WorldWideScience

Sample records for kinetics

  1. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  2. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  3. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  4. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  5. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  6. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  7. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  8. Kinetics in radiation chemistry

    International Nuclear Information System (INIS)

    Hummel, A.

    1987-01-01

    In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants

  9. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  10. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  11. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  12. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  13. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  14. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  15. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  16. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  17. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  18. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  19. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    International Nuclear Information System (INIS)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations

  20. LLNL Chemical Kinetics Modeling Group

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  1. Gyrocenter-gauge kinetic theory

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.; Lee, W.W.

    2000-01-01

    Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is

  2. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  3. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  4. Muscular Oxygen Uptake Kinetics in Aged Adults.

    Science.gov (United States)

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  6. Present status on numerical algorithms and benchmark tests for point kinetics and quasi-static approximate kinetics

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1976-12-01

    Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)

  7. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  8. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  9. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  10. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  11. A kinetics database and scripts for PHREEQC

    Science.gov (United States)

    Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.

    2017-12-01

    Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.

  12. Some Aspects of Extended Kinetic Equation

    Directory of Open Access Journals (Sweden)

    Dilip Kumar

    2015-09-01

    Full Text Available Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended kinetic equation with fractional calculus operator is established. The solution of the general form of the fractional kinetic equation is obtained through Laplace transform. The results for the standard kinetic equation are obtained as the limiting case.

  13. Vlasov simulations of kinetic Alfvén waves at proton kinetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Quito (Ecuador); Valentini, F.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Camporeale, E. [Centrum Wiskunde and Informatica, Amsterdam (Netherlands)

    2014-11-15

    Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρ{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta β{sub p} = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and β{sub p} ≃ 1 (for which ρ{sub p} ≃ d{sub p}) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.

  14. Chemical kinetics and reaction mechanism

    International Nuclear Information System (INIS)

    Jung, Ou Sik; Park, Youn Yeol

    1996-12-01

    This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.

  15. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  16. A critical look at the kinetic models of thermoluminescence-II. Non-first order kinetics

    International Nuclear Information System (INIS)

    Sunta, C M; Ayta, W E F; Chubaci, J F D; Watanabe, S

    2005-01-01

    Non-first order (FO) kinetics models are of three types; second order (SO), general order (GO) and mixed order (MO). It is shown that all three of these have constraints in their energy level schemes and their applicable parameter values. In nature such restrictions are not expected to exist. The thermoluminescence (TL) glow peaks produced by these models shift their position and change their shape as the trap occupancies change. Such characteristics are very unlike those found in samples of real materials. In these models, in general, retrapping predominates over recombination. It is shown that the quasi-equilibrium (QE) assumption implied in the derivation of the TL equation of these models is quite valid, thus disproving earlier workers' conclusion that QE cannot be held under retrapping dominant conditions. However notwithstanding their validity, they suffer from the shortcomings as stated above and have certain lacunae. For example, the kinetic order (KO) parameter and the pre-exponential factor which are assumed to be the constant parameters of the GO kinetics expression turn out to be variables when this expression is applied to plausible physical models. Further, in glow peak characterization using the GO expression, the quality of fit is found to deteriorate when the best fitted value of KO parameter is different from 1 and 2. This means that the found value of the basic parameter, namely the activation energy, becomes subject to error. In the MO kinetics model, the value of the KO parameter α would change with dose, and thus in this model also, as in the GO model, no single value of KO can be assigned to a given glow peak. The paper discusses TL of real materials having characteristics typically like those of FO kinetics. Theoretically too, a plausible physical model of TL emission produces glow peaks which have characteristics of FO kinetics under a wide variety of parametric combinations. In the background of the above findings, it is suggested that

  17. Fluorescence kinetics and positron annihilation kinetics investigations in cadmium sulfide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Grillot, E; Bancie-Grillot, M; Egee, M [Reims Univ., 51 (France)

    1976-03-01

    Fluorescence kinetics and positrons annihilation kinetics investigations on CdS crystals, either very pure or with increasing contents of Ag-ions, led to similar and complementary results. Ag-ions mainly fill the cadmium vacancies of the lattice, building red emission luminogene centres, while green 'edge-emission' ones are destroyed. These latter, which involve an excited level active for high energy series fluorescence, seems actually related to cadmium vacancies.

  18. New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics

    Directory of Open Access Journals (Sweden)

    Craig R. McNulty

    2017-09-01

    Full Text Available Current methods of oxygen uptake (VO2 kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90% from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ, as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001 across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001. Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.

  19. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  20. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  1. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  2. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  3. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  4. Kinetic theory of gases and plasmas

    International Nuclear Information System (INIS)

    Schram, P.P.J.M.

    1991-01-01

    Kinetic theory provides the link between the non-equilibrium statistical mechanics of many-particle systems and macroscopic or phenomenological physics. This volume deals with the derivation of kinetic equations, their limitations and generalizations,and with the applications of kinetic theory to physical phenomena and the calculation of transport coefficients. This book is divided in 12 chapters which discuss a wide range of topics such as balanced equations, the Klimontovich, Vlasov-Maxwell, and Boltzmann equations, Chapman-Enskog theory, the kinetic theory of plasmas, B.G.K. models, linear response theory, Brownian motion and renormalized kinetic theory. Each chapter is concluded with exercises, which not only enable the readers to test their understanding of the theory, but also present additional examples which complement the text. 151 refs.; 35 figs.; 5 tabs

  5. Crystallization Kinetics within a Generic Modelling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist

    2013-01-01

    An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....

  6. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  7. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  8. Kinetic theory of Jeans instability

    NARCIS (Netherlands)

    Trigger, S.A.; Ershkovic, A.I.; Heijst, van G.J.F.; Schram, P.P.J.M.

    2004-01-01

    Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is

  9. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  10. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  11. The Einstein-Vlasov System/Kinetic Theory.

    Science.gov (United States)

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  12. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  13. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  14. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  15. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  16. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  17. Stochastic optimization-based study of dimerization kinetics

    Indian Academy of Sciences (India)

    To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and ... optimization; dimerization kinetics; sensitivity analysis; stochastic simulation ... tion in large molecules and clusters, or the design ..... An unbiased strategy of allocating.

  18. The oxidation kinetics and the structure of the oxide film on Zircaloy before and after the kinetic transition

    International Nuclear Information System (INIS)

    Arima, T.; Masuzumi, T.; Furuya, H.; Idemitsu, K.; Inagaki, Y.

    2001-01-01

    Oxidation kinetics of Zircaloy-4 have been measured using a micro-balance technique in CO-CO 2 gas mixtures between 450 deg. C and 600 deg. C. Oxidation kinetics of Zircaloy-4 obeyed a cubic rate law with time at 450-600 deg. C up to 24 h. At 600 deg. C, the kinetic transition occurred after about 36 h. After the transition, oxidation kinetics obeyed a linear rate law. X-ray diffraction patterns for the samples oxidized at 600 deg. C showed that the volume fraction of tetragonal phase of zirconia decreased with time until the kinetic transition occurred and was almost constant after that. In addition, stresses in the oxide films were found to be larger for the pre-transition samples than for the post-transition ones. (authors)

  19. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  20. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    Science.gov (United States)

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Crystallization Kinetics within a Generic Modeling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.

    2014-01-01

    of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages...

  2. The Einstein-Vlasov System/Kinetic Theory

    Directory of Open Access Journals (Sweden)

    Håkan Andréasson

    2002-12-01

    Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  3. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  4. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  5. Towards Free-Form Kinetic Structures

    DEFF Research Database (Denmark)

    Parigi, Dario; Kirkegaard, Poul Henning

    2012-01-01

    of pin-slot paths starting from the local displacements of element [2] [3]. In the design of kinetic structures, in particular when complex three dimensional and non regular configurations are involved, the functionality is frequently related to a global displacement capability of the assembly rather...... for the generation of free-form kinetic structures....

  6. Neutron inverse kinetics via Gaussian Processes

    International Nuclear Information System (INIS)

    Picca, Paolo; Furfaro, Roberto

    2012-01-01

    Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.

  7. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  8. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  9. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  10. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  11. Hydrogen electrode reaction: A complete kinetic description

    International Nuclear Information System (INIS)

    Quaino, P.M.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2007-01-01

    The kinetic description of the hydrogen electrode reaction (HER) in the whole range of overpotentials (-0.2 < η (V) < 0.40) is presented. The Volmer-Heyrovsky-Tafel mechanism was solved considering simultaneously the following items: (i) the diffusional contribution of the molecular hydrogen from and towards the electrode surface, (ii) the forward and backward reaction rates of each elementary step and (iii) a Frumkin type adsorption for the reaction intermediate. In order to verify the descriptive capability of the kinetic expressions derived, an experimental study of the HER was carried out on a rotating platinum disc electrode in acid solution. From the correlation of these results the elementary kinetic parameters were evaluated and several aspects related to the kinetic mechanism were discussed. Finally, the use of these kinetic expressions to interpret results obtained on microelectrodes is also analysed

  12. Variational estimates of point-kinetics parameters

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M. Jr.

    1995-01-01

    Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores

  13. Kinetics of solid state phase transformations: Measurement and ...

    Indian Academy of Sciences (India)

    Administrator

    heating or cooling rate can also exert a crucial influence on the kinetic outcome is stressed. The kinetic ... A simple and general modelling methodology for understanding the kinetics of ... state is of interest on both basic and applied grounds.

  14. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  15. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  16. Research in Chemical Kinetics, v.3

    CERN Document Server

    2012-01-01

    This series of volumes aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the contributions and their top

  17. Research in chemical kinetics, v.2

    CERN Document Server

    1994-01-01

    This is the second volume in a new series, which aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the c

  18. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  19. Kinetic mixing and the supersymmetric gauge hierarchy

    International Nuclear Information System (INIS)

    Dienes, K.R.; Kolda, C.; March-Russell, J.

    1997-01-01

    The most general Lagrangian for a model with two U(1) gauge symmetries contains a renormalizable operator which mixes their gauge kinetic terms. Such kinetic mixing can be generated at arbitrarily high scales but will not be suppressed by large masses. In models whose supersymmetry (SUSY)-breaking hidden sectors contain U(1) gauge factors, we show that such terms will generically arise and communicate SUSY breaking to the visible sector through mixing with hypercharge. In the context of the usual supergravity- or gauge-mediated communication scenarios with D-terms of order the fundamental scale of SUSY breaking, this effect can destabilize the gauge hierarchy. Even in models for which kinetic mixing is suppressed or the D-terms are arranged to be small, this effect is a potentially large correction to the soft scalar masses and therefore introduces a new measurable low-energy parameter. We calculate the size of kinetic mixing both in field theory and in string theory, and argue that appreciable kinetic mixing is a generic feature of string models. We conclude that the possibility of kinetic mixing effects cannot be ignored in model building and in phenomenological studies of the low-energy SUSY spectra. (orig.)

  20. Dual kinetic curves in reversible electrochemical systems.

    Directory of Open Access Journals (Sweden)

    Michael J Hankins

    Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.

  1. Transformation kinetics for nucleus clusters

    International Nuclear Information System (INIS)

    Villa, Elena; Rios, Paulo R.

    2009-01-01

    A rigorous mathematical approach based on stochastic geometry concepts is presented to extend previous Johnson-Mehl, Avrami, Kolmogorov treatment of transformation kinetics to situations in which nuclei are not homogeneously located in space but are located in clusters. An exact analytical solution is presented here for the first time assuming that nucleation sites follow a Matern cluster process. The influence of Matern cluster process parameters on subsequent growth kinetics and the microstructural path are illustrated by means of numerical examples. Moreover, using the superposition principle, exact analytical solutions are also obtained when nucleation takes place by a combination of a Matern cluster process and an inhomogeneous Poisson point process. The new solutions presented here significantly increase the number of exactly solvable cases available to formal kinetics.

  2. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  3. Kinetic spectrophotometric determination of some fluoroquinolone ...

    African Journals Online (AJOL)

    A simple and sensitive kinetic spectrophotometric method was developed for the determination of some fluoroquinolonea antibiotics; gemifloxacin mesylate, moxifloxacin hydrochloride and gatifloxacin in bulk and in pharmaceutical preparations. The method is based upon a kinetic investigation of the oxidation reaction of ...

  4. The catalytic oxidation of 1-butene over bismuth molybdate catalysts : V. The kinetics of the oxidation: A. Pulse reaction kinetics; exploratory experiments for a kinetic investigation

    NARCIS (Netherlands)

    Keizer, K.; Batist, P.A.; Schuit, G.C.A.

    1969-01-01

    The kinetics of oxidn. of 1-butene with O on three types of bismuth molybdate catalysts were investigated in pulse expts. For all the catalysts mentioned the kinetics can be expressed by a first-order dependency on the butene pressure and a zero-order dependency on the O pressure. A slight deviation

  5. Exercise: Kinetic considerations for gas exchange.

    Science.gov (United States)

    Rossiter, Harry B

    2011-01-01

    The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease. © 2011 American Physiological Society.

  6. Tolrestat kinetics

    International Nuclear Information System (INIS)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-01-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate

  7. Kinetic Study of Curcumin on Modal Fabric

    Directory of Open Access Journals (Sweden)

    Abu Naser Md. Ahsanul Haque

    2018-03-01

    Full Text Available A kinetic study of curcumin on modal fabric was carried out using an initial dye concentration of 1 g/L at three different temperatures, 70 °C, 85 °C and 100 °C, at pH 7 and an material to liquor ratio of 1:20. Pseudo first-order and pseudo second-order kinetics were applied, and it was found that the adsorption kinetics of curcumin on modal fabric matched the pseudo second-order kinetic model. The activation energy was found to be equal to 71.14 kJ/mol, while the enthalpy and entropy of activation were 68.16 kJ/mol and –66.02 J/molK respectively.

  8. Kinetic Model of Growth of Arthropoda Populations

    Science.gov (United States)

    Ershov, Yu. A.; Kuznetsov, M. A.

    2018-05-01

    Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.

  9. Isoconversional kinetics of thermally stimulated processes

    CERN Document Server

    Vyazovkin, Sergey

    2015-01-01

    The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.

  10. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  11. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  13. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Kinetic modeling of cell metabolism for microbial production.

    Science.gov (United States)

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Kinetic theory and transport phenomena

    CERN Document Server

    Soto, Rodrigo

    2016-01-01

    This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...

  16. Variability of grip kinetics during adult signature writing.

    Directory of Open Access Journals (Sweden)

    Bassma Ghali

    Full Text Available Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20 adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of 1.2±0.4% in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively.

  17. Numerical Simulation of the Kinetic Critical Nucleus

    OpenAIRE

    Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.

    1997-01-01

    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...

  18. MBS Analysis Of Kinetic Structures Using ADAMS

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R.K.

    2009-01-01

    The present paper considers multibody system (MBS) analysis of kinetic structures using the software package ADAMS. Deployable, foldable, expandable and reconfigurable kinetic structures can provide a change in the geometric morphology of the envelope by contributing to making it adaptable to e.......g. changing external climate factors, in order to improve the indoor climate performance of the building. The derivation of equations of motion for such spatial mechanical systems is a challenging issue in scientific community. However, with new symbolic tools one can automatically derive equations in so......-called multibody system (MBS) formalism. The present paper considers MBS modeling of kinetic architectural structures using the software packages ADAMS. As a result, it is found that symbolic MBS simulation tools facilitate a useful evaluation environment for MBS users during a design phase of responsive kinetic...

  19. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  20. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  1. Cell kinetics and therapeutic efficiency

    International Nuclear Information System (INIS)

    Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.

    1976-01-01

    The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de

  2. Chapter 22. Cell population kinetics

    International Nuclear Information System (INIS)

    Tubiana, M.

    1975-01-01

    The main contribution of radioisotopes to the development of a new discipline, cell population kinetics, was shown. The aim of this science is to establish, for each tissue of the organism, the life span of its component cells and the mechanisms governing its growth, its differentiation and its homeostasis with respect to outside attacks. Labelling techniques have been used to follow the cells during these various processes. The case of non-dividing cells was considered first, taking as example, the red blood cells of which the lifetime was studied, after which the case of proliferating cells was examined using 14 C- or tritium-labelled thymidine. The methods used to measure the cell cycle parameters were described: labelled-mitosis curve method, double-labelling and continuous labelling methods, proliferation coefficient measurement. Cell kinetics were shown to allow an interpretation of radiobiological data. Finally the practical value of cell kinetics research was shown [fr

  3. On-rate based optimization of structure-kinetic relationship--surfing the kinetic map.

    Science.gov (United States)

    Schoop, Andreas; Dey, Fabian

    2015-10-01

    In the lead discovery process residence time has become an important parameter for the identification and characterization of the most efficacious compounds in vivo. To enable the success of compound optimization by medicinal chemistry toward a desired residence time the understanding of structure-kinetic relationship (SKR) is essential. This article reviews various approaches to monitor SKR and suggests using the on-rate as the key monitoring parameter. The literature is reviewed and examples of compound series with low variability as well as with significant changes in on-rates are highlighted. Furthermore, findings of kinetic on-rate changes are presented and potential underlying rationales are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  5. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  6. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  7. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  8. Empiricism or self-consistent theory in chemical kinetics?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2007-01-01

    To give theoretical background for mechanochemical kinetics, we need first of all to find a possibility to predict the kinetic parameters for real chemical processes by determining rate constants and reaction orders without developing strictly specialized and, to a great extent, artificial models, i.e. to derive the kinetic law of mass action from 'first principles'. However, the kinetic law of mass action has had only an empirical basis from the first experiments of Gulberg and Waage until now, in contrast to the classical law of mass action for chemical equilibrium rigorously derived in chemical thermodynamics from equilibrium condition. Nevertheless, in this paper, an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Gulberg and Waage's time

  9. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  10. Modified mean generation time parameter in the neutron point kinetics equations

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S., E-mail: alessandro@nuclear.ufrj.br, E-mail: frosa@if.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  11. Modified mean generation time parameter in the neutron point kinetics equations

    International Nuclear Information System (INIS)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S.

    2017-01-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  12. Kinetic aspects of the Maillard reaction: a critical review

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2001-01-01

    The literature concerning the kinetics of the Maillard reaction was critically discussed according to the initial, intermediate and advanced stages, as this is the way the Maillard reaction is traditionally analysed. For each stage, a division is made between simple kinetics and complex kinetics.

  13. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  14. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  15. Kinetic study of solid-state processes

    International Nuclear Information System (INIS)

    Malek, Jiri; Mitsuhashi, Takefumi

    2003-01-01

    A simple method for kinetic analysis of solid-state processes has been developed and the criteria capable of classifying different processes are explored. They provide a useful tool for the determination of the most suitable kinetic model. The method has been applied to the analysis of calorimetric data corresponding to the crystallization processes in amorphous ZrO 2 . It is found that the crystallization kinetics of amorphous powder sample exhibits a complex behavior under non-isothermal conditions. A two-parameter model provides a satisfactory description of the crystallization process for isothermal and non-isothermal conditions. This enables better control of crystallization extent in fine ZrO 2 powders that is important for preparation of zirconia ceramics with defined properties. (author)

  16. A discontinuous Galerkin method on kinetic flocking models

    OpenAIRE

    Tan, Changhui

    2014-01-01

    We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker-Smale and Motsch-Tadmor models. We prove flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic $\\delta$-singularity, and construct high order positive preserving scheme to solve kinetic flocking systems.

