of fibers: wool and hemp. The influence of type and dosage of fibers were studied. The density and mechanical characteristics were determined: compressive strength, flexural strength and split tensile strength. For both types of fibers, with increasing the fiber dosage the density decreases. The studied dosages had not an important influence on mechanical strengths. The fibers improved especially the tensile strength and the compressive strength presented generally smaller values than the control mix.

  13. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  14. Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers

    Directory of Open Access Journals (Sweden)

    LEI Shuai

    2017-05-01

    Full Text Available In the temperature range of 300-800℃, 40%-50% of the mass lost during the processing of polyacrylonitrile based carbon fiber (PANCF. Understanding the degradation behavior will be valuable in understanding the formation mechanism of pseudo-graphite structure, and providing theoretic basis for producing high performance carbon fiber and increasing the carbonization yield. The simulation of the degradation progress was carried out on the thermogravimetric analyzer (TGA, the results show that there are two degradation steps for PAN fiber stabilized in air, and controlled by cyclization coefficient and oxygen content. The cyclization coefficient and oxygen content are effective to the density of carbon fiber by influencing the degradation behavior, which cause defects in the fiber. The higher cyclization coefficient leads to form less structural defects and higher density of the fiber; on the contrary, the higher oxygen content leads to form more structural defects and lower density of the fiber.

  15. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  16. Extraction and characterization of Retama monosperma fibers | Aizi ...

    African Journals Online (AJOL)

    The Young's modulus was 13.3 GPa, tensile strength was 110 MPa and density was 1.3 g/cm3. The average fiber length was 155.7 mm. The fibers yield and characteristics showed that R. monosperma plant may in future be suitable source for natural fibers. Key words: Retama monosperma young stems, fibers, extraction, ...

  17. Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons.

    Directory of Open Access Journals (Sweden)

    Olga Gajewska-Woźniak

    Full Text Available The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c-interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG. LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models

  18. Differential Effects of Continuous Exposure to the Investigational Metastin/Kisspeptin Analog TAK-683 on Pulsatile and Surge Mode Secretion of Luteinizing Hormone in Ovariectomized Goats

    Science.gov (United States)

    TANAKA, Tomomi; OHKURA, Satoshi; WAKABAYASHI, Yoshihiro; KUROIWA, Takenobu; NAGAI, Kiyosuke; ENDO, Natsumi; TANAKA, Akira; MATSUI, Hisanori; KUSAKA, Masami; OKAMURA, Hiroaki

    2013-01-01

    Abstract The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from –4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats. PMID:24047956

  19. Effect of liquid epoxidized natural rubber (LENR) on mechanical properties and morphology of natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK) bio-composite

    Science.gov (United States)

    Piah, Mohd Razi Mat; Baharum, Azizah

    2016-11-01

    The use of mengkuang fiber (MK) fibers in NR/HDPE (40/60) blend was studied via surface modification of fiber. The MK fiber was pre-washed with 5%wt/v sodium hydroxide solution prior to treatment with liquid epoxidized natural rubber (LENR). The concentration of LENR were varied from 5%-20%wt in toluene. The effects of LENR concentrations were studied in terms of mechanical properties and morphology formed. Melt-blending was performed using an internal mixer (Haake Rheomix 600). The processing parameters identified were 135°C temperature, 45 rpm rotor speed, 12 minutes processing time and at 20%wt MK fiber loading. The optimum LENR treatment concentration was obtained at 5%wt with tensile strength, tensile modulus, and impact strength of 10.3 MPa, 414.2 MPa and 14.4 kJ/m2 respectively. The tensile modulus of LENR-treated MK fiber filled NR/HDPE bio-composite has shown enhancement up to 16.7% higher than untreated MK fiber. The tensile and impact strength were decreased with increasing LENR concentration due to the broken of MK fibers to smaller particles and adhered to each other. FESEM micrographs confirmed the formation of fiber-fiber agglomeration in NR/HDPE blends. The optical microscope analysis shows MK fibers is shorter than original fiber lengths after NaOH-LENR surface modification. The internal bonding forces of MK fiber seems to be weaker than external force exerted on it, therefore, the MK fiber has broken to smaller particles and reduced the mechanical properties of NR/HDPE/MK(20%) bio-composite.

  20. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  1. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  2. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  3. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers.

    Science.gov (United States)

    Rengasamy, R S; Das, Dipayan; Karan, C Praba

    2011-02-15

    This article reports on oil sorption behavior of fiber assemblies made up of single natural and synthetic fibers as well as blend of natural and synthetic fibers when tested with high density oil and diesel oil. A series of filled fiber assemblies were prepared from 100% polypropylene, kapok, and milkweed fibers and another series of bonded structured fiber assemblies were prepared from a 70/30 blend of kapok and polypropylene fibers and a 70/30 blend of milkweed and polypropylene fibers. It was observed that the porosity of the fiber assemblies played a very important role in determining its oil sorption capacity. The polypropylene fiber assembly exhibited the highest sorption capacity (g/g) followed by the kapok and milkweed fiber assemblies at porosity milkweed fibers have intra fiber porosities of 0.81 and 0.83, respectively. All the fiber assemblies showed higher oil sorption capacity with the high density oil as compared to the diesel oil. As the kapok and milkweed fiber have low cellulose content, hence their slow degradation is an advantage in fresh and marine water applications. The good sorption capacity of kapok and milkweed fiber assemblies along with their bio-degradable nature offer great scope for structuring them into fiber assemblies with large porosity and uniform pores to have efficient oil sorbents. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Battelle Pacific Northwest Labs., Richland, WA (United States); Kohyama, A. [Inst. of Advanced Energy, Kyoto Univ. (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-10-01

    Loss of strength in irradiated fiber-reinforced SiC/SiC composite generally is related to degradation in the reinforcing fiber. To assess fiber degradation, the density and length changes were determined for four types of SiC-based fibers (Tyranno, Nicalon CG, Hi Nicalon and Dow X) after high temperature (up to 1000 C) and high dose (up to 80 dpa-SiC) irradiations. For the fibers with nonstoichiometric compositions (the first three types in the list), the fiber densities increased from 6% to 12%. In contrast, a slight decrease in density (<1%) was observed for the Dow X fiber with a quasi-stoichiometric composition. Fiber length changes (0-5.6% shrinkage) suggested small mass losses (1-6%) had occurred for irradiated uncoated fibers. In contrast, excessive linear shrinkage of the pyrocarbon-coated Nicalon CG and Tyranno fibers (7-9% and 16-32%, respectively) indicated that much larger mass losses (11-84%) had occurred for these coated fibers. Crystallization and crystal growth were observed to have taken place at fiber surfaces by SEM and in the bulk by XRD, moreso for irradiated Nicalon CG than for Hi Nicalon fiber. The radiation response of the quasi-stoichiometric Dow X fiber was the most promising. Further testing of this type fiber is recommended. (orig.) 11 refs.

  5. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  6. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Brandão, Poliane A.A.; Carneiro, Maria T.W.D. [Department of Chemistry, Federal University of Espírito Santo (Brazil); Zicker, Marina C. [Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais (Brazil); Ferreira, Adaliene V.M. [Department of Basic Nursing, Nursing School, Federal University of Minas Gerais (Brazil); Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M. [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Santos-Silva, Ana Paula [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Miranda-Alves, Leandro [Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Silva, Ian V. [Department of Morphology, Federal University of Espírito Santo (Brazil); Graceli, Jones B., E-mail: jbgraceli@gmail.com [Department of Morphology, Federal University of Espírito Santo (Brazil)

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  7. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    International Nuclear Information System (INIS)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de; Brandão, Poliane A.A.; Carneiro, Maria T.W.D.; Zicker, Marina C.; Ferreira, Adaliene V.M.; Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M.; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V.; Graceli, Jones B.

    2017-01-01

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  8. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  9. Pretreatment of hemp fibers for utilization in strong biocomposite materials

    DEFF Research Database (Denmark)

    Liu, Ming

    Hemp is the common name for Cannabis sativa cultivated for industrial use. Compared to synthetic fibers (e.g. glass fiber), hemp fibers have many advantages such as low cost, low density (1.5 g/cm3) and high specific strength and stiffness. As a result of increasing environmental awareness......, interest in hemp fiber reinforced composites is increasing because of a high potential of manufacturing hemp fiber reinforced polymer composites with acceptable mechanical properties at low cost. In order to expedite the application of natural fibers in polymer composites, hemp fibers need to be treated...... before being incorporated in matrix polymers to optimize the properties of fibers and fiber reinforced composites. The overall objective of this study was therefore to focus on understanding the correlation between chemical composition and morphology of hemp fibers and mechanical properties of hemp...

  10. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  11. Fabrication of elastomeric silk fibers.

    Science.gov (United States)

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  12. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  13. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  14. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  15. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  16. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  17. Mechanisms of Disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction.

    Science.gov (United States)

    Seminara, Stephanie B

    2006-06-01

    Although the hypothalamic secretion of gonadotropin-releasing hormone (GnRH) is the defining hormonal event of puberty, the physiologic mechanisms that drive secretion of GnRH at the time of sexual maturation have been difficult to identify. After puberty is initiated, the factors that modulate the frequency and amplitude of GnRH secretion in rapidly changing sex-steroid environments (i.e. the female menstrual cycle) also remain unknown. The discovery that, in both humans and mouse models, loss-of-function mutations in the gene that encodes G-protein-coupled receptor 54 result in phenotypes of hypogonadotropic hypogonadism with an absence of pubertal development has unearthed a novel pathway regulating GnRH secretion. Ligands for G-protein-coupled receptor 54 (KiSS-1R), including metastin (derived from the parent compound, kisspeptin-1) and metastin's C-terminal peptide fragments, have been shown to be powerful stimulants for GnRH release in vivo via their stimulation of G-protein-coupled receptor 54. This article reviews the discovery of the GPR54 gene, places it into the appropriate biological context, and explores the data from in vitro and in vivo studies that point to this ligand-receptor system as a major driver of GnRH secretion.

  18. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    Science.gov (United States)

    Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde

    2018-05-01

    Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  20. α-Estrogen and Progesterone Receptors Modulate Kisspeptin Effects on Prolactin: Role in Estradiol-Induced Prolactin Surge in Female Rats.

