Elliott, J.A.
1993-01-01
Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)
Irreversible processes kinetic theory
Brush, Stephen G
2013-01-01
Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s
Relativistic Chiral Kinetic Theory
Stephanov, Mikhail
2016-01-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Relativistic Chiral Kinetic Theory
Stephanov, Mikhail
2016-12-15
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Kinetic theory and transport phenomena
Soto, Rodrigo
2016-01-01
This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...
Gyrocenter-gauge kinetic theory
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
Kinetic theory of radiation effects
Mansur, L.K.
1987-01-01
To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress
Elements of plasma kinetic theory
Guasp, J.
1976-01-01
The physical foundations of plasma kinetic equations are exposed inside a series of seminars on plasma and fusion physics. The Vlasov and collisional equations with its application range have been discussed. The momenta equations for the macroscopic magnitudes and the more usual approximations have been obtained: two fluid equations for cold and warm plasmas, magnetohydrodynamic equations and the double-adiabatic theory. (author)
Kinetic theory of gases and plasmas
Schram, P.P.J.M.
1991-01-01
Kinetic theory provides the link between the non-equilibrium statistical mechanics of many-particle systems and macroscopic or phenomenological physics. This volume deals with the derivation of kinetic equations, their limitations and generalizations,and with the applications of kinetic theory to physical phenomena and the calculation of transport coefficients. This book is divided in 12 chapters which discuss a wide range of topics such as balanced equations, the Klimontovich, Vlasov-Maxwell, and Boltzmann equations, Chapman-Enskog theory, the kinetic theory of plasmas, B.G.K. models, linear response theory, Brownian motion and renormalized kinetic theory. Each chapter is concluded with exercises, which not only enable the readers to test their understanding of the theory, but also present additional examples which complement the text. 151 refs.; 35 figs.; 5 tabs
Kinetic theory of tearing instabilities
Drake, J.F.; Lee, Y.C.
1977-01-01
The transition of the tearing instability from the collisional to the collisionless regime is investigated kinetically using a Fokker--Planck collision operator to represent electron-ion collisions. As a function of the collisionality of the plasma, the tearing instability falls into three regions, which are referred to as collisionless, semi-collisional, and collisional. The width Δ of the singular layer around kxB 0 =0 is limited by electron thermal motion along B 0 in the collisional and semi-collisional regimes and is typically smaller than rho/sub i/, the ion Larmor radius. Previously accepted theories, which are based on the assumption Δvery-much-greater-thanrho/sub i/, are found to be valid only in the collisional regime. The effects of density and temperature gradients on the instabilities are also studied. The tearing instability is only driven by the temperature gradient in the collisional and semi-collisional regimes. Numerical calculations indicate that the semi-collisional tearing instability is particularly relevant to present day high temperature tokamak discharges
Unified kinetic theory in toroidal systems
Hitchcock, D.A.; Hazeltine, R.D.
1980-12-01
The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator
Kinetic theory of Jeans instability
Trigger, S.A.; Ershkovic, A.I.; Heijst, van G.J.F.; Schram, P.P.J.M.
2004-01-01
Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is
Thermal physics kinetic theory and thermodynamics
Singh, Devraj; Yadav, Raja Ram
2016-01-01
THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions
Kinetic Theory of Granular Gases
Trizac, Emmanuel [Center of Theoretical Biological Physics, UC San Diego, La Jolla, CA 92093-0374 (United States); Laboratoire de Physique Theorique et Modeles Statistiques, Campus Universitaire, 91405 Orsay (France)
2005-11-25
Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution {epsilon} -a central quantity governing the
Kinetic Theory of Granular Gases
Trizac, Emmanuel
2005-01-01
Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ε -a central quantity governing the inelasticity of
Kinetic Theory of the Inner Magnetospheric Plasma
Khazanov, George V
2011-01-01
This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...
Some remarks concerning relativistic kinetic theory
Schroeter, J.
1990-01-01
The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)
The kinetic theory of open systems
Klimontovich, Yu.L.
2001-01-01
This paper begins with a survey of recently obtained results in the statistical theory of open systems, including quantum open systems. Then the definition of the thermal flux in the kinetic theory is considered, further the collision nature of the Landau damping. Finally the Lamb shift and Bethe's formula are analyzed. (orig.)
Kinetic theory of tearing instability
Hazeltine, R.D.; Dobrott, D.; Wang, T.S.
1975-01-01
The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments
Hamiltonian kinetic theory of plasma ponderomotive processes
McDonald, S.W.; Kaufman, A.N.
1982-01-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
Hamiltonian kinetic theory of plasma ponderomotive processes
McDonald, S.W.; Kaufman, A.N.
1981-12-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
On the kinetic theory of quantum systems
Calkoen, C.J.
1986-01-01
The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3 Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)
Kinetic theory of free electron lasers
Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)
1995-12-31
We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.
Kinetic theory of nonideal gases and nonideal plasmas
Klimontovich, Yu L
2013-01-01
Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor
Relativistic thermodynamics and kinetic theory, with applications to cosmology
Stewart, J.M.
1973-01-01
The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)
Relaxation and kinetics in scalar field theories
Boyanovsky, D.; Lawrie, I.D.; Lee, D.
1996-01-01
A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Global kinetic theory of astrophysical jets
Chang, T.
1989-01-01
We suggest that an astrophysical plasma stream flowing outward from a central object aling an open magnetic field line with decreasing field strength generally will have anisotropic velocity distributions. I particular, the electron distribution function of this type of plasma streams will contain a 'thermally populated' region and a stretche out high energy tail (or 'jet-like') region collimated in the utward direction of the magnetic field line. Our argument is based on a global, collisional, kinetic theory. Because the 'kinetic jets' are always pointed aling the outward direction of the field lines, thy are automatically collimated and will assume whatever the peculiar geometries dictated by the magnetic field. This result should be useful in the understanding of the basic structures of such diverse astrophysical objects as the extragalactic radio jets, stellar winds, the solar wind, planetary polar winds, and galactic jets. (author). 8 refs.; 2 figs
Diamagnetic boundary layers: a kinetic theory
Lemaire, J.; Burlaga, L.F.
1976-01-01
A kinetic theory for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma such as those observed in the solar wind is presented. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, cases in which the magnetic field intensity and/or direction changed across the layer were considered. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly , although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. The results are consistent with the observations of boundary layers in the solar wind near 1 AU. (Auth.)
Stochastic chemical kinetics theory and (mostly) systems biological applications
Érdi, Péter; Lente, Gabor
2014-01-01
This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.
Kinetic theory of fermions in curved spacetime
Fidler, Christian [Catholic University of Louvain, Center for Cosmology, Particle Physics and Phenomenology (CP3), 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Pitrou, Cyril, E-mail: christian.fidler@uclouvain.be, E-mail: pitrou@iap.fr [Institut d' Astrophysique de Paris, CNRS-UMR 7095, UPMC—Paris VI, Sorbonne Universités, 98 bis Bd Arago, 75014 Paris (France)
2017-06-01
We build a statistical description of fermions, taking into account the spin degree of freedom in addition to the momentum of particles, and we detail its use in the context of the kinetic theory of gases of fermions particles. We show that the one-particle distribution function needed to write a Liouville equation is a spinor valued operator. The degrees of freedom of this function are covariantly described by an intensity function and by a polarisation vector which are parallel transported by free streaming. Collisions are described on the microscopic level and lead to a Boltzmann equation for this operator. We apply our formalism to the case of weak interactions, which at low energies can be considered as a contact interaction between fermions, allowing us to discuss the structure of the collision term for a few typical weak-interaction mediated reactions. In particular we find for massive particles that a dipolar distribution of velocities in the interacting species is necessary to generate linear polarisation, as opposed to the case of photons for which linear polarisation is generated from the quadrupolar distribution of velocities.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Modern quantum kinetic theory and spectral line shapes
Monchick, L.
1991-01-01
The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
Extended symmetries of the kinetic plasma theory models
Taranov, V.B.
2005-01-01
Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Kinetic mean field theories: Results of energy constraint in maximizing entropy
Stell, G.; Karkheck, J.; Beijeren, H. van
1983-01-01
Structure of liquids and solids; crystallography Classical, semiclassical, and quantum theories of liquid structure Statistical theories of liquid structure - Kinetic and transport theory of fluids; physical properties of gases Kinetic and transport theory
Relativistic kinetic theory with applications in astrophysics and cosmology
Vereshchagin, Gregory V
2017-01-01
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...
Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study
Das, Biswajit; Gangopadhyay, Gautam
2012-01-01
Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.
Overview of nonlinear theory of kinetically driven instabilities
Berk, H.L.; Breizman, B.N.
1998-09-01
An overview is presented of the theory for the nonlinear behavior of instabilities driven by the resonant wave particle interaction. The approach should be applicable to a wide variety of kinetic systems in magnetic fusion devices and accelerators. Here the authors emphasize application to Alfven were driven instability, and the principles of the theory are used to interpret experimental data
Hydrodynamization and transient modes of expanding plasma in kinetic theory
Heller, Michal P.; Spalinski, Michal
2016-01-01
We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.
Group-kinetic theory of turbulence
Tchen, C. M.
1986-01-01
The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.
The Einstein-Vlasov System/Kinetic Theory
Håkan Andréasson
2002-12-01
Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
The Students’ misconceptions profile on chapter gas kinetic theory
Jauhariyah, M. N. R.; Suprapto, N.; Suliyanah; Admoko, S.; Setyarsih, W.; Harizah, Z.; Zulfa, I.
2018-03-01
Students have conception and misconceptions in the learning process. Misconceptions are caused by the teacher, students, and learning source. In the previous study, the researcher developed a misconception diagnosis instrument using three-tier on chapter gas kinetic theory. There are 14 items including 5 sub-chapters on gas kinetic theory. The profile of students’ misconceptions shows that students have misconceptions in each sub-chapter. The cause of misconceptions came from preconceptions, associative thinking, reasoning, intuition, and false negative. The highest cause of misconception in this chapter is student’s humanistic thinking.
WKB approximation and tunneling in theories with noncanonical kinetic terms
González, Mariana Carrillo; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2017-09-01
Tunneling is a fascinating aspect of quantum mechanics that renders the local minima of a potential meta-stable, with important consequences for particle physics, for the early hot stage of the universe, and more speculatively, for the behavior of the putative multiverse. While this phenomenon has been studied extensively for systems which have canonical kinetic terms, many theories of fundamental physics contain fields with noncanonical kinetic structures. It is therefore desirable to have a detailed framework for calculating tunneling rates and initial states after tunneling for these theories. In this work we present such a rigorous formulation and illustrate its use by applying it to a number of examples.
Transition state theory for enzyme kinetics
Truhlar, Donald G.