  17. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  18. Modeling composting kinetics: A review of approaches

    NARCIS (Netherlands)

    Hamelers, H.V.M.

    2004-01-01

    Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and

  19. Inflation Rates, Car Devaluation, and Chemical Kinetics.

    Science.gov (United States)

    Pogliani, Lionello; Berberan-Santos, Mario N.

    1996-01-01

    Describes the inflation rate problem and offers an interesting analogy with chemical kinetics. Presents and solves the car devaluation problem as a normal chemical kinetic problem where the order of the rate law and the value of the rate constant are derived. (JRH)

  20. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    Science.gov (United States)

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  1. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  2. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  3. A century of enzyme kinetic analysis, 1913 to 2013.

    Science.gov (United States)

    Johnson, Kenneth A

    2013-09-02

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Kinetic constrained optimization of the golf swing hub path.

    Science.gov (United States)

    Nesbit, Steven M; McGinnis, Ryan S

    2014-12-01

    This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.

  5. Computer-Aided Construction of Chemical Kinetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  6. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  7. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  8. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks

    Energy Technology Data Exchange (ETDEWEB)

    Deng, De-Ming; Chang, Cheng-Hung [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  9. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    Science.gov (United States)

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  10. Chemistry and reaction kinetics of biowaste torrefaction

    NARCIS (Netherlands)

    Stelt, van der M.J.C.

    2011-01-01

    This thesis addresses the question of how the chemistry and reaction kinetics of torrefaction are influenced by reaction conditions and the effects occuring during the reaction. This research question can be specified by questions such as, what controls their kinetics during torrefaction and what

  11. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  12. The Application of Biomimicry in Kinetic Facades

    Directory of Open Access Journals (Sweden)

    Wijdan Deyaa Abdul Jalil

    2016-10-01

    Full Text Available Biomimicry, as a way of thinking to go back to nature for inspiration, has its impact on many contemporary technological achievements. Some of them are used to design and construct kinetic facades in architecture, because of the importance role of facades in reducing sun radiation, that enter the building through using shading systems and components. In light of this, research problem is determined: "Do technologies which are inspired by biomimicry effect shading in kinetic facades through its characteristics in materials and the mechanics. So the research identifies its goal as: "To identify the types of kinetic facades in buildings and their characteristics as materials and shading mechanism associated with the biomimicry. The research explains the basic types of kinetic facades depending on the technology and materials used to provide the possibility of reducing solar radiation that enters the building. It also compares the case studies which have been chosen in their inspiration concept from biological world, which reflect on the system used of protecting against sun and reducing energy consumption as the designer teams suggest. The research concluded that kinetic façade which is depending on smart materials is self-responding and don't need energy to operate, so it is better in reducing consumption of energy.

  13. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  14. Resonance transport and kinetic entropy

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.

    2000-01-01

    We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3

  15. Determination of the kinetics of ethene epoxidation

    NARCIS (Netherlands)

    Schouten, E.P.S.; Schouten, E.P.S.; Borman, P.C.; Borman, P.C.; Westerterp, K.R.

    1996-01-01

    Several problems and pitfalls in the use of laboratory reactors for the determination of the kinetics of ethene epoxidation over industrial silver on α-alumina catalyst are discussed. Also, commonly used methodologies for kinetic studies are dealt with because of the general nature of some problems.

  16. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  17. Kinetic Theory of the Inner Magnetospheric Plasma

    CERN Document Server

    Khazanov, George V

    2011-01-01

    This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...

  18. Chemical kinetics and reaction dynamics

    CERN Document Server

    Houston, Paul L

    2006-01-01

    This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying qu

  19. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  20. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  1. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  2. Kinetic Constrained Optimization of the Golf Swing Hub Path

    Directory of Open Access Journals (Sweden)

    Steven M. Nesbit

    2014-12-01

    Full Text Available This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study.

  3. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  4. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  5. Ozone mass transfer and kinetics experiments

    International Nuclear Information System (INIS)

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction

  6. Vlasov simulations of Kinetic Alfven Waves at proton kinetic scales

    NARCIS (Netherlands)

    C.L. Vasconez; F. Valentini (Francesco); E. Camporeale (Enrico); P. Veltri

    2014-01-01

    htmlabstractKinetic Alfv ́en waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton inertial length d p and beyond). A

  7. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  8. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  9. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  10. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  11. Modeling the degradation kinetics of ascorbic acid.

    Science.gov (United States)

    Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R

    2018-06-13

    Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.

  12. Fisher information, kinetic energy and uncertainty relation inequalities

    International Nuclear Information System (INIS)

    Luo Shunlong

    2002-01-01

    By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)

  13. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  14. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-01-01

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  15. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  16. Selected readings in chemical kinetics

    CERN Document Server

    Back, Margaret H

    2013-01-01

    Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti

  17. Deuteration kinetics of the graphene

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, Alexei; Woell, Christof [KIT, Leopoldshafen (Germany); Paris, Alessio; Calliari, Lucia [FBK-CMM, Trento (Italy); Verbitskiy, Nikolay [MSU, Moscow (Russian Federation); University of Vienna, Vienna (Austria); Wang, Ying; Irle, Stephan [Nagoya University, Nagoya (Japan); Fedorov, Alexander [IFW Dresden, Dresden (Germany); St. Petersburg University, St. Petersburg (Russian Federation); Haberer, Danny; Knupfer, Martin; Buechner, Bernd [IFW Dresden, Dresden (Germany); Oetzelt, Martin [BESSY II, Berlin (Germany); Petaccia, Luca [Elettra, Trieste (Italy); Usachov, Dmitry [St. Petersburg University, St. Petersburg (Russian Federation); Vyalikh, Denis [St. Petersburg University, St. Petersburg (Russian Federation); TU Dresden, Dresden (Germany); Sagdev, Hermann [MPI fuer Polymerforschung, Mainz (Germany); Yashina, Lada [MSU, Moscow (Russian Federation); Grueneis, Alexander [IFW Dresden, Dresden (Germany); University of Vienna, Vienna (Austria)

    2013-07-01

    The kinetics of the hydrogenation/deuteration reaction of graphene was studied by time-dependent x-ray photoemission spectroscopy (XPS). The graphene layer was then exposed to hydrogen or deuterium atomic gas beams, obtained by thermal cracking in a tungsten capillary at T=3000 K. After each step XPS of the C1s line was performed in order to measure H/C and D/C ratios. We have observed a strong kinetic isotope effect for the hydrogenation/deuteration reaction leading to substantially faster adsorption and higher maximum D/C ratios as compared to H/C (D/C 35% vs. H/C 25%).

  18. Nucleation and Growth Kinetics from LaMer Burst Data.

    Science.gov (United States)

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  19. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  20. Lumping procedure for a kinetic model of catalytic naphtha reforming

    Directory of Open Access Journals (Sweden)

    H. M. Arani

    2009-12-01

    Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.

  1. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  2. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  3. Reactivity and kinetic parameters determination in a multiplicative non-stationary system

    International Nuclear Information System (INIS)

    Minguez, E.

    1982-01-01

    A revision of several methods used for solving kinetic equations of a neutronic system is considered. Firstly, kinetic equations in general form are analized, before to revise more important aproximations: point-kinetic method; adiabatic; cuasistatic; eigenvalue equations; nodal, modal and systhesis methods; and variational principles for obtaining kinetic equations. Perturbation theory is used to obtain these parameters, with differents eigenvalue equations representatives of the parameter to be calculated. Also, experimental methods have been included in this work, because of importance the parameters can be measured, and related with those obtained by calculations. Finally, adjoint kinetic equations are resolved to obtain the importance function used in weighted reactivity and kinetic parameters determinations. (author)

  4. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  5. Reactor kinetics revisited: a coefficient based model (CBM)

    International Nuclear Information System (INIS)

    Ratemi, W.M.

    2011-01-01

    In this paper, a nuclear reactor kinetics model based on Guelph expansion coefficients calculation ( Coefficients Based Model, CBM), for n groups of delayed neutrons is developed. The accompanying characteristic equation is a polynomial form of the Inhour equation with the same coefficients of the CBM- kinetics model. Those coefficients depend on Universal abc- values which are dependent on the type of the fuel fueling a nuclear reactor. Furthermore, such coefficients are linearly dependent on the inserted reactivity. In this paper, the Universal abc- values have been presented symbolically, for the first time, as well as with their numerical values for U-235 fueled reactors for one, two, three, and six groups of delayed neutrons. Simulation studies for constant and variable reactivity insertions are made for the CBM kinetics model, and a comparison of results, with numerical solutions of classical kinetics models for one, two, three, and six groups of delayed neutrons are presented. The results show good agreements, especially for single step insertion of reactivity, with the advantage of the CBM- solution of not encountering the stiffness problem accompanying the numerical solutions of the classical kinetics model. (author)

  6. Kinetics of potassium, rubidium and cesium in rat

    International Nuclear Information System (INIS)

    Natsuhori, Masahiro; Kosaka, Shigetoshi; Nishikawa, Miki; Okida, Masato; Ito, Nobuhiko

    1998-01-01

    Apparent incorporation rates of K and Rb into red blood cells were investigated in rats in consideration of passive diffusion to clarify in vivo kinetics of alkali metals. First, the incorporation rates of K and Rb into blood cells were determined by incubating blood samples from SD rat with 42 K and 86 Rb-buffers. And parameters involving in these incorporations such as Vmax (maximum rate of active transport), {S} (substrate concentration), Km (Michaelis constant), n (cooperativity of active transport), etc. were evaluated based on the time-course changes in K and Rb incorporation. Then, K and Rb were given to SD rats and the respective levels in plasma, red blood cells and urine were determined. The parameters were evaluated based on the time course changes in these levels by using compartment model. Similarly, the kinetics of Cs were investigated in rats. The absorption, distribution and disappearance of alkali metals were investigated in vivo to compare in vivo kinetics among the metals. By applying the kinetic parameters analyzed, Cs kinetics, in vivo could be estimated and Cs intake was able to be also estimated by determining the Cs levels of blood cells, urine and plasma. (M.N.)

  7. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  8. NLTE4 Plasma Population Kinetics Database

    Science.gov (United States)

    SRD 159 NLTE4 Plasma Population Kinetics Database (Web database for purchase)   This database contains benchmark results for simulation of plasma population kinetics and emission spectra. The data were contributed by the participants of the 4th Non-LTE Code Comparison Workshop who have unrestricted access to the database. The only limitation for other users is in hidden labeling of the output results. Guest users can proceed to the database entry page without entering userid and password.

  9. Application of Chemical Kinetics to Deterioration of Foods.

    Science.gov (United States)

    Labuza, T. P.

    1984-01-01

    Possible modes of food deterioration (such as microbial decay, nonenzymatic browning, senescence, lipid oxidation) are reviewed. A basic mathematical approach to the kinetics of food deterioration, kinetic approach to accelerating shelf-life deterioration, and shelf-life predictions are discussed. (JN)

  10. Drift-free kinetic equations for turbulent dispersion

    Science.gov (United States)

    Bragg, A.; Swailes, D. C.; Skartlien, R.

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  11. Fully kinetic simulations of megajoule-scale dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  12. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    Science.gov (United States)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  13. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  14. Bumetanide kinetics in renal failure

    International Nuclear Information System (INIS)

    Pentikaeinen, P.J.P.; Pasternack, A.; Lampainen, E.; Neuvonen, P.J.; Penttilae, A.

    1985-01-01

    To study the effects of renal failure on bumetanide kinetics, the authors administered single intravenous doses of 1.0 mg/3.08 microCi 14 C-bumetanide to six healthy subjects and 22 patients with variable degrees of renal failure. The kinetics of 14 C-bumetanide and total 14 C were adequately described by a two-compartment open model in the control subjects and in the patients. The volume of the central compartment and the distribution t1/2 were of the same order in both groups, whereas the mean (+/- SE) volume at steady state was larger (22.1 +/- 1.6 and 16.9 +/- 1.0 L) and the elimination t1/2 was longer (1.9 +/- 0.2 and 1.4 +/- 0.1 hours) in patients with renal failure than in healthy controls. Bumetanide renal clearance was lower (10 +/- 3 and 90 +/- 13 ml/min) in patients than in subjects and correlated with creatinine clearance (r = 0.784) and log serum creatinine level (r = -0.843), whereas nonrenal clearance was significantly higher in the patients (153 +/- 14 and 99 +/- 6 ml/min). Bumetanide total plasma clearance did not significantly change. The non-protein-bound, free fraction of bumetanide was higher in patients and correlated with plasma albumin levels (r = -0.777). The kinetics of total 14 C showed similar but greater changes than those of 14C-bumetanide. Thus the most important changes in bumetanide kinetics in patients with renal failure are low renal clearance and a high free fraction, with a consequent increase in nonrenal clearance, volume of distribution, and elimination t1/2

  15. Kinetic energy budgets near the turbulent/nonturbulent interface in jets

    Science.gov (United States)

    Taveira, Rodrigo R.; da Silva, Carlos B.

    2013-01-01

    The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent

  16. Kinetic simulations in plasmas: a general view and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: alves@plasma.inpe.br

    1999-07-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  17. Kinetic simulations in plasmas: a general view and some applications

    International Nuclear Information System (INIS)

    Alves, Maria Virginia

    1999-01-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  18. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  19. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  20. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  2. Kinetic equations for the collisional plasma model

    International Nuclear Information System (INIS)

    Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.

    1977-01-01

    Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)

  3. Analyzing atmospheric kinetic pathways using PumpKin

    Science.gov (United States)

    Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.

    2013-09-01

    In the present work we show the application of our software tool called PumpKin (pathway reduction method for plasma kinetic models) to find all principal pathways of atmospheric kinetic system, i.e. the dominant reaction sequences, in chemical reaction systems. The goal was to reduce a complex plasma chemistry model. Recent kinetic models of atmospheric chemistry, or any industrial application, contain thousands of chemical reactions and species. The main difficulty is that these reduced chemical pathways depend on timescales, electric field, temperature, pressure etc. PumpKin is a universal tool, which only requires from user the temporal profile of the densities of species and the reaction rates, as well the stoichiometric matrix of the system. Also, the user should specify the timescale of interest.

  4. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  5. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  6. Kinetic compartmental analysis of carnitine metabolism in the dog

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Engel, A.G.

    1983-01-01

    This study was undertaken to quantitate the dynamic parameters of carnitine metabolism in the dog. Six mongrel dogs were given intravenous injections of L-[methyl-3H]carnitine and the specific radioactivity of carnitine was followed in plasma and urine for 19-28 days. The data were analyzed by kinetic compartmental analysis. A three-compartment, open-system model [(a) extracellular fluid, (b) cardiac and skeletal muscle, (c) other tissues, particularly liver and kidney] was adopted and kinetic parameters (carnitine flux, pool sizes, kinetic constants) were derived. In four of six dogs the size of the muscle carnitine pool obtained by kinetic compartmental analysis agreed (+/- 5%) with estimates based on measurement of carnitine concentrations in different muscles. In three of six dogs carnitine excretion rates derived from kinetic compartmental analysis agreed (+/- 9%) with experimentally measured values, but in three dogs the rates by kinetic compartmental analysis were significantly higher than the corresponding rates measured directly. Appropriate chromatographic analyses revealed no radioactive metabolites in muscle or urine of any of the dogs. Turnover times for carnitine were (mean +/- SEM): 0.44 +/- 0.05 h for extracellular fluid, 232 +/- 22 h for muscle, and 7.9 +/- 1.1 h for other tissues. The estimated flux of carnitine in muscle was 210 pmol/min/g of tissue. Whole-body turnover time for carnitine was 62.9 +/- 5.6 days (mean +/- SEM). Estimated carnitine biosynthesis ranged from 2.9 to 28 mumol/kg body wt/day. Results of this study indicate that kinetic compartmental analysis may be applicable to study of human carnitine metabolism

  7. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  8. Kinetic synergistic transitions in the Ostwald ripening processes

    Science.gov (United States)

    Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.

    2018-01-01

    There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.

  9. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  10. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  11. Bioavailability and biodegradation kinetics of organics in soil

    International Nuclear Information System (INIS)

    Tabak, H.H.; Govind, R.; Gao, Chao; Kim, In-soo; Lai, Lei

    1992-01-01

    As EPA begins to remediate Superfund sites using permanent treatment technologies, such as bioremediation, a fundamental understanding of the kinetics and the factors that control the rate of bioremediation will be required. Biological treatment technologies hold considerable promise for safe, economical, on-site treatment of toxic wastes. A variety of biological treatment systems designed to degrade or detoxify environmental contaminants are currently being developed and marketed. Knowledge of the kinetics of biodegradation is essential to the evaluation of the persistence of most organic pollutants in soil. Furthermore, measurement of biodegradation kinetics can provide useful insights into the favorable range of the important environmental parameters for improvement of the microbiological activity and consequently the enhancement of contaminant biodegradation. A major effort is currently underway to clean up aquifers and soils that are contaminated by organic chemicals, which has generated increased interest in the development of in situ bioremediation technologies. Although considerable data exists for rates of biodegradation in aquatic environments, there is little information on biodegradation kinetics in soil matrices, where irreversible binding to the soil phase may limit the chemicals bioavailability and ultimate degradation. Knowledge on biodegradation kinetics in soil environments can facilitate decisions on the efficacy of in situ bioremediation. 6 refs., 3 figs., 2 tabs

  12. Electron transfer kinetics on mono- and multilayer graphene.

    Science.gov (United States)

    Velický, Matěj; Bradley, Dan F; Cooper, Adam J; Hill, Ernie W; Kinloch, Ian A; Mishchenko, Artem; Novoselov, Konstantin S; Patten, Hollie V; Toth, Peter S; Valota, Anna T; Worrall, Stephen D; Dryfe, Robert A W

    2014-10-28

    Understanding of the electrochemical properties of graphene, especially the electron transfer kinetics of a redox reaction between the graphene surface and a molecule, in comparison to graphite or other carbon-based materials, is essential for its potential in energy conversion and storage to be realized. Here we use voltammetric determination of the electron transfer rate for three redox mediators, ferricyanide, hexaammineruthenium, and hexachloroiridate (Fe(CN)(6)(3-), Ru(NH3)(6)(3+), and IrCl(6)(2-), respectively), to measure the reactivity of graphene samples prepared by mechanical exfoliation of natural graphite. Electron transfer rates are measured for varied number of graphene layers (1 to ca. 1000 layers) using microscopic droplets. The basal planes of mono- and multilayer graphene, supported on an insulating Si/SiO(2) substrate, exhibit significant electron transfer activity and changes in kinetics are observed for all three mediators. No significant trend in kinetics with flake thickness is discernible for each mediator; however, a large variation in kinetics is observed across the basal plane of the same flakes, indicating that local surface conditions affect the electrochemical performance. This is confirmed by in situ graphite exfoliation, which reveals significant deterioration of initially, near-reversible kinetics for Ru(NH3)(6)(3+) when comparing the atmosphere-aged and freshly exfoliated graphite surfaces.

  13. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  14. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study.