    Science.gov (United States)

    Aquino, Nayara S S; Araujo-Lopes, Roberta; Henriques, Patricia C; Lopes, Felipe E F; Gusmao, Daniela O; Coimbra, Candido C; Franci, Celso R; Reis, Adelina M; Szawka, Raphael E

    2017-06-01

    Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERβ, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge. Copyright © 2017 Endocrine Society.

  1. Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice.

    Science.gov (United States)

    Vanacker, Charlotte; Moya, Manuel Ricu; DeFazio, R Anthony; Johnson, Michael L; Moenter, Suzanne M

    2017-10-01

    Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions. Arcuate neurons that synthesize kisspeptin, neurokinin B, and dynorphin (KNDy) may be involved in both of these processes. We tested the hypotheses that action potential firing in KNDy neurons is episodic and that gonadal steroids regulate this pattern. Targeted extracellular recordings were made of green fluorescent protein-identified KNDy neurons in brain slices from adult male mice that were intact, castrated, or castrated and treated with estradiol or dihydrotestosterone (DHT). KNDy neurons exhibited marked peaks and nadirs in action potential firing activity during recordings lasting 1 to 3.5 hours. Peaks, identified by Cluster analysis, occurred more frequently in castrated than intact mice, and either estradiol or DHT in vivo or blocking neurokinin type 3 receptor in vitro restored peak frequency to intact levels. The frequency of peaks in firing rate and estradiol regulation of this frequency is similar to that observed for GnRH neurons, whereas DHT suppressed firing in KNDy but not GnRH neurons. We further examined the patterning of action potentials to identify bursts that may be associated with increased neuromodulator release. Burst frequency and duration are increased in castrated compared with intact and steroid-treated mice. The observation that KNDy neurons fire in an episodic manner that is regulated by steroid feedback is consistent with a role for these neurons in GnRH pulse generation and regulation. Copyright © 2017 Endocrine Society.

  2. Regulation of Kisspeptin Synthesis and Release in the Preoptic/Anterior Hypothalamic Region of Prepubertal Female Rats: Actions of IGF-1 and Alcohol.

    Science.gov (United States)

    Hiney, Jill K; Srivastava, Vinod K; Vaden Anderson, Danielle N; Hartzoge, Nicole L; Dees, William L

    2018-01-01

    Alcohol (ALC) causes suppressed secretion of prepubertal luteinizing hormone-releasing hormone (LHRH). Insulin-like growth factor-1 (IGF-1) and kisspeptin (Kp) are major regulators of LHRH and are critical for puberty. IGF-1 may be an upstream mediator of Kp in the preoptic area and rostral hypothalamic area (POA/RHA) of the rat brain, a region containing both Kp and LHRH neurons. We investigated the ability of IGF-1 to stimulate prepubertal Kp synthesis and release in POA/RHA, and the potential inhibitory effects of ALC. Immature female rats were administered either ALC (3 g/kg) or water via gastric gavage at 0730 hours. At 0900 hours, both groups were subdivided where half received either saline or IGF-1 into the brain third ventricle. A second dose of ALC (2 g/kg) or water was administered at 1130 hours. Rats were killed 6 hours after injection and POA/RHA region collected. IGF-1 stimulated Kp, an action blocked by ALC. Upstream to Kp, IGF-1 receptor (IGF-1R) activation, as demonstrated by the increase in insulin receptor substrate 1, resulted in activation of Akt, tuberous sclerosis 2, ras homologue enriched in brain, and mammalian target of rapamycin (mTOR). ALC blocked the central action of IGF-1 to induce their respective phosphorylation. IGF-1 specificity and ALC specificity for the Akt-activated mTOR pathway were demonstrated by the absence of effects on PRAS40. Furthermore, IGF-1 stimulated Kp release from POA/RHA incubated in vitro. IGF-1 stimulates prepubertal Kp synthesis and release following activation of a mTOR signaling pathway, and ALC blocks this pathway at the level of IGF-1R. Copyright © 2017 by the Research Society on Alcoholism.

  3. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  4. Strength Analysis of Coconut Fiber Stabilized Earth for Farm Structures

    Science.gov (United States)

    Enokela, O. S.; P. O, Alada

    2012-07-01

    Investigation of the strength characteristic of soil from alluvial deposit of River Benue in makurdi stabilized with coconut fiber as a stabilizer was carried as local building material for farm structure. Processed coconut fibers were mixed with the soil at four different mix ratios of 1% fiber, 2% fiber, 3% fiber and 4% fiber by percentage weight with 0% fiber as control. Compaction test and compressive strength were carried out on the various stabilizing ratio. From the compaction test, the correlation between the maximum dry density and optimum moisture content is a second order polynomial with a coefficient of 63% obtained at1.91kg/m3and 20.0% respectively while the compressive strength test shows an optimum failure load of 8.62N/mm2 at 2%fibre:100% soil mix ratio at 2.16 maximum dry density.

  5. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.

    Science.gov (United States)

    Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan

    2015-09-02

    A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Fiber Interferometer for the Magnetized Shock Experiment

    International Nuclear Information System (INIS)

    Yoo, Christian

    2012-01-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  7. Comparative evaluation of fiber fuse models

    International Nuclear Information System (INIS)

    Davis, D.D.; Mettler, S.C.; DiGiovanni, D.J.

    1997-01-01

    A phenomenon which results in the catastrophic destruction of the guiding properties of an optical fiber has been observed at laser power densities on the order of 3 x 10 6 watts/cm 2 in the core. This phenomenon is characterized by the propagation of a bright visible light from the point of initiation toward the laser source. The term 'fiber fuse' has been used because of the similarity in appearance to a burning fuse. The fiber fuse has been shown to start when the end of the fiber is contacted. It has also been initiated spontaneously from mechanical splices. This paper reports experimental data gathered on the fiber fuse and discusses their relationship to proposed physical mechanisms

  8. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    Science.gov (United States)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  9. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  10. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  11. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  12. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  13. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  14. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    Science.gov (United States)

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  15. The correlation between birth weight and insulin-like growth factor-binding protein-1 (IGFBP-1), kisspeptin-1 (KISS-1), and three-dimensional fetal volume.

    Science.gov (United States)

    Kimyon Comert, Gunsu; Esin, Sertac; Caglar, Gamze Sinem; Yirci, Bulent; Ozdemir, Sedat; Demirtas, Selda; Kandemir, Omer

    2018-01-24

    This study aimed to determine the relationship between birth weight, and maternal serum insulin-like growth factor-binding protein-1 (IGFBP-1) and kisspeptin-1 (KISS-1) levels, and first-trimester fetal volume (FV) based on three-dimensional ultrasonography. The study included 142 pregnant women at gestational week 11°-13 6 . All fetuses were imaged ultrasonographically by the same physician. Maternal blood samples were collected at the time of ultrasonographic evaluation and analyzed for IGFBP-1 and KISS-1 levels via enzyme-linked immunosorbent assay (ELISA). Maternal and neonatal weights were recorded at birth. Birth weight ≤10th and the >90th percentiles was defined as small and large for gestational age (SGA and LGA), respectively. Median crown-rump length (CRL), FV, and maternal serum IGFBP-1 and KISS-1 levels were 58.2 mm (35.3-79.2 mm), 16.3 cm 3 (3.8-34.4 cm 3 ), 68.1 ng mL -1 (3.8-377.9 mL -1 ), and 99.7 ng L -1 (42.1-965.3 ng L -1 ), respectively. First-trimester IGFBP-1 levels were significantly lower in the mothers with LGA neonates (p KISS-1 levels. IGFBP-1 levels and maternal weight at delivery were negatively correlated with neonatal birth weight. There was no correlation between CRL or FV and maternal IGFBP-1 or KISS1 levels (p > .05). The maternal IGFBP-1 level during the first trimester was a significant independent factor for SGA and LGA neonates (Odds ratio (OR): 0.011, 95%CI: 1.005-1.018, p KISS-1 level. As compared to the maternal KISS-1 level, the maternal IGFBP-1 level during the first trimester might be a better biomarker of fetal growth. Additional larger scale studies are needed to further delineate the utility of IGFBP-1 as a marker of abnormal birth weight.

  16. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  17. Ptychographic X-ray Tomography of Silk Fiber Hydration

    DEFF Research Database (Denmark)

    Esmaeili, Morteza; Fløystad, Jostein B.; Diaz, Ana

    2013-01-01

    Studying noninvasively the internal nanoporous structure of a single Tussah silk fiber under different humidity conditions, we demonstrate for the first time the feasibility of in-situ ptychographic tomography. The resulting 3D images of the silk fiber interior, obtained at both dry and humid con...... normal to the fiber axis. Exploiting quantitative information on the fiber’s electron density, hydration was found to proceed through interaction with the silk protein rather than filling of pores....

  18. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  19. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  20. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  1. Preparação e caracterização de biocompósitos baseados em fibra de curauá, biopolietileno de alta densidade (BPEAD e polibutadieno líquido hidroxilado (PBHL Preparation and characterization of biocomposites based on curaua fibers, high-density biopolyethylene (HDBPE and liquid hydroxylated polybutadiene(LHPB

    Directory of Open Access Journals (Sweden)

    Daniele O. Castro

    2013-01-01

    Full Text Available Neste trabalho, foram utilizadas fibras de curauá como reforço de matriz termoplástica de biopolietileno de alta densidade. O polietileno foi obtido por polimerização de eteno, gerado do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD, por ser preparado a partir de material oriundo de fonte natural. Desta forma, pretendeu-se contribuir para desenvolver materiais que, dentre outras propriedades, causem menor emissão de CO2 para a atmosfera na sua produção, utilização e substituição, comparativamente a outros materiais. Adicionalmente, polibutadieno líquido hidroxilado (PBHL foi acrescentado à formulação do compósito, visando a um aumento na resistência à propagação da trinca durante impacto. Os compósitos e as fibras foram caracterizados por várias técnicas, tais como microscopia eletrônica de varredura (MEV, Calorimetria Exploratória Diferencial (DSC, Termogravimetria (TG, além da caracterização dos compósitos quanto à Análise Térmica Dinâmico-Mecânica (DMTA, propriedades mecânicas (impacto e flexão e absorção de água. A presença das fibras de curauá diminuiu algumas propriedades do BPEAD, como resistência ao impacto. A análise de DMTA mostrou que as fibras geram material mais rígido. Pode-se considerar que a introdução de PBHL na formulação do material foi eficiente, levando a uma resistência ao impacto do compósito BPEAD/PBHL/Fibra maior do que a do compósito BPEAD/Fibra.In this work, curaua fibers were used in the reinforcement of a high-density (HDPE thermoplastic matrix. The polyethylene used was obtained by polymerization of ethene produced from sugarcane ethanol. This polymer, also called high-density biopolyethylene (HDBPE, was prepared from a natural source material. The aim was to contribute to developing materials which could lead to smaller release of CO2 into the atmosphere in comparison to other materials. Additionally, liquid

  2. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  3. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  4. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  5. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  6. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  7. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  8. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  9. Characterization of caroa fiber (Neoglaziovia variegata)

    International Nuclear Information System (INIS)

    Sales, J.C. de; Matos, C.F.; Miranda, C.S.; Guimaraes, D.H.; Goncalves, A.P.B.; Jose, N.M.