2015-01-01
This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760
Eu, Byung Chan
2016-01-01
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...
On the kinetic theory of the one-component plasma
Cohen, J.S.
1984-01-01
In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)
Kinetic theory in maximal-acceleration invariant phase space
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
Analyzing Students’ Level of Understanding on Kinetic Theory of Gases
Nurhuda, T.; Rusdiana, D.; Setiawan, W.
2017-02-01
The purpose of this research is to analysis students’ level of understanding on gas kinetic theory. The method used is descriptive analytic with 32 students at the 11th grade of one high school in Bandung city as a sample. The sample was taken using random sampling technique. Data collection tool used is an essay test with 23 questions. The instrument was used to identify students’ level of understanding and was judged by four expert judges before it was employed, from 27 questions become to 23 questions, for data collection. Questions used are the conceptual understanding including the competence to explain, extrapolate, translate and interpret. Kinetic theory of gases section that was tested includes ideal gas law, kinetic molecular theory and equipartition of energy. The result shows from 0-4 level of understanding, 19% of the students have partial understanding on the 3th level and 81% of them have partial understanding with a specific misconception on 2th level. For the future research, it is suggested to overcome these conceptual understanding with an Interactive Lecture Demonstrations teaching model and coupled with some teaching materials based on multi-visualization because kinetic theory of gases is a microscopic concept.
Linear kinetic theory and particle transport in stochastic mixtures
Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)
1995-12-31
We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.
Kinetic theory of surface waves in plasma jets
Shokri, B.
2002-01-01
The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied
On the theory of time dilation in chemical kinetics
Baig, Mirza Wasif
2017-10-01
The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.
An advanced kinetic theory for morphing continuum with inner structures
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
Quantum Kinetic Theory and Applications Electrons, Photons, Phonons
Vasko, Fedir T
2006-01-01
This lecture-style monograph is addressed to several categories of readers. First, it will be useful for graduate students studying theory. Second, the topics covered should be interesting for postgraduate students of various specializations. Third, the researchers who want to understand the background of modern theoretical issues in more detail can find a number of useful results here. The phenomena covered involve kinetics of electron, phonon, and photon systems in solids. The dynamical properties and interactions of electrons, phonons, and photons are briefly described in Chapter 1. Further, in Chapters 2-8, the authors present the main theoretical methods: linear response theory, various kinetic equations for the quasiparticles under consideration, and diagram technique. The presentation of the key approaches is always accompanied by solutions of concrete problems to illustrate ways to apply the theory. The remaining chapters are devoted to various manifestations of quantum transport in solids. The choice...
The Gaussian radial basis function method for plasma kinetic theory
Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)
2015-10-30
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.
Kinetic theory of two-temperature polyatomic plasmas
Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere
2018-03-01
We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.
Kinetic aspects of the embedded clusters: Reaction - Rate Theory
Despa, F.; Apostol, M.
1995-07-01
The main stages of the cluster growth process are reviewed using Reaction - Rate Theory. The precipitation stage is shown as a relaxation of the solute towards a cluster state characterized by a higher stability. The kinetic of the late stage of phase separation, the coarsening process, is analyzed by an off-centre diffusion mechanism. The theoretical results are compared to the experimental ones. (author). 37 refs, 6 figs
Kinetic theory of flocking: derivation of hydrodynamic equations.
Ihle, Thomas
2011-03-01
It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and analytically.
Kinetic theory of a rarefied gas of rough spheres
Kremer, G.M.
1987-01-01
A Kinetic theory for the rarefied gas consisting of rough-spherical molecules is developed, in which a macroscopic state is characterized by the 29 scalar fields of density, velocity, pressure tensor, temperature, translational heat flux, rotational heat flux, spin and spin flux. The relations of Navier-Stokes and Fourier are obtained by the use of an iteration method akin to the Maxwellian procedure. (author) [pt
Relativistic nuclear fluid dynamics and VUU kinetic theory
Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.
1987-01-01
Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs
Kinetic theory of spectral line broadening in plasmas
Hussey, T.W.
1974-01-01
A formal kinetic theory is used to cast the line shape function into a form that, while similar to the ''unified'' theories of Smith, Cooper, and Vidal and of Voslamber, does not introduce some of the usual approximations. The resulting line shape function explicitly includes the initial correlations between the atom and perturbers, and also demonstrates the natural separation of plasma mean field and collisional effects. The classical path and no-quenching approximations are discussed and ultimately employed; however, they are not required in the formal development. The weak coupling limit is considered as a systematic approximation to the formal results. It is shown tha different ways of applying this limit lead to different expressions for the memory operator, some of which correspond to existing theories. One approximation is considered which systematically incorporates the effects of electron correlations within the framework of a unified theory. In addition, a practical approximation suitable for a strongly interacting plasma is discussed
Kinetic theory of nonlinear transport phenomena in complex plasmas
Mishra, S. K.; Sodha, M. S.
2013-01-01
In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.
Rethinking wave-kinetic theory applied to zonal flows
Parker, Jeffrey
2017-10-01
Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.
Recent developments in the kinetic theory of nucleation.
Ruckenstein, E; Djikaev, Y S
2005-12-30
A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation
Sequence-dependent theory of oligonucleotide hybridization kinetics
Marimuthu, Karthikeyan; Chakrabarti, Raj
2014-01-01
A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions
On the kinetic theory of a fully ionized gas
Bezerra Junior, A.G.; Rodbard, M.G.; Kremer, G.M.
1993-01-01
An alternative method for kinetic theory recently proposed, that combines the features of the Chapman-Enskog and Grad methods, neither using a solution of the integral equation nor the field equations of the moments, is applied to ionized gases. Like in the Grad method, the deviation from equilibrium of the moments are used. Like in the method of Grad, the deviation from equilibrium of the distribution function is written in terms of the moments of the distribution function, but the constitutive equations follow direct from the Boltzmann equation through the Chapman-Enskog method. (author)
Nonextensive kinetic theory and H-theorem in general relativity
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions
Gidaspow, Dimitri
1994-01-01
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i
Kinetic theory of the interdiffusion coefficient in dense plasmas
Boercker, D.B.
1986-08-01
Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs
Modern aspects of the kinetic theory of glass transition
Tropin, T V; Aksenov, V L; Schmelzer, J W
2016-01-01
This paper reviews glass transition kinetics models that are developed to describe the formation of structural (for example, covalent and metallic) glasses, as well as to account for the transition of a polymer to a solid glassy state. As the two approaches most frequently used over the last decade to model the glass transition, the Tool–Narayanaswamy–Moynihan model and the Adam–Gibbs theory of glass transition are described together with examples of their applications. Also discussed are entropy-based approaches that rely on irreversible thermodynamics methods originated in the work of De Donder, Mandelstam, and Leontovich. The actual problems that arise in applying these methods and the prospects of their development are discussed. A brief overview of statistical glass transition models is given, including the mode-coupling and energy-landscape theories. (reviews of topical problems)
Effective-field theory on the kinetic Ising model
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Linear kinetic theory and particle transport in stochastic mixtures
Pomraning, G.C.
1994-03-01
The primary goal in this research is to develop a comprehensive theory of linear transport/kinetic theory in a stochastic mixture of solids and immiscible fluids. The statistics considered correspond to N-state discrete random variables for the interaction coefficients and sources, with N denoting the number of components of the mixture. The mixing statistics studied are Markovian as well as more general statistics, such as renewal processes. A further goal of this work is to demonstrate the applicability of the formalism to real world engineering problems. This three year program was initiated June 15, 1993 and has been underway nine months. Many significant results have been obtained, both in the formalism development and in representative applications. These results are summarized by listing the archival publications resulting from this grant, including the abstracts taken directly from the papers
Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept
Sosenko, P.P.; Zagorodny, A.H.
2004-01-01
The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)
Kinetic theory of rf current drive and helicity injection
Mett, R.R.
1992-01-01
Current drive and helicity injection by plasma waves are examined with the use of kinetic theory. The Vlasov equation yields a general current drive formula that contains resonant and nonresonant (ponderomotivelike) contributions. Standard quasilinear current drive is described by the former, while helicity current drive may be contained in the latter. Since direct analytical comparison of the sizes of the two terms is, in general, difficult, a new approach is taken. Solution of the drift-kinetic equation shows that the standard Landau damping/transit time magnetic pumping quasilinear diffusion coefficient is the only contribution to steady-state current drive to leading order in ε=ρ L /l, where ρ L is the Larmor radius and l is the inhomogeneity scale length. All nonresonant contributions, including the helicity, appear at higher order, after averages are taken over a flux surface, over azimuth, and over time. Consequently, at wave frequencies well below the electron cyclotron frequency, a wave helicity flux perpendicular to the magnetic field does not influence the parallel motion of electrons to leading order and therefore will not drive a significant current. Any current associated with a wave helicity flux is then either ion current (and thus inefficient) or electron current stemming from effects not included in the drift-kinetic treatment, such as cyclotron, collisional, or nonlinear (i.e., not quasilinear)
Semi-continuous and multigroup models in extended kinetic theory
Koller, W.
2000-01-01
The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)
Kinetic theory for electron dynamics near a positive ion
Wrighton, Jeffrey M; Dufty, James W
2008-01-01
A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas
Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas
2017-07-19
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
Kinetic theory for dilute cohesive granular gases with a square well potential.
Takada, Satoshi; Saitoh, Kuniyasu; Hayakawa, Hisao
2016-07-01
We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the validity of our theory by performing the direct simulation Monte Carlo.
Jeans' criterion and nonextensive velocity distribution function in kinetic theory
Du Jiulin
2004-01-01
The effect of nonextensivity of self-gravitating systems on the Jeans' criterion for gravitational instability is studied in the framework of Tsallis statistics. The nonextensivity is introduced in the Jeans problem by a generalized q-nonextensive velocity distribution function through the equation of state of ideal gas in nonextensive kinetic theory. A new Jeans' criterion is deduced with a factor √(2/(5-3q)) that, however, differs from that one in [Astron. Astrophys. 396 (2002) 309] and new results of gravitational instability are analyzed for the nonextensive parameter q. An understanding of physical meaning of q and a possible seismic observation to find astronomical evidence for a value of q different from unity are also discussed
Nonlinear responses of chiral fluids from kinetic theory
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Kinetic theory of thermotransport of polar semiconductors: Degenerate limit
Rangel-Huerta, A. [Facultad de Ciencias de la Computacion Benemerita, Universidad Autonoma de Puebla, 14 Sur y San Claudio C.U., Puebla 72570 (Mexico); Rodriguez-Meza, M.A. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico D.F. 11801 (Mexico)
2005-08-01
We develop a kinetic theory approach from the semiclassical Boltzmann transport equation for the thermotransport of electrons in degenerate polar semiconductors. The method of moments applied to the Boltzmann equation gives us a set of hydrodynamical equations which are closed up to thirteen relevant variables, including energy density, the stress tensor and the heat flux in the description. The closure of the balance equations is achieved by evaluating the higher order momenta, as well as the production terms, through a non equilibrium distribution function coming from the maximum entropy principle. We assume that electronoptical polar phonon interaction is the leading scattering process in order to obtain analytical expressions for both, the characteristic relaxation times and the usual thermoelectric coefficients. We also show that in this case the Onsager symmetry relationship is not satisfied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Transient response of nonlinear polymer networks: A kinetic theory
Vernerey, Franck J.