    Science.gov (United States)

    Borén, Jan; Watts, Gerald F; Adiels, Martin; Söderlund, Sanni; Chan, Dick C; Hakkarainen, Antti; Lundbom, Nina; Matikainen, Niina; Kahri, Juhani; Vergès, Bruno; Barrett, P Hugh R; Taskinen, Marja-Riitta

    2015-10-01

    Patients with obesity and diabetes mellitus have increased risk of cardiovascular disease. A major cause is an atherogenic dyslipidemia related primarily to elevated plasma concentrations of triglyceride-rich lipoproteins. The aim of this study was to clarify determinants of plasma triglyceride concentration. We focused on factors that predict the kinetics of very-low density lipoprotein 1 (VLDL1) triglycerides. A multicenter study using dual stable isotopes (deuterated leucine and glycerol) and multicompartmental modeling was performed to elucidate the kinetics of triglycerides and apoB in VLDL1 in 46 subjects with abdominal obesity and additional cardiometabolic risk factors. Results showed that plasma triglyceride concentrations were dependent on both the secretion rate (r=0.44, Ptriglycerides and VLDL1-apoB. Liver fat mass was independently and directly associated with secretion rates of VLDL1-triglycerides (r=0.56, Ptriglycerides (r=0.48, Ptriglyceride concentrations in abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly dependent on apoC-III concentration and secretion on liver fat content. Reduction in liver fat and targeting apoC-III may be an effective approach for correcting triglyceride metabolism atherogenic dyslipidemia in obesity. © 2015 American Heart Association, Inc.

  15. Improved point-kinetics model for the BWR control rod drop accident

    International Nuclear Information System (INIS)

    Neogy, P.; Wakabayashi, T.; Carew, J.F.

    1985-01-01

    A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA

  16. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  17. Explicit integration with GPU acceleration for large kinetic networks

    International Nuclear Information System (INIS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  18. Unified kinetic theory in toroidal systems

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Hazeltine, R.D.

    1980-12-01

    The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator

  19. Kinetic mechanism of the decomposition of dimethyltin dichloride

    NARCIS (Netherlands)

    Mol, van A.M.B.; Croon, de M.H.J.M.; Spee, C.I.M.A.; Schouten, J.C.

    1999-01-01

    Results are reported of a study of the intrinsic kinetics of gas phase reactions. For this purpose a reactor system is designed in such a way that concentration and temperature variations throughout the reactor can be neglected enabling investigation of intrinsic reaction kinetics. The gas phase

  20. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    3. DATES COVERED (From - To) 09/23/15 - 04/22/16 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Preventing Corrosion by Controlling Cathodic Reaction...Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith

  1. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  2. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  3. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  4. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  5. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  6. Kinetic interaction in hydrogenitrogenation of quinoline and acridine

    International Nuclear Information System (INIS)

    El-Bishtawi, R.F.; Seapan, M.

    1988-01-01

    Liquid fossil fuels contain numerous nitrogen compounds. During hydrodenitrogenation processes, these compounds for the active catalytic sites, with each compound affecting the kinetics of the other compounds. An understanding of the kinetic interaction is essential in using the results of model compound kinetics to predict the behavior of complex mixtures. In this work, the authors study the hydrodenitrogenation of quinoline and acridine in n-hexadecane over a commercial nickel-molybdenum catalyst in a batch autoclave reactor at 8.3 MPa (1200 psig) and 357-390 0 C. The reaction networks and kinetics of individual compounds were developed. These results confirm the existing knowledge of reaction networks for quinoline and acridine. Furthermore, their experiments show that formation for o-ethylaniline, o-toluidine and aniline are also important steps in quinoline denitrogenation. For total nitrogen removal, a dual site Langmuir-Hinshelwood type model considering separate sites for adsorption of hydrogen and nitrogen compounds give the best fit

  7. Kinetic models for irreversible processes on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N.O.

    1979-04-01

    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.

  8. Kinetic models for irreversible processes on a lattice

    International Nuclear Information System (INIS)

    Wolf, N.O.

    1979-04-01

    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism

  9. Collective behaviours: from biochemical kinetics to electronic circuits

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; di Biasio, Aldo; Uguzzoni, Guido

    2013-12-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  10. Pyrolysis of Waste Castor Seed Cake: A Thermo-Kinetics Study

    Directory of Open Access Journals (Sweden)

    Abdullahi Muhammad Sokoto

    2018-03-01

    Full Text Available Biomass pyrolysis is a thermo-chemical conversion process that is of both industrial and ecological importance. The efficient chemical transformation of waste biomass to numerous products via pyrolysis reactions depends on process kinetic rates; hence the need for kinetic models to best design and operate the pyrolysis. Also, for an efficient design of an environmentally sustainable pyrolysis process of a specific lignocellulosic waste, a proper understanding of its thermo-kinetic behavior is imperative. Thus, pyrolysis kinetics of castor seed de-oiled cake (Ricinus communis using thermogravimetric technique was studied. The decomposition of the cake was carried out in a nitrogen atmosphere with a flow rate of 100mL min-1 from ambient temperature to 900 °C. The results of the thermal profile showed moisture removal and devolatilization stages, and maximum decomposition of the cake occurred at a temperature of 200-400 °C. The kinetic parameters such as apparent activation energy, pre-exponential factor, and order of reaction were determined using Friedman (FD, Kissinger-Akahira-Sunose (KAS, and Flynn-Wall-Ozawa (FWO kinetic models. The average apparent activation energy values of 124.61, 126.95 and 129.80 kJmol-1 were calculated from the slopes of the respective models. The apparent activation energy values obtained depends on conversion, which is an evidence of multi-step kinetic process during the pyrolytic decomposition of the cake. The kinetic data would be of immense benefit to model, design and develop a suitable thermo-chemical system for the conversion of waste de-oil cake to energy carrier.

  11. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    Science.gov (United States)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  12. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  13. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  14. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  15. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.

    Science.gov (United States)

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M

    2017-09-21

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio) 1/3 , despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

  16. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  17. Kinetic chain abnormalities in the athletic shoulder.

    Science.gov (United States)

    Sciascia, Aaron; Thigpen, Charles; Namdari, Surena; Baldwin, Keith

    2012-03-01

    Overhead activities require the shoulder to be exposed to and sustain repetitive loads. The segmental activation of the body's links, known as the kinetic chain, allows this to occur effectively. Proper muscle activation is achieved through generation of energy from the central segment or core, which then transfers the energy to the terminal links of the shoulder, elbow, and hand. The kinetic chain is best characterized by 3 components: optimized anatomy, reproducible efficient motor patterns, and the sequential generation of forces. However, tissue injury and anatomic deficits such as weakness and/or tightness in the leg, pelvic core, or scapular musculature can lead to overuse shoulder injuries. These injuries can be prevented and maladaptations can be detected with a thorough understanding of biomechanics of the kinetic chain as it relates to overhead activity.

  18. Epinephrine kinetics in humans: Radiotracer methodology

    International Nuclear Information System (INIS)

    Rosen, S.G.; Linares, O.A.; Sanfield, J.A.; Zech, L.A.; Lizzio, V.P.; Halter, J.B.

    1989-01-01

    The use of the plasma epinephrine (EPI) level as an index of adrenomedullary activity in humans is complicated by the rapid removal of EPI from plasma by many tissues. To determine whether the kinetics of distribution and metabolism of EPI could be best quantified using the isotope dilution method or a mathematical modeling technique, eight human subjects received a [ 3 H]EPI infusion for 50-60 min. Analysis of the steady state arterialized plasma levels of EPI and [ 3 H]EPI using the isotope dilution technique showed that the basal plasma EPI appearance rate is 0.87 ± 0.11 nmol/m2.min, and the basal plasma EPI clearance rate is 1.63 ± 0.14 L/min.m2. Mathematical modeling of the [ 3 H]EPI levels revealed that a biexponential curve fit was superior to monoexponential and triexponential curve fits. A two-compartment model was the minimal compartment model that accurately described EPI kinetics. The basal plasma EPI appearance (0.82 ± 0.16 nmol/m2.min) and EPI clearance (1.67 ± 0.15 L/min.m2) rates that were estimated from this two-compartment model are similar to the results derived from the isotope dilution method. Mathematical modeling revealed a large extravascular mass of EPI. We conclude that the isotope dilution and mathematical modeling techniques similarly describe plasma EPI kinetics in humans. Kinetic analysis using mathematical modeling provides new insights into adrenomedullary function in humans

  19. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Borosilicate nuclear waste glass alteration kinetics theoretical basis for the kinetic law of nuclear glass alteration

    International Nuclear Information System (INIS)

    Jegou, Ch.; Gin, St.; Advocat, Th.; Vernaz, E.

    1997-01-01

    Work carried out since the early 1980's to predict the long-term behavior of nuclear containment glasses has revealed the inadequacy of existing models, notably in accounting for the fundamental mechanisms involved in some complex systems (e.g. glass-water-clay), inciting us to examine and discuss the theoretical basis for the hypotheses generally assumed in our models. This paper discusses the theoretical basis for the Aagaard-Helgeson law and its application to nuclear glasses. The contribution of other types of kinetic laws is also considered to describe the alteration kinetics of nuclear glasses. (authors)

  1. Kinetics of cadmium hydroxide precipitation

    International Nuclear Information System (INIS)

    Patterson, J.W.; Marani, D.; Luo, B.; Swenson, P.

    1987-01-01

    This paper presents some preliminary results on the kinetics of Cd(OH)/sub 2/ precipitation, both in the absence and the presence of citric acid as an inhibiting agent. Batch and continuous stirred tank reactor (CSTR) precipitation studies are performed by mixing equal volumes of NaOH and Cd(NO/sub 3/)/sub 2/ solutions, in order to avoid localized supersaturation conditions. The rate of metal removal from the soluble phase is calculated from the mass balance for the CSTR precipitation tests. In addition, precipitation kinetics are studied in terms of nucleation and crystal growth rates, by means of a particle counter that allows a population balance analysis for the precipitation reactor at steady state conditions

  2. Art Engineering and Kinetic Art

    Directory of Open Access Journals (Sweden)

    Barış Yılmaz

    2014-12-01

    Full Text Available Performing an art, either by painting or by sculpturing, requires to be interdisciplinary. When an artist creates his/her work of art, the process he/she realizes is supported by different engineering disciplines. Therefore, especially modern artists need to understand engineering science and this results in transforming artists into engineers. Opportunities provided by technology and science enable artists to expand his/her vision and to improve his/her works. Especially kinetic art has become an approach that combines art with engineering. Kinetic art, which is nourished with varied disciplines, is an excellent example to prove that art is interdisciplinary and to show the relationship between artist/art and engineering.

  3. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  4. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  5. Spatial neutron kinetic module of ROSA code

    International Nuclear Information System (INIS)

    Cherezov, A.L.; Shchukin, N.V.

    2009-01-01

    A spatial neutron kinetic module was developed for computer code ROSA. The paper describes a numerical scheme used in the module for resolving neutron kinetic equations. Analytical integration for delayed neutrons emitters method and direct numerical integration method (Gear's method) were analyzed. The two methods were compared on their efficiency and accuracy. Both methods were verified with test problems. The results obtained in the verification studies were presented [ru

  6. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    Science.gov (United States)

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  7. Explosive sport training and torque kinetics in children.

    Science.gov (United States)

    Dotan, Raffy; Mitchell, Cameron J; Cohen, Rotem; Gabriel, David; Klentrou, Panagiota; Falk, Bareket

    2013-07-01

    A high rate of force development (RFD) is often more important than maximal force in daily and sports activities. In children, resistance training has been shown to increase maximal force. It is unclear whether, or to what extent, can children improve RFD and force kinetics. For this study, we compared strength and force kinetics of boy gymnasts with those of untrained boys and untrained men. Eight boy gymnasts (age, 9.5 ± 1.2 y), 20 untrained boys (age, 10.1 ± 1.3 y), and 20 untrained men (age, 22.9 ± 4.4 y) performed maximal, explosive, isometric elbow flexions (EF) and knee flexions (KF). Peak torque (maximal voluntary contraction (MVC)), elapsed times to 10%-100% MVC, peak rate of torque development (RTDpk), and other kinetics parameters were determined. When gymnasts were compared with untrained boys, size-normalized EF MVC was 11%-20% higher, RTDpk was 32% higher, and times to 30% and 80% MVC were 16% and 55% shorter, respectively (p kinetics parameters were similar. These findings highlight the specificity of gymnastics training, which markedly elevated the torque kinetics of young, prepubertal boys to adult levels, but only moderately affected peak torque. It is suggested that neurologic adaptations, such as enhanced firing and activation rates or increased type II motor-unit recruitment, as well as changes in musculotendinous stiffness, could explain these findings.

  8. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  9. A question of balance: Kinetic balance for electrons and positrons

    International Nuclear Information System (INIS)

    Dyall, Kenneth G.

    2012-01-01

    Graphical abstract: Kinetic balance for both electrons and positrons is achieved by applying the correct relation for positive and negative energy states separately and then using the electron and positron eigensolutions from the separate diagonalizations of the Hamiltonian as a dual basis. Highlights: ► Kinetic balance for electrons and positrons is achieved in a dual atomic basis. ► Dual atomic balance alleviates, but does not eliminate, energy prolapse. ► Positron affinities converge quicker with basis set size with dual atomic balance. - Abstract: The kinetic balance criterion used in current relativistic basis set codes is satisfied by the electron solutions of the Dirac equation, but not the positron solutions. A proposal for applying kinetic balance to both sets of solutions is presented. The method is applied along with “normal” kinetic balance to one-electron systems, to investigate its possible relation to prolapse, and to the positron affinity of F − , to investigate the kinetic energy deficiency for positron solutions. The new method reduces but does not eliminate prolapse for energy-optimized basis sets, and provides faster and smoother convergence with basis set size for the positron affinity.

  10. Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory

    International Nuclear Information System (INIS)

    Nastar, M.

    2011-01-01

    A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)

  11. KINETICS OF THE OXIDATION OF VITAMIN C

    Directory of Open Access Journals (Sweden)

    Sitti Rahmawati

    2012-12-01

    Full Text Available Vitamin C or ascorbic acid is needed by the human body but it is already damaged by the rise in temperature due to be oxidized to L-dehydroascorbic acid. This research aims to determine the kinetics of oxidation of ascorbic acid due to an increase if temperature (40-80 °C and to design an ascorbic acid oxidation reaction laboratory module to be applied in the senior high school reaction kinetics curriculum. The determination of the kinetics of the oxidation of ascorbic acid applies the integral and half-change time methods, while the concentration of the remained ascorbic acid in sixty minute intervals is determined by iodimetric titration method. Decomposition of ascorbic acid was measured at 40, 50, 60, 70 and 80 °C. The results of this research indicate that at 40, 50, 60, 70 and 80 °C the kinetics of the oxidation of ascorbic acid is a first-order reaction with rate constants of 4.55 x 10-4, 5.85 x 10-4, 8.4 x 10-4, 1.1 x 10-3 and 1.015 x 10-3 min-1, respectively. Pre-exponential factor or the frequency of collisions is a factor which is a measure of the collision rate. The activation energy and the pre-exponential factor for the oxidation of ascorbic acid were found to be 20.73 kJ.mol-1 and 1.372 min-1. The procedure used in this study was modified into a laboratory module will be applied in the teaching of reaction kinetics at the senior high school level.

  12. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  13. Thermoluminescence kinetics of pyrite (FeS2)

    International Nuclear Information System (INIS)

    Silverman, A.N; Levy, P.W.; Kierstead, J.A.

    1990-01-01

    Thermoluminescence of pyrite (FeS 2 ) has been investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at ∼90 degree and ∼250 degree C, and two chemiluminescence (CL) peaks at ∼350 degree and ∼430 degree C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T max ) with dose, and the retrapping to recombination cross section ratio σ of the large 250 degree C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases (see text), than by the 1st and 2nd order equations. 12 refs., 7 figs

  14. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  15. Kinetic Studies on Ni-YSZ Composite Electrodes

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Sudireddy, Bhaskar Reddy; Hjelm, Johan

    2015-01-01

    AC and DC techniques were applied to investigate the electrochemical reaction kinetics of porous composite Ni/8-mol% yttria-stabilized zirconia (Ni/8YSZ) solid oxide cell (SOC) electrodes using a novel pseudo-3-electrode cell geometry. From OCV impedance spectra an activation energy Ea of 1.13 e......V, prefactor yan of 3.7·105·T, hydrogen and steam partial pressure dependencies a and b respectively of -0.07 and 0.22 were determined. DC current density vs. overpotential curves compared with those predicted using the determined kinetic parameters. Apparent Butler-Volmer charge transfer coefficients α were...... branch and the need for different α values for each branch suggests that a simple BV model of the measured electrode kinetics is insufficient and/or different reaction mechanisms might be occurring in anodic vs cathodic polarization....

  16. Kinetic k-essence ghost dark energy model

    International Nuclear Information System (INIS)

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  17. A kinetic model for chemical neurotransmission

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  18. Modeling chemical kinetics graphically

    NARCIS (Netherlands)

    Heck, A.

    2012-01-01

    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could

  19. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions. The mo...

  20. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  1. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  2. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  3. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  4. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    Science.gov (United States)

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenepermanganate. 2010 Elsevier Ltd. All rights reserved.

  5. Kinetic isotope effect in the thermolysis of methylenecyclobutane

    International Nuclear Information System (INIS)

    Chickos, J.S.

    1979-01-01

    The intramolecular kinetic isotope effect for the thermolysis of equilibrated methylenecyclobutane-d 2 was investigated at 515 0 C as a function of pressure. A high-pressure value of k/sub H/k/sub D/ (ethylene/ethylene-d 2 ) = 0.9 was obtained at 13 cm of N 2 pressure. This value decreased to 0.86 at 70 μm total pressure. No intermolecular kinetic isotope effect was measured for the formation of ethylene from labeled and unlabeled methylenecyclobutane. The pressure and temperature dependence of the intramolecular kinetic isotope effect was used as evidence in establishing the inverse nature of the effect. The isotope effect observed was explained in terms of competing equilibrium and kinetic isotope effects in which the equilibrium isotope effects dominate. It was concluded on the bases of these results that an acyclic intermediate is involved in the fragmentation of methylenecyclobutane to ethylene and allene. The results also support the notion that deuterium prefers to accumulate at the methylene group with the greatest p character in the carbon--hydrogen bond. 1 figure, 4 tables

  6. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  7. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Science.gov (United States)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-09-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  8. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, S. G. [Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Burshtein, A. I. [Weizmann Institute of Science, 76100, Rehovot (Israel)

    2014-09-21

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  9. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    International Nuclear Information System (INIS)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-01-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics

  10. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle

    Directory of Open Access Journals (Sweden)

    Giorgio Kaniadakis

    2018-06-01

    Full Text Available Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker–Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker–Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker–Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker–Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker–Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A 296, 405 (2001, univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker–Planck equation in its most general form.

  11. Effect of surfactant on kinetics of thinning of capillary bridges

    Science.gov (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  12. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    Science.gov (United States)

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Kinetic theory of tearing instability

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Dobrott, D.; Wang, T.S.

    1975-01-01

    The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments

  14. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    Science.gov (United States)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  15. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    Science.gov (United States)

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  16. In vitro studies of ante-mortem proliferation kinetics

    International Nuclear Information System (INIS)

    McBride, W.H.; Withers, H.R.

    1986-01-01

    Using K562 human erythroblastoid cells, it was concluded that dose fractionation has no discrepant effect on the ante-mortem proliferation kinetics of doomed cells as opposed to clonogenic cell survival and that effects on ante-mortem proliferation kinetics cannot be solely responsible for the differences in fractionation response between early and late responding tissues. (UK)

  17. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  18. Kinetics of enzymatic trans-esterification of glycerides for biodiesel production.