    2014-01-01

    The use of lignocellulosic fibers as reinforcement in polymeric materials to replace synthetic fibers, have been expanded, since several studies show that they have comparable mechanical, physical and chemical properties of the synthetic reinforcements. The caroa (Neoglaziovia variegata) is a plant in the bromeliad family (family Bromeliaceae), that occurs in semi-arid region. The fibers, which are extracted from its leaves are thin and bright and are used by people for making nets, bags and twine. This study aimed to characterize by SEM, DSC, TGA, XRD and density, caroa fibers in natura and treated with a solution of 5% sodium hydroxide for 1 h at room temperature. The mercerization promoted cleaning of the surface dirt, waxes and partial removal of hemicellulose and lignin. The thermal analysis showed characteristic events of the main constituents (lignin, hemicellulose and cellulose). The main event of decomposition occurs at a temperature around 330 ° C. (author)

  10. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  11. Coating applications to natural fiber composites to improve their physical, surface and water absorption characters

    Science.gov (United States)

    Natural (organic) fibers are used in reinforced composites and natural fiber composites (NFCs). These fibers have advantages over synthetic composites such as high mechanical properties, lower densities and biodegradablity. However, one major disadvantage of NFCs is their hydrophilicity. In this stu...

  12. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  13. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  14. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  15. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  16. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  17. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  18. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  19. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  20. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  1. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  2. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  3. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  4. Femtosecond nonlinear fiber optics in the ionization regime.

    Science.gov (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  5. Evaluation of great saphenous vein occlusion rate and clinical outcome in patients undergoing laser thermal ablation with a 1470-nm bare fiber laser with low linear endovenous energy density

    Directory of Open Access Journals (Sweden)

    Walter Junior Boim Araujo

    2015-12-01

    Full Text Available Abstract Background Water-specific 1470-nm lasers enable vein ablation at lower energy densities and with fewer side effects because they target interstitial water in the vessel wall. Objectives To determine great saphenous vein (GSV occlusion rate after thermal ablation with 1470-nm laser using 7W power and to evaluate clinical outcomes and complications. Method Nineteen patients (31 GSVs underwent thermal ablation. Follow-up duplex scanning, clinical evaluation using the Venous Clinical Severity Score (VCSS, and evaluation of procedure-related complications were performed at 3-5 days after the procedure and at 30 and 180 days. Results Mean patient age was 46 years and 17 of the patients were female (89.47%. Of 31 limbs treated, 2 limbs were clinical class C2, 19 were C3, 9 were C4, and 1 limb was C5 according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP classification. Mean linear endovenous energy density was 33.53 J/cm. The GSV occlusion rate was 93.5% immediately after treatment, 100% at 3-5 days and 100% at 30 days after treatment and 87.1% 180 days after treatment. There was a significant reduction in VCSS at all time points. Conclusions The data from this study support the possibility that the incidence of complications can be reduced without significantly affecting the clinical outcomes, by using lower energy density. However, this appears to be at the cost of reduced efficacy in terms of GSV occlusion rates.

  6. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  7. Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers

    Science.gov (United States)

    Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas

    2017-07-01

    In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.

  8. Comparative Evaluation of Physical and Structural Properties of Water Retted and Non-retted Flax Fibers

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-10-01

    Full Text Available Flax stems of Modran variety were subjected to water retting under laboratory conditions and its physical properties were compared with non-retted fibers. Physical properties including percentage of impurities, weighted average length, linear density, tenacity and elongation were analyzed and the results were compared. The analysis of retted and non-retted flax fibers showed that retting is the most important step in the processing of flax fibers and it directly affects quality attributes like strength, fineness, and homogeneity. Scanning Electron microscope images of fibers were also analyzed and the retted fibers showed much cleaner surface when compared to decorticated non-retted fibers.

  9. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  10. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  11. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  12. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  13. Flexible fiber batteries for applications in smart textiles

    International Nuclear Information System (INIS)

    Qu, Hang; Skorobogatiy, Maksim; Semenikhin, Oleg

    2015-01-01

    In this paper, we demonstrate flexible fiber-based Al–NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ∼10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design. (paper)

  14. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... with morphometry, GLUT4 density was found to be significantly higher in slow compared with fast fibers in biopsy specimens from lean and obese subjects. In contrast, in type 2 diabetic subjects, GLUT4 density was significantly lower in slow compared with fast fibers. GLUT4 density in slow fibers from diabetic...... was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  15. Quantitative diffusion tensor deterministic and probabilistic fiber tractography in relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Ye Binbin; Yang Yang; Zhu Kangshun; Kang Zhuang; Kuang Sichi; Luo Lin; Shan Hong

    2011-01-01

    Purpose: Our aim was to study the quantitative fiber tractography variations and patterns in patients with relapsing-remitting multiple sclerosis (RRMS) and to assess the correlation between quantitative fiber tractography and Expanded Disability Status Scale (EDSS). Material and methods: Twenty-eight patients with RRMS and 28 age-matched healthy volunteers underwent a diffusion tensor MR imaging study. Quantitative deterministic and probabilistic fiber tractography were generated in all subjects. And mean numbers of tracked lines and fiber density were counted. Paired-samples t tests were used to compare tracked lines and fiber density in RRMS patients with those in controls. Bivariate linear regression model was used to determine the relationship between quantitative fiber tractography and EDSS in RRMS. Results: Both deterministic and probabilistic tractography's tracked lines and fiber density in RRMS patients were less than those in controls (P < .001). Both deterministic and probabilistic tractography's tracked lines and fiber density were found negative correlations with EDSS in RRMS (P < .001). The fiber tract disruptions and reductions in RRMS were directly visualized on fiber tractography. Conclusion: Changes of white matter tracts can be detected by quantitative diffusion tensor fiber tractography, and correlate with clinical impairment in RRMS.

  16. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  17. Level densities

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.

    1998-01-01

    For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)

  18. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    Science.gov (United States)

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  19. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  20. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  1. Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Haiwei Zhang

    2016-01-01

    Full Text Available Fiber, as an additive, can improve the performance of asphalt concrete and be widely studied, but only a few works have been done for hybrid fiber. This paper presents a new and convenient method to design hybrid fiber and verifies hybrid fiber’s superiority in asphalt pavement engineering. Firstly, this paper expounds the design method used as its applied example with the hybrid fiber composed of lignin, polyester, and polypropylene fibers. In this method, a direct shear device (DSD is used to measure the shear damage energy density (SDED of hybrid fiber modified asphalts, and range and variance statistical analysis are applied to determine the composition proportion of hybrid fiber. Then, the engineering property of hybrid fiber reinforced asphalt concrete (AC-13 is investigated. Finally, a cost-benefit model is developed to analyze the advantage of hybrid fiber compared to single fibers. The results show that the design method employed in this paper can offer a beneficial reference. A combination of 1.8% of lignin fiber and 2.4% of polyester fiber plus 3.0% polypropylene fiber presented the best reinforcement of the hybrid fiber. The cost-benefit model verifies that the hybrid fiber can bring about comprehensive pavement performance and good economy.

  2. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  3. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  4. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  5. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  6. Performance of steel wool fiber reinforced geopolymer concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  7. USDA Flax fiber utilization research

    Science.gov (United States)

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  8. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  9. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  10. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  11. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  12. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  13. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  14. Ways to Boost Fiber

    Science.gov (United States)

    ... can help to lower cholesterol. Third, it helps prevent constipation and diverticulosis. And fourth, adequate fiber from food ... is similar to a new sponge; it needs water to plump up pass smoothly. If you ... or constipation. Before you reach for the fiber supplements, consider ...

  15. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  16. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik

    2010-01-01

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  17. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  18. Chemical and physical characterization of Musa sepientum and Musa balbisiana fibers of banana tree

    International Nuclear Information System (INIS)

    Albinante, Sandra R.; Pacheco, Elen B.A.V.; Visconte, Leila L.Y.; Batista, Luciano do N.

    2011-01-01

    This study aimed to characterize the fibers of cavendish and silver banana trunks (Musa sepientum and Musa balbisiana, respectively) concerning their density, lignin and moisture contents, and chemical structure by using the techniques of infrared spectroscopy and low field solid state nuclear magnetic resonance, NMR. From NMR analysis, it was possible to observe the morphological differences between cavendish and silver types of banana fibers. FTIR technique did not allow the observation of any important difference in the banana fibers spectra. The cavendish banana fiber showed higher moisture and lignin contents than the silver banana fiber The NMR technique showed that relaxation times for silver banana fiber were higher than those for cavendish banana fiber, which can be credited to the lower moisture content values found in the silver fibers. (author)

  19. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  20. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  1. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  2. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  3. Recent Progress in Distributed Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2012-06-01

    Full Text Available Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  4. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  5. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  6. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  7. Chicken feather fiber as an additive in MDF composites

    Science.gov (United States)

    Jerrold E. Winandy; James H. Muehl; Jessie A. Glaeser; Walter Schmidt

    2007-01-01

    Medium density fiberboard (MDF) panels were made with aspen fiber and 0-95% chicken feather fiber (CFF) in 2.5%, 5%, or 25% increments, using 5% phenol formaldehyde resin as the adhesive. Panels were tested for mechanical and physical properties as well as decay. The addition of CFF decreased strength and stiffness of MDF-CFF composites compared with that of all-wood...