2018-06-01
Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.
Heat and Kinetic Theory in 19th-Century Physics Textbooks: The Case of Spain.
Vaquero, Jose M.; Santos, Andres
2001-01-01
Presents an analysis of the contents of 19th century Spanish textbooks. These textbooks are centered on imponderable fluids, the concept of energy, the mechanical theory of heat, and the kinetic theory of gases. (SAH)
Stochastic cooling of bunched beams from fluctuation and kinetic theory
Chattopadhyay, S.
1982-09-01
A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
Porkolab, Miklos
1998-11-01
The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this
Kinetic theory for dilute cohesive granular gases with a square well potential
Takada, Satoshi; Saitoh, K.; Hayakawa, Hisao
2016-01-01
We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
Pfirsch, D.; Morrison, P.J.
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs
Kinetic Theory and Fast Wind Observations of the Electron Strahl
Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan
2018-02-01
We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.
Empiricism or self-consistent theory in chemical kinetics?
Gutman, E.M.
2007-01-01
To give theoretical background for mechanochemical kinetics, we need first of all to find a possibility to predict the kinetic parameters for real chemical processes by determining rate constants and reaction orders without developing strictly specialized and, to a great extent, artificial models, i.e. to derive the kinetic law of mass action from 'first principles'. However, the kinetic law of mass action has had only an empirical basis from the first experiments of Gulberg and Waage until now, in contrast to the classical law of mass action for chemical equilibrium rigorously derived in chemical thermodynamics from equilibrium condition. Nevertheless, in this paper, an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Gulberg and Waage's time
Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory
Nastar, M.
2011-01-01
A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)
Kinetic approach to the initial value problem in quantum field theory
Lin Chi Yong; Toledo Piza, A.F.R. de.
1989-06-01
Time-dependente projection techniques developed to derive kinetic equations in the context of the quantum many-body problem are applied to φ 4 field theory. The approach is illustrated by working out the 0+1 dimensional case explicitly, including numerical solutions of the kinetic equations. Extension to higher dimensions is briefly discussed. (author) [pt
Radiative Transfer Reconsidered as a Quantum Kinetic Theory
Radiative transfer—quantum kinetic theory—anomalous dispersion. 1. ... able for the elaboration of transport codes (e.g. based on the Monte-Carlo technique ... this function is not a true probability density function but rather a quasiprobability.
Theory of semicollisional kinetic Alfven modes in sheared magnetic fields
Hahm, T.S.; Chen, L.
1985-02-01
The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum
Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory
Mueller, Niklas; Venugopalan, Raju
2018-03-01
In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.
Quantum kinetics of a superconducting tunnel junction: Theory and comparison with experiment
Chow, K.S.; Browne, D.A.; Ambegaokar, V.
1988-01-01
We develop a kinetic theory for the real-time response of a quantum particle interacting with a macroscopic reservoir. We discuss the equilibrium and long-time behavior of the solution of the kinetic equation for such a system. In the limit of low damping, the kinetic equation reduces to a master equation. Using the theory to model a Josephson junction loaded with an external impedance, we make contact with the experiments of Clark, Devoret, Esteve, and Martinis. We argue that a stationary solution of the master equation sufficiently describes the experiments, and make detailed comparison with data
Perturbative method for the derivation of quantum kinetic theory based on closed-time-path formalism
Koide, Jun
2002-01-01
Within the closed-time-path formalism, a perturbative method is presented, which reduces the microscopic field theory to the quantum kinetic theory. In order to make this reduction, the expectation value of a physical quantity must be calculated under the condition that the Wigner distribution function is fixed, because it is the independent dynamical variable in the quantum kinetic theory. It is shown that when a nonequilibrium Green function in the form of the generalized Kadanoff-Baym ansatz is utilized, this condition appears as a cancellation of a certain part of contributions in the diagrammatic expression of the expectation value. Together with the quantum kinetic equation, which can be derived in the closed-time-path formalism, this method provides a basis for the kinetic-theoretical description
A group-kinetic theory of turbulent collective collisions
Tchen, C.M.; Misguich, J.H.
1983-05-01
The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion
AND PI (π) FROM THE KINETIC MOLECULAR THEORY OF MATTER
DJFLEX
This paper considers the possible physical origins of the important natural constants epsilon (e = 2.7182 ) and pi (π = 3.1415 ). They are suggested to originate from the kinetic molecular nature of matter. Epsilon (e) is suggested to be the ratio of the driving force on a randomly moving particle accelerated with a quantum of ...
Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes
Nagnibeda, Ekaterina; Nagnibeda, Ekaterina
2009-01-01
This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.
Einstein-Ehrenfest's radiation theory and Compton-Debye's kinetics
Barranco, A.V.; Franca, H.M.
1990-01-01
Einstein and Ehrenfest's radiation theory is modified in order to introduce the efeects of random zero-point fields, characteristics of classical stochastic electrodynamics. As a result, the Compton and Debye's kinematic relations are obtained within the realm of a completely undulatory theory, that is, without having to consider the corpuscular character of the photon. (A.C.A.S.) [pt
Work fluctuation theorems and free energy from kinetic theory
Brey, J. Javier; Ruiz-Montero, M. J.; Domínguez, Álvaro
2018-01-01
The formulation of the first and second principles of thermodynamics for a particle in contact with a heat bath and submitted to an external force is analyzed, by means of the Boltzmann-Lorentz kinetic equation. The possible definitions of the thermodynamic quantities are discussed in the light of the H theorem verified by the distribution of the particle. The work fluctuation relations formulated by Bochkov and Kuzovlev, and by Jarzynski, respectively, are derived from the kinetic equation. In addition, particle simulations using both the direct simulation Monte Carlo method and molecular dynamics, are used to investigate the practical accuracy of the results. Work distributions are also measured, and they turn out to be rather complex. On the other hand, they seem to depend very little, if any, on the interaction potential between the intruder and the bath.
Kinetic and fluid theory of microwave breakdown in air
Roussel-Dupre, R.A.; Murphy, T.; Johnson, A.
1987-01-01
We have developed time-dependent fluid and kinetic treatments of electron transport in air in the presence of a propagating microwave pulse. In both cases the HPM pulses are assumed to be of short enough duration so that electron spatial diffusion can be neglected. In addition, we limit our calculations to the non-relativistic regime where effects due to the ponderomotive force are negligible. 6 refs., 4 figs
Collective learning modeling based on the kinetic theory of active particles
Burini, D.; De Lillo, S.; Gibelli, L.
2016-03-01
This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
Modeling of hydrogen Stark line shapes with kinetic theory methods
Rosato, J.; Capes, H.; Stamm, R.
2012-12-01
The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Laser driven electron-positron pair creation-kinetic theory versus analytical approximations
Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.
2013-01-01
The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Kinetic theory of plasma adiabatic major radius compression in tokamaks
Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.
1998-01-01
In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics
Kinetic and transport theory near the tokamak edge
Hazeltine, R.D.; Catto, P.J.
1995-12-01
Conventional transport orderings employed in the core of a tokamak plasma allow large divergence-free flows in flux surfaces, but only weak radial flows. However, alternate orderings are required in the edge region where radial diffusion must balance the rapid loss due to free-streaming to divertor plates or limiters. Kinetic equations commonly used to study the plasma core do not allow such a balance and are, therefore, inapplicable in the plasma edge. Similarly, core transport formulae cannot be extended to the edge region without major, qualitative alteration. Here the authors address the necessary changes. By deriving and solving a novel kinetic equation, they construct distinctive collisional transport laws for the plasma edge. They find that their edge ordering naturally retains the radial diffusion and parallel flow of particles, momentum and heat to lowest order in the conservation equations. To higher order they find a surprising form for parallel transport in the scrape-off layer, in which the parallel flow of particles and heat are driven by a combination of the conventional gradients, viscosity, and new terms involving radial derivatives. The new terms are not relatively small, and could affect understanding of limiter and divertor operation
Nieto, J.
2016-03-01
The learning phenomena, their complexity, concepts, structure, suitable theories and models, have been extensively treated in the mathematical literature in the last century, and [4] contains a very good introduction to the literature describing the many approaches and lines of research developed about them. Two main schools have to be pointed out [5] in order to understand the two -not exclusive- kinds of existing models: the stimulus sampling models and the stochastic learning models. Also [6] should be mentioned as a survey where two methods of learning are pointed out, the cognitive and the social, and where the knowledge looks like a mathematical unknown. Finally, as the authors do, we refer to the works [9,10], where the concept of population thinking was introduced and which motivate the game theory rules as a tool (both included in [4] to develop their theory) and [7], where the ideas of developing a mathematical kinetic theory of perception and learning were proposed.
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Kinetic theory of oxygen isotopic exchange between minerals and water
Criss, R.E.; Gregory, R.T.; Taylor, H.P.
1987-01-01
Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.
Kinetic Theory and Simulation of Single-Channel Water Transport
Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus
Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.
Einstein’s quadrupole formula from the kinetic-conformal Hořava theory
Bellorín, Jorge; Restuccia, Alvaro
We analyze the radiative and nonradiative linearized variables in a gravity theory within the family of the nonprojectable Hořava theories, the Hořava theory at the kinetic-conformal point. There is no extra mode in this formulation, the theory shares the same number of degrees of freedom with general relativity. The large-distance effective action, which is the one we consider, can be given in a generally-covariant form under asymptotically flat boundary conditions, the Einstein-aether theory under the condition of hypersurface orthogonality on the aether vector. In the linearized theory, we find that only the transverse-traceless tensorial modes obey a sourced wave equation, as in general relativity. The rest of variables are nonradiative. The result is gauge-independent at the level of the linearized theory. For the case of a weak source, we find that the leading mode in the far zone is exactly Einstein’s quadrupole formula of general relativity, if some coupling constants are properly identified. There are no monopoles nor dipoles in this formulation, in distinction to the nonprojectable Horava theory outside the kinetic-conformal point. We also discuss some constraints on the theory arising from the observational bounds on Lorentz-violating theories.
Kinetic theory analysis of electron attachment cooling in oxygen
Skullerud, H.R.