    Science.gov (United States)

    Calabrò, Vincenza; Ricca, Emanuele; De Paola, Maria Gabriela; Curcio, Stefano; Iorio, Gabriele

    2010-08-01

    In this paper, the reaction of enzymatic trans-esterification of glycerides with ethanol in a reaction medium containing hexane at a temperature of 37 degrees C has been studied. The enzyme was Lipase from Mucor miehei, immobilized on ionic exchange resin, aimed at achieving high catalytic specific surface and recovering, regenerating and reusing the biocatalyst. A kinetic analysis has been carried out to identify the reaction path; the rate equation and kinetic parameters have been also calculated. The kinetic model has been validated by comparison between predicted and experimental results. Mass transport resistances estimation was undertaken in order to verify that the kinetics found was intrinsic. Model potentialities in terms of reactors design and optimization are also shown.

  19. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong; Zhao, Long; Wang, Yu; Bian, Huiting; Zhang, Lidong; Zhang, Feng; Li, Yuyang; Sarathy, Mani; Qi, Fei

    2015-01-01

    species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high

  20. Diffusion Influenced Adsorption Kinetics.

    Science.gov (United States)

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  1. Kinetic Uptake Studies of Powdered Materials in Solution

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mohamed

    2015-06-01

    Full Text Available Challenges exist for the study of time dependent sorption processes for heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or solutions because they are not well suited to conventional batch kinetic experiments. In this study, a comparison of batch versus a one-pot setup in two variable configurations was evaluated for the study of uptake kinetics in heterogeneous (solid/solution systems: (i conventional batch method; (ii one-pot system with dispersed adsorbent in solution with a semi-permeable barrier (filter paper or dialysis tubing for in situ sampling; and (iii one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis tubing or filter paper barrier with ex situ sampling. The sorbent systems evaluated herein include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii or ex situ (Method iii sampling described herein offers significant advantages for the study of heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes across a range of dimensions from the micron to nanometer scale. The method described herein will contribute positively to the development of advanced studies for heterogeneous sorption processes where an assessment of the relative uptake properties is required at different experimental conditions. The results of this study will be advantageous for the study of nanomaterials with significant benefits over batch kinetic studies for a wide range of heterogeneous sorption processes.

  2. Laminated helmet materials characterization by terahertz kinetics spectroscopy

    Science.gov (United States)

    Rahman, Anis; Rahman, Aunik K.

    2015-05-01

    High speed acquisition of reflected terahertz energy constitutes a kinetics spectrum that is an effective tool for layered materials' deformation characterization under ballistic impact. Here we describe utilizing the kinetics spectrum for quantifying a deformation event due to impact in material used for Soldier's helmet. The same technique may be utilized for real-time assessment of trauma by measuring the helmet wore by athletes. The deformation of a laminated material (e.g., a helmet) is dependent on the nature of impact and projectile; thus can uniquely characterize the impact condition leading to a diagnostic procedure based on the energy received by an athlete during an impact. We outline the calibration process for a given material under ballistic impact and then utilize the calibration for extracting physical parameters from the measured kinetics spectrum. Measured kinetics spectra are used to outline the method and rationale for extending the concept to a diagnosis tool. In particular, captured kinetics spectra from multilayered plates subjected to ballistic hit under experimental conditions by high speed digital acquisition system. An algorithm was devised to extract deformation and deformation velocity from which the energy received on the skull was estimated via laws of nonrelativistic motion. This energy is assumed to be related to actual injury conditions, thus forming a basis for determining whether the hit would cause concussion, trauma, or stigma. Such quantification may be used for diagnosing a Soldier's trauma condition in the field or that of an athlete's.

  3. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  4. Thermal decomposition kinetics of ammonium uranyl carbonate

    International Nuclear Information System (INIS)

    Kim, E.H.; Park, J.J.; Park, J.H.; Chang, I.S.; Choi, C.S.; Kim, S.D.

    1994-01-01

    The thermal decomposition kinetics of AUC [ammonium uranyl carbonate; (NH 4 ) 4 UO 2 (CO 3 ) 3 [ in an isothermal thermogravimetric (TG) reactor under N 2 atmosphere has been determined. The kinetic data can be represented by the two-dimensional nucleation and growth model. The reaction rate increases and activation energy decreases with increasing particle size and precipitation time which appears in the particle size larger than 30 μm in the mechano-chemical phenomena. (orig.)

  5. Solar-simulator-pumped atomic iodine laser kinetics

    Science.gov (United States)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  6. On the kinetic theory of the one-component plasma

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1984-01-01

    In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)

  7. Control of DNA strand displacement kinetics using toehold exchange.

    Science.gov (United States)

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  8. Fundamentals of 3-D Neutron Kinetics and Current Status

    International Nuclear Information System (INIS)

    Aragones, J.M.

    2008-01-01

    This lecture includes the following topics: 1) A summary of the cell and lattice calculations used to generate the neutron reaction data for neutron kinetics, including the spectral and burnup calculations of LWR cells and fuel assembly lattices, and the main nodal kinetics parameters: mean neutron generation time and delayed neutron fraction; 2) the features of the advanced nodal methods for 3-D LWR core physics, including the treatment of partially inserted control rods, fuel assembly grids, fuel burnup and xenon and samarium transients, and excore detector responses, that are essential for core surveillance, axial offset control and operating transient analysis; 3) the advanced nodal methods for 3-D LWR core neutron kinetics (best estimate safety analysis, real-time simulation); and 4) example applications to 3-D neutron kinetics problems in transient analysis of PWR cores, including model, benchmark and operational transients without, or with simple, thermal-hydraulics feedback.

  9. Reply to "Domain-growth kinetics of systems with soft walls''

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Præstgaard, Eigil

    1988-01-01

    On the basis of computer-simulation results for three different models with soft domain walls it is argued that the zero-temperature domain-growth kinetics falls in a separate universality class characterized by a kinetic growth exponent n≃0.25. However, for finite temperatures there is a distinct...... crossover to Lifshitz-Allen-Cahn kinetics n=0.50, thus suggesting that the soft-wall and hard-wall universality classes become identical at finite temperatures....

  10. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    Science.gov (United States)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  11. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  12. Production of a sterile species: Quantum kinetics

    Science.gov (United States)

    Boyanovsky, D.; Ho, C. M.

    2007-10-01

    Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.

  13. The kinetically dominated quasar 3C 418

    Science.gov (United States)

    Punsly, Brian; Kharb, Preeti

    2017-06-01

    The existence of quasars that are kinetically dominated, where the jet kinetic luminosity, Q, is larger than the total (infrared to X-ray) thermal luminosity of the accretion flow, Lbol, provides a strong constraint on the fundamental physics of relativistic jet formation. Since quasars have high values of Lbol by definition, only ˜10 kinetically dominated quasars (with \\overline{Q}/L_{bol}>1) have been found, where \\overline{Q} is the long-term time-averaged jet power. We use low-frequency (151 MHz-1.66 GHz) observations of the quasar 3C 418 to determine \\overline{Q}≈ 5.5 ± 1.3 × 10^{46} {erg s^{-1}}. Analysis of the rest-frame ultraviolet spectrum indicates that this equates to 0.57 ± 0.28 times the Eddington luminosity of the central supermassive black hole and \\overline{Q}/L_{bol} ≈ 4.8 ± 3.1, making 3C 418 one of the most kinetically dominated quasars found to date. It is shown that this maximal \\overline{Q}/L_{bol} is consistent with models of magnetically arrested accretion of jet production in which the jet production reproduces the observed trend of a decrement in the extreme ultraviolet continuum as the jet power increases. This maximal condition corresponds to an almost complete saturation of the inner accretion flow with vertical large-scale magnetic flux (maximum saturation).

  14. Detection of kinetic change points in piece-wise linear single molecule motion

    Science.gov (United States)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  15. Kinetics of tetrataenite disordering

    International Nuclear Information System (INIS)

    Dos Santos, E.; Gattacceca, J.; Rochette, P.; Fillion, G.; Scorzelli, R.B.

    2015-01-01

    Tetrataenite is a chemically ordered L1 0 -type Fe 50 Ni 50 alloy detected for the first time in 1977 by 57 Fe Mössbauer spectroscopy studies in iron meteorites. The thermal history of meteorites, in particular short thermal events like those associated to hypervelocity impacts, can be constrained by tracing the presence of tetrataenite or its disordering into taenite. The knowledge of the disordering kinetics of tetrataenite, that is associated with changes in its magnetic properties, is still very fragmentary so that the time–temperature history of these meteorites cannot be constrained in details. Furthermore, knowledge of disordering kinetics is important due to potential technological application of tetrataenite as a rare-earth free strong magnet. Thus, this work provides the first time–temperature data for disordering reaction of tetrataenite. We have shown that disordering is not an instantaneous process but is a kinetic limited reaction. It was shown that disordering may take place at any temperature above the order–disorder transition for L 10 superstructure phase (∼320 °C) when the appropriate time-scale is considered. This result means that the apparent Curie point for tetrataenite is not an absolute property in the sense that any estimate of this parameter should be referred to a given time-scale. - Highlights: • The first time–temperature data for tetrataenite disordering reaction is provided. • Previous works does not give a complete picture of tetrataenite disordering. • Apparent Curie temperature of tetrataenite should be referred to a time-scale. • Tetrataenite can be used as a probe to detect thermal/shock events recorded in meteorites

  16. Adsorption kinetics of propane on energetically heterogeneous activated carbon

    KAUST Repository

    Ismail, Azhar Bin

    2014-11-01

    The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.

  17. Out-of-order event processing in kinetic data structures

    DEFF Research Database (Denmark)

    Abam, Mohammad; de Berg, Mark; Agrawal, Pankaj

    2011-01-01

    ’s for the maintenance of several fundamental structures such as kinetic sorting and kinetic tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short......We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS...

  18. Early stage crystallization kinetics in metallic glass-forming alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.

    2014-01-01

    Highlights: • Heterogeneous nucleation may precede the homogeneous one in an alloy. • High kinetic constants and the nucleation rate at the initial stage. • Metallic glasses have heterogeneous nucleation sites which saturate later. -- Abstract: The crystallization kinetics and structural changes of a few metallic glassy alloys were monitored using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Microstructural observations were used to estimate the nucleation and growth rates. A clear comparison of the differences in the crystallization kinetics in the metallic glassy samples is observed at the early and later crystallization stages

  19. Uniqueness of solution to a stationary boundary kinetic problem

    International Nuclear Information System (INIS)

    Zhykharsky, A.V.

    1992-01-01

    The paper treats the question of uniqueness of solution to the boundary kinetic problem. This analysis is based on the accurate solutions to the stationary one-dimensional boundary kinetic problem for the limited plasma system. In the paper a simplified problem statement is used (no account is taken of the external magnetic field, a simplest form of boundary conditions is accepted) which, however, covers all features of the problem considered. Omitting the details of the conclusion we will write a set of Vlasov stationary kinetic equations for the cases of plane, cylindrical and spherical geometry of the problem. (author) 1 ref

  20. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.

    Science.gov (United States)

    Nambo, Apolo; He, Juan; Nguyen, Tu Quang; Atla, Veerendra; Druffel, Thad; Sunkara, Mahendra

    2017-06-14

    In this paper, the Li 4 SiO 4 nanowires (NWs) were shown to be promising for CO 2 capture with ultrafast kinetics. Specifically, the nanowire powders exhibited an uptake of 0.35 g g -1 of CO 2 at an ultrafast adsorption rate of 0.22 g g -1 min -1 at 650-700 °C. Lithium silicate (Li 4 SiO 4 ) nanowires and nanopowders were synthesized using a "solvo-plasma" technique involving plasma oxidation of silicon precursors mixed with lithium hydroxide. The kinetic parameter values (k) extracted from sorption kinetics obtained using NW powders are 1 order of magnitude higher than those previously reported for the Li 4 SiO 4 -CO 2 reaction system. The time scales for CO 2 sorption using nanowires are approximately 3 min and two orders magnitude faster compared to those obtained using lithium silicate powders with spherical morphologies and aggregates. Furthermore, Li 4 SiO 4 nanowire powders showed reversibility through sorption-desorption cycles indicating their suitability for CO 2 capture applications. All of the morphologies of Li 4 SiO 4 powders exhibited a double exponential behavior in the adsorption kinetics indicating two distinct time constants for kinetic and the mass transfer limited regimes.

  1. Non-Abelian plasmons and their kinetics equation

    International Nuclear Information System (INIS)

    Zheng Xiaoping; Li Jiarong

    1998-01-01

    After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles

  2. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    Science.gov (United States)

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  3. Morphogenesis of Kinetic Reciprocal Frames

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario

    2011-01-01

    Kinetic structures in civil engineering and architecture gained considerable more attention in the very recent years as a practical solution to face time dependant performances. Realized projects are mostly bridges, retractable roofs, while in architecture the trend follows the category of intera......Kinetic structures in civil engineering and architecture gained considerable more attention in the very recent years as a practical solution to face time dependant performances. Realized projects are mostly bridges, retractable roofs, while in architecture the trend follows the category...... (RF) were studied in the past as a practical solution to span distances with shorter elements. Leonardo da Vinci discovered interesting RF patterns and studied three dimensional arch structures for bridges. RF are generally defined as structures that forms closed circuits of forces, and where elements...

  4. Kinetics of the subtransition in dipalmitoylphosphatidylcholine

    International Nuclear Information System (INIS)

    Tristram-Nagle, S.; Wiener, M.C.; Yang, C.P.; Nagle, J.F.

    1987-01-01

    The kinetics of the interconversions of the subgel and gel phases in dipalmitoylphosphatidylcholine have been studied by using differential dilatometry, differential scanning calorimetry (DSC), and neutral buoyancy centrifugation as a function of incubation temperature and deuteriation of the solvent. As seen by others, DSC scans show two peaks in the subgel transition region for incubation temperatures below 1 0 C. After incubation at 0.1 0 C, the DSC peak that occurs at the lower scanning temperature appears with an incubation half-time of 0.5 day and eventually converts into a peak at higher scanning temperature with an incubation half-time of 18 days. By varying the scanning rate, the authors show that these two peaks merge into one at slow scanning rates with a common equilibrium transition temperature of 13.8 0 C, in agreement with equilibrium calorimetry and dilatometry. For incubation temperatures above 4.6 0 C, only one peak appears in both scanning dilatometry and calorimetry. While the initial rate of subgel conversion is smaller at the higher incubation temperatures, after 300 h a higher percentage of the sample has converted to subgel than at the lower incubation temperatures. They suggest that higher incubation temperatures (near 5 0 C) are preferable for forming the stable subgel phase, and they present a colliding domain picture that indicates why this may be so. The results in D 2 O and the similarity of the kinetics of volume decrease with the kinetics of wide-angle diffraction lines also support the suggestion that the partial loss of interlamellar water plays a kinetic role in subgel formation

  5. Kinetics of the subtransition in dipalmitoylphosphatidylcholine.

    Science.gov (United States)

    Tristram-Nagle, S; Wiener, M C; Yang, C P; Nagle, J F

    1987-07-14

    The kinetics of the interconversions of the subgel and gel phases in dipalmitoylphosphatidylcholine have been studied by using differential dilatometry, differential scanning calorimetry (DSC), and neutral buoyancy centrifugation as a function of incubation temperature and deuteriation of the solvent. As seen by others, DSC scans show two peaks in the subgel transition region for incubation temperatures below 1 degree C. After incubation at 0.1 degree C, the DSC peak that occurs at the lower scanning temperature appears with an incubation half-time of 0.5 day and eventually converts into a peak at higher scanning temperature with an incubation half-time of 18 days. By varying the scanning rate, we show that these two peaks merge into one at slow scanning rates with a common equilibrium transition temperature of 13.8 degrees C, in agreement with equilibrium calorimetry and dilatometry (delta V = 0.017 +/- 0.001 mL/g). For incubation temperatures above 4.6 degrees C, only one peak appears in both scanning dilatometry and calorimetry. While the initial rate of subgel conversion is smaller at the higher incubation temperatures, after 300 h a higher percentage of the sample has converted to subgel than at the lower incubation temperatures. We suggest that higher incubation temperatures (near 5 degrees C) are preferable for forming the stable subgel phase, and we present a colliding domain picture that indicates why this may be so. Our results in D2O and the similarity of the kinetics of volume decrease with the kinetics of wide-angle diffraction lines also support the suggestion that the partial loss of interlamellar water plays a kinetic role in subgel formation.

  6. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    Science.gov (United States)

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  7. Solution of the reactor point kinetics equations by MATLAB computing

    Directory of Open Access Journals (Sweden)

    Singh Sudhansu S.

    2015-01-01

    Full Text Available The numerical solution of the point kinetics equations in the presence of Newtonian temperature feedback has been a challenging issue for analyzing the reactor transients. Reactor point kinetics equations are a system of stiff ordinary differential equations which need special numerical treatments. Although a plethora of numerical intricacies have been introduced to solve the point kinetics equations over the years, some of the simple and straightforward methods still work very efficiently with extraordinary accuracy. As an example, it has been shown recently that the fundamental backward Euler finite difference algorithm with its simplicity has proven to be one of the most effective legacy methods. Complementing the back-ward Euler finite difference scheme, the present work demonstrates the application of ordinary differential equation suite available in the MATLAB software package to solve the stiff reactor point kinetics equations with Newtonian temperature feedback effects very effectively by analyzing various classic benchmark cases. Fair accuracy of the results implies the efficient application of MATLAB ordinary differential equation suite for solving the reactor point kinetics equations as an alternate method for future applications.

  8. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  9. Kinetics model of bainitic transformation with stress

    Science.gov (United States)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  10. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  11. Imperfect Dark Energy from Kinetic Gravity Braiding

    CERN Document Server

    Deffayet, Cedric; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energ...

  12. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  13. Kinetics and thermodynamics of living copolymerization processes.

    Science.gov (United States)

    Gaspard, Pierre

    2016-11-13

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  14. The Particle-in-Cell and Kinetic Simulation Software Center

    Science.gov (United States)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.

    2017-10-01

    The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  15. Alkylation of Chlorobenzene. An Experiment Illustrating Kinetic versus Thermodynamic Control.

    Science.gov (United States)

    Kolb, Kenneth; And Others

    1988-01-01

    Describes an experiment which illustrates the kinetic versus thermodynamic control of chemical reactions for organic chemistry students. Considers the laboratory procedures including the isolation of both the kinetic and thermodynamic products. (CW)

  16. The coke drum thermal kinetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)

    2012-07-01

    The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)

  17. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  18. Defining Nitrogen Kinetics for Air Break in Prebreath

    Science.gov (United States)

    Conkin, Johnny

    2010-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe(PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. METHODS: Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without airbreaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and airbreaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the airbreak was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = (Delta)P defined decompression dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. RESULTS: The log likelihood (LL) without decompression dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. CONCLUSION: The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included airbreaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an airbreak in PB within the narrow range of tested conditions.

  19. Defining Nitrogen Kinetics for Air Break in Prebreathe

    Science.gov (United States)

    Conkin, Johnny

    2009-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe (PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without air breaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the air break was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = delta P defined DCS dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. The log likelihood (LL) without DCS dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included air breaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an air break in PB within the narrow range of tested conditions.

  20. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...

  1. Kinetic study of UV-irradiated amorphous sulfur by EPR spectroscopy

    International Nuclear Information System (INIS)

    El Mkami, H.; Smith, G.M.