  8. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  9. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  10. Role of dietary fibers on health of the gastro-intestinal system and related types of cancer

    OpenAIRE

    Guiné, Raquel

    2015-01-01

    Dietary fibers are classified into water soluble or insoluble, and most plant foods include in their composition variable amounts of a mixture of soluble and insoluble fibers. This soluble or insoluble nature of fiber is related to its physiological effects. Insoluble fibers are characterized by high porosity, low density and the ability to increase fecal bulk, and act by facilitating intestinal transit, thus reducing the exposure to carcinogens in the colon and therefore acting as protectors...

  11. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  12. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  13. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    Directory of Open Access Journals (Sweden)

    Yijun Fu

    2016-04-01

    Full Text Available Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration.

  14. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  15. Application of insoluble fibers in the fining of wine phenolics.

    Science.gov (United States)

    Guerrero, Raúl F; Smith, Paul; Bindon, Keren A

    2013-05-08

    The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.

  16. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  17. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  18. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  19. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  20. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  1. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  2. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  3. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  4. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  5. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  6. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  7. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  8. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  9. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  10. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  11. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  12. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  13. Obtaining of Fibers and granules of carbon for the Immobilization of Enzymes

    International Nuclear Information System (INIS)

    Malagon M, Martha L; Rico R, Yolanda Rico R; Lopez de, Helda A; Caicedo M, Luis Alfonso

    2002-01-01

    Fibers and pellets of carbon were prepared from coal tar. The tar was filtrated and stabilized in a nitrogen atmosphere at 330 degrades Celsius. Extrusion and pellets prepared the fibers by injection on water. Lactase was immobilized by adsorption process. Pellets were better support than fibers, because produced lower pressure drop and upper enzyme retention. Pellets showed the following characteristics: density 2,407 g/cm3, porosity 81,69% and diameter 3 mm

  14. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  15. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  16. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  17. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  18. Quadrature interferometry for plasma density measurements

    International Nuclear Information System (INIS)

    Warthen, B.J.; Shlachter, J.S.

    1995-01-01

    A quadrature interferometer has been used routinely in several pulsed power experiments to measure the line-averaged electron density. The optical source is a 30 mW, continuous wave Nd-YAG laser operating at 1,300 nm. The light is coupled directly to an optical fiber and split into reference and scene beams with a fiber splitter. The scene beam is transported to and from the plasma using single mode optical fibers up to 100 m in length. To simplify alignment through the plasma, the authors have used GRIN lenses on both the launch and receive sides of the single pass transmission diagnostic where this is possible. The return beam passes through a half-wave plate which is used to compensate for polarization rotation associated with slow (hour) time scale drift in the single mode fibers. The reference beam is sent through a quarter-wave plate to produce circular polarization; mixing of the reference and scene beams is accomplished using a non-polarizing beam splitter, and the interference signals are focused into additional fibers which relay the light to fast photodiodes. The quadrature optics allow for an unambiguous determination of the slope of the density changes at inflection points. All of the beam processing optics are located on a stable optical table which is remote and protected from the experiment. Final setup of the interferometer is facilitated by looking at the Lissajous figure generated from the two quadrature components. The authors have used this interferometer to diagnose the background density in the Pegasus-II power flow channel, to study the plasma plume generated in foil implosion experiments, to measure the plasma blowoff during implosions, and to understand the plasma formation mechanism in a fusion target plasma system

  19. The Fiber Content in Fibrous Hemp Depending on Selected Agrotechnical Factors

    Directory of Open Access Journals (Sweden)

    Kryszak N.

    2016-06-01

    Full Text Available Relationship between genotypes represented by two fibrous hemp varieties and some agrotechnical factors was investigated in the study. The aim of it was finding how selected factors (three sowing dates, two sowing densities and five harvest dates influence on total fiber content using osmotic degumming of fibrous plants method for fiber content determination.

  20. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Science.gov (United States)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  1. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  2. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  3. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  4. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  6. Computer simulation of the 30-nanometer chromatin fiber.

    Science.gov (United States)

    Wedemann, Gero; Langowski, Jörg

    2002-06-01

    A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the DNA segments is described by the Debye-Hückel approximation. Nucleosome core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution, whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the mass density is significantly lower than the measured value. The

  7. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  8. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  9. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    Science.gov (United States)

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  10. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  11. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  12. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  13. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  14. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  15. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  16. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  17. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  18. Cell orientation and regulation of cell–cell communication in human mesenchymal stem cells on different patterns of electrospun fibers

    International Nuclear Information System (INIS)

    Chang, Jui-Chih; Fujita, Satoshi; Tonami, Hiroyuki; Iwata, Hiroo; Kato, Koichi; Hsu, Shan-hui

    2013-01-01

    Cell behavior can be manipulated by the topography of the culture surface. In this study, we examined the intercellular communication and osteogenic differentiation of mesenchymal stem cells (MSCs) grown on electrospun fibers with different orientations and densities. Human bone marrow-derived MSCs (hMSCs) were seeded on poly(ε-caprolactone) (PCL) electrospun scaffolds composed of aligned (1D) or cross-aligned (2D) fibers (1.0–1.2 µm diameter) with high, medium, or low fiber densities. It was found that cells preferred to adhere onto electrospun PCL fibers rather than on the flat substrate. The immunofluorescence staining showed that the expression of vinculin, a focal adhesion protein, was limited to the periphery and the two extremities of aligned cells on the edge of the fibers. Electron microscopy showed that cells extended their lamellipodia across the adjacent fibers and proliferated along the direction of fibers. Cells grown on 1D fibrous scaffolds at all fiber densities had an obvious alignment. On 2D fibers, a higher degree of cell alignment was observed at the higher fiber density. On 1D scaffolds, the gap junction intercellular communication (GJIC) quantified by the lucifer yellow dye transfer assay was significantly promoted in the aligned cells in the direction parallel to the fibers but was abolished in the direction perpendicular to the fibers. The expression of osteogenic marker genes (RUNX2, ALP, and OCN) was significantly enhanced in seven days by culture on 1D but not 2D fibers. It was thus proposed that the promoted osteogenic differentiation of hMSCs may be associated with the fiber-guided and directional induction of GJIC. (paper)

  19. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  20. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  1. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  2. Graphene-based fibers for supercapacitor applications

    International Nuclear Information System (INIS)

    Chen, Lianlian; Zhao, Yang; Chen, Nan; Qu, Liangti; Liu, Yu

    2016-01-01

    Energy conversion and storage devices play an important role in industry and society with the rapid growth of energy consumption. Supercapacitors are very attractive due to their superior power density, fast charge/discharge rates and long cycle lifetime. Graphene fiber (GF), a fascinating material, has drawn considerable attention and shown great potential as an active material in the field of supercapacitors owing to its unique and tunable nanostructure, high electrical conductivity, excellent mechanical flexibility, light weight, and ease of functionalization. This review focuses on the recent significant advances in the fabrication and application of graphene-based fiber as electrode material in supercapacitors. The synthetic strategies and application in the supercapacitor are presented, accompanied with the summary and outlook for the future development of GFs. (topical review)

  3. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  4. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  5. New development in optical fibers for data center applications

    Science.gov (United States)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan

    2015-01-01

    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  6. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  7. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  8. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors

    Science.gov (United States)

    Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin

    2018-02-01

    Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.

  9. Rigid Polyurethane Foam Reinforced Coconut Coir Fiber Properties

    OpenAIRE

    Mohd Azham Azmi

    2012-01-01

    This research work studied the properties of composite foam panels. Coconut coir fibers were used as reinforcement in polyurethane (PU) foam in order to increase the properties of foam. This composite foam panels were fabricated by using polyurethane molded method. The polyurethane foam panels reinforced from 5 to 20wt% coconut coir were produced to investigate the physical and mechanical test via density test and three point bending test respectively. It was found that the density test resul...

  10. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  11. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  12. Lack of effect of dietary fiber on serum lipids, glucose, and insulin in healthy young men fed high starch diets.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1982-07-01

    Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.

  13. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  14. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  15. Analysis of temperature distribution in a heat conducting fiber with ...

    African Journals Online (AJOL)

    The temperature distribution in a heat conducting fiber is computed using the Galerkin Finite Element Method in the present study. The weak form of the governing differential equation is obtained and nodal temperatures for linear and quadratic interpolation functions for different mesh densities are calculated for Neumann ...

  16. Nerve fibers and menstrual cycle in peritoneal endometriosis.

    Science.gov (United States)

    Wang, Guoyun; Tokushige, Natsuko; Fraser, Ian S

    2011-06-30

    There was no difference in the density of nerve fibers across the menstrual cycle in peritoneal endometriotic lesions. These findings may explain why patients with peritoneal endometriosis often have painful symptoms throughout the menstrual cycle. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  18. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  19. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  20. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  1. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  2. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  3. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  4. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  5. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  6. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin...

  7. Illustrative white matter fiber bundles

    NARCIS (Netherlands)

    Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.

    2010-01-01

    Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some

  8. Fiber Optic Temperature Sensors in TPS: Arc Jet Model Design & Testing

    Science.gov (United States)

    Black, Richard; Feldman, Jay; Ellerby, Donald; Monk, Joshua; Moslehi, Behzad; Oblea, Levy; Switzer, Matthew

    2017-01-01

    Techniques for using fiber optics with Fiber Bragg Gratings (FBGs) have been developed by IFOS Corp. for use in thermal protection systems (TPS) on spacecraft heat shield materials through NASA Phase 1 and 2 SBIR efforts and have been further improved in a recent collaboration between IFOS and NASA that will be described here. Fiber optic temperature sensors offer several potential advantages over traditional thermocouple sensors including a) multiplexing many sensors in a single fiber to increase sensor density in a given array or to provide spatial resolution, b) improved thermal property match between sensor and TPS to reduce heat flow disruption, c) lack of electrical conductivity.