1983-01-01
The attachment cooling effect observed by Hegerberg and Crompton (1983) has been analysed theoretically and numerically in a Boltzmann equation eigenvalue approach. The effect is highly sensitive to the shape and magnitude of the rotational excitation cross sections. When due account is taken of the rotational excitations associated with the (O 2 - ) negative ion resonances, good agreement between theory and experiment can be obtained with reasonable input cross-section data
Kinetic theory of magnetic island stability in tokamaks
Zabiego, M.; Garbet, X.
1993-10-01
The non linear behavior of low and large wave number tearing modes is studied. The emphasis is layed on diamagnetic effects. A kinetic equation, including transport processes associated with a background of microturbulence, is used to describe the electron component. Such transport processes are shown to play a significant role in the adjustment of density and temperature profile and also in the calculation of the island rotation frequency. The fluctuating electric potential is calculated self-consistently, using the differential response of electrons and ions. Four regimes are considered, related to island width (smaller or larger than an ion Larmor radius) and transport regime (electron-ion collisions or electro-viscosity dominated). It is shown that diamagnetism does not influence the island stability for small island width in the viscous regime, as long as the constant A constraint is maintained. It turns out that the release of this constraint may strongly modify the previously calculated stability thresholds. Finally, it is found that diamagnetism is destabilizing (stabilizing) for island width smaller (larger) than an ion Larmor radius, in both resistive and viscous regimes. A typical island evolution scenario is studied which shows that even large scale tearing modes with positive Δ ' could saturate to island width of order of a few ion Larmor radii. Illustrative Δ ' threshold and island saturation size are calculated. (authors). 31 refs., 5 figs., 3 tabs
Discretized kinetic theory on scale-free networks
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
A simple theory of motor protein kinetics and energetics. II.
Qian, H
2000-01-10
A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.
Heat and Kinetic Theory in 19th-Century Physics Textbooks: The Case of Spain
Vaquero, J. M.; Santos, A.
2000-01-01
Spain was a scientifically backward country in the early 19th-century. The causes were various political events, the War of Independence, and the reign of Fernando VII. The introduction of contemporary physics into textbooks was therefore a slow process. An analysis of the contents of 19th-century Spanish textbooks is here presented, centred on imponderable fluids, the concept of energy, the mechanical theory of heat, and the kinetic theory of gases.
Kinetic Theory of Electronic Transport in Random Magnetic Fields
Lucas, Andrew
2018-03-01
We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .
Optimizing Sparse Representations of Kinetic Distributions via Information Theory
2017-07-31
Information Theory Robert Martin and Daniel Eckhardt Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...momentum, energy, and physical entropy. N/A Unclassified Unclassified Unclassified SAR 7 Robert Martin N/A Research in Industrial Projects for Students...Journal of Computational Physics, vol. 145, no. 1, pp. 382 – 405, 1998. [7] R. S. Martin , H. Le, D. L. Bilyeu, and S. Gildea, “Plasma model V&V of
Gabetta, Ester
2007-01-01
The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...
Analysis of senior high school student understanding on gas kinetic theory material
Anri, Y.; Maknun, J.; Chandra, D. T.
2018-05-01
The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.
Collective learning modeling based on the kinetic theory of active particles.
Burini, D; De Lillo, S; Gibelli, L
2016-03-01
This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. Copyright © 2015 Elsevier B.V. All rights reserved.
Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas
Wang, X; Zonca, F; Chen, L
2010-01-01
It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.
Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics
Xu, Kun
1998-01-01
A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.
Ren-Tai, Chiang
2003-01-01
An ω-mode first-order perturbation theory is developed for analyzing the time- and space-dependent neutron behavior in Accelerator-Driven Subcritical Systems (ADSS). The generalized point-kinetics equations are systematically derived using the ω-mode first-order perturbation theory and Fredholm Alternative Theorem. Seven sets of the ω-mode eigenvalues exist with using six groups of delayed neutrons and all ω eigenvalues are negative in ADSS. Seven ω-mode adjoint and forward eigenfunctions are employed to form the point-kinetic parameters. The neutron flux is expressed as a linear combination of the products of seven ω-eigenvalue-mode shape functions and their corresponding time functions up to the first order terms, and the lowest negative ω-eigenvalue mode is the dominant mode. (author)
Zeng, G.L.; Gullberg, G.T.
1995-01-01
It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images
Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas
Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart
2006-01-01
A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses
Evans, G.T.
1987-01-01
The differential orientational cross section, obtainable from molecular beam experiments on aligned molecules, is calculated using the line-of-normals model for reactive collisions involving hard convex bodies. By means of kinetic theory methods, the dependence of the cross section on the angle of attack γ 0 is expressed in a Legendre function expansion. Each of the Legendre expansion coefficients is given by an integral over the molecule-fixed cross section and functions of the orientation dependent threshold energy
The onset of fluid-dynamical behavior in relativistic kinetic theory
Noronha, Jorge; Denicol, Gabriel S.
2017-11-01
In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
The Pade approximate method for solving problems in plasma kinetic theory
Jasperse, J.R.; Basu, B.
1992-01-01
The method of Pade Approximates has been a powerful tool in solving for the time dependent propagator (Green function) in model quantum field theories. We have developed a modified Pade method which we feel has promise for solving linearized collisional and weakly nonlinear problems in plasma kinetic theory. In order to illustrate the general applicability of the method, in this paper we discuss Pade solutions for the linearized collisional propagator and the collisional dielectric function for a model collisional problem. (author) 3 refs., 2 tabs
Transport in simple liquids and dense gases: kinetic mean-field theory and the KAC limit
Karkheck, J.; Stell, G.; Martina, E.
1982-01-01
Maximization of entropy is used in conjunction with the BBGKY hierarchy to obtain a closed one-particle kinetic equation. For an interparticle potential of hard-sphere core plus smooth attractive tail, this equation contains a hard-core collision integral, identical to that of the revised Enskog theory, plus a mean-field term which is linear in the tail strength. The thermodynamics contained therein leads directly to the now-standard statistical-mechanical methods to construct a state-dependent effective hard-core potential in relation to a more realistic potential. These methods induce an extension of the transport coefficients to the Lennard-Jones potential. Predictions of the resulting transport theory compare very favorably with thermal conductivity and shear viscosity experimental results for real simple liquids and dense gases, and also with molecular dynamics simulation results. Poor agreement between theory and experiment is found for moderately dense and dilute gases. The kinetic theory also contains an entropy functional and an H-theorem is proven. Extension to mixtures is straightforward and the Kac-limit is discussed in detail
A thermostatted kinetic theory model for event-driven pedestrian dynamics
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics
Shizgal, Bernard
2015-01-01
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...
Two new proofs of the test particle superposition principle of plasma kinetic theory
Krommes, J.A.
1975-12-01
The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids
Kinetic theory of beam-induced plasmas generalised to sophisticated atomic structures
Peyraud-Cuenca, Nelly
1987-01-01
We present an analytic kinetic model available for all particle-beam-induced atomic plasmas, without any restriction on the distribution of electronic levels. The method is an iteration of the already known solution available only for the distribution of atomic levels as in the rare gases. We recall a universal atomic kinetic model which, independently of its applications to the study of efficient laser systems, might be a first step in the analytic investigation of molecular problems. Then, the iteration is systematically applied to all possible atomic structures whose number is increased by the non-local character of inelastic processes. We deduce a general analytic representation of the 'tail' of the electron distribution function as a ratio between non-local source terms and a combination of inelastic cross sections, from which we exhibit a physical interpretation and essential scaling laws. The theory is applied to sodium which is an important element in the research of efficient laser systems. (author)
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)
2014-10-28
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].
PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY
Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)
2015-07-20
A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.
Quantum kinetic theory of metal clusters in an intense electromagnetic field
M.Bonitz
2004-01-01
Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.
Kinetic theory of runaway air breakdown and the implications for lightning initiation
Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.
1993-11-01
The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuring a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms and are examined in the context of lightning initiation
Worked problems in heat, thermodynamics and kinetic theory for physics students
Pincherle, L; Green, L L
2013-01-01
Worked Problems in Heat, Thermodynamics and Kinetic Theory for Physics Students is a complementary to textbooks in physics. This book is a collection of exercise problems that have been part of tutorial classes in heat and thermodynamics at the University of London. This collection of exercise problems, with answers that are fully worked out, deals with various topics. This book poses problems covering the definition of temperature such as calculating the assigned value of the temperature of boiling water under specific conditions. This text also gives example of problems dealing with the fir
On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition
I. Brazzoli
2006-01-01
Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
Experimental evidence of the role of viscosity in the molecular kinetic theory of dynamic wetting.
Duvivier, D; Seveno, D; Rioboo, R; Blake, T D; De Coninck, J
2011-11-01
We report an experimental study of the dynamics of spontaneous spreading of aqueous glycerol drops on glass. For a range of glycerol concentrations, we follow the evolution of the radius and contact angle over several decades of time and investigate the influence of solution viscosity. The application of the molecular kinetic theory to the resulting data allows us to extract the coefficient of contact-line friction ζ, the molecular jump frequency κ(0), and the jump length λ for each solution. Our results show that the modified theory, which explicitly accounts for the effect of viscosity, can successfully be applied to droplet spreading. The viscosity affects the jump frequency but not the jump length. In combining these data, we confirm that the contact-line friction of the solution/air interface against the glass is proportional to the viscosity and exponentially dependent on the work of adhesion.
Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.
Popović, Jovan
2004-01-01
When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.
Nataša Erceg
2016-11-01
Full Text Available In this study, we investigated students’ understanding of concepts related to the microscopic model of gas. We thoroughly reviewed the relevant literature and conducted think alouds with students by asking them to answer open-ended questions about the kinetic molecular theory of gases. Thereafter, we transformed the open-ended questions into multiple-choice questions, whereby distractors were based on the results of the think alouds. Thus, we obtained a set of 22 questions, which constitutes our current version of the kinetic molecular theory of gases concept inventory. The inventory has been administered to 250 students from different universities in Croatia, and its content validity has been investigated trough physics teacher surveys. The results of our study not only corroborate the existence of some already known student misconceptions, but also reveal new insights about a great spectrum of students’ misconceptions that had not been reported in earlier research (e.g., misconceptions about intermolecular potential energy and molecular velocity distribution. Moreover, we identified similar distribution of students’ responses across the surveyed student groups, despite the fact that they had been enrolled in different curricular environments.