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to investigate UV-irradiation damage in amorphous sulfur by examining post-irradiation kinetics as a function of UV-exposure time. The kinetic study is described by first-order concurrent reactions where the sulfur, as reactant, undergoes two parallel processes leading to the formation of two distinct defects called S 1 * and S 2 *. The temperature dependence of the EPR intensities of the signals, related to these defects, is used in the kinetic study

  2. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  3. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  4. Kinetic concepts of thermally stimulated reactions in solids

    Science.gov (United States)

    Vyazovkin, Sergey

    Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.

  5. Sum rule limitations of kinetic particle-production models

    International Nuclear Information System (INIS)

    Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.

    1988-04-01

    Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)

  6. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  7. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  8. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-01

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  9. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-28

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  10. The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury.

    Science.gov (United States)

    Chu, Samuel K; Jayabalan, Prakash; Kibler, W Ben; Press, Joel

    2016-03-01

    The overhead throwing motion is a complex activity that is achieved through activation of the kinetic chain. The kinetic chain refers to the linkage of multiple segments of the body that allows for transfer of forces and motion. The lower extremities and core provide a base of support, generating energy that is transferred eventually through the throwing arm and hand, resulting in release of the ball. The kinetic chain requires optimal anatomy, physiology, and mechanics and is involved in all 6 phases of overhead throwing: windup, stride, arm cocking, acceleration, deceleration, and follow-through. Breaks or deficits in the kinetic chain can lead to injury or decreased performance. Through an understanding of the mechanics and pathomechanics seen in each phase of throwing, the clinician can better evaluate and screen for potential kinetic chain deficits in the overhead throwing athlete. The purpose of this article is to review the biomechanics of the overhead throwing motion, the role of the kinetic chain in throwing, and the clinical evaluation and management of abnormal throwing mechanics and related injuries. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Dislocation kinetics and the acoustic-wave approximation for liquids

    International Nuclear Information System (INIS)

    Stout, R.B.

    1983-03-01

    A dislocation-dependent model for liquids describes the lattice deformation and the fluidity deformation as additive deformations. The lattice deformation represents distortions of an atom's potential energy structure and is a recoverable deformation response. The fluidity deformation represents discontinuous repositioning of atoms by dislocation kinetics in the lattice structure and is a nonrecoverable deformation response. From this model, one concludes that in liquids the acoustic-wave approximation is a description of a recoverable oscillation deformation that has dissipation because of dislocation kinetics. Other more-complex waves may exist, but such waves would rapidly disappear because of the small thermodynamic potential for dislocation kinetics in liquids

  12. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  13. SABIO-RK: A data warehouse for biochemical reactions and their kinetics

    Directory of Open Access Journals (Sweden)

    Krebs Olga

    2007-03-01

    Full Text Available Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics, a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.

  14. Kinetic modelling of the Maillard reaction between proteins and sugars

    NARCIS (Netherlands)

    Brands, C.M.J.

    2002-01-01

    Keywords: Maillard reaction, sugar isomerisation, kinetics, multiresponse modelling, brown colour formation, lysine damage, mutagenicity, casein, monosaccharides, disaccharides, aldoses, ketoses

    The aim of this thesis was to determine the kinetics of the Maillard reaction between

  15. Child–adult differences in the kinetics of torque development

    Science.gov (United States)

    DOTAN, RAFFY; MITCHELL, CAMERON; COHEN, ROTEM; GABRIEL, DAVID; KLENTROU, PANAGIOTA; FALK, BAREKET

    2013-01-01

    Children have lower size-normalised maximal voluntary force, speed, and power than adults. It has been hypothesised that these and other age-related performance differences are due to lesser type-II motor-unit utilisation in children. This should be manifested as slower force kinetics in explosive muscle contractions. The purpose of this study was to investigate the nature of child–adult force-kinetics differences and whether the latter could support that hypothesis. Untrained boys (n = 20) and men (n = 20) (10.1 ± 1.3 and 22.9 ± 4.4 years, respectively), performed maximal, explosive, isometric elbow flexions and knee extensions on a Biodex dynamometer. Peak torque (MVC), times to 10–100% MVC, and other kinetics parameters were determined. The boys’ body-mass-normalised knee extension MVC, peak rate of torque development, and %MVC at 100 ms were 26, 17 and 23% lower compared with the men and their times to 30% and 80% MVC were 24 and 48% longer, respectively. Elbow flexion kinetics showed similar or greater differences. The findings illuminate boys’ inherent disadvantage in tasks requiring speed or explosive force. It is demonstrated that the extent of the boys–men kinetics disparity cannot be explained by muscle-composition and/or musculo-tendinous-stiffness differences. We suggest therefore that the findings indirectly support children’s lower utilisation of type-II motor units. PMID:23320937

  16. Modeling the isochronal crystallization kinetics

    International Nuclear Information System (INIS)

    Sahay, S.S.; Krishnan, Karthik

    2004-01-01

    The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, originally formulated for the isothermal condition, is often used in conjunction with additivity principle for modeling the non-isothermal crystallization kinetics. This approach at times results in significant differences between the model prediction and experimental data. In this article, a modification to this approach has been imposed via an additional functional relationship between the activation energy and heating rate. The methodology has been validated with experimental isochronal crystallization kinetic data in Se 71 Te 20 Sb 9 glass and Ge 20 Te 80 systems. It has been shown that the functional relationship between heating rate and activation energy, ascribed to the reduction in apparent activation energy due to increasing non-isothermality, provides better phenomenological description and therefore improves the prediction capability of the JMAK model under isochronal condition

  17. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  18. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  19. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  20. Uptake kinetics of arsenic by lettuce cultivars under hydroponics ...

    African Journals Online (AJOL)

    Arsenic (As) uptake ability based on kinetic parameters by two lettuce cultivars; Sijibaiye (SJBY) and Texuanyanlingsun (TXYLS) was investigated in nutrient solution containing eight levels of arsenic (As). Depletion of As from solution was monitored over a period of 24 h at regular time to estimate As uptake kinetics of the ...

  1. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M

    2017-01-01

    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  2. Kinetics and mechanism of oxidation of chloramphenicol by 1

    Indian Academy of Sciences (India)

    Chloramphenicol (CAP) is an antibiotic drug having a wide spectrum of activity. The kinetics of oxidation of chloramphenicol by 1-chlorobenzotriazole (CBT) in HClO4 medium over the temperature range 293-323 K has been investigated. The reaction exhibits first-order kinetics with respect to [CBT]o and zero-order with ...

  3. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    African Journals Online (AJOL)

    The kinetics of oxidation of four aliphatic alcohols in acidic aqueous and micellar media were investigated. The reaction was found to be first-order with respect to both alcohol and oxidant. Pseudo-first-order kinetics were found to be perfectly applicable with ethanol, 1-propanol and 2-propanol while deviation was observed ...

  4. Bicarbonate kinetics in Indian males

    Indian Academy of Sciences (India)

    Madhu

    ized kinetics of bicarbonate using a three-compartment model, to assess which compartmental fluxes changed dur- .... total VCO2 was < 3 % and the average respiratory quotient ..... a part of the nonrespiratory losses of 13CO2 occur to this.

  5. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    Science.gov (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Investigation of synthesis, thermal properties and curing kinetics of fluorene diamine-based benzoxazine by using two curing kinetic methods

    International Nuclear Information System (INIS)

    He, Xuan-yu; Wang, Jun; Ramdani, Noureddine; Liu, Wen-bin; Liu, Li-jia; Yang, Lei

    2013-01-01

    Graphical abstract: - Highlights: • A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) is synthesized. • Kinetic parameters can be calculated by Starink-LSR method and direct LSR method. • Cure reaction could be successfully described with the autocatalytic model. • The poly(BEF-p) exhibits high T g and superior thermal stability. • Aryl ether linkages had little influence on the thermal stability. - Abstract: A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) was prepared from the reaction of 9,9-bis-[4-(p-aminophenoxy)-phenyl]fluorene with paraformaldehyde and phenol. The chemical structure of monomer was confirmed by Fourier-transform infrared (FTIR) and 1 H and 13 C nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR). The polymerization behavior of monomer was analyzed by differential scanning calorimetry (DSC) and FTIR. The curing kinetics was studied by non-isothermal DSC, and the kinetic parameters were determined. The autocatalytic model based on two kinetic methods (Starink-LSR method and direct LSR method) showed good agreement with experimental results. The thermal and mechanical properties of poly(BEF-p) were evaluated with DSC, dynamic mechanical thermal analysis (DMTA), and thermogravimetric analysis (TGA). The results showed that the cured polymer exhibited higher glass transition temperature (T g ) and better thermal stability compared with diaminodiphenylmethane-based benzoxazine(P-ddm), and was slightly lower than those of fluorene diamine-phenol-based polybenzoxazine (poly(BF-p))

  7. A multi water bag model of drift kinetic electron plasma

    International Nuclear Information System (INIS)

    Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Coulette, D.; Besse, N.

    2014-01-01

    A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)]. (authors)

  8. Kinetics of molybdenum and chlorine interaction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Nazarov, Yu.N.; Sarkarov, T.Eh.; Tulyakov, N.V.

    1977-01-01

    The kinetics is studied of molybdenite chlorination with gaseous chlorine. The time dependences of the depth and degree of molybdenite chlorination are given along with the dependence on chlorine concentration of molybdenite chlorination rate. Active interaction is shown to take place at 450-470 deg C. At 350-435 deg C, chlorination occurs in the kinetic range, the apparent activation energy being equal to 22.2 kcal/mole and the order of reaction by chlorine to 0.77. At 435-610 deg C, the process takes place in the diffusion range and is restricted by dissipation of the reaction products (activation energy - 4.05 kcal/mole; order of reaction by chlorine - 0.6)

  9. Kinetics of the thermal decomposition of pine needles

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2015-12-01

    Full Text Available A kinetic study of the pyrolysis process of pine needles was examined using a thermogravimetric analyser. The weight loss was measured in nitrogen atmosphere at a purge flow rate of 100 ml/min. The samples were heated over a range of temperature of 19°C–600°C with a heating rate of 10°C/min. The results obtained from the thermal decomposition process indicate that there are three main stages: dehydration, active and passive pyrolysis. The kinetic parameters for the different samples, such as activation energy and pre-exponential factor, are obtained by the shrinking core model (reaction-controlled regime, the model-free, and the first-order model. Experimental results showed that the shrinking model is in good agreement and can be successfully used to understand degradation mechanism of loose biomass. The result obtained from the reaction-controlled regime represented actual values of kinetic parameters which are the same for the whole pyrolysis process; whereas the model-free method presented apparent values of kinetic parameters, as they are dependent on the unknown function ϕ(C, on the sum of the parameters of the physical processes, and on the chemical reactions that happen simultaneously during pyrolysis. Experimental results showed that values of kinetic constant from the first-order model and the SCM are in good agreement and can be successfully used to understand the behaviour of loose biomass (pine needles in the presence of inert atmosphere. Using TGA results, the simulating pyrolysis can be done, with the help of computer software, to achieve a comprehensive detail of the devolatilization process of different types of biomasses.

  10. Kinetic and thermodynamic modelling of TBP synthesis processes

    International Nuclear Information System (INIS)

    Azzouz, A.; Attou, M.

    1989-02-01

    The present paper deals with kinetic and thermodynamic modellisation of tributylphosphate (TBP) synthesis processes. Its aim consists in a purely comparative study of two different synthesis ways i.e. direct and indirect estirification of butanol. The methodology involves two steps. The first step consists in approximating curves which describe the process evolution and their dependence on the main parameters. The results gave a kinetic model of the process rate yielding in TBP. Further, on the basis of thermodynamic data concerning the various involved compounds a theoretical model was achieved. The calculations were carried out in Basic language and an interpolation mathematical method was applied to approximate the kinetic curves. The thermodynamic calculations were achieved on the basis of GIBBS' free energy using a VAX type computer and a VT240 terminal. The calculations accuracy was reasonable and within the norms. For each process, the confrontation of both models leads to an appreciable accord. In the two processes, the thermodynamic models were similar although the kinetic equations present different reaction orders. Hence the reaction orders were determined by a mathematical method which conists in searching the minimal difference between an empiric relation and a kinetic model with fixed order. This corresponds in fact in testing the model proposed at various reaction order around the suspected value. The main idea which results from such a work is that this kind of processes is well fitting with the model without taking into account the side chain reactions. The process behaviour is like that of a single reaction having a quasi linear dependence of the rate yielding and the reaction time for both processes

  11. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  12. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  13. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  14. A group-kinetic theory of turbulent collective collisions

    International Nuclear Information System (INIS)

    Tchen, C.M.; Misguich, J.H.

    1983-05-01

    The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion

  15. Kinetic parameter estimation from attenuated SPECT projection measurements

    International Nuclear Information System (INIS)

    Reutter, B.W.; Gullberg, G.T.

    1998-01-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters

  16. Warm ion effects on kinetic drift cyclotron loss cone instabilities

    International Nuclear Information System (INIS)

    Guo Shichong; Shen Jiewu; Cai Shidong

    1988-01-01

    The effects of adding warm plasmas on the kinetic DCLC mode in high β loss cone plasmas are investigated in detail. It is found that when the fluid DCLC mode is stabilized by a small amount of warm plasma, the kinetic excitation still remains due to two different mechanisms, namely, (1) magnetic drift resonance dissipation excites the negative energy wave; (2) a new type of positive energy wave can become unstable as the resonance condition is met. Comparing with fluid approximation theory, more warm plasmas are needed to suppress the kinetic DCLC instabilities

  17. Kinetic inductance of HTS resonators at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, Mohan V.

    1997-01-01

    Microwave superconducting devices show a drastic deterioration in its performance at high microwave power levels. The flux penetration through the weak links increases the quasiparticle concentration which results in the increase of penetration depth and hence the kinetic inductance. We have modeled an expression to find the kinetic inductance at various RF power levels. The results show that the change in kinetic inductance is proportional to be square of the applied field. This model can explain the reported experimental results at and below the intermediate power levels. (author)

  18. Kinetics of molybdenite oxidizing leaching in alkali medium by ozone

    International Nuclear Information System (INIS)

    Medvedev, A.S.; Sokratova, N.B.; Litman, I.V.; Zelikman, A.N.

    1985-01-01

    On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily

  19. Kinetic investigation of heterogeneous catalytic reactions by means of the kinetic isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F; Dermietzel, J [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung

    1978-09-01

    The application of the kinetic isotope method to heterogeneous catalytic processes is possible for surface compounds by using the steady-state relation. However, the characterization of intermediate products becomes ambiguous if sorption rates are of the same order of magnitude as surface reactions rates. The isotopic exchange reaction renders possible the estimation of sorption rates.

  20. A mechanistic approach to postirradiation spoilage kinetics of fish

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: In order to simulate postirradiation spoilage of fish, the mechanistic aspects of the growth of surviving microorganisms during chill storage and their product formation in irradiated fish were analyzed. Anchovy (Engraulis encrasicholus) samples those unirradiated and irradiated at 1, 2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Total bacterial counts (TBC) and trimethylamine (TMA) analysis of the samples were done periodically during storage. Depending on the proposed spoilage mechanism, kinetic model equations were derived. By using experimental data of TBC and TMA in the developed model, the postirradiation spoilage parameters including growth rate constant, inital and maximum attainable TBC, lag time and TMA yield were evaluated and microbial spoilage of fish was simulated for postirradiation storage. Shelf life of irradiated fish was estimated depending on the spoilage kinetics. Dose effects on the kinetic parameters were analyzed. It is suggested that the kinetic evaluation method developed in this study may be used for quality assessment, shelf life determination and dose optimization for radiation preservation of fish

  1. Kinetic Simulations of Type II Radio Burst Emission Processes

    Science.gov (United States)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  2. Application of Extreme Learning Machines to inverse neutron kinetics

    International Nuclear Information System (INIS)

    Picca, Paolo; Furfaro, Roberto

    2017-01-01

    Highlights: • The paper applies the Extreme Learning Machines (ELMs) to inverse reactor problems. • Multi-group transport model is used for the inversion as opposed to point kinetics. • ELMs are compared against Artificial Neural Networks (ANNs). • Various options are tested to improve the reliability of the estimation. • Results highlight the potential of the ELM approach. - Abstract: The paper presents the application of Extreme Leaning Machines (ELMs) for inverse reactor kinetic applications. ELMs were proposed by Huang and co-workers (2004, 2006a,b, 2015), which showed their enhances capabilities in terms of training speed and generalization with respect to classical Artificial Neural Networks (ANNs). ELMs are here implemented for reactivity determination as an alternative to ANNs (e.g. Picca et al. (2008)) and Gaussian Processes (Picca and Furfaro, 2012). After a review of the main features of ELMs, their application to inverse kinetic problems is proposed. The ELMs performance is tested on a typical accelerator drive system configuration (Yalina reactor) and the inversion is carried out on an accurate kinetic model (multi-group transport).

  3. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  4. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  5. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  6. Kinetic stabilities of double, tetra- and hexarosette hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Prins, L.J.; Neuteboom, Edda E.; Paraschiv, V.; Crego Calama, Mercedes; Timmerman, P.; Reinhoudt, David

    2002-01-01

    A study of the kinetic stabilities of hydrogen-bonded double, tetra-, and hexarosette assemblies, comprising 36, 72, and 108 hydrogen bonds, respectively, is described. The kinetic stabilities are measured using both chiral amplification and racemization experiments. The chiral amplification studies

  7. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  8. Extended symmetries of the kinetic plasma theory models

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2005-01-01

    Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined

  9. Modelling opinion formation by means of kinetic equations

    OpenAIRE

    Boudin , Laurent; Salvarani , Francesco

    2010-01-01

    In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.

  10. The physical kinetics of magnetoplasticity of diamagnetic crystals

    International Nuclear Information System (INIS)

    Buchachenko, A. L.

    2007-01-01

    The kinetic equations describing the rate of magnetically induced release of dislocations entrapped by stoppers were solved. The magnetic field effect on the mobility of dislocations was calculated. Its comparison with experiment gave the ratio between the rate constants for two key processes governing magnetoplasticity, namely, singlet-triplet conversion in a spin nanoreactor and the release of a dislocation from it. The kinetic criterion of the existence of magnetoplasticity as a physical phenomenon was obtained

  11. A new mathematical model for coal flotation kinetics

    OpenAIRE

    Guerrero-Pérez, Juan Sebastián; Barraza-Burgos, Juan Manuel

    2017-01-01

    Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents do...

  12. Kinetics of hydrogen adsorption on MgH{sub 2}/CNT composite

    Energy Technology Data Exchange (ETDEWEB)

    Rather, Sami ullah, E-mail: rathersami@gmail.com; Taimoor, Aqeel Ahmad; Muhammad, Ayyaz; Alhamed, Yahia Abobakor; Zaman, Sharif Fakhruz; Ali, Arshid Mahmood

    2016-05-15

    Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{sub 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.

  13. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.