  9. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  10. Value-added products from chicken feather fiber and protein

    Science.gov (United States)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between

  11. Activated carbon fiber obtained from textile PAN fiber to electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres; Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: Supercapacitors are devices for electrical energy storage with application in distribution power generation, electric vehicles, electronic equipment, among others. Current challenges in the development of supercapacitors focuses on making an increasing on system density of energy. An increase of energy accumulated in the supercapacitor electrode can be achieved by developing materials with high specific electrical capacitance and low electrical resistance. Furthermore, it is expected that the electrode material present a simple procedure for obtaining, low cost and environmentally friendly. Carbon fibers are interesting materials for use as a supercapacitor electrode. Among them are carbon fibers from polyacrylonitrile (PAN). In this work were studied activated carbon fibers obtained from textile polyacrylonitrile (ACF-PAN) with deposition of Fe particles aiming to use as active material of supercapacitor electrodes. ACFPAN and ACF-PAN-Fe were characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The behavior of the activated carbon fibers as a supercapacitor electrode was evaluated by galvanostatic charge and discharge curves, cyclic voltammetry and a electrochemical impedance using a symmetrical two-electrode Swagelok®-type cell and sulfuric acid as electrolyte. ACF-PAN had a high specific surface area, which makes it an interesting material for electrodes of supercapacitors. The electrical capacitance for the ACF-PAN is 96 F/g and ACF-PAN-Fe is 106 F/g both at a current density of 0.30 A/g. This increase in electrical capacitance can be related to the presence of iron oxides which are deposited on the activated carbon fiber. (author)

  12. Bluebonnet Fiber Collages

    Science.gov (United States)

    Sterling, Joan

    2009-01-01

    This article presents a lesson that uses stitching and applique techniques to create a fiber collage in which every child is successful with high-quality work. This lesson was inspired by Tomie dePaola's "The Legend of the Bluebonnet." The back cover had a lovely illustration of the bluebonnet flower the author thought would translate easily to a…

  13. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving...

  14. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  15. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  16. Fiber and Your Child

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, artichoke hearts, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  17. Properties of medium-density fiberboard produced in an oil-heated laboratory press

    Science.gov (United States)

    O. Suchsland; G.E. Woodson

    1976-01-01

    Medium-density fiberboards from pressurized double-disk refined fibers have a close correlation between layer density and layer dynamic modulus of elasticity. Density distribution over the thickness was readily controlled by manipulating platen temperature and applied pressure. Thus, overall modulus of elasticity could be adjusted. In contrast to modulus of elasticity...

  18. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  19. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  20. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  1. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  2. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  3. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  4. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  5. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  6. Gain-switched all-fiber lasers and quasi-continuous wave supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper

    The extreme broadening phenomenon of supercontinuum (SC) generation in optical fibers is the basis of SC laser sources. These sources have numerous applications in areas, such as spectroscopy and microscopy due to the unique combination of extremely broad spectral bandwidths, high spectral power...... densities, and high spatial coherence. In this work the feasibility of applying gain-switched all-fiber lasers to SC generation is investigated. It is motivated by the simplicity of the architecture and the ability to scale the optical output power of such fiber lasers. The physics of fiber lasers......-switching of fiber lasers with a variety of different configurations are carried out. The peak power, pulse duration, bandwidth, and scaling with repetition rate are thoroughly described. General guidelines are submitted to enable designing of gainswitched fiber lasers with specifically tailored properties...

  7. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  8. Treatment and characterization of fiber licuri for synthesis of polymeric composites

    International Nuclear Information System (INIS)

    Oliveira, J.C.; Miranda, C.S.; Carvalho, R.F.; Jose, N.M.; Boaventura, J.S.

    2010-01-01

    Natural fibers are materials of increasing use of polymeric composites, due to several advantageous properties compared to synthetic fibers: low cost, density, toxicity and excellent biodegradability. Licuri fiber is widely used in the manufacture of handicrafts, with a wide range of possible applications. Before this, characterize the properties of the fiber is of great interest economic, technological and social. This study characterized the fibers in nature, which were washed with water, treated with 5% H 2 SO 4 or 5% NaOH. Techniques were used FTIR, DSC, TGA and XRD, as well as analysis of surface reactivity of the acid and base. All treatments altered the surface of licuri, exposing reactive sites. It was observed that sodium hydroxide licuri changed significantly, as expected. These results are very significant for the recovery of a natural fiber (licuri), abundant in poor regions of the country. (author)

  9. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  10. Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers.

    Science.gov (United States)

    Guo, Y; Wassgren, C; Ketterhagen, W; Hancock, B; Curtis, J

    2018-04-18

    A discrete element method (DEM) model is developed to simulate the dynamics of wet, flexible fibers. The angles of repose of dry and wet fibers are simulated, and the simulation results are in good agreement with experimental results, validating the wet, flexible fiber model. To study wet fiber flow behavior, the model is used to simulate shear flows of wet fibers in a periodic domain under Lees-Edwards boundary conditions. Significant agglomeration is observed in dilute shear flows of wet fibers. The size of the largest agglomerate in the flow is found to depend on a Bond number, which is proportional to liquid surface tension and inversely proportional to the square of the shear strain rate. This Bond number reflects the relative importance of the liquid-bridge force to the particle's inertial force, with a larger Bond number leading to a larger agglomerate. As the fiber aspect ratio (AR) increases, the size of the largest agglomerate increases, while the coordination number in the largest agglomerate initially decreases and then increases when the AR is greater than four. A larger agglomerate with a larger coordination number is more likely to form for more flexible fibers with a smaller bond elastic modulus due to better connectivity between the more flexible fibers. Liquid viscous force resists pulling of liquid bridges and separation of contacting fibers, and therefore it facilitates larger agglomerate formation. The effect of liquid viscous force is more significant at larger shear strain rates. The solid-phase shear stress is increased due to the presence of liquid bridges in moderately dense flows. As the solid volume fraction increases, the effect of fiber-fiber friction coefficient increases sharply. When the solid volume fraction approaches the maximum packing density, the fiber-fiber friction coefficient can be a more dominant factor than the liquid bridge force in determining the solid-phase shear stress.

  11. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers.

    Science.gov (United States)

    Thilagavathi, G; Praba Karan, C; Das, Dipayan

    2018-08-01

    This work reports on a series of thermally-bonded, hybrid and oil-sorbent nonwovens developed from binary and tertiary mixing of cotton, kapok, and three varieties of milkweed fibers (Asclepias Syriaca, Calotropis Procera and Calotropis Gigantea) and polypropylene fibers. The physical and chemical properties of the fibers were investigated to examine their oleophilic character. It was observed that all the fiber surfaces were covered with natural wax. Further, kapok and milkweed fibers were found to have less cell wall thickness and high void ratio. Oil sorption and retention characteristics of these fibers were studied in loose fibrous form as well as in structured assembly form (thermally-bonded nonwovens) using high density oil and diesel oil. The effects of fiber diameter, fiber cross-sectional shape, fiber surface area and porosity on the oil sorption behavior were discussed. An excellent and a selective oil sorption behavior of milkweed fibers (Calotropis Procera and Calotropis Gigantea) blended with cotton and polypropylene fibers were observed. The maximum oil sorption capacity of the developed thermal bonded nonwoven was 40.16 g/g for high density (HD) oil and 23.00 g/g for diesel oil. Further, a high porosity combined with high surface area played a major role in deciding the oil sorption and retention characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate

    Directory of Open Access Journals (Sweden)

    H. Yu

    2018-04-01

    Full Text Available The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement (CSA, ordinary Portland cement (OPC, and calcium sulfate (CS to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength (UCS, splitting tensile strength (STS, and volume change of fiber-added expansive mixtures were determined at different time periods (i.e. the strengths on the 28th day, and the volume changes on the 1st, 7th, 14th, 21st, and 28th days. The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to 50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and 16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion. Keywords: Shotcrete, Restrained expansion, Fibers, Calcium sulfoaluminate cement (CSA, Ordinary Portland cement (OPC, Calcium sulfate (CS

  13. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  14. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  15. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    Science.gov (United States)

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  16. Melt density and the average composition of basalt

    Science.gov (United States)

    Stolper, E.; Walker, D.

    1980-01-01

    Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.

  17. Chemically modified carbon fibers and their applications

    International Nuclear Information System (INIS)

    Ermolenko, I.N.; Lyubliner, I.P.; Gulko, N.V.

    1990-01-01

    This book gives a comprehensive review about chemically modified carbon fibers (e.g. by incorporation of other elements) and is structured as follows: 1. Types of carbon fibers, 2. Structure of carbon fibers, 3. Properties of carbon fibers, 4. The cellulose carbonization process, 5. Formation of element-carbon fiber materials, 6. Surface modification of carbon fibers, and 7. Applications of carbon fibers (e.g. adsorbents, catalysts, constituents of composites). (MM)

  18. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  19. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  20. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  1. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  2. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  3. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  4. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  6. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  7. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  8. [Study of collagen and elastic fibers of connective tissue in patients with and without primary inguinal hernia].

    Science.gov (United States)

    Bórquez, Pablo; Garrido, Luis; Manterola, Carlos; Peña, Patricio; Schlageter, Carol; Orellana, Juan José; Ulloa, Hugo; Peña, Juan Luis

    2003-11-01

    There are few studies looking for collagen matrix defects in patients with inguinal bernia. To study the skin connective tissue in patients with and without inguinal bernia. Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal bernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Patients without hernia had compact collagen tracts homogeneously distributed towards the deep dermis. In contrast, patients with hernia had zones in the dermis with thinner and disaggregated collagen tracts. Connective tissue had a lax aspect in these patients. Collagen fiber density was 52% lower in patients with hernia, compared to subjects without hernia. No differences in elastic fiber density or distribution was observed between groups. Patients with inguinal bernia have alterations in skin collagen fiber quality and density.

  9. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    Science.gov (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  10. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  11. Estimation of influence of a solution of a boric acid and temperatures on a isolation material from basalt fibers

    International Nuclear Information System (INIS)

    Pyshnova, V.V.; Skobelkina, T.N.; Yurchenko, V.G.; Knot'ko, A.V.; Putlyaev, V.I.