Non-topological solitons in field theories with kinetic self-coupling
Diaz-Alonso, Joaquin; Rubiera-Garcia, Diego
2007-01-01
We investigate some fundamental features of a class of non-linear relativistic Lagrangian field theories with kinetic self-coupling. We focus our attention upon theories admitting static, spherically symmetric solutions in three space dimensions which are finite-energy and stable. We determine general conditions for the existence and stability of these non-topological soliton solutions. In particular, we perform a linear stability analysis that goes beyond the usual Derrick-like criteria. On the basis of these considerations we obtain a complete characterization of the soliton-supporting members of the aforementioned class of non-linear field theories. We then classify the family of soliton-supporting theories according to the central and asymptotic behaviors of the soliton field, and provide illustrative explicit examples of models belonging to each of the corresponding sub-families. In the present work we restrict most of our considerations to one and many-components scalar models. We show that in these cases the finite-energy static spherically symmetric solutions are stable against charge-preserving perturbations, provided that the vacuum energy of the model vanishes and the energy density is positive definite. We also discuss briefly the extension of the present approach to models involving other types of fields, but a detailed study of this more general scenario will be addressed in a separate publication
On the Connection between Kinetic Monte Carlo and the Burton-Cabrera-Frank Theory
Patrone, Paul; Margetis, Dionisios; Einstein, T. L.
2013-03-01
In the many years since it was first proposed, the Burton- Cabrera-Frank (BCF) model of step-flow has been experimentally established as one of the cornerstones of surface physics. However, many questions remain regarding the underlying physical processes and theoretical assumptions that give rise to the BCF theory. In this work, we formally derive the BCF theory from an atomistic, kinetic Monte Carlo model of the surface in 1 +1 dimensions with one step. Our analysis (i) shows how the BCF theory describes a surface with a low density of adsorbed atoms, and (ii) establishes a set of near-equilibrium conditions ensuring that the theory remains valid for all times. Support for PP was provided by the NIST-ARRA Fellowship Award No. 70NANB10H026 through UMD. Support for TLE and PP was also provided by the CMTC at UMD, with ancillary support from the UMD MRSEC. Support for DM was provided by NSF DMS0847587 at UMD.
Kinetic theory of age-structured stochastic birth-death processes
Greenman, Chris D.; Chou, Tom
2016-01-01
Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.
Tserkovnikov, Yu.A.
2001-01-01
The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru
Santos, R.S. dos
1993-01-01
This paper presents a computational program to solve numerically the reactor kinetics equations in the multigroup diffusion theory. One or two-dimensional problems in cylindrical or Cartesian geometries, with any number of energy and delayed-neutron precursors groups are dealt with. The main input and output of the program are briefly discussed. Various results demonstrate the accuracy and versatility of the program, when compared with other kinetics programs. (author)
Two new proofs of the test particle superposition principle of plasma kinetic theory
Krommes, J.A.
1976-01-01
The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented; the deductive approach appears here for the first time in the literature. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution is then re-arranged into the superposition principle. The inductive proof is simpler than Rostoker's although similar in some ways; it differs in that first-order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.
Dang, Liem X; Chang, Tsun-Mei
2016-09-07
In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
J. Javier Brey
2017-02-01
Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.
Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory
Unesaki, Hironobu
1989-01-01
Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Jinpeng Qi
Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi
2011-01-01
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Neoclassical kinetic theory near the edge of a diverted tokamak plasma
Solano, E.R.; Hazeltine, R.D.
1993-01-01
In a diverted plasma, the poloidal magnetic field has a strong poloidal variation, approaching zero near the X-point. Typically, neoclassical theory is based on ordering assumptions about the 3 characteristic frequencies present in the problem: streaming, collisions and drift. In a circular geometry, the streaming freuency is constant, while the drift frequency has a sin(θ) variation. In a shaped plasma, the streaming frequency also has a poloidal variation. The ordering is now established by the amplitude of these frequencies. With a model poloidal flux function, the authors solve the drift kinetic equation inside, but near, the separatrix. Both the plateau and collisional regime are considered. Ion rotation rates, and their poloidal variation, are calculated. It is shown that the standard neoclassical rotation predictions still hold, when correctly interpreted. Other neoclassical fluxes are calculated as well
Theory of Kinetics of Registration and Anti-Registration in Lipid Bilayers
Olmsted, Peter; Williamson, John
Lipid bilayer leaflets are often treated as if they are coupled; i.e., that the two leaflets undergo simultaneous transitions between phases, and that domains involve both leaflets together in a registered fashion. We present theory and simulation showing how interleaflet couplings and hydrophobic mismatch can lead to a complex phase diagram with multiple metastable two-phase and three-phase states. Many of these states can be discerned in the experimental literature, and are expected in the early stages of coarsening when domains are sub-micron (and thus perhaps of significance to lipid rafts). We present different kinetic scenarios for transitions between these state, and show how lipid flip flop can surprisingly lead to non-symmetric anti-registered patterns.
Derivation of fluid dynamics from kinetic theory with the 14-moment approximation
Denicol, G.S.; Molnar, E.; Niemi, H.; Rischke, D.H.
2012-01-01
We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case. (orig.)
Theory of First Order Chemical Kinetics at the Critical Point of Solution.
Baird, James K; Lang, Joshua R
2017-10-26
Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.
Schweitzer, J.M.
1998-11-23
Kinetic modelling of petroleum hydrocracking is particularly difficult given the complexity of the feedstocks. There are two distinct classes of kinetics models: lumped empirical models and detailed molecular models. The productivity of lumped empirical models is generally not very accurate, and the number of kinetic parameters increases rapidly with the number of lumps. A promising new methodology is the use of kinetic modelling based on the single events theory. Due to the molecular approach, a finite and limited number of kinetic parameters can describe the kinetic behaviour of the hydrocracking of heavy feedstock. The parameters are independent of the feedstock. However, the available analytical methods are not able to identify the products on the molecular level. This can be accounted for by means of an posteriori lamping technique, which incorporates the detailed knowledge of the elementary step network. Thus, the lumped kinetic parameters are directly calculated from the fundamental kinetic coefficients and the single event model is reduced to a re-lumped molecular model. Until now, the ability of the method to extrapolate to higher carbon numbers had not been demonstrated. In addition, no study had been published for three phase (gas-liquid-solid) systems and a complex feedstock. The objective of this work is to validate the `single events` method using a paraffinic feedstock. First of all, a series of experiments was conducted on a model compound (hexadecane) in order to estimate the fundamental kinetic parameters for acyclic molecules. To validate the single event approach, these estimated kinetic coefficients were used to simulate hydrocracking of a paraffinic mixture ranging from C11 to C18. The simulation results were then compared to the results obtained from the hydrocracking experiments. The comparison allowed to validate the model for acyclic molecules and to demonstrate that the model is applicable to compounds with higher carbon numbers. (author
van Leeuwen, Theo; Djonov, Emilia
2014-01-01
After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....
Development of Interactive Learning Media on Kinetic Gas Theory at SMAN 2 Takalar
Yanti, M.; Ihsan, N.; Subaer
2017-02-01
Learning media is the one of the most factor in supporting successfully in the learning process. The purpose of this interactive media is preparing students to improve skills in laboratory practice without need for assistance and are not bound by time and place. The subject of this study was 30 students grade XI IPA SMAN 2 Takalar. This paper discuss about the development of learning media based in theory of gas kinetic. This media designed to assist students in learning independently. This media made using four software, they are Microsoft word, Snagit Editor, Macromedia Flash Player and Lectora. This media are interactive, dynamic and could support the users desires to learn and understand course of gas theory. The development produce followed the four D models. Consisted of definition phase, design phase, development phase and disseminate phase. The results showed 1) the media were valid and reliable, 2) learning tools as well as hardcopy and softcopy which links to website 3) activity learners above 80% and 4) according to the test results, the concept of comprehension of student was improved than before given interactive media.
Profile of student’s understanding in Kinetic Theory of Gases
Putri, E. E. R.; Sukarmin; Cari
2018-04-01
Students in eleven grade had a different style for answering the physics problems. They could do anything to solve the problem. The way they thought and revealed it into the answer in many styles could be used as a data to know their conception. One of the sub-chapter in physics was the effective velocity of gases. It included in Kinetic Theory of Gases. It was one of the most difficult scientific theories to accept. This research aimed to identify student’s understanding in effective velocity of gases problem. The research was qualitative research. It was taken place at MAN Yogyakarta I in semester two on grade eleven. The obtained datas were collected by test sheet that contained of essay form. The respondents were all of the students in XI MIA 3. The data was analyzed by quantitative analysis using rubric of scoring in essay test and it contained of two problems. The results were the students had resolved the test and it was divided into three categories which are high 10,42%, medium 29,17%, and low 50,00%.
Shear viscosity of the quark-gluon plasma in a kinetic theory approach
Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.
2014-01-01
One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
ring shape morphology of a beam with orbital angular momentum (OAM) is ideal for the observation of solar corona around the sun where the intensity of the beam is minimum at the center, in solar experiments, and Earth's ionosphere. The twisted plasma modes carrying OAM are mostly studied either by the fluid theory or Maxwellian distributed Kinetic Theory. But most of the space plasmas and some laboratory plasmas have non-thermal distributions due to super-thermal population of the plasma particles. Therefore the Kinetic Theory of twisted plasma modes carrying OAM are recently studied using non-thermal (kappa) distribution of the super-thermal particles in the presence of the helical electric field and significant change in the damping rates are observed by tuning appropriate parameters.
Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan
2011-01-01
A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen–hydrogen defect interactions in the cubic SrTiO3 perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV comp...
Discovering the Gas Laws and Understanding the Kinetic Theory of Gases with an iPad App
Davies, Gary B.
2017-01-01
Carrying out classroom experiments that demonstrate Boyle's law and Gay-Lussac's law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow…
Schoolderman, A.J.; Suttorp, L.G.
1989-01-01
The long-time behaviour of the longitudinal and the transverse heat conductivity time correlation functions for a magnetized one-component plasma is studied by means of kinetic theory. To that end these correlation functions, which are defined as the inverse Laplace transforms of the dynamic heat
Pomraning, G.C.
1997-05-01
The goal in this research was to continue the development of a comprehensive theory of linear transport/kinetic theory in a stochastic mixture of solids and immiscible fluids. Such a theory should predict the ensemble average and higher moments, such as the variance, of the particle or energy density described by the underlying transport/kinetic equation. The statistics studied correspond to N-state discrete random variables for the interaction coefficients and sources, with N denoting the number of components in the mixture. The mixing statistics considered were Markovian as well as more general statistics. In the absence of time dependence and scattering, the theory is well developed and described exactly by the master (Liouville) equation for Markovian mixing, and by renewal equations for non-Markovian mixing. The intent of this research was to generalize these treatments to include both time dependence and scattering. A further goal of this research was to develop approximate, but simpler, models from any comprehensive theory. In particular, a specific goal was to formulate a renormalized transport/kinetic theory of the usual nonstochastic form, but with effective interaction coefficients and sources to account for the stochastic nature of the problem. In the three and one-half year period of research summarized in this final report, they have made substantial progress in the development of a comprehensive theory of kinetic processes in stochastic mixtures. This progress is summarized in 16 archival journal articles, 7 published proceedings papers, and 2 comprehensive review articles. In addition, 17 oral presentations were made describing these research results
Shirazi, Mahdi; Elliott, Simon D
2014-01-30
To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD. Copyright © 2013 Wiley Periodicals, Inc.