    2016-08-30

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  14. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  15. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate

    KAUST Repository

    Ghosh, Manik Kumer; Howard, Mí cheá l Sé amus; Zhang, Yingjia; Djebbi, Khalil; Capriolo, Gianluca; Farooq, Aamir; Curran, Henry J.; Dooley, Stephen

    2018-01-01

    Ethyl levulinate (Ethyl 4-oxopentanoate) is a liquid molecule at ambient temperature, comprising of ketone and ethyl ester functionalities and is one of the prominent liquid fuel candidates that may be easily obtained from lignocellulosic biomass. The combustion kinetics of ethyl levulinate have been investigated. Shock tube and rapid compression machine apparatuses are utilised to acquire gas phase ignition delay measurements of 0.5% ethyl levulinate/O2 mixtures at ϕ = 1.0 and ϕ = 0.5 at ∼ 10 atm over the temperature range 1000–1400 K. Ethyl levulinate is observed not to ignite at temperatures lower than ∼1040 K in the rapid compression machine. The shock tube and rapid compression machine data are closely consistent and show ethyl levulinate ignition delay to exhibit an Arrhenius dependence to temperature. These measurements are explained by the construction and analysis of a detailed chemical kinetic model. The kinetic model is completed by establishing thermochemical-kinetic analogies to 2-butanone, for the ethyl levulinate ketone functionality, and to ethyl propanoate for the ethyl ester functionality. The so constructed model is observed to describe the shock tube data very accurately, but computes the rapid compression machine data set to a lesser but still applicable fidelity. Analysis of the model suggests the autooxidation mechanism of ethyl levulinate to be entirely dominated by the propensity for the ethyl ester functionality to unimolecularly decompose to form levulinic acid and ethylene. The subsequent reaction kinetics of these species is shown to dictate the overall rate of the global combustion reaction. This model is then use to estimate the Research and Motored Octane Numbers of ethyl levulinate to be ≥97.7 and ≥ 93, respectively. With this analysis ethyl levulinate would be best suited as a gasoline fuel component, rather than as a diesel fuel as suggested in the literature. Indeed it may be considered to be useful as an

  16. Kinetic therapy improves oxygenation in critically ill pediatric patients.

    Science.gov (United States)

    Schultz, Theresa Ryan; Lin, Richard; Francis, Barbara A; Hales, Roberta L; Colborn, Shawn; Napoli, Linda A; Helfaer, Mark A

    2005-07-01

    To compare changes in oxygenation after manual turning and percussion (standard therapy) and after automated rotation and percussion (kinetic therapy). Randomized crossover trial. General and cardiac pediatric intensive care units. Intubated and mechanically ventilated pediatric patients who had an arterial catheter and no contraindications to using a PediDyne bed. Patients were placed on a PediDyne bed (Kinetic Concepts) and received 18 hrs blocks of standard and kinetic therapy in an order determined by randomization. Arterial blood gases were measured every 2 hrs during each phase of therapy. Oxygenation index and arterial-alveolar oxygen tension difference [P(A-a)O(2)] were calculated. Indexes calculated at baseline and after each 18-hr phase of therapy were analyzed. Fifty patients were enrolled. Data from 15 patients were either not collected or not used due to reasons that included violation of protocol and inability to tolerate the therapies in the study. Indexes of oxygenation were not normally distributed and were compared using Wilcoxon signed rank testing. Both therapies led to improvements in oxygenation, but only those from kinetic therapy achieved statistical significance. In patients receiving kinetic therapy first, median oxygenation index decreased from 7.4 to 6.19 (p = .015). The median P(A-a)O(2) decreased from 165.2 to 126.4 (p = .023). There were continued improvements in oxygenation after the subsequent period of standard therapy, with the median oxygenation index decreasing to 5.52 and median P(A-a)O(2) decreasing to 116.0, but these changes were not significant (p = .365 and .121, respectively). When standard therapy was first, the median oxygenation index decreased from 8.83 to 8.71 and the median P(a-a)o(2) decreased from 195.4 to 186.6. Neither change was significant. Median oxygenation index after the subsequent period of kinetic therapy was significantly lower (7.91, p = .044) and median P(A-a)O(2) trended lower (143.4, p = .077

  17. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate

    KAUST Repository

    Ghosh, Manik Kumer

    2018-04-04

    Ethyl levulinate (Ethyl 4-oxopentanoate) is a liquid molecule at ambient temperature, comprising of ketone and ethyl ester functionalities and is one of the prominent liquid fuel candidates that may be easily obtained from lignocellulosic biomass. The combustion kinetics of ethyl levulinate have been investigated. Shock tube and rapid compression machine apparatuses are utilised to acquire gas phase ignition delay measurements of 0.5% ethyl levulinate/O2 mixtures at ϕ = 1.0 and ϕ = 0.5 at ∼ 10 atm over the temperature range 1000–1400 K. Ethyl levulinate is observed not to ignite at temperatures lower than ∼1040 K in the rapid compression machine. The shock tube and rapid compression machine data are closely consistent and show ethyl levulinate ignition delay to exhibit an Arrhenius dependence to temperature. These measurements are explained by the construction and analysis of a detailed chemical kinetic model. The kinetic model is completed by establishing thermochemical-kinetic analogies to 2-butanone, for the ethyl levulinate ketone functionality, and to ethyl propanoate for the ethyl ester functionality. The so constructed model is observed to describe the shock tube data very accurately, but computes the rapid compression machine data set to a lesser but still applicable fidelity. Analysis of the model suggests the autooxidation mechanism of ethyl levulinate to be entirely dominated by the propensity for the ethyl ester functionality to unimolecularly decompose to form levulinic acid and ethylene. The subsequent reaction kinetics of these species is shown to dictate the overall rate of the global combustion reaction. This model is then use to estimate the Research and Motored Octane Numbers of ethyl levulinate to be ≥97.7 and ≥ 93, respectively. With this analysis ethyl levulinate would be best suited as a gasoline fuel component, rather than as a diesel fuel as suggested in the literature. Indeed it may be considered to be useful as an

  18. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  19. Free-Form Kinetic Reciprocal System

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario

    2011-01-01

    Kinetic Reciprocal System (KRS) are innovative moveable structures based on the principle of reciprocity [1] with internal pin-slot constraints [2]. The analysis of KRS kinematic and static determinacy is developed through the construction of kinematic matrices, accordingly with [3] and a discuss...

  20. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  1. Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Pastrana-Martínez, L M; Moreno-Castilla, C

    2008-08-15

    A study was conducted on the adsorption kinetics of diuron and amitrole from aqueous solutions on activated carbons of different particle sizes and on an activated carbon fiber. Different kinetic models were applied to the experimental results obtained. A pseudo-second-order rate equation fitted the adsorption kinetics data better than a pseudo-first-order rate equation. Amitrole showed faster adsorption kinetics compared with diuron because of the smaller size of the former herbicide, despite its lower driving force for adsorption. Both reaction rate constants increased when the particle size decreased. The activated carbon fiber and the activated carbon of smallest particle size (0.03 mm) showed similar adsorption kinetics. The intraparticle diffusion rate constant increased with higher initial concentration of herbicides in solution and with lower particle size of the adsorbent. This is because the rise in initial concentration increased the amount adsorbed at equilibrium, and the reduction in particle size increased the number of collisions between adsorbate and adsorbent particles. Demineralization of the activated carbon with particle size of 0.5mm had practically no effect on the adsorption kinetics.

  2. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    Science.gov (United States)

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  4. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  5. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  6. Three-dimensional coupled kinetics/thermal- hydraulic benchmark TRIGA experiments

    International Nuclear Information System (INIS)

    Feltus, Madeline Anne; Miller, William Scott

    2000-01-01

    This research project provides separate effects tests in order to benchmark neutron kinetics models coupled with thermal-hydraulic (T/H) models used in best-estimate codes such as the Nuclear Regulatory Commission's (NRC) RELAP and TRAC code series and industrial codes such as RETRAN. Before this research project was initiated, no adequate experimental data existed for reactivity initiated transients that could be used to assess coupled three-dimensional (3D) kinetics and 3D T/H codes which have been, or are being developed around the world. Using various Test Reactor Isotope General Atomic (TRIGA) reactor core configurations at the Penn State Breazeale Reactor (PSBR), it is possible to determine the level of neutronics modeling required to describe kinetics and T/H feedback interactions. This research demonstrates that the small compact PSBR TRIGA core does not necessarily behave as a point kinetics reactor, but that this TRIGA can provide actual test results for 3D kinetics code benchmark efforts. This research focused on developing in-reactor tests that exhibited 3D neutronics effects coupled with 3D T/H feedback. A variety of pulses were used to evaluate the level of kinetics modeling needed for prompt temperature feedback in the fuel. Ramps and square waves were used to evaluate the detail of modeling needed for the delayed T/H feedback of the coolant. A stepped ramp was performed to evaluate and verify the derived thermal constants for the specific PSBR TRIGA core loading pattern. As part of the analytical benchmark research, the STAR 3D kinetics code (, STAR: Space and time analysis of reactors, Version 5, Level 3, Users Guide, Yankee Atomic Electric Company, YEAC 1758, Bolton, MA) was used to model the transient experiments. The STAR models were coupled with the one-dimensional (1D) WIGL and LRA and 3D COBRA (, COBRA IIIC: A digital computer program for steady-state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Battelle

  7. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  8. KINETIC ALGORITHMS FOR HARBOUR MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. M. Gold

    2012-07-01

    Full Text Available Modern harbour management for a busy port needs to resolve a variety of simultaneous problems. Harbour traffic may be busy and the waterways congested, both by the major shipping and by the attendant harbour tugs. The harbour channel may be narrow and tortuous, and rapidly changing tides may require frequent course adjustments. Navigation aids must be clearly specified and immediately identifiable, in order to permit safe passage for the vessels. This requires a GIS with attributes not easily available with traditional products. The GeoVS system is a kinetic GIS with full three-dimensional visualisation, so that ships, bathymetry and landscape may be viewed in a form that is immediately understandable to both harbour pilots and the harbour authority. The system is kinetic because the data structures used to preserve the topological relationships between ships, seafloor and coastline are able to be maintained on a real-time basis, taking account of ship movement recorded on the compulsory AIS (Automatic Information System beacons. Maintenance of this real-time topology allows for easy detection of potential collisions, as well as real-time bathymetric estimations, necessary to prevent ship grounding in highly tidal environments. The system, based on previous research into kinetic Voronoi diagrams, as well as development of a completely new graphical engine, is now in commercial production, where its advantages over simpler twodimensional models without automatic collision and grounding detection are becoming evident. Other applications are readily envisaged, and will be addressed in the near future.

  9. Current IUBMB recommendations on enzyme nomenclature and kinetics

    Directory of Open Access Journals (Sweden)

    Athel Cornish-Bowden

    2014-05-01

    Full Text Available The International Union of Biochemistry (IUB, now IUBMB prepared recommendations for describing the kinetic behaviour of enzymes in 1981. Despite the more than 30 years that have passed since these have not subsequently been revised, though in various respects they do not adequately cover current needs. The IUBMB is also responsible for recommendations on the naming and classification of enzymes. In contrast to the case of kinetics, these recommendations are kept continuously up to date.

  10. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  11. Alternative kinetic energy metrics for Lagrangian systems

    Science.gov (United States)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  12. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  13. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  14. Kinetic chains: a review of the concept and its clinical applications.

    Science.gov (United States)

    Karandikar, Ninad; Vargas, Oscar O Ortiz

    2011-08-01

    During the past decade, our understanding of biomechanics and its importance in rehabilitation has advanced significantly. The kinetic chain, a concept borrowed from engineering, has helped us better understand the underlying physiology of human movement. This understanding, in turn, has facilitated the development of new and more rational rehabilitation strategies. The kinetic chain concept has application in a wide spectrum of clinical conditions, including musculoskeletal medicine, sports medicine, and neurorehabilitation, as well as prosthetics and orthotics. The purpose of this review is to provide insights into the biomechanics related to the concept of kinetic chains, with a specific focus on closed kinetic chains and its clinical applications in rehabilitation. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  16. Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis

    NARCIS (Netherlands)

    Ray, A.K; Beenackers, A.A C M

    1997-01-01

    A new two-phase swirl-flow monolithic-type reactor was designed to study the kinetics of heterogeneous photocatalytic processes on immobilized semiconductor catalysts. True kinetic rate constants for destruction of a textile dye were measured as a function of wavelength of light intensity and angle

  17. Substrate-Dependent Kinetics in Tyrosinase-based Biosensing: Amperometry vs. Spectrophotometry

    NARCIS (Netherlands)

    Rassaei, Liza; Cui, Jin; Goluch, E.D.; Lemay, Serge Joseph Guy

    2012-01-01

    Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose

  18. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  19. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS

    DEFF Research Database (Denmark)

    Perna, Valentina; Agger, Jane W.; Holck, Jesper

    2018-01-01

    as substrates to assess enzyme kinetics by HPLC-MS on two fungal laccases Trametes versicolor laccase, Tv and Ganoderma lucidum laccase, Gl. The method allowed accurate kinetic measurements and detailed insight into the product profiles of both laccases. Both Tv and Gl laccase are active...

  20. Some parameters of radionuclide kinetics

    International Nuclear Information System (INIS)

    Prokof'ev, O.N.; Smirnov, V.A.; Belen'kij, E.I.

    1978-01-01

    Numerical values of the rates of radionuclide absorption into, and elimination from, bovine organs were determined. Kinetic rate constants of radionuclides such as 89 Sr, 99 Mo, 131 I, 132 Tl, and 140 Be were calculated. The calculations were done for muscle, liver, and kidney

  1. A novel fractional technique for the modified point kinetics equations

    Directory of Open Access Journals (Sweden)

    Ahmed E. Aboanber

    2016-10-01

    Full Text Available A fractional model for the modified point kinetics equations is derived and analyzed. An analytical method is used to solve the fractional model for the modified point kinetics equations. This methodical technique is based on the representation of the neutron density as a power series of the relaxation time as a small parameter. The validity of the fractional model is tested for different cases of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified point kinetics equations is the best representation of neutron density for subcritical and supercritical reactors.

  2. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  3. Kinetics of the chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)

    2016-07-01

    We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.

  4. Comparison of one-dimensional and point kinetics for various light water reactor transients

    International Nuclear Information System (INIS)

    Naser, J.A.; Lin, C.; Gose, G.C.; McClure, J.A.; Matsui, Y.

    1985-01-01

    The object of this paper is to compare the results from the three kinetics options: 1) point kinetics; 2) point kinetics by not changing the shape function; and 3) one-dimensional kinetics for various transients on both BWRs and PWRs. A systematic evaluation of the one-dimensional kinetics calculation and its alternatives is performed to determine the status of these models and to identify additional development work. In addition, for PWRs, the NODEP-2 - NODETRAN and SIMULATE - SIMTRAN paths for calculating kinetics parameters are compared. This type of comparison has not been performed before and is needed to properly evaluate the RASP methodology of which these codes are a part. It should be noted that RASP is in its early pre-release stage and this is the first serious attempt to examine the consistency between these two similar but different methods of generating physics parameters for the RETRAN computer code

  5. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....

  6. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Performance of non-conventional factorization approaches for neutron kinetics

    International Nuclear Information System (INIS)

    Bulla, S.; Nervo, M.

    2013-01-01

    The use of factorization techniques provides a interesting option for the simulation of the time-dependent behavior of nuclear systems with a reduced computational effort. While point kinetics neglects all spatial and spectral effects, quasi-statics and multipoint kinetics allow to produce results with a higher accuracy for transients involving relevant modifications of the neutron distribution. However, in some conditions these methods can not work efficiently. In this paper, we discuss some possible alternative formulations for the factorization process for neutron kinetics, leading to mathematical models of reduced complications that can allow an accurate simulation of transients involving spatial and spectral effects. The performance of these innovative approaches are compared to standard techniques for some test cases, showing the benefits and shortcomings of the method proposed. (authors)

  8. Digestion kinetics of carbohydrate fractions of citrus by-products

    DEFF Research Database (Denmark)

    Lashkari, Saman; Taghizadeh, Akbar

    2015-01-01

    The present experiment was carried out to determine the digestion kinetics of carbohydrate fractions of citrus by-products. Grapefruit pulp (GP), lemon pulp (LE), lime pulp (LI) and orange pulp (OP) were the test feed. Digestion kinetic of whole citrus by-products and neutral detergent fiber (NDF......) fraction and acid detergent fiber (ADF) fractions of citrus by-products were measured using the in vitro gas production technique. Fermentation kinetics of the neutral detergent soluble carbohydrates (NDSC) fraction and hemicelluloses were calculated using a curve subtraction. The fermentation rate...... of whole was the highest for the LE (p by-products lag time was longer for hemicellulose than other carbohydrate fractions. There was no significant difference among potential gas production (A) volumes of whole test feeds (p

  9. An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics

    DEFF Research Database (Denmark)

    Kari, Jeppe; Andersen, Morten; Borch, Kim

    2017-01-01

    Interfacial enzyme reactions are ubiquitous both in vivo and in technical applications, but analysis of their kinetics remains controversial. In particular, it is unclear whether conventional Michaelis–Menten theory, which requires a large excess of substrate, can be applied. Here, an extensive...... experimental study of the enzymatic hydrolysis of insoluble cellulose indeed showed that the conventional approach had a limited applicability. Instead we argue that, unlike bulk reactions, interfacial enzyme catalysis may reach a steady-state condition in the opposite experimental limit, where...... for kinetic analyses of interfacial enzyme reactions and that its analogy to established theory provides a bridge to the accumulated understanding of steady-state enzyme kinetics. Finally, we show that the ratio of parameters from conventional and inverted Michaelis–Menten analysis reveals the density...

  10. A nondissipative simulation method for the drift kinetic equation

    International Nuclear Information System (INIS)

    Watanabe, Tomo-Hiko; Sugama, Hideo; Sato, Tetsuya

    2001-07-01

    With the aim to study the ion temperature gradient (ITG) driven turbulence, a nondissipative kinetic simulation scheme is developed and comprehensively benchmarked. The new simulation method preserving the time-reversibility of basic kinetic equations can successfully reproduce the analytical solutions of asymmetric three-mode ITG equations which are extended to provide a more general reference for benchmarking than the previous work [T.-H. Watanabe, H. Sugama, and T. Sato: Phys. Plasmas 7 (2000) 984]. It is also applied to a dissipative three-mode system, and shows a good agreement with the analytical solution. The nondissipative simulation result of the ITG turbulence accurately satisfies the entropy balance equation. Usefulness of the nondissipative method for the drift kinetic simulations is confirmed in comparisons with other dissipative schemes. (author)

  11. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  12. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  13. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    Science.gov (United States)

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  14. A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates

    Science.gov (United States)

    Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.

    2015-01-01

    Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…

  15. "Batch" kinetics in flow: online IR analysis and continuous control.

    Science.gov (United States)

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kinetic mean field theories: Results of energy constraint in maximizing entropy

    NARCIS (Netherlands)

    Stell, G.; Karkheck, J.; Beijeren, H. van

    1983-01-01

    Structure of liquids and solids; crystallography Classical, semiclassical, and quantum theories of liquid structure Statistical theories of liquid structure - Kinetic and transport theory of fluids; physical properties of gases Kinetic and transport theory

  17. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  18. Kinetic physics in ICF: present understanding and future directions

    Science.gov (United States)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  19. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  20. GENERAL EQUATIONS OF CARBONIZATION OF EUCALYPTUS SPP KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    Túlio Jardim Raad

    2006-06-01

    Full Text Available In the present work, a set of general equations related to kinetic mechanism of wood compound carbonization: hemicelluloses, cellulose and lignin was obtained by Avrami-Eroffev and Arrhenius equations and Thermogravimetry of Eucalyptus cloeziana, Eucalyptus camaldulensis, Corymbia citriodora, Eucalyptus urophylla and Eucalyptus grandis samples, TG-Isothermal and TG-Dynamic. The different thermal stabilities and decomposition temperature bands of those species compounds were applied as strategy to obtain the kinetic parameters: activation energy, exponential factor and reaction order. The kinetic model developed was validated by thermogravimetric curves from carbonization of others biomass such as coconut. The kinetic parameters found were - Hemicelluloses: E=98,6 kJmol, A=3,5x106s-1 n=1,0; - Cellulose: E=182,2 kJmol, A=1,2x1013s-1 n=1,5; - Lignin: E=46,6 kJmol, A=2,01s-1 n=0,41. The set of equations can be implemented in a mathematical model of wood carbonization simulation (with heat and mass transfer equations with the aim of optimizing the control and charcoal process used to produce pig iron.