    2006-01-01

    Paper presents the results of investigation into long-term simultaneous effect of a medium (boric acid solution) and temperature on a thermal-insulating basalt fiber material. The basalt fiber clothes used at the NPP were tested. When evaluating simultaneous effect of boric acid solution and temperature one kept watch on density, compressibility, elasticity and diameter of fiber. According to the results of 30 day tests, the basic technical parameters of the thermal-insulating material have changed insignificantly [ru

  12. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  13. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  14. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  15. A fiber-optic polarimetric demonstration kit

    International Nuclear Information System (INIS)

    Eftimov, T; Dimitrova, T L; Ivanov, G

    2012-01-01

    A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

  16. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  17. Mass variation effect of teki grass (cyperus rotundus) composite against tensile strength and density

    Science.gov (United States)

    Rafiq Yanhar, Muhammad; Haris Nasution, A.

    2018-05-01

    The primary purpose of this study is to determine the tensile strength using ASTM D638 - 02a type IVB and density of teki grass (Cyperus rotundus) composite. The production process is carried out by mass variation of 2 gr, 3 gr, and 4 gr. Hand lay-up method with three repetitions is applied. Teki grass is chosen because it is easy to find and has some advantages biodegradable, harmless to health, available in large quantities, and cost-efficient. The test result showed the largest tensile strength is 21,61 MPa at 2-gram mass fiber. Fiber addition to 3 gram and 4-gram cause tensile strength decreases to 18,51 MPa and 11,65 MPa. It happens because the fibers are random and spread in all directions, so many fibers are undirectional with the tensile force. Beside that fibers addition made matrix volume reduced and a bond between fiber and matrix decreases, finally make fiber unable to hold the tensile force properly. It is recommended to use another type of ASTM D638 - 02a which has a larger narrow section like type I (13 mm) and type III (19mm) so specimens are not broken when removed from the mold, and there isn’t any decrease in tensile strength.Density test showed that fiber mass does not significantly affect the density.

  18. Sources of Dietary Fiber and the Association of Fiber Intake with Childhood Obesity Risk (in 2–18 Year Olds and Diabetes Risk of Adolescents 12–18 Year Olds: NHANES 2003–2006

    Directory of Open Access Journals (Sweden)

    Mary Brauchla

    2012-01-01

    Full Text Available Increased fiber intake has been linked with lower risk of overweight and obesity in adults, but data are sparse for children. To address this issue, NHANES 2003–2006 data was used to evaluate (1 the food sources of fiber in children, (2 the dietary fiber density levels and risk of being classified as overweight/obese, and (3 the association between fiber intake level and impaired glucose metabolism in children. Analyses were restricted to the subsample of children with biological plausible diet reports (N=4,667 and stratified by 2–11 year olds (n=2072 and 12–18 year olds (n=2595. Results showed that the food sources are predominantly foods that are low in dietary fiber, but are consumed at high levels. In 2–18 year old plausible reporters, the risk for overweight/obesity decreased by 17% from children in the medium tertile of fiber density intake compared to the lowest tertile (OR=0.83, P value = 0.043 and by 21% between the highest compared to the lowest tertile (OR=0.79, P value = 0.031. There was a protective effect of being in the medium tertile of dietary fiber density (OR=0.68, P value <0.001 on impaired glucose metabolism. These results indicate a beneficial effect of higher fiber density in children’s diets.

  19. Effect of strain on the critical-current density of Cu-Nb composites

    International Nuclear Information System (INIS)

    Klein, J.D.; Rose, R.M.

    1987-01-01

    Microfilamentary superconducting composites of Nb fibers in Cu matrices prepared by the stack and draw method were tested for tensile critical-current performance at 4.2 K. The superconducting critical-current densities increased exponentially under the influence of an applied mechanical strain until the onset of Nb fiber plastic deformation. In the elastic range, the critical-current densities conformed to log 10 J/sub c/ = m (strain)+b. In several tests the critical current was increased by more than an order of magnitude by the applied strain. This behavior is consistent with an increase in the upper critical field of the Nb fibers by the applied stress

  20. Electrochromic fiber-shaped supercapacitors.

    Science.gov (United States)

    Chen, Xuli; Lin, Huijuan; Deng, Jue; Zhang, Ye; Sun, Xuemei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Guan, Guozhen; Peng, Huisheng

    2014-12-23

    An electrochromic fiber-shaped super-capacitor is developed by winding aligned carbon nanotube/polyaniline composite sheets on an elastic fiber. The fiber-shaped supercapacitors demonstrate rapid and reversible chromatic transitions under different working states, which can be directly observed by the naked eye. They are also stretchable and flexible, and are woven into textiles to display designed signals in addition to storing energy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. System for testing optical fibers

    Science.gov (United States)

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  2. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  3. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport.

    Directory of Open Access Journals (Sweden)

    Samata M Kakkad

    Full Text Available Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1 fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.

  4. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  5. Fiber-Optic Sensor Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  6. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  7. Determining the minimum conditions for soda-anthraquinone pulping of kenaf bast, core, and whole stalk fibers

    Science.gov (United States)

    James S. Han; Thomas A. Rymsza

    1999-01-01

    Chemical pulping of kenaf fiber is comparatively new. In this study, bast, core, and whole stalk kenaf fibers were pulped using a soda-AQ pulping process and various pulping conditions. Handsheets were evaluated for density, Canadian standard freeness, brightness, opacity, smoothness, and tensile, burst, and tear indexes and strength. The results indicate that...

  8. Voronoi polygons and self-consistent technique used to compute the airflow resistivity of randomly placed fibers in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    is constant, and equal to the constant current value. A computation of resistivity from fiber density and diameter will be presented for a model of glass wool that consists of parallel randomly placed fibers with equal diameters. The computation is based on Voronoi polygons, and the results will be compared...

  9. Assessment of Physical and Mechanical Properties of Cement Panel Influenced by Treated and Untreated Coconut Fiber Addition

    Science.gov (United States)

    Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin

    This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.

  10. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  11. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  12. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  13. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  14. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  15. Characterization of natural fiber from agricultural-industrial residues

    International Nuclear Information System (INIS)

    Prado, Karen S.; Spinace, Marcia A.S.

    2011-01-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  16. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  17. Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first episode and chronic schizophrenia

    Directory of Open Access Journals (Sweden)

    Rachael G. Grazioplene

    Full Text Available Reduced fractional anisotropy (FA is a well-established correlate of schizophrenia, but it remains unclear whether these tensor-based differences are the result of axon damage and/or organizational changes and whether the changes are progressive in the adult course of illness. Diffusion MRI data were collected in 81 schizophrenia patients (54 first episode and 27 chronic and 64 controls. Analysis of FA was combined with “fixel-based” analysis, the latter of which leverages connectivity and crossing-fiber information to assess both fiber bundle density and organizational complexity (i.e., presence and magnitude of off-axis diffusion signal. Compared with controls, patients with schizophrenia displayed clusters of significantly lower FA in the bilateral frontal lobes, right dorsal centrum semiovale, and the left anterior limb of the internal capsule. All FA-based group differences overlapped substantially with regions containing complex fiber architecture. FA within these clusters was positively correlated with principal axis fiber density, but inversely correlated with both secondary/tertiary axis fiber density and voxel-wise fiber complexity. Crossing fiber complexity had the strongest (inverse association with FA (r = −0.82. When crossing fiber structure was modeled in the MRtrix fixel-based analysis pipeline, patients exhibited significantly lower fiber density compared to controls in the dorsal and posterior corpus callosum (central, postcentral, and forceps major. Findings of lower FA in patients with schizophrenia likely reflect two inversely related signals: reduced density of principal axis fiber tracts and increased off-axis diffusion sources. Whereas the former confirms at least some regions where myelin and or/axon count are lower in schizophrenia, the latter indicates that the FA signal from principal axis fiber coherence is broadly contaminated by macrostructural complexity, and therefore does not necessarily reflect

  18. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  19. Extraction and characterization of Retama monosperma fibers

    African Journals Online (AJOL)

    XPERT

    monosperma leaves and their mechanical, physical and chemical characteristics. The fibers .... The hook was removed gently, and the behavior of the fiber was observed ..... fibers reinforced cement mortar slabs: a comparative study. Cement.

  20. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  1. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  2. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    Science.gov (United States)

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  3. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: a novel methodology for fiber/matrix composites

    International Nuclear Information System (INIS)

    Zhang, R.L.; Gao, B.; Zhang, J.; Cui, H.Z.; Li, D.W.

    2015-01-01

    Graphical abstract: - Highlights: • The manuscript has the following obvious new contributions. • A facile strategy to generating dendrimers onto carbon fibers to functionalize conventional carbon fibers was reported. The density and type of the functional groups on the fiber surface can be easily adjusted by changing the reaction conditions. • The hierarchical reinforcement formed using this novel method improved the composite interface bonding through supplying sufficient chemical bonding and strong mechanical interlocking. • We can generate dendrimers with different side groups (unsaturated groups or hydroxyl groups, and others) and chain length to meet the requirements according to different matrices and applications. - Abstract: A facile strategy for generating dendrimers onto carbon fibers, in order to functionalize them, was reported. Dendrimers were propagated on the surface of carbon fibers by in situ polymerization with Michael addition. The changes in morphology, surface composition and surface energy, which were studied by atomic force microscope (AFM), dynamic contact angle analysis test (DCAT) and x-ray photoelectron microscopy (XPS), were related to the interfacial performance of model composites. In addition, the level of fiber-matrix adhesion was determined by the interlaminar shear strength (ILSS) test. Experimental results indicated that some dendritic polymer was successfully grown on the fiber surface through the chemical reaction, and this significantly enhanced the interfacial bonding of the carbon fiber composites.