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D
Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.
2018-05-01
In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.
Kinetic theory of situated agents applied to pedestrian flow in a corridor
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
Theory and procedures for finding a correct kinetic model for the bacteriorhodopsin photocycle.
Hendler, R W; Shrager, R; Bose, S
2001-04-26
In this paper, we present the implementation and results of new methodology based on linear algebra. The theory behind these methods is covered in detail in the Supporting Information, available electronically (Shragerand Hendler). In brief, the methods presented search through all possible forward sequential submodels in order to find candidates that can be used to construct a complete model for the BR-photocycle. The methodology is limited only to forward sequential models. If no such models are compatible with the experimental data,none will be found. The procedures apply objective tests and filters to eliminate possibilities that cannot be correct, thus cutting the total number of candidate sequences to be considered. In the current application,which uses six exponentials, the total sequences were cut from 1950 to 49. The remaining sequences were further screened using known experimental criteria. The approach led to a solution which consists of a pair of sequences, one with 5 exponentials showing BR* f L(f) M(f) N O BR and the other with three exponentials showing BR* L(s) M(s) BR. The deduced complete kinetic model for the BR photocycle is thus either a single photocycle branched at the L intermediate or a pair of two parallel photocycles. Reasons for preferring the parallel photocycles are presented. Synthetic data constructed on the basis of the parallel photocycles were indistinguishable from the experimental data in a number of analytical tests that were applied.
A kinetic theory for nonanalog Monte Carlo algorithms: Exponential transform with angular biasing
Ueki, T.; Larsen, E.W.
1998-01-01
A new Boltzmann Monte Carlo (BMC) equation is proposed to describe the transport of Monte Carlo particles governed by a set of nonanalog rules for the transition of space, velocity, and weight. The BMC equation is a kinetic equation that includes weight as an extra independent variable. The solution of the BMC equation is the pointwise distribution of velocity and weight throughout the physical system. The BMC equation is derived for the simulation of a transmitted current, utilizing the exponential transform with angular biasing. The weight moments of the solution of the BMC equation are used to predict the score moments of the transmission current. (Also, it is shown that an adjoint BMC equation can be used for this purpose.) Integrating the solution of the forward BMC equation over space, velocity, and weight, the mean number of flights per history is obtained. This is used to determine theoretically the figure of merit for any choice of biasing parameters. Also, a maximum safe value of the exponential transform parameter is proposed, which ensure the finite variance of variance estimate (sample variance) for any penetration distance. Finally, numerical results that validate the new theory are provided
White, R D; Robson, R E; Schmidt, B; Morrison, Michael A
2003-01-01
The 'two-term' approximation (representation of the electron distribution by the first two terms of an expansion in spherical harmonics in velocity space) continues to occupy a central role in the low-temperature plasma physics literature, in spite of the mass of evidence illustrating its inadequacy in the swarm (free diffusion) limit for many molecular gases. Part of the problem lies in the failure of many authors to specify quantitatively what they mean when they say that the two-term approximation is 'acceptable'. Thus for example, an error of 10% in transport coefficients may well be acceptable in many plasma applications, but for analysis of highly accurate swarm experiments to compare with ab initio and beam-derived cross-sections, 0.1% or less is required, making 'multi-term' analysis mandatory. While reconciliation of the swarm and plasma literature along the lines of two different accuracy regimes may thus be possible, we dispute claims that the two-term approximation is generally satisfactory for inversion of swarm experiment data to obtain electron impact cross-sections. The unsatisfactory nature of other assumptions implicit in much of the modern plasma kinetic theory literature is also discussed
Nourhani, Amir; Crespi, Vincent H.; Lammert, Paul E.
2015-06-01
We present a self-consistent nonlocal feedback theory for the phoretic propulsion mechanisms of electrocatalytic micromotors or nanomotors. These swimmers, such as bimetallic platinum and gold rods catalyzing decomposition of hydrogen peroxide in aqueous solution, have received considerable theoretical attention. In contrast, the heterogeneous electrochemical processes with nonlocal feedback that are the actual "engines" of such motors are relatively neglected. We present a flexible approach to these processes using bias potential as a control parameter field and a locally-open-circuit reference state, carried through in detail for a spherical motor. While the phenomenological flavor makes meaningful contact with experiment easier, required inputs can also conceivably come from, e.g., Frumkin-Butler-Volmer kinetics. Previously obtained results are recovered in the weak-heterogeneity limit and improved small-basis approximations tailored to structural heterogeneity are presented. Under the assumption of weak inhomogeneity, a scaling form is deduced for motor speed as a function of fuel concentration and swimmer size. We argue that this form should be robust and demonstrate a good fit to experimental data.
Berger, Christian; Bucher, Edith; Windischbacher, Andreas; Boese, A. Daniel; Sitte, Werner
2018-03-01
The Sr-free mixed ionic electronic conducting perovskites La0.8Ca0.2FeO3-δ (LCF82) and Pr0.8Ca0.2FeO3-δ (PCF82) were synthesized via a glycine-nitrate process. Crystal structure, phase purity, and lattice constants were determined by XRD and Rietveld analysis. The oxygen exchange kinetics and the electronic conductivity were obtained from in-situ dc-conductivity relaxation experiments at 600-800 °C and 1×10-3≤pO2/bar≤0.1. Both LCF82 and PCF82 show exceptionally fast chemical surface exchange coefficients and chemical diffusion coefficients of oxygen. The oxygen nonstochiometry of LCF82 and PCF82 was determined by precision thermogravimetry. A point defect model was used to calculate the thermodynamic factors of oxygen and to estimate self-diffusion coefficients and ionic conductivities. Density Functional Theory (DFT) calculations on the crystal structure, oxygen vacancy formation as well as oxygen migration energies are in excellent agreement with the experimental values. Due to their favourable properties both LCF82 and PCF82 are of interest for applications in solid oxide fuel cell cathodes, solid oxide electrolyser cell anodes, oxygen separation membranes, catalysts, or electrochemical sensors.
Transport coefficients of Quark-Gluon Plasma in a Kinetic Theory approach
Puglisi, A; Plumari, S; Scardina, F; Greco, V
2014-01-01
One of the main results of heavy ions collision at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s = 1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green- Kubo relations give us an exact expression to compute these coefficients. We computed shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigated different cases of particles, for one component system (gluon matter), interacting via isotropic or anisotropic cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. Another transport coefficient of interest is the electric conductivity σ el which determines the response of QGP to the electromagnetic fields present in the early stage of the collision. We study the σ el dependence on microscopic details of interaction and we find also in this case that Relaxation Time Approximation is a good approximation only for isotropic cross-section.
TASK, 1-D Multigroup Diffusion or Transport Theory Reactor Kinetics with Delayed Neutron
Buhl, A.R.; Hermann, O.W.; Hinton, R.J.; Dodds, H.L. Jr.; Robinson, J.C.; Lillie, R.A.
1975-01-01
1 - Description of problem or function: TASK solves the one-dimensional multigroup form of the reactor kinetics equations, using either transport or diffusion theory and allowing an arbitrary number of delayed neutron groups. The program can also be used to solve standard static problems efficiently such as eigenvalue problems, distributed source problems, and boundary source problems. Convergence problems associated with sources in highly multiplicative media are circumvented, and such problems are readily calculable. 2 - Method of solution: TASK employs a combination scattering and transfer matrix method to eliminate certain difficulties that arise in classical finite difference approximations. As such, within-group (inner) iterations are eliminated and solution convergence is independent of spatial mesh size. The time variable is removed by Laplace transformation. (A later version will permit direct time solutions.) The code can be run either in an outer iteration mode or in closed (non-iterative) form. The running mode is dictated by the number of groups times the number of angles, consistent with available storage. 3 - Restrictions on the complexity of the problem: The principal restrictions are available storage and computation time. Since the code is flexibly-dimensioned and has an outer iteration option there are no internal restrictions on group structure, quadrature, and number of ordinates. The flexible-dimensioning scheme allows optional use of core storage. The generalized cylindrical geometry option is not complete in Version I of the code. The feedback options and omega-mode search options are not included in Version I
Lifschitz, E.M.; Pitajewski, L.P.
1983-01-01
The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations
Ren, Jie
2017-12-01
The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.
Han, Cheng; Hou, De-fu; Li, Jia-rong [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan, Hubei (China); Jiang, Bing-feng [Hubei University for Nationalities, Center for Theoretical Physics and School of Sciences, Enshi, Hubei (China)
2017-10-15
The dielectric functions ε{sub L}, ε{sub T} of the quark-gluon plasma (QGP) are derived within the framework of the kinetic theory with BGK-type collisional kernel. The collision effect manifested by the collision rate is encoded in the dielectric functions. Based on the derived dielectric functions we study the collisional energy loss suffered by a fast parton traveling through the QGP. The numerical results show that the collision rate increases the energy loss. (orig.)
Vescovi, Dalila; Berzi, Diego; Richard, Patrick; Brodu, Nicolas
2014-01-01
International audience; We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed av...
Liechty, Derek S.; Lewis, Mark J.
2010-01-01
Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.
Biglari, H.; Chen, L.
1991-10-01
A complete theory of wave-particle interactions is presented whereby both circulating and trapped energetic ions can destabilize kinetic ballooning modes in tokamaks. Four qualitatively different types of resonances, involving wave-precessional drift, wave-transit, wave-bounce, and precessional drift-bounce interactions, are identified, and the destabilization potential of each is assessed. For a characteristic slowing-down distribution function, the dominant interaction is that which taps those resonant ions with the highest energy. Implications of the theory for present and future generation fusion experiments are discussed. 16 refs
Design and optimization of a Holweck pump via linear kinetic theory
Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris
2012-05-01
The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.
Design and optimization of a Holweck pump via linear kinetic theory
Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris
2012-01-01
The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
Burnett, James [Department of Mathematics, UCL, Gower Street, London WC1E 6BT (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT (United Kingdom)
2015-05-21
Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable “gauge” transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.
Vescovi, D.; Berzi, D.; Richard, P.; Brodu, N.
2014-05-01
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
Vescovi, D.; Berzi, D.; Richard, P.; Brodu, N.
2014-01-01
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature
Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics
Henry, A.F.
1980-01-01
Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented
Abril, J.M.