  1. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  3. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...... electron backscatter diffraction (EBSD), Vickers hardness test, 3D X-ray diffraction (3DXRD) and differential scanning calorimetry (DSC). For the cold-rolled samples, a series of initial parameters was investigated for their effects on the recrystallization kinetics and textures, including initial grain...

  4. Kinetic Tremor: Differences Between Smokers and Non-smokers

    OpenAIRE

    Louis, Elan D.

    2006-01-01

    Tremor is among the acute effects of nicotine exposure. Published studies have focused on smoking-related postural (static) hand tremor rather than kinetic tremor (tremor during hand use), and gender differences in smoking-related tremor have not been examined. In a group of adults who were sampled from a population (mean ± SD = 65.7 ± 11.5 years, range = 18 - 92 years), the investigator assessed whether the severity of postural and kinetic tremors differed in smokers versus non-smokers, and ...

  5. Kinetics of the water formation in the propene epoxidation over gold-titania catalysts

    NARCIS (Netherlands)

    Nijhuis, T.A.; Weckhuysen, B.M.

    2007-01-01

    The kinetics of the hydrogen oxidation were determined for a number of different gold catalysts supported on titania, silica, and silicalite-1. A dual site Langmuir-Hinshelwood kinetic model was able to describe the reaction well. The kinetic parameters are independent of the support. Water was

  6. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae.

    Science.gov (United States)

    Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong

    2017-03-01

    Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available The thermal stability and kinetics of non-isothermal degradation of polypropene and polypropene composites filled with 20 mass% vigorously grounded and mixed raw rice husks (RRH, black rice husks ash (BRHA, white rice husks ash (WRHA and Aerosil Degussa (AR were studied. The calculation procedures of Coats – Redfern, Madhysudanan et al., Tang et al., Wanjun et al. and 27 model kinetic equations were used. The kinetics of thermal degradation were found to be best described by kinetic equations of n-th order (Fn mechanism. The kinetic parameters E, A, ΔS≠, ΔH≠and ΔG≠for all the samples studied were calculated. The highest values of n, E and A were obtained for the composites filled with WRHA and AR. A linear dependence between lnA and E was observed, known also as kinetic compensation effect. The results obtained were considered enough to conclude that the cheap RRH and the products of its thermal degradation BRHA and WRHA, after vigorously grounding and mixing, could successfully be used as fillers for polypropene instead of the much more expensive synthetic material Aerosil to prepare various polypropene composites.

  8. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  9. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  10. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide

    International Nuclear Information System (INIS)

    Ribeiro, E.M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs

  11. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  12. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer

    2013-05-01

    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  13. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  14. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  15. Kinetic study of ozonation of molasses fermentation wastewater

    International Nuclear Information System (INIS)

    Coca, M.; Pena, M.; Gonzalez, G.

    2007-01-01

    A kinetic study of molasses wastewater ozonation was carried out in a stirred tank reactor to obtain the rate constants for the decolorization reaction and the regime through which ozone is absorbed. First, fundamental mass transfer parameters such as ozone solubility, volumetric mass transfer coefficients and ozone decomposition kinetics were determined from semi-batch experiments in organic-free solutions with an ionic composition similar that of industrial wastewater. The influence of operating variables such as the stirring rate and gas flow rate on the kinetic and mass transfer parameters was also studied. The application of film theory allows to establish that the reactions between ozone and colored compounds in wastewater take place in the fast and pseudo-first-order regime, within the liquid film. The decolorization rate constants were evaluated at pH 8.7 and 25 deg. C, varying from 0.6 x 10 7 to 3.8 x 10 7 L mol -1 s -1 , depending on the stirring rate and the inlet gas flow

  16. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  17. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  18. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-01-01

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter (α) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow

  19. Thallium kinetics in rat cardiac transplant rejection

    International Nuclear Information System (INIS)

    Barak, J.H.; LaRaia, P.J.; Boucher, C.A.; Fallon, J.T.; Buckley, M.J.

    1988-01-01

    Cardiac transplant rejection is a very complex process involving both cellular and vascular injury. Recently, thallium imaging has been used to assess acute transplant rejection. It has been suggested that changes in thallium kinetics might be a sensitive indicator of transplant rejection. Accordingly, thallium kinetics were assessed in vivo in acute untreated rat heterotopic (cervical) transplant rejection. Male Lewis rats weighing 225-250 g received heterotopic heart transplants from syngeneic Lewis rats (group A; n = 13), or allogeneic Brown Norway rats (group B; n = 11). Rats were imaged serially on the 2nd and the 7th postoperative days. Serial cardiac thallium content was determined utilizing data collected every 150 sec for 2 hr. The data were fit to a monoexponential curve and the decay rate constant (/sec) derived. By day 7 all group B hearts had histological evidence of severe acute rejection, and demonstrated decreased global contraction. Group A hearts showed normal histology and contractility. However, thallium uptakes and washout of the two groups were the same. Peak thallium uptake of group B was +/- 3758 1166 counts compared with 3553 +/- 950 counts in the control group A (P = 0.6395); The 2-hr percentage of washout was 12.1 +/- 1.04 compared with 12.1 +/- 9.3 (P = 1.0000); and the decay constant was -0.00002065 +/- 0.00001799 compared with -0.00002202 +/- 0.00001508 (P = 0.8409). These data indicate that in vivo global thallium kinetics are preserved during mild-to-severe acute transplant rejection. These findings suggest that the complex cellular and extracellular processes of acute rejection limit the usefulness of thallium kinetics in the detection of acute transplant rejection

  20. Kinetic mechanism of DNA polymerase I (Klenow)

    International Nuclear Information System (INIS)

    Kuchta, R.D.; Mizrahi, V.; Benkovic, P.A.; Johnson, K.A.; Benkovic, S.J.

    1987-01-01

    The minimal kinetic scheme for DNA polymerization catalyzed by the Klenow fragment of DNA polymerase I (KF) from Escherichia coli has been determined with short DNA oligomers of defined sequence, labeled with [ 32 P]-nucleotides. A key feature of this scheme is a minimal two-step sequence that interconverts the ternary KF-DNA/sub n/-dNTP and KF-DNA/sub n+1/-PP/sub i/ complexes. The rate is not limited by the actual polymerization but by a separate step, possibly important in ensuring fidelity. Evidence for this sequence is supplied by the observation of biphasic kinetics in single-turnover pyrophosphorolysis experiments (the microscopic reverse of polymerization). Data analysis then provides an estimate of the internal equilibrium constant. The dissociations of DNA, dNTP, and PP/sub i/ from the various binary and ternary complexes were measured by partitioning (isotope-trapping) experiments. The rate constant for DNA dissociation from KF is sequence dependent and is rate limiting during nonprocessive DNA synthesis. The combination of single-turnover (both directions) and isotope-trapping experiments provides sufficient information to permit a quantitative evaluation of the kinetic scheme for specific DNA sequences

  1. Carbochlorination kinetics of tantalum and niobium pentoxides

    International Nuclear Information System (INIS)

    Allain, E.; Gaballah, I.; Garcia, F.; Ferreira, S.; Ayala, J. N.; Hernandez, A.

    1999-01-01

    The carbochlorination kinetics of pure Nb 2 O 5 and Ta 2 O 5 by gas mixture (CL 2 +CO+N 2 ) between 380 and 1,000 degree centigree is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the partial pressure of Cl 2 and Co at temperatures below 650 degree centigree on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb 2 O 5 and Ta 2 O 5 , respectively. At temperatures above 650 degree centigree the Arrhenius diagram presents and anomaly which may be attributed to the decomposition of the COCL 2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl 2 +CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl 2 +N 2 . The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides. (Author) 14 refs

  2. Topological and kinetic determinants of the modal matrices of dynamic models of metabolism.

    Directory of Open Access Journals (Sweden)

    Bin Du

    Full Text Available Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J and the modal matrix (M-1 arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions.

  3. Point kinetics model with one-dimensional (radial) heat conduction formalism

    International Nuclear Information System (INIS)

    Jain, V.K.

    1989-01-01

    A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs

  4. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    Science.gov (United States)

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted

  5. Kinetics of thermal decomposition and kinetics of substitution reaction of nano uranyl Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Zeinali, A.; Dušek, Michal; Eigner, Václav

    2014-01-01

    Roč. 46, č. 12 (2014), s. 718-729 ISSN 0538-8066 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : uranyl * Schiff base * kinetics * anticancer activity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.517, year: 2014

  6. A Kinetic Study of the Diels-Alder Reaction. An Experiment Illustrating Simple Second-Order Reaction Kinetics.

    Science.gov (United States)

    Silvestri, Michael G.; Dills, Charles E.

    1989-01-01

    Describes an organic chemistry experiment for teaching the basic concepts of chemical kinetics. Provides background information about first- and second-order reactions, experimental procedures of the Diels-Alder reaction between cyclopentadiene and dimethyl fumarate, and the experimental results. (YP)

  7. Satl model lesson in chemical kinetics | Nazir | African Journal of ...

    African Journals Online (AJOL)

    Studies in order to pursue kinetics and mechanism of chemical reactions are a vital component of chemical literature. SATL literature is still not available for promoting this vital aspect of chemistry teaching. A lesson pertaining to this important issue has been developed and various parameters of kinetic studies are ...

  8. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    Science.gov (United States)

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  9. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    Science.gov (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  10. Adsorption kinetics of surfactants on activated carbon

    Science.gov (United States)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  11. Kinetic determination of As(III in solution

    Directory of Open Access Journals (Sweden)

    TODOR G. PECEV

    2003-10-01

    Full Text Available A new reaction is suggested and a new kinetic method is elaborated for the As(III traces determination in solution, on the basis of their catalyzing effect on komplexon III (EDTA oxidation by KMnO4 in a strong acid solution (H2SO4. Using a spectrophotometric technique, a sensitivity of 72 ng/cm3 As(III was achieved. The relative error of method varies from 5.5 to 13.9 % for As(III concentration range from 83 to 140 ng/cm3. Appropriate kinetic equations are formulated and the influence of some other ions, including the As(V, upon the reaction rate is tested.

  12. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  13. Group-kinetic theory of turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  14. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  15. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  16. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism

    Science.gov (United States)

    Gorban, Alexander N.; Karlin, Iliya V.

    2004-05-01

    Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.

  17. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    Science.gov (United States)

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  18. A mathematical model for iodine kinetics

    International Nuclear Information System (INIS)

    Silva, E.A.T. da.

    1976-01-01

    A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt

  19. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; König, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2017-02-01

    Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature. Aims: We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps. Methods: Three 218 GHz transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202 and 321-220/303-202 ratios. Results: The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions. The reduced spectra (FITS files) are only

  20. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  1. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  2. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages.

    Science.gov (United States)

    Chen, Dengyu; Zheng, Yan; Zhu, Xifeng

    2013-03-01

    An in-depth investigation was conducted on the kinetic analysis of raw biomass using thermogravimetric analysis (TGA), from which the activation energy distribution of the whole pyrolysis process was obtained. Two different stages, namely, drying stage (Stage I) and devolatilization stage (Stage II), were shown in the pyrolysis process in which the activation energy values changed with conversion. The activation energy at low conversions (below 0.15) in the drying stage ranged from 10 to 30 kJ/mol. Such energy was calculated using the nonisothermal Page model, known as the best model to describe the drying kinetics. Kinetic analysis was performed using the distributed activation energy model in a wide range of conversions (0.15-0.95) in the devolatilization stage. The activation energy first ranged from 178.23 to 245.58 kJ/mol and from 159.66 to 210.76 kJ/mol for corn straw and wheat straw, respectively, then increasing remarkably with an irregular trend. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Laboratory studies on the adsorption kinetics of 137Cs in sediment

    International Nuclear Information System (INIS)

    Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Sarkar, P.K.

    2012-01-01

    During the operation of a nuclear reactor, extreme care is taken to minimize the release of radionuclides to the environment. Low level radioactive liquid waste generated is treated and released to the nearest water body after monitoring to ensure that the activity levels are well within the regulatory limits. Environmental Survey Laboratories (ESL) attached to power plants carry out a systematic environmental monitoring and impact assessment to ensure that the dose to the member of public is well within the limits. This paper presents the results of a systematic laboratory study carried out at ESL, Kakrapar Atomic Power Station (KAPS) on the adsorption kinetics of 137 Cs in sediment. The study is to evaluate the sorption kinetics of 137 Cs + onto site specific sediment. Sets of adsorption experiments were conducted at specific time intervals for two different 137 Cs + concentrations, keeping other experimental conditions same. The kinetics of 137 Cs + adsorption on sediment is analyzed using pseudo first order, pseudo second order, and intra-particle diffusion kinetic models. The pseudo-second order kinetic model is better correlated with the kinetics data compared with the pseudo first-order model. This indicates 137 Cs + ions can be involved in chemical bonding during the adsorption process to the analysed sediment. This chemi-sorption processes show a good compliance with the pseudo-second order kinetic model. It is also evident that lower concentration exhibits greater adsorption rate (k 2 value is 1.85 x 10 -5 Bq g -1 min -1 for 1245 Bq sets and 1.05 x 10 -5 Bq g -1 min -1 for 2456 Bq sets) from the pseudo second order model. Intra-particle diffusion rate constants (K id ) were also obtained by two different models for both the concentrations and found to be higher for higher concentration. (author)

  4. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  5. Association of footprint measurements with plantar kinetics: a linear regression model.

    Science.gov (United States)

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2014-03-01

    The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.

  6. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  7. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  8. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.

    Science.gov (United States)

    Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E

    2007-02-15

    Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.

  9. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  10. Kinetic Risk Factors of Running-Related Injuries in Female Recreational Runners.

    Science.gov (United States)

    Napier, Christopher; MacLean, Christopher L; Maurer, Jessica; Taunton, Jack E; Hunt, Michael A

    2018-05-30

    Our objective was to prospectively investigate the association of kinetic variables with running-related injury (RRI) risk. Seventy-four healthy female recreational runners ran on an instrumented treadmill while 3D kinetic and kinematic data were collected. Kinetic outcomes were vertical impact transient, average vertical loading rate, instantaneous vertical loading rate, active peak, vertical impulse, and peak braking force (PBF). Participants followed a 15-week half-marathon training program. Exposure time (hours of running) was calculated from start of program until onset of injury, loss to follow-up, or end of program. After converting kinetic variables from continuous to ordinal variables based on tertiles, Cox proportional hazard models with competing risks were fit for each variable independently, before analysis in a forward stepwise multivariable model. Sixty-five participants were included in the final analysis, with a 33.8% injury rate. PBF was the only kinetic variable that was a significant predictor of RRI. Runners in the highest tertile (PBF recreational runners and should be considered as a target for gait retraining interventions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...

  12. The kinetics of hydrolysis of acetylsalicylic acid (Aspirin) in different ...

    African Journals Online (AJOL)

    The kinetics of hydrolysis of Acetylsalicylic acid (Aspirin) to salicylic acid was followed by the direct spectrophotometric measurement of the amount of salicylic acid produced with time. Salicylic acid was complexed with ferric ion giving a characteristic purple colour (λlm 523nm). The kinetics of hydrolysis was found to follow ...

  13. pyJac: Analytical Jacobian generator for chemical kinetics

    Science.gov (United States)

    Niemeyer, Kyle E.; Curtis, Nicholas J.; Sung, Chih-Jen

    2017-06-01

    Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical explosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and analysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations. As a demonstration, we first establish the correctness of the Jacobian matrices for kinetic models of hydrogen, methane, ethylene, and isopentanol oxidation (number of species ranging 13-360) by showing agreement within 0.001% of matrices obtained via automatic differentiation. We then demonstrate the performance achievable on CPUs and GPUs using py

  14. Kinetic studies on leucite precursors

    Czech Academy of Sciences Publication Activity Database

    Mrázová, M.; Kloužková, A.; Kohoutková, Martina

    2009-01-01

    Roč. 7, č. 2 (2009), s. 205-210 ISSN 1895-1066 R&D Projects: GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502 Keywords : leucite * crystallization kinetics * hydrothermal Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.065, year: 2009

  15. Kinetic energy management in road traffic injury prevention: a call for action

    Directory of Open Access Journals (Sweden)

    Davoud Khorasani-Zavareh

    2015-01-01

    Full Text Available Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy. The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety.

  16. Kinetics of palm kernel oil and ethanol transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Ahiekpor, Julius C. [Centre for Energy, Environment and Sustainable Development (CEESD), P.O. Box FN 793, Kumasi (Ghana); Kuwornoo, David K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana)

    2010-07-01

    Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, there are no available data on the kinetics and mechanisms of transesterification of local vegetable oils. The need for local production of biodiesel necessitates that the mechanism and kinetics of the process is well understood, since the properties of the biodiesel depends on the type of oil use for the transesterification process. The objective of this work is to evaluate the appropriate kinetics mechanism and to find out the reaction rate constants for palm kernel oil transesterification with ethanol when KOH was used as a catalyst. In this present work, 16 biodiesel samples were prepared at specified times based on reported optimal conditions and the samples analysed by gas chromatography. The experimental mass fractions were calibrated and fitted to mathematical models of different proposed mechanisms in previous works.The rate data fitted well to second-order kinetics without shunt mechanism. It was also observed that, although transesterification reaction of crude palm kernel oil is a reversible reaction, the reaction rate constants indicated that the forward reactions were the most prominent.

  17. A consistent description of kinetics and hydrodynamics of quantum Bose-systems

    Directory of Open Access Journals (Sweden)

    P.A.Hlushak

    2004-01-01

    Full Text Available A consistent approach to the description of kinetics and hydrodynamics of many-Boson systems is proposed. The generalized transport equations for strongly and weakly nonequilibrium Bose systems are obtained. Here we use the method of nonequilibrium statistical operator by D.N. Zubarev. New equations for the time distribution function of the quantum Bose system with a separate contribution from both the kinetic and potential energies of particle interactions are obtained. The generalized transport coefficients are determined accounting for the consistent description of kinetic and hydrodynamic processes.

  18. Prediction of free turbulent mixing using a turbulent kinetic energy method

    Science.gov (United States)

    Harsha, P. T.

    1973-01-01

    Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.

  19. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  20. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  1. Kinetics of alpha-amylase secretion in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Henriksen, Anne Laurence Santerre; Carlsen, Morten; Bang de, H.

    1999-01-01

    -chase experiments were carried out to investigate the alpha-amylase secretion kinetics in A. oryzae. No unglycosylated alpha-amylase was detected neither intracellularly nor extracellularly demonstrating that glycosylation was not the rate controlling step in the secretory pathway. The pulse chase experiments...... indicated that there are two pools of intracellular alpha-amylase: a fast secreted and a slow secreted. The secretion of those two pools were described with a kinetic model, which was fitted to the pulse chase experiments. (C) 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 76-82, 1999....