  4. Influence of Kenaf Core Fiber Incorporation on the Mechanical Performance and Dimensional Stability of Oil Palm Fiber Reinforced Poly(lactic acid Hybrid Biocomposites

    Directory of Open Access Journals (Sweden)

    Abubakar Umar Birnin-Yauri

    2016-02-01

    Full Text Available This study demonstrated the reinforcing potential of kenaf core fiber (KCF to complement and sustain oil palm fiber supply chain in the production of natural fiber-thermoplastic biocomposites. The lignin-rich KCF was incorporated into cellulose-rich oil palm empty fruit bunch fiber (EFBF- and oil palm mesocarp fiber (OPMF-poly(lactic acid (PLA composites, aimed at achieving synergism. The hybrid biocomposites developed by melt blending and subsequent compression molding were characterized for possible application as an alternative to medium-density fiberboards. The mechanical properties and dimensional stability of both single fiber- and hybrid fiber-PLA biocomposites were evaluated and compared. The test results showed a synergistic improvement as a consequence of fiber hybridization. Also, the findings suggested the best material performance with the incorporation of 5% KCF into 55% EFBF or OPMF and 40% PLA matrix. The OPMF-KCF-PLA hybrid biocomposites gave better results than the EFBF-KCF-PLA hybrid biocomposites.

  5. Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers

    KAUST Repository

    Mezghani, Khaled; Farooqui, Muhammad Fahad; Furquan, Sarfaraz; Ali, Muhammad

    2011-01-01

    The present study shows the effect of adding CNT to linear low-density polyethylene (LLDPE) to produce LLDPE/CNT nanocomposite fibers. The LLDPE/CNT fibers were produced by melt extrusion process using a twin-screw extruder, in a controlled temperature from 160 °C to 275 °C. Further, melt extrusion process was followed by drawing of fibers at the room temperature. Three different weight percentages, 0.08, 0.3 and 1 wt.% of CNT were studied for producing nanocomposite fibers. The addition of 1 wt.% CNT in the LLDPE fiber has increased the tensile strength by 38% (350 MPa). The addition of 0.08 and 0.3 wt.% CNT in the fiber matrix has improved the ductility by 87% and 122%, respectively. Similarly, improvement in the toughness was observed by 63% and 105% for LLDPE fibers with 0.08 wt.% and 0.3 wt.% CNT respectively. The increase in the mechanical properties of the composite fibers was attributed to the alignment and distribution of CNT in the LLDPE matrix. The dispersion of CNT in the polymeric matrix has been revealed by SEM. The study shows that the small addition of CNT when properly mixed and aligned will increase the mechanical properties of pristine polymer fibers. © 2011 Elsevier B.V. All rights reserved.

  6. Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Nirupama; Agarwal, Vijay Kumar; Sihha, Shishir [Indian Institute of Technology Roorkee, Uttrakhand (India)

    2015-12-15

    Coir fiber/low density polyethylene (LDPE) composites were fabricated with different fiber loading (10- 30 wt%) using compression molding technique. A fiber loading of 20 wt% was found optimum, with maximum mechanical properties. Further, the effect of fiber treatment (alkali and acrylic acid) and compatibilizer (MA-g-LDPE) incorporation on the mechanical and water absorption properties of the LDPE composites were studied and compared. The results showed that MA-g-LDPE incorporation into untreated and treated fiber composites led to improved mechanical properties and water resistance compared with the same composite formulation without MA-g-LDPE. However, treated fiber composites with MA-g-LDPE showed lower mechanical properties than untreated fiber without MA-g- LDPE, due to the removal of hydroxyl groups from the hemicellulose and lignin region of the fiber and degradation of fibers by chemical attack. From SEM studies on the tensile fractured composite samples, a good relationship has been observed between the morphological and mechanical properties.

  7. Determination of tensile forces to enhance the supply stability of reinforced fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Woo; Lee, Jae Wook; Jang, Jin Seok; Jeong, Myeong Sik; Oh, Joo Young; Kang, Hoon; Kang, Ji Heon [Daegyeong Regional Division, Korea Institute of Industrial Technology, Daegu (Korea, Republic of); Kim, Hyung Ryul [Agency for Defense Development, Changwon (Korea, Republic of); Yoo, Wan Suk [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    The manufacturing process of long fiber thermoplastic is initiated by supplying reinforced fiber wound in a spool dispenser. If problems such as tangling or kinking occur in the apparatus used for supplying the reinforced fiber in the long-fiber thermoplastic direct process, the productivity of the long-fiber thermoplastic decreases. Therefore, it is important to enhance the supply stability of reinforced fiber. In general, the increase in supply stability can be achieved by maintaining a steady balloon shape that is controlled by the unwinding velocity or tensile force of the reinforced fiber. In this research, the range of suitable tensile force was determined under the assumption that the unwinding velocity remained constant. The reinforced fiber was assumed to be inextensible, homogeneous, and isotropic and to have uniform density. The transient-state unwinding equation of motion to analyze the unwinding motion of reinforced fiber can be derived by using Hamilton’s principle for an open system in which mass can change within a control volume. In the process of solving the transient-state unwinding equation of motion, the exact two-point boundary conditions are adopted for each time step.

  8. Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers

    KAUST Repository

    Mezghani, Khaled

    2011-12-01

    The present study shows the effect of adding CNT to linear low-density polyethylene (LLDPE) to produce LLDPE/CNT nanocomposite fibers. The LLDPE/CNT fibers were produced by melt extrusion process using a twin-screw extruder, in a controlled temperature from 160 °C to 275 °C. Further, melt extrusion process was followed by drawing of fibers at the room temperature. Three different weight percentages, 0.08, 0.3 and 1 wt.% of CNT were studied for producing nanocomposite fibers. The addition of 1 wt.% CNT in the LLDPE fiber has increased the tensile strength by 38% (350 MPa). The addition of 0.08 and 0.3 wt.% CNT in the fiber matrix has improved the ductility by 87% and 122%, respectively. Similarly, improvement in the toughness was observed by 63% and 105% for LLDPE fibers with 0.08 wt.% and 0.3 wt.% CNT respectively. The increase in the mechanical properties of the composite fibers was attributed to the alignment and distribution of CNT in the LLDPE matrix. The dispersion of CNT in the polymeric matrix has been revealed by SEM. The study shows that the small addition of CNT when properly mixed and aligned will increase the mechanical properties of pristine polymer fibers. © 2011 Elsevier B.V. All rights reserved.

  9. Compatibility of vegetable fibers with Portland cement and its relationship with the physical properties

    Directory of Open Access Journals (Sweden)

    Maria L. Marques

    2016-05-01

    Full Text Available ABSTRACT The use of vegetable fiber residue in cementitious matrices can be a sustainable technological alternative; however, it still has problems related to the chemical compatibility between the cement and the fibers. The present study evaluated the compatibility of vegetable fibers with cement using three methods of calculation and determined certain physical properties of the fibers and the curve of the temporal evolution of temperature for each composite. The surfaces of the composites were evaluated through atomic force microscope images and the results showed that the pretreatment of fiber washing significantly favors the compatibility with cement for fibers of eucalyptus, coconut and cocoa, with no influence for water hyacinth fiber. Bivariate correlation analyses showed that the compatibility of the composites is favored by the reduction in the degree of swelling, packing density and specific mass. The results showed that there is a potential use of plant fiber in civil construction and that the physical properties of each type of fiber can offer elements for its selection and pretreatment.

  10. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  11. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  12. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  13. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  14. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  15. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  16. Radiation damage in optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.; Ogle, J.W.

    1983-01-01

    Optical fibers provide important advantages over coaxial cables for many data transmission applications. Some of these applications require that the fibers transmit data during a radiation pulse. Other applications utilize the fiber as a radiation-to-light transducer. In either case, radiation-induced luminescence and absorption must be understood. Most studies of radiation effects in fibers have emphasized time scales of interest in telecommunication systems, from the msec to hour range. Few studies have concentrated on response at times below 1 + s. At Los Alamos, both laboratory electron accelerators and nuclear tests have been used as radiation sources to probe this early time region. The use of a fiber (or any optical medium) as a Cerenkov radiation-to-light transducer is discussed. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated

  17. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  18. Thermal transport during the growth of crystalline fibers by the laser-heated float zone method

    International Nuclear Information System (INIS)

    Feigelson, R.S.

    1990-01-01

    Single crystal fibers may someday prove useful in a variety of advanced device applications. At the current time, fibers for optical, superconducting, and structural applications are under investigation. The advantage of single crystal fibers for optical devices lies in the enhanced light guiding properties one can obtain compared to a bulk crystal of the same material. Potential fiber-optic applications include optical transmission lines for remote temperature sensing and spectroscopy, solid-state lasers and amplifiers, and nonlinear devices such as harmonic generators, Raman shifters and optical parameters oscillators. In the area of superconductivity, the potential for producing long flexible fibers of the Bi 2 Sr 2 CaCu 2 O 8 high temperature superconductor which are capable of carrying high electrical current has been demonstrated. This superconductor, like other high T c materials is incongruently melting and growth rates (fiber throughput), therefore, have to be reduced to optimize the superconducting properties. Interest in single crystal fibers for structural applications stems from a strong technological interest in high strength, light weight fiber-matrix composites capable of operating at elevated temperatures. The very high crystalline perfection possible in single crystal fibers of certain materials, for example Al 2 O 3 , make them very attractive for special high temperature structural applications. Single crystal fibers are noted for having greater lower defects and hence higher strength than comparable bulk crystals. For most of the fiber applications mentioned above, stringent requirements exist for uniform diameter, homogeneous composition, and a low density of crystalline defects. Excellent growth stability is needed to obtain such fibers

  19. Modification of NSSC pulp broke fibers using layering method and investigating its effect on paper properties

    Directory of Open Access Journals (Sweden)

    hamidreza rudi

    2016-12-01

    Full Text Available In the current study, modification of NSSC pulp broke fibers was done by forming starch polymeric multilayers, using Layer-by-Layer (LbL layering method. After fiber slushing and preparation of pulp suspension with 0.5% consistency and conductivity formation of about 437 µS/cm, adding water solution of 1 mM NaCl, the experiments of fibers treatment were conducted to build the polymeric layers (up to 5 consecutive layers. Afterward, water retention value (WRV of fibers was calculated in samples to evaluate the influence of this method on fibers hydrophilicity. The fibers were then used to prepare standard handsheets (60±3g/m2 and the physical and strength properties of sheets were evaluated as a function of the number of layers deposited on the fibers. The results showed that the WRV index of the fibers was improved by the LbL treatment of NSSC broke pulp fibers, due to the increase in starch electrostatic absorption. Successive variation in paper apparent density increase and paper thickness decrease confirmed the construction of starch multilayers on the surface of broke fibers. Formation of such multilayers on broke fibers has led to considerable improvement in tensile index (from 13.21 N.m/g to 30.65 N.m/g and burst index (from 1.23 kPa.m2/g to 2.36 kPa.m2/g. Also, the prepared SEM micrographs approve the sheet web compaction and paper mechanical improvement resulted due to an increase in inter-fiber bonding.