1998-01-01
Recently much experimental effort has been focused on determining those factors which affect the kinetics and the final equilibrium conditions for the uptake of radionuclides from the aqueous phase by particulate matter. At present, some of these results appear to be either surprising or contradictory and introduce some uncertainty in which parameter values are most appropriate for environmental modelling. In this paper, we study the ionic exchange between the dissolved phase and suspended particles from a microscopic viewpoint, developing a mathematical description of the kinetic transfer and the k d distribution coefficients. The most relevant contribution is the assumption that the exchange of radionuclides occurs in a specific surface layer on the particles, with a non-zero thickness. A wide range of experimental findings can be explained with this theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Hebenstreit, F.; Alkofer, R.; Gies, H.
2010-01-01
The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and time-dependent electric fields E-vector(x-vector,t). Based on the Dirac-Heisenberg-Wigner formalism, we derive a system of partial differential equations of infinite order for the 16 irreducible components of the Wigner function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a constant electric field E(t)=E 0 and the Sauter-type electric field E(t)=E 0 sech 2 (t/τ). These analytic solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a strong influence on the components of the Wigner function for large momenta or for late times.
Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.
The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.
Bai, Shirong; Skodje, Rex T
2017-08-17
A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.
A Study on the Kinetics of Propane-Activated Carbon: Theory and Experiments
Ismail, Azhar bin
2013-08-01
Experimental kinetics results of propane in Maxsorb III activated carbon is obtained at temperatures of 10°C and 30°C, and pressures up to 800kPa using a magnetic suspension balance. A multi-gradient linear driving force (LDF) approximation is used for adsorbate uptake as a function of time. The LDF mass-transfer-rate coefficients were thus determined. Using this approach, the experimentally derived LDF coefficients based on independently measured kinetic parameters for propane in the activated-carbon bed agree very well with experimental results. The computational efficiency is gained by adopting this extended LDF model. © (2013) Trans Tech Publications, Switzerland.
A Study on the Kinetics of Propane-Activated Carbon: Theory and Experiments
Ismail, Azhar bin; Loh, Wai Soong; Thu, Kyaw; Ng, Kim Choon
2013-01-01
Experimental kinetics results of propane in Maxsorb III activated carbon is obtained at temperatures of 10°C and 30°C, and pressures up to 800kPa using a magnetic suspension balance. A multi-gradient linear driving force (LDF) approximation is used for adsorbate uptake as a function of time. The LDF mass-transfer-rate coefficients were thus determined. Using this approach, the experimentally derived LDF coefficients based on independently measured kinetic parameters for propane in the activated-carbon bed agree very well with experimental results. The computational efficiency is gained by adopting this extended LDF model. © (2013) Trans Tech Publications, Switzerland.
Prastiwi, A. C.; Kholiq, A.; Setyarsih, W.
2018-03-01
The purposed of this study are to analyse reduction of students’ misconceptions after getting ECIRR with virtual simulation. The design of research is the pre-experimental design with One Group Pretest-Posttest Design. Subjects of this research were 36 students of class XI MIA-5 SMAN 1 Driyorejo Gresik 2015/2016 school year. Students misconceptions was determined by Three-tier Diagnostic Test. The result shows that the average percentage of misconceptions reduced on topics of ideal gas law, equation of ideal gases and kinetic theory of gases respectively are 38%, 34% and 38%.
Kinetic theory of nonlinear viscous flow in two and three dimensions
Ernst, M.H.; Cichocki, B.; Dorfman, J.R.; Sharma, J.; Beijeren, H. van
1978-01-01
On the basis of a nonlinear kinetic equation for a moderately dense system of hard spheres and disks it is shown that shear and normal stresses in a steady-state, uniform shear flow contain singular contributions of the form ¦X¦3/2 for hard spheres, or ¦X¦ log ¦X¦ for hard disks. HereX is
Sly, Krystal L; Conboy, John C
2017-06-01
A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Hurricane, O.A.
1994-09-01
In this dissertation, a new linear Vlasov kinetic theory is developed for calculating the plasma response to perturbing electromagnetic fields in cases where the particle dynamics are stochastic; for modes with frequencies less than the typical particle bounce frequency. A variational form is arrived at which allows one to properly perform a stability analysis for a stochastic plasma. In the case of stochastic dynamics, the authors demonstrate that the plasma responds to the flux tube volume average of the perturbing potentials as opposed to the usual case of adiabatic dynamics where plasma responds to the bounce average of the perturbed potentials. They show that for the stochastic plasma, the kinetic variational form maps into the Bernstein energy principle if the perturbation frequency is large compared to all drift frequencies, the perpendicular wavelength is large compared to the Larmor radius, and vanishing of the potentials associated with the parallel electric field are all assumed. By explicit minimization of the energy principle, it is established that the stochastic plasma is always less stable than an adiabatic plasma. Lastly, the effect of strictly enforcing the quasi-neutrality (QN) condition upon a gyro-kinetic type stability analysis is explored. From simple mathematical considerations, it is shown that when the QN condition is imposed convective type modes that are equipotentials along magnetic field lines are created that alter the stability properties of the plasma. The pertinent modifications to the Bernstein energy principle are given
Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)
2018-01-15
The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)
Mitra, Sukanya
2018-01-01
The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.
Kinetic theory of the sausage instability of a z-pinch
Isichenko, M.B.; Kulyabin, K.L.; Yan'kov, V.V.
1989-01-01
A linear problem of z-pinch sausage development is considered taking into account the influence of kinetic effects for ideal scanning current. Plasma electrons are considered to be cold and ions - collisionless. It is also supposed that the magnetic field inside a pinch doesn't affect the motion of ions, which are reflected like in a mirror from a jump of an electric potential arising on the plasma boundary. In case of long-wave perturbations ka >1 the acount of kinetics leads to considerable decrease of the increment [(ka) 1/2 times] in comparison with the hydrodynamic description, that permits to explain the increased instability of z-pinches observed in experiments
Kinetic Isotope Effects (KIE) and Density Functional Theory (DFT): A Match Made in Heaven?
Christensen, Niels Johan; Fristrup, Peter
2015-01-01
Determination of experimental kinetic isotope effects (KIE) is one of the most useful tools for the exploration of reaction mechanisms in organometallic chemistry. The approach has been further strengthened during the last decade with advances in modern computational chemistry. This allows for th...... reaction). The approach is highlighted by using recent examples from both stoichiometric and catalytic reactions, homogeneous and heterogeneous catalysis, and enzyme catalysis to illustrate the expected accuracy and utility of this approach....
Kinetic theory of plasma in the limiter-scrape-off layer
Daybelge, U.; Bein, B.
1977-01-01
An asymptotic solution is given for the ion-drift-kinetic equation with a full Fokker--Planck term for the limiter-scrape-off layer in a tokamak. In this layer, the plasma is assumed to consist of hot, collisionless ions, and cold, collisional electrons. From the solution of the boundary-layer problem, ion and electron particle and energy losses to the limiter are calculated. Limiter load profiles due to ions are explicitly given as functions of the poloidal angle
Quantum field kinetics of QCD quark-gluon transport theory for light-cone dominated processes
Kinder-Geiger, Klaus
1996-01-01
A quantum kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the `closed-time-path' Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the 2-point functions of the gluon and quark fields. By exploiting the `two-scale nature' of light-cone dominated QCD processes, i.e. the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary inter- actions, the quantum-field equations of ...
Diffusion-kinetic theories for LET effects on the radiolysis of water
Pimblott, S.M.; LaVerne, J.A.
1994-01-01
Diffusion-kinetic methods are used to investigate the effects of incident particle linear energy transfer (LET) on the radiolysis of water and aqueous solutions. Chemically realistic deterministic diffusion-kinetic calculations examining the scavenging capacity dependences of the scavenged yield of e aq - and of OH demonstrate that the scavenged yields are related to the underlying time-dependent kinetics in the absence of the scavenger by a simple Laplace transform relationship. This relationship is also shown to link the effect of an e eq - scavenger on the formation of H 2 with the time dependence of H 2 production in the absence of the scavenger. The simple Laplace relationship does not work well when applied to H 2 O 2 formation in high-LET particle tracks even though such a relationship is valid with low-LET particles. It is found that while the secondary reaction of H 2 O 2 with e aq - can be neglected in low-LET particle radiolysis, it is of considerable significance in the tracks produced by high-LET particles. The increased importance of this reaction with increasing LET is the major reason for the failure of the Laplace relationship for H 2 O 2 . 55 refs., 9 figs., 2 tabs
Granroth, Sari; Olovsson, Weine; Holmstroem, Erik; Knut, Ronny; Gorgoi, Mihaela; Svensson, Svante; Karis, Olof
2011-01-01
Advances in instrumentation regarding 3rd generation synchrotron light sources and electron spectrometers has enabled the field of high kinetic energy photoelectron spectroscopy (HIKE) (also often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES)). Over the last years, the amount of investigations that relies on the HIKE method has increased dramatically and can arguably be said to have given a rebirth of the interest in photoelectron spectroscopy in many areas. It is in particular the much increased mean free path at higher kinetic energies in combination with the elemental selectivity of the core level spectroscopies in general that has lead to this fact, as it makes it possible to investigate the electronic structure of materials with a substantially reduced surface sensitivity. In this review we demonstrate how HIKE can be used to investigate the interface properties in multilayer systems. Relative intensities of the core level photoelectron peaks and their chemical shifts derived from binding energy changes are found to give precise information on physico-chemical properties and quality of the buried layers. Interface roughening, including kinetic properties such as the rate of alloying, and temperature effects on the processes can be analyzed quantitatively. We will also provide an outline of the theoretical framework that is used to support the interpretation of data. We provide examples from our own investigations of multilayer systems which comprises both systems of more model character and a multilayer system very close to real applications in devices that are considered to be viable alternative to the present read head technology. The experimental data presented in this review is exclusively recorded at the BESSY-II synchrotron at the Helmholtz-Zentrum Berlin fuer Materialien und Energie. This HIKE facility is placed at the bending magnet beamline KMC-1, which makes it different from several other facilities which relies on undulators as
Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes
Geiger, K.
1996-01-01
A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)
On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.
Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)
1996-03-01
Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.
Kinetic theory and simulation of multi-species plasmas in tokamaks excited with ICRF microwaves
Kerbel, G.D.; McCoy, M.G.
1984-01-01
This paper presents a description of a bounce-averaged Fokker-Planck quasilinear model for the kinetic description of tokamak plasmas. The non-linear collision and quasilinear resonant diffusion operators are represented in a form conducive to numerical solution with specific attention to the treatment of the boundary layer separating trapped and passing orbit regions of velocity space. The numerical techniques employed are detailed in so far as they constitute significant departure from those used in the conventional uniform magnetic field case. Examples are given to illustrate the combined effects of collisional and resonant diffusion
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
Microscopic theory of warm ionized gases: equation of state and kinetic Schottky anomaly
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-01-01
Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed.