  2. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  3. Chemical kinetics of detonation in some liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)

    2005-09-01

    The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  5. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  6. Cell kinetics of GM-CFC in the steady state

    International Nuclear Information System (INIS)

    Hagan, M.P.; MacVittie, T.J.; Dodgen, D.P.

    1985-01-01

    The kinetics of cell turnover for myeloid/monocyte cells that form colonies in agar (GM-CFC) were measured through the progressive increase in their sensitivity to 313-nm light during a period of cell labeling with BrdCyd. Two components of cell killing with distinctly separate labeling kinetics revealed both the presence of two generations within the GM-CFC compartment and the properties of the kinetics of the precursors of the GM-CFC. These precursors of the GM-CFC were not assayable in a routine GM-CFC assay when pregnant mouse uterus extract and mouse L-cell-conditioned medium were used to stimulate colony formation but were revealed by the labeling kinetics of the assayable GM-CFC. Further, these precursor cells appeared to enter the assayable GM-CFC population from a noncycling state. This was evidenced by the failure of the majority of these cells to incorporate BrdCyd during five days of infusion. The half-time for cell turnover within this precursor compartment was measured to be approximately 5.5 days. Further, these normally noncycling cells proliferated rapidly in response to endotoxin. High-proliferative-potential colony-forming cells (HPP-CFC) were tested as a candidate for this precursor population. The results of the determination of the kinetics for these cells showed that the HPP-CFC exist largely in a Go state, existing at an average rate of once every four days. The slow turnover time for these cells and their response to endotoxin challenge are consistent with a close relationship between the HPP-CFC and the Go pool of cells that is the direct precursor of the GM-CFC

  7. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  8. Microbial kinetic for In-Storage-Psychrophilic Anaerobic Digestion (ISPAD).

    Science.gov (United States)

    Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

    2014-12-15

    In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a wastewater storage tank converted into an anaerobic digestion (AD) system by means of an airtight floating geo-membrane. For process optimization, ISPAD requires modelling with well-established microbial kinetics coefficients. The present objectives were to: obtain kinetics coefficients for the modelling of ISPAD; compare the prediction of the conventional and decomposition fitting approach, an innovative fitting technique used in other fields of science, and; obtain equations to predict the maximum growth rate (μmax) of microbial communities as a function of temperature. The method consisted in conducting specific Substrate Activity Tests (SAT) using ISPAD inoculum to monitor the rate of degradation of specific substrates at 8, 18 and 35 °C. Microbial kinetics coefficients were obtained by fitting the Monod equations to SAT. The statistical procedure of Least Square Error analysis was used to minimize the Sum of Squared Errors (SSE) between the measured ISPAD experimental data and the Monod equation values. Comparing both fitting methods, the decomposition approach gave higher correlation coefficient (R) for most kinetics values, as compared to the conventional approach. Tested to predict μmax with temperature, the Square Root equation better predicted temperature dependency of both acidogens and propionate degrading acetogens, while the Arrhenius equation better predicted that of methanogens and butyrate degrading acetogens. Increasing temperature from 18 to 35 °C did not affect butyrate degrading acetogens, likely because of their dominance, as demonstrated by microbial population estimation. The estimated ISPAD kinetics coefficients suggest a robust psychrophilic and mesophilic coexisting microbial community demonstrating acclimation to ambient temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  10. Uptake kinetics of relatively insoluble particles by tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1976-01-01

    Tracheobronchial lymph nodes accumulate a portion of material deposited in the deep lung following inhalation of relatively insoluble particles. Experiments involving a variety of compounds, inhaled singly or repeatedly, indicate that the kinetics of lymph node uptake are fairly independent of particle characteristics and mammalian species. The buildup per unit weight of nodal tissue compared with that of lung tissue, with time, can be represented by a linear logarithmic function. However, since the scatter in experimental points may be large at any given time after inhalation exposure, a number of different kinetic descriptions of uptake can be derived. The logarithmic pattern of accumulation can be approximated over an extended time range (several years) by use of a combination of first-order kinetics of loss from the lung and of buildup in lymph nodes, but it is recognized that the processes are much more complicated than this treatment would indicate. Clearance (loss) from the lymph nodes is not well defined, but this aspect is discussed in light of the kinetic models presented

  11. Lifetime estimation of zirconia ceramics by linear ageing kinetics

    International Nuclear Information System (INIS)

    Zhang, Fei; Inokoshi, Masanao; Vanmeensel, Kim; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-01-01

    Up to now, the ageing kinetics of zirconia ceramics were mainly derived from the sigmoidal evolution of the surface phase transformation as a function of time, as quantified by means of X-ray diffraction (XRD). However, the transformation propagation into the material should be better to monitor the ageing kinetics. In this work, μ-Raman spectroscopy was used to quantitatively measure the transformation profiles in depth as a function of ageing time at 160 °C, 140 °C, 134 °C and 110 °C. A linear relationship between the transformed depth and the ageing time was observed for all investigated yttria stabilized tetragonal zirconia polycrystals (3Y-TZP). Furthermore, the μ-Raman investigation of residual stresses in the subsurface of aged 3Y-TZPs showed that the highest tensile stress was located just ahead of the transformation front, indicating the key responsibility of stress accumulation for transformation front propagating into the material. Moreover, the linear kinetics of the transformation propagation were more accurate to calculate the apparent activation energy of the ageing process and allowed a more straightforward estimation of the lifetime of 3Y-TZP at body temperature, as compared to the conventional ageing kinetic parameters obtained from the surface transformation analysis by XRD

  12. Fractional neutron point kinetics equations for nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del

    2011-01-01

    The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.

  13. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway

    Science.gov (United States)

    Kaserer, Alla O.; Andi, Babak; Cook, Paul F.; West, Ann H.

    2010-01-01

    For both prokaryotic and eukaryotic His-Asp phosphorelay signaling pathways, the rates of protein phosphorylation and dephosphorylation determine the stimulus-to-response time frame. Thus, kinetic studies of phosphoryl group transfer between signaling partners are important for gaining a full understanding of how the system is regulated. In many cases, the phosphotransfer reactions are too fast for rates to be determined by manual experimentation. Rapid quench flow techniques thus provide a powerful method for studying rapid reactions that occur in the millisecond time frame. In this chapter, we describe experimental design and procedures for kinetic characterization of the yeast SLN1-YPD1-SSK1 osmoregulatory phosphorelay system using a rapid quench flow kinetic instrument. PMID:20946842

  14. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy); Basile, Angelo [Institute on Membrane Technology, ITM-CNR, c/o Univ. of Calabria, via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Castelli, Stefano [ENEA, Dipartimento ACS, C.R. ENEA Casaccia, Via Anguillarese 301, Roma I-00123 (Italy); Fabbricino, Massimiliano; Licusati, Celeste [Dept. of Hydraulic and Environmental Engineering, Univ. of Naples Federico II, Via Claudio 21, Naples 80125 (Italy); Gallucci, Fausto [Fundamentals of Chemical Reaction Engineering Group, Faculty of Science and Technology, University of Twente, Enschede (Netherlands)

    2009-06-15

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the reaction and permeation kinetics. Especially, a simplified ''power law'' has been applied for the reaction kinetics: the comparison with experimental data obtained by using three different kinds of catalyst (Ru, Pt and Ni based) permitted defining the coefficients of the kinetics expression as well as to validate the model. Based on the Damkohler-Peclet analysis, the optimization of the membrane reformer has been also approached. (author)

  15. Kinetics and enthalpy of crystallization of uric acid dihydrate

    International Nuclear Information System (INIS)

    Sádovská, Galina; Honcová, Pavla; Sádovský, Zdeněk

    2013-01-01

    Highlights: • The kinetic constant and growth order of crystallization of uric acid dihydrate was calculated. • The equation describing first-order crystal growth was derived. • The enthalpy of crystallization of uric acid dihydrate was determined. - Abstract: The kinetics of crystallization of uric acid dihydrate in aqueous solution with a constant ionic strength 0.3 mol dm −3 NaCl and at thermodynamic and physiological temperature (25 and 37 °C) was studied using isoperibolic reaction twin calorimeter. The enthalpy of crystallization Δ cr H = −47.3 ± 0.9 and −46.2 ± 1.4 kJ mol −1 and kinetic constant k g = 2.0 × 10 −8 and 9.6 × 10 −8 m 4 s −1 mol −1 were determined at 25 and 37 °C, respectively

  16. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  17. Solving Simple Kinetics without Integrals

    Science.gov (United States)

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  18. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  19. Kinetics model development of cocoa bean fermentation

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  20. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  1. Kinetics of saccharose fermentation by Kombucha

    Directory of Open Access Journals (Sweden)

    Lončar Eva S.

    2014-01-01

    Full Text Available Kinetics of saccharose fermentation by Kombucha is not yet well defined due to lack of knowledge of reaction mechanisms taking place during this process. In this research kinetics of saccharose fermentation by Kombucha was analysed using the suggested empirical model. The data were obtained on 1.5 g L-1 of black tea, with 66.47 g L-1 of saccharose and using 10% (v/v or 15% (v/v of Kombucha. Total number of viable cells was as follows: approximately 5x105 of yeast cells per mL of the inoculum and approximately 2x106 of bacteria cells per mL of the inoculum. The samples were analysed after 0, 3, 4, 5, 6, 7 and 10 days. Their pH values and contents of saccharose, glucose, fructose, total acids and ethanol were determined. A saccharose concentration model was defined as sigmoidal function at 22oC and 30oC, and with 10% (v/v and 15% (v/v of inoculum quantity. Determination coefficients of the functions were very high (R2>0.99. Reaction rates were calculated as first derivatives of Boltzmann’s functions. No simple correlation between rate of reaction and independent variables (temperature and inoculum concentration was found. Analysis of empirical model indicated that saccharose fermentation by Kombucha occurred according to very complex kinetics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  2. Thermodynamic, kinetic and mechanistic investigations of ...

    Indian Academy of Sciences (India)

    with respect to the rate determining step and the thermodynamic quantities with respect to the equilibrium steps were evaluated and ... are, (1) to establish a rate law through kinetic measure- ments, (2) to ..... second and third equilibrium steps.

  3. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  4. Kinetic Titration Series with Biolayer Interferometry

    Science.gov (United States)

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  5. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  6. The nonextensive gas: a kinetic approach

    International Nuclear Information System (INIS)

    Lima, J.A.S.; Silva, R.

    2005-01-01

    We discuss a kinetic nonextensive generalization of the Maxwellian ideal gas. The analysis rests on two basic assumptions: (i) instead of the standard Gaussian form, the q-gas is described by a power-law velocity distribution as suggested in the nonextensive Tsallis' framework (ii) the q-nonextensive generalization of the Boltzmann entropy formula governs the behavior of the q-gas. In this context, we show that the pressure and the internal energy are kinetically modified, but the general equation of state, PV=2U/3, remains valid. The adiabatic index is now a function of the nonextensive parameter, γ=C p /C V =5/3q. However, the standard expression relating the specific heats (at constant pressure and volume) with the coefficient of expansion and the isothermal compressibility, C P -C V =TVα 2 /κ T , is not modified

  7. A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA)

    International Nuclear Information System (INIS)

    Wakelam, V.; Pavone, B.; Hébrard, E.; Hersant, F.; Herbst, E.; Loison, J.-C.; Chandrasekaran, V.; Bergeat, A.; Smith, I. W. M.; Adams, N. G.; Bacchus-Montabonel, M.-C.; Béroff, K.; Bierbaum, V. M.; Chabot, M.; Dalgarno, A.; Van Dishoeck, E. F.; Faure, A.; Geppert, W. D.; Gerlich, D.; Galli, D.

    2012-01-01

    We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.

  8. Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin

    International Nuclear Information System (INIS)

    Garcia, S.J.; Ramis, X.; Serra, A.; Suay, J.

    2006-01-01

    Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the deg.ree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The 'nucleation and growth' Avrami kinetic model A 3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied

  9. Blood-organ transfer kinetics

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; French, C.S.; Wrenn, M.E.; Lipsztein, J.; Sasso, T.L.; Durbin, P.W.

    1980-01-01

    Exact and approximate kinetics equations relating to the transfer and elimination of radionuclides from the blood and various organs in the body are presented. These expressions may be used to estimate the instantaneous activity or the total number of disintegrations of a radionuclide in the blood or various organs of reference in the body, hence, also the respective dose rates and doses. The exact kinetics equations may be used to relate measurements of radionuclides in excreta to burdens in the body. They do give better results for exposure intervals long compared to the effective mean lives of the radionuclide in the various organs of reference, and they yield the exact steady state expressions. Fortunately, this condition is often satisfied for the relatively long standard exposure interval of 50 years that is applied to occupational exposure. In addition, the steady state expressions may be used along with metabolic data of the distribution of elements in the body, diet and excreta to estimate values of the rate constants used in both the exact and approximate expressions. A comparison of the exact and approximate expressions is given for the uranium metabolic model of Wrenn et al. and a comparison is made with current ICRP models. (author)

  10. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  11. To the problem on formation kinetics of absorption and polylayer films in anodic oxidation of cadmium in alkali hydroxides. Kinetics of irreversible absorption of oxide

    International Nuclear Information System (INIS)

    Grachev, D.K.

    1978-01-01

    An attempt is made to substantiate the formation of adsorption and polylayer films on cadmium electrode during its oxidation in KOH diluted solutions based on the interpretation of data from methods of the potential control. Using relaxation methods (voltammetry and chronoammetry) the conditions were determined at which irreversible abd sorption kinetics of the passivating oxide turns out to dominate the anodic dissolution process in the KOH 1-0.1 N solutions. Parts of monolayer and polylayer surface filling are shown. Kinetics of monolayer oxide growth is interpreted based on the Temkin-Zeldovich type equation for irreversible adsorption process. Ways of the kinetic equation precision are discussed for its full correspondence with the experiment obtained

  12. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    Science.gov (United States)

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  13. Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study

    International Nuclear Information System (INIS)

    Miranda, Miguel; Cabrita, I.; Pinto, Filomena; Gulyurtlu, I.

    2013-01-01

    The study performed aimed at analysing possible routes for pyrolysis reaction mechanisms of polymeric materials namely RT (rubber tyre) and plastic wastes (PE (polyethylene), PP (polypropylene) and PS (polystyrene)). Consequently, and seeking sustainable transformation of waste streams into valuable chemicals and renewable liquid fuels, mixture of 30% RT, 20% PE, 30% PP and 20% PS was subjected to pyrolysis. Different kinetic models were studied using experimental data. None of the mechanisms found in literature led to a numerical adjustment and different pathways were investigated. Kinetic studies were performed aiming to evaluate direct conversions into new solid, liquid and gaseous products and if parallel reactions and/or reversible elementary steps should be included. Experiments were performed in batch system at different temperatures and reaction times. Kinetic models were evaluated and reaction pathways were proposed. Models reasonably fit experimental data, allow explaining wastes thermal degradation. Kinetic parameters were estimated for all temperatures and dependence of Ea and pre-exponential factor on temperature was evaluated. The rate constant of some reactions exhibited nonlinear temperature dependence on the logarithmic form of Arrhenius law. This fact strongly suggests that temperature has a significant effect on reaction mechanism of pyrolysis of mixtures of rubber tyre and plastic wastes. - Highlights: • Kinetic study of rubber tyre (RT) and different plastic wastes (PE, PP and PS) was performed in batch reactor. • Definition of possible pathways taken into account for the formation of final products. • Kinetic parameters were estimated. • The effect of reaction temperature and reaction time on liquid composition was performed

  14. Kinetic and allometric models for dosimetry using radiopharmaceuticals labeled with lanthanides

    International Nuclear Information System (INIS)

    Lima, Marina Ferreira

    2012-01-01

    This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the 177 Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the 177 Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)

  15. Derivation of kinetic coefficients by atomistic methods for studying defect behavior in Mo

    International Nuclear Information System (INIS)

    Insepov, Z.; Rest, J.; Yacout, A.M.; Kuksin, A.Yu.; Norman, G.E.; Stegailov, V.V.; Starikov, S.V.; Yanilkin, A.V.

    2012-01-01

    Highlights: ► A multiscale concept couples molecular dynamics (MD) with ab initio and kinetic rate theory. ► Evolution of a system of self-interstitial atoms and vacancies in Mo is studied by MD. ► Formation of di-SIA clusters and SIA–vacancy recombination is analyzed. ► 1D diffusion of self-interstitials at various temperature and defect concentrations were studied. ► This paper provides a powerful predictive tool for simulating irradiation of nuclear materials. - Abstract: A multiscale concept for irradiated materials simulation is formulated based on coupling molecular dynamics simulations (MD) where the potential was obtained from ab initio data of energies of the basic defect structures, with kinetic mesoscale models. The evolution of a system containing self-interstitial atoms (SIAs) and vacancies in crystalline molybdenum is investigated by means of MD. The kinetics of formation of di-SIA clusters and SIA–vacancy recombination is analyzed via approaches used in the kinetic theory of radiation ageing. The effects of 1D diffusion of SIAs, temperature, and defect concentrations on the reaction rates are also studied. This approach can validate both the kinetic mechanisms and the appropriate kinetic coefficients, offering the potential to significantly reduce the uncertainty of the kinetic methodology and providing a powerful predictive tool for simulating irradiation behavior of nuclear materials.

  16. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    Science.gov (United States)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the

  17. Fine kinetics of natural physical ageing in glassy As10Se90

    International Nuclear Information System (INIS)

    Balitska, V.; Golovchak, R.; Kozdras, A.; Shpotyuk, O.

    2014-01-01

    Sigmoid behavior of natural physical ageing in glassy As 10 Se 90 reveals multi-step-wise growing kinetics of enthalpy losses. Phenomenological description of this kinetics can be adequately developed in terms of first-order relaxation processes, tending atomic structure from initial towards more thermodynamically equilibrium state. This kinetics is shown to obey characteristic stretched exponential behavior originated from a number of growing steps, attributed to the interconnected processes of chalcogen chain alignment and cooperative shrinkage of glass network

  18. Kinetics of the generation of the petroleum: Principles and application in the Colombian basins

    International Nuclear Information System (INIS)

    Goncalves, F T T; Garcia, D F; Penteado, H L B; Giraldo, B N; Bedregal, R P; Gomez

    2001-01-01

    Most of the mathematical models that describe the conversion of kerogen into petroleum are based on the formulations of first-order kinetics. Although the application of such models requires the knowledge of the kinetic parameters (activation energies and frequency factor) of the kerogen, the usual practice in basin modeling studies is to use kinetic data of standard kerogen types (I, II or III) when measured data are not available. In this study, Rock-Eval pyrolysis under different heating rates and numerical optimization techniques were used to determine the kinetic parameters of cretaceous and tertiary source rocks of the upper Magdalena and llanos basins. The obtained kinetic parameters revealed a significant variability, which appears to be unrelated to the kerogen type classification based on hydrogen and oxygen indices. Modeling exercises under a constant heating rate (1.25 degrades C/M.y., 274.5K/M.y.) using the measured kinetic data indicates that kerogen conversion of organic facies with distinct kinetic parameters may be out of phase by 20-30M.y. therefore, petroleum generation and expulsion history might be longer and more complex than if the kinetic behavior of these rocks was considered homogeneous. These differences are critical in defining the timing between petroleum generations a trap formation/destruction, particularly in the case of the Colombian sedimentary basins, characterized by a highly complex tectonic evolution

  19. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  20. Cell kinetic modelling and the chemotherapy of cancer

    CERN Document Server

    Knolle, Helmut

    1988-01-01

    During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...