  20. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  1. CARBONIZED STARCH MICROCELLULAR FOAM-CELLULOSE FIBER COMPOSITE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Andrew R. Rutledge

    2008-11-01

    Full Text Available The production of microporous carbon foams from renewable starch microcellular foam-fiber (SMCF-Fiber composites is described. Carbon foams are used in applications such as thermal insulation, battery electrodes, filters, fuel cells, and medical devices. SMCF-Fiber compos-ites were created from an aquagel. The water in the aquagel was exchanged with ethanol and then dried and carbonized. Higher amylose content starches and fiber contents of up to 4% improved the processability of the foam. The SMCF structure revealed agglomerates of swollen starch granules connected by a web of starch with pores in the 50-200 nanometer range. Heating the SMCF-fiber in a nitrogen atmosphere to temperatures between 350-700˚C produced carbon foams with a three-dimensional closed cell foam structure with cell diameters around 50 microns and pore walls around 1-3 microns. The stress versus strain compression data for carbonized samples displayed a linear elastic region and a plateau indicative of brittle crushing, typical of an elastic-brittle foam. The carbon foam products from these renew-able precursors are promising carbon structures with moderate strength and low density.

  2. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  3. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    Science.gov (United States)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  4. Mechanical behavior of recycled polyethylene/piassava fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Elzubair, Amal, E-mail: amal@metalmat.ufrj.br [Universidade Federal de Rio de Janeiro, Departamento de Engenharia Metalurgica e de Materiais, Ilha do Fundao, Bloco F, 21941-972 Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil); Miguez Suarez, Joao Carlos, E-mail: jmiguez@ime.eb.br [Instituto Militar de Engenharia, Secao de Engenharia Mecanica e de Materiais, Praca General Tiburcio, 80, Urca, 22290-270, Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil)

    2012-11-15

    The use of natural fibers for reinforcement of thermoplastics (which are found in domestic waste) is desirable since it is based on abundant and renewable resources and can be ecologically correct. Leopoldinia piassaba Wallace (commonly known as piassava), a palm tree native of Amazon-Brazil, is cheap, easily found in Brazilian markets and the main component of home appliances and decorative goods. The subject of the present work is a study of mechanical properties of composites of recycled high density polyethylene (HDPE-r) reinforced with untreated, and treated (silane and NaOH) piassava fibers, in proportions varying from 0% to 20% and injection molded under fixed processing conditions. The influence of increasing amounts of piassava fibers and of surface treatment on the mechanical behavior of the composites was investigated by thermogravimetric analysis (TGA), mechanical testing (tensile and flexure) and scanning electron microscopy (SEM). The topography of the fractured surfaces of tested tensile specimens of unfilled and filled recycled HDPE was also observed by SEM and correlated with the mechanical behavior. As the fiber content increases, the composites show a gradual change in the mechanical properties and in the fracture mechanisms. Composites with 15% and 20% of piassava fibers were found to exhibit the best mechanical performance.

  5. Inspection method of optical fiber preforms by x-ray absorption measurements

    International Nuclear Information System (INIS)

    Takahashi, H.; Nakamura, K.; Shibuya, S.; Kuroha, T.

    1980-01-01

    A method for measuring the refractive index distribution of optical fiber preforms has been developed by application of the theory of X-ray radiography. The composition of quartz optical fiber materials is, in most cases, limited to the group of five elements - Ge, P, Si, O and B. Of them, Ge is an essential element to determine the structure of refractive index of an optical fiber and the distribution of its density can be regarded approximately as the distribution of refractive index. On the other hand, the coefficient of low-energy X-ray absorption by the elements depends markedly on their atomic numbers, and Ge has a far larger absorption coefficient than the other four elements. Therefore, analysis of the intensity of X-ray absorbed by optical fiber preforms makes it possible to determine the distribution of Ge density and consequently the distribution of refractive index. (author)

  6. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  7. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  8. Longitudinal versus transversal excitation in doped graded-index polymer optical fibers

    Science.gov (United States)

    Illarramendi, M. A.; Arrue, J.; Ayesta, I.; Jiménez, F.; Zubia, J.; Bikandi, I.; Tagaya, A.; Koike, Y.

    2014-03-01

    In this work we perform a detailed experimental and theoretical analysis of the properties of amplified spontaneous emission (ASE) in a rhodamine-6G-doped graded-index polymer optical fiber when the fiber is pumped either longitudinally or transversally with respect to the fiber axis. The dependence of the ASE threshold and efficiency on fiber length has been compared for both schemes of excitation. A theoretical model for longitudinal excitation has been carried out by means of the laser rate equations as functions of time, distance traveled by light and wavelength. The analysis takes into account that the fiber is a typical graded-index POF in which the radial distributions of light power density and dye concentration are not uniform. The theoretical calculations agree satisfactorily with the experimental results. The photodegradation of the ASE intensity has also been measured for both pumping schemes.

  9. Experimental investigation of sound absorption properties of perforated date palm fibers panel

    International Nuclear Information System (INIS)

    Elwaleed, A K; Nikabdullah, N; Nor, M J M; Tahir, M F M; Zulkifli, R

    2013-01-01

    This paper presents the sound absorption properties of a natural waste of date palm fiber perforated panel. A single layer of the date palm fibers was tested in this study for its sound absorption properties. The experimental measurements were carried out using impedance tube at the acoustic lab, Faculty of Engineering, Universiti Kebangsaan Malaysia. The experiment was conducted for the panel without air gap, with air gap and with perforated plate facing. Three air gap thicknesses of 10 mm, 20 mm and 30 mm were used between the date palm fiber sample and the rigid backing of the impedance tube. The results showed that when facing the palm date fiber sample with perforated plate the sound absorption coefficient improved at the higher and lower frequency ranges. This increase in sound absorption coincided with reduction in medium frequency absorption. However, this could be improved by using different densities or perforated plate with the date palm fiber panel.

  10. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    Science.gov (United States)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  11. UTILIZATION OF BASALT FIBERS AS A RAW MATERIAL FOR CLAY CERAMIC PRODUCTION

    Directory of Open Access Journals (Sweden)

    Supawan Vichaphund

    2016-03-01

    Full Text Available This research aimed to investigate the possibility of utilization basalt fibers as a raw material for ceramic production. Both quartz and feldspar were replaced partially or entirely by basalt fiber in the range of 10-25 wt%. The mixture of ceramic powders and basalt fibers were uniaxially pressed and sintered at temperatures between 1000 and 1200°C for 1 h. The substitution of basalt fibers in ceramic compositions demonstrated the positive effect on the physical and mechanical properties. The addition of basalt fibers in an appropriate amount enhance the densification and reduce sintering temperature of clay-based ceramics (CB-0 from 1200 to 1150°C. The highest density and strength were 2.40 g/cm³ and 116 MPa, respectively, when replacing feldspar and quartz with basalt up to 20 wt% (CB-20 and sintering at 1150°C.

  12. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  13. Effect of chitosan-nanosilica self-assembly layers chitosan- on cotton linter fibers and the paper properties

    Directory of Open Access Journals (Sweden)

    Sabrineh M.Tavakoli

    2014-11-01

    Full Text Available Surface properties of cellulosic fibers can be modified by Layer-by-Layer (LbL technique. Cotton fibers are one of important non-wood and industrial cellulosic resources in the world. Cotton linters is produced as a by-product accompany with cotton fibers which is used as a significant cellulosic sources in paper industry for producing durable paper. In this research, the influence of alternate adsorption of cationic chitosan and anionic Nanosilica on modification of fiber surface of cotton linter was investigated. The adsorption of materials on cellulosic fibers was analyzed via electrolyte titration. Experiments were conducted at pH≈3-4 for formation of cationic layer and pH≈9-10 for formation of anionic layer applying stirring rate of about 750rpm, for15 minute deposition time to construct 1 to 3 layers. Hand sheets of about 60 g/ m2 basis weight were made form modified pulp fibers prepared by multilayering of chitosan and nanosilica, then their structural properties and bonding ability were evaluated. Bonding ability of fibers was improved by polyelectrolyte multilayering (PEM on the surface of cotton linter fibers which was visualized by Field Emission Scanning Electron Microscopy (FESEM.The results showed that apparent density and also bonding ability was improved in the treated fibers because of the increased electrostatic attraction between polycation and anion sites existed on the fiber surface. Apparant density of paper was improved remarkably compared to the untreated fibers. Tensile index of the sheet was increased about 16% with consecutive adsorption onto the cotton linter fibers compared to untreated fibers. Formation index of paper was slightly deteriorated after polyelectrolytes multilayering.

  14. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  15. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  16. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers

    OpenAIRE

    Bartolomeo Coppola; Paola Scarfato; Loredana Incarnato; Luciano Di Maio

    2017-01-01

    In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn ...

  17. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  18. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  19. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    Science.gov (United States)

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  20. Green Fiber Bottle

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    has to have an inner coating barrier. The most reliable solution proposed is to coat the inner walls with silicon dioxide, which is not biodegradable but rather environmentally inert. To enhance the environmental footprint and sustainability of the bottle, and to be competitive with the existing...... technologies, the manufacturing technology for the production of the bottle has to offer the possibility of significant energy savings. Molded pulp products are made from wood fibers dispersed in water, and then they are formed, drained and dried. A relatively large quantity of resources (i.e. energy and time......) is consumed during the drying process. It is in this process stage that an innovative way of drying the products can be exploited by using the concept of impulse drying. Impulse drying is an advance drying technique in which water is removed from a wet paper pulp by the combination of mechanical pressure...