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.
Pascal, Robert; Pross, Addy; Sutherland, John D
2013-11-06
A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.
Das, Biswajit; Gangopadhyay, Gautam
2018-05-01
In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.
Rate theory of solvent exchange and kinetics of Li+ − BF4−/PF6− ion pairs in acetonitrile
Dang, Liem X.; Chang, Tsun-Mei
2016-01-01
In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li + and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li + in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li + -[BF 4 ] and Li + -[PF 6 ] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li + . We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li + -[BF 4 ] and Li + -[PF 6 ] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.
Jacob U. Fluckiger
2013-01-01
Full Text Available We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES, and the extravascular-intracellular space (EIS. Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.
Discovering the gas laws and understanding the kinetic theory of gases with an iPad app
Davies, Gary B.
2017-07-01
Carrying out classroom experiments that demonstrate Boyle’s law and Gay-Lussac’s law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow us to visualise the behaviour of individual particles and to link this behaviour to the bulk properties of the gas e.g. its pressure and temperature. In this article, I describe how to carry out ‘computer experiments’ using a commercial molecular dynamics iPad app called Atoms in Motion [1]. Using the app, I show how to obtain data from simulations that demonstrate Boyle’s law and Gay-Lussac’s law, and hence also the combined gas law.
Araki, Suguru
1991-01-01
The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.
Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong
2016-11-28
Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.
Gallis, Michael A; Bond, Ryan B; Torczynski, John R
2009-09-28
Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.
Kinetic theory of cross-modulation in a weakly ionized plasma
Garrett, A.J.M.
1991-01-01
Cross-modulation in plasma is an electromagnetic wave interaction in which the modulation of one 'disturbing' wave is imposed nonlinearly on the transport properties of the medium, and thence onto a second, 'wanted' wave propagating linearly through it. This analysis is restricted to weakly ionized plasma with allowance for ambient magnetic field, as in the lower ionosphere. A kinetic description is used, based on the Boltzmann equation for the electrons, with electron-molecule collisions described by Boltzmann's collision integral. Because of the small mass ratio this simplifies to a differential form. There is no cross-modulation if the collision frequency is independent of collision speed, when contributions from all parts of velocity space cancel. (author)
Theory of stochastic space-dependent neutron kinetics with a Gaussian parametric excitation
Saito, K.
1980-01-01
Neutron kinetics and statics in a multiplying medium with a statistically fluctuating reactivity are unified and systematically studied by applying the Novikov-Furutsu formula. The parametric or multiplicative noise is spatially distributed and of Gaussian nature with an arbitrary spectral profile. It is found that the noise introduces a new definite production term into the conventional balance equation for the mean neutron number. The term is characterized by the magnitude and the correlation function of the random excitation. Its relaxation phenomena bring forth a non-Markoffian or a memory effect, which is conceptualised by introducing 'pseudo-precursors' or 'pseudo-delayed neutrons'. By using the concept, some typical reactor physical problems are solved; they are (1) reactivity and flux perturbation originating from the random dispersal of core materials and (2) analysis of neutron decay mode and it relaxation constant, and derivation of the corresponding new inhour equation. (author)
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.
2018-02-01
In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.
Stout, R B
2001-01-01
A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For
On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics
Roy, Santanu; Galib, Mirza; Schenter, Gregory K.; Mundy, Christopher J.
2018-01-01
The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus' philosophy of electron transfer, we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF4--water system is computed using ab initio molecular dynamics and Marcus theory, and is found to be in excellent agreement with the 2DIR measurement.
A new variational formulation of kinetic plasma theory and the application of moving finite elements
Glasser, A.H.
1991-01-01
A new variational formulation has been developed for the system of equations governing kinetic plasmas and electromagnetic fields. It is used to apply the method of Moving Finite Elements to the electromagnetic fields. The fields are expanded in a basis of linear finite elements on a movable, unstructured grid of triangles in 2D or tetrahedra in 3D, while the plasma distribution function is expanded in a basis of super particles. Minimization of the variational with respect to the time derivatives of the field quantities yields a coupled system of equations for simultaneously advancing the amplitudes and node positions, resulting in adaptive grid motion. The adaptivity of the grid may save a large factor in the size of the grid and the number of particles required in many problems. Minimization of the variational with respect to the time derivatives of the particle positions and velocities gives the equations of motion, providing consistent prescriptions for assigning particles to the grid and fields to the particles. Orthogonality conditions on the particles are derived as conditions for keeping their equations of motion independent. Collisions can be included in a natural way. The relationship between PIC methods and alternative methods of discretizing phase space is clarified
Yoon, P. H.; Schlickeiser, R.; Kolberg, U.
2014-01-01
Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result
Juckett, D A; Rosenberg, B
1992-04-21
The distributions for human disease-specific mortality exhibit two striking characteristics: survivorship curves that intersect near the longevity limit; and, the clustering of best-fitting Weibull shape parameter values into groups centered on integers. Correspondingly, we have hypothesized that the distribution intersections result from either competitive processes or population partitioning and the integral clustering in the shape parameter results from the occurrence of a small number of rare, rate-limiting events in disease progression. In this report we initiate a theoretical examination of these questions by exploring serial chain model dynamics and parameteric competing risks theory. The links in our chain models are composed of more than one bond, where the number of bonds in a link are denoted the link size and are the number of events necessary to break the link and, hence, the chain. We explored chains with all links of the same size or with segments of the chain composed of different size links (competition). Simulations showed that chain breakage dynamics depended on the weakest-link principle and followed kinetics of extreme-values which were very similar to human mortality kinetics. In particular, failure distributions for simple chains were Weibull-type extreme-value distributions with shape parameter values that were identifiable with the integral link size in the limit of infinite chain length. Furthermore, for chains composed of several segments of differing link size, the survival distributions for the various segments converged at a point in the S(t) tails indistinguishable from human data. This was also predicted by parameteric competing risks theory using Weibull underlying distributions. In both the competitive chain simulations and the parametric competing risks theory, however, the shape values for the intersecting distributions deviated from the integer values typical of human data. We conclude that rare events can be the source of
Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab
Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.
2010-01-01
The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δ a when δ a a >>L, the heating is shown to decay with 1/δ a 3 . The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.
M. Baqeri-Jagharq
2008-12-01
Full Text Available In current work a comprehensive mechanism based on intermediate radical termination theory is assumed for RAFT polymerization of styrene over cumyl dithiobenzoate as RAFT agent. Rate constants for addition (ka and fragmentation reactions (kf are set to 6×106 and 5×104 respectively, which lead to an equilibrium constant value of K = ka/kf = 1.2 x 102. Moment equations method was used to model this mechanism and the results were compared to experimental data to verify modeling. The effects of changing RAFT agent concentration on conversion, molecular weight and polydispersity index of the final product were investigated through the modeling. According to the results, the likelihood of living polymerization increases with raising RAFT agent concentration which leads to linearity of conversion and molecular weight curves and therefore lowering the polydispersity index and narrowing the molecular weight distribution.
Kinetic theory of interaction of high frequency waves with a rotating plasma
Chiu, S. C.; Chan, V. S.; Chu, M. S.; Lin-Liu, Y. R.
2000-01-01
The equations of motion of charged particles of a strongly magnetized flowing plasma under the influence of high frequency waves are derived in the guiding center approximation. A quasilinear theory of the interactions of waves with rotating plasmas is formulated. This is applied to investigate the effect of radio frequency waves on a rotating tokamak plasma with a heated minority species. The angular momentum drive is mainly due to the rf-induced radial minority current. The return current by the bulk plasma gives an equal and opposite rotation drive on the bulk. Using moment equations and a small banana width approximation, the JxB drive was evaluated for the bulk plasma. Quite remarkably, although collisions are included, the net rotation drive is due to a term which can be obtained by neglecting collisions. (c) 2000 American Institute of Physics
Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas
Arshad, K.; Poedts, S.; Lazar, M.
2017-12-01
The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G
2016-03-02
Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.
Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States). Chemical and Biological Engineering
2014-09-20
Previous work has indicated that inelastic grains undergoing homogeneous cooling may be unstable, giving rise to the formation of velocity vortices and particle clusters for sufficiently large systems. Such instabilities are observed in industrial coal and biomass gasifiers and are known to influence gas-solid contact area, mixing dynamics, and heat/mass transfer rates. However, the driving mechanisms that lead to vortices and clusters are not well understood. Discrete-particle simulations provide a well-established method for understanding such mechanisms but are not a feasible technique for predicting the behavior of large-scale systems. Kinetic-theory-based continuum models offer an effective means of describing such flows, and instabilities present a stringent test of such models due to the transient, three-dimensional nature of instabilities and the large range of time and length scales over which these mechanisms occur.This work begins with the study, via a combination of continuum models and discrete- particle simulations, of a relatively simple flow and includes additional complexities in a stepwise manner to assess various driving mechanisms. Comparisons with discrete-particle simulations, which offer detailed, well-established (but computationally limited) descriptions of particle flows, indicate the ability of continuum models to accurately incorporate each mechanism. Specifically, the critical length scale for velocity vortices and/or particle clusters are studied via direct numerical simulation, molecular dynamics simulations, linear stability analyses of the continuum model, and transient simulations of the continuum model in a range of flow complexities, including moderate dissipation and particle concentration, frictional particles collisions, high gradients, and gas-solid flows. Strong agreement between kinetic-theory-based continuum models and discrete-particle simulations is found for a range for conditions. Furthermore, discrete
Bogillo, V.I.; Lobanov, V.V.; Gragerov, I.P.
1987-01-01
The calculation of the rate constants for the processes in the reduction of diazonium, tropylium, verdazylium, and pyrylium cations by various organic electron donors, using the equations of the Marcus theory with allowance for the reorganization energy of only the outer coordination sphere, leads to values which are one to seven orders of magnitude higher than the experimental values. By quantum-chemical calculations it was shown that the reduction of diazonium and tropylium cations to the corresponding radicals is accompanied by a substantial change in the structure of the reagents. This leads to high values for the reorganization energy of the inner coordination sphere of the cations, which must be taken into account during calculation of the rate constants. The differences in the rate constants of the processes of direct electron transfer from the electron donors to the organic cations and the recombination of these reagents depend on the dissociation energy of the bond of the cation with the donor leading to the electron transfer products
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Sergeev, Alexey; Jovanovic, Raka; Kais, Sabre; Alharbi, Fahhad H
2016-01-01
We consider the density of a fermionic system as a functional of the potential, in one-dimensional case, where it is approximated by the Thomas–Fermi term plus semiclassical corrections through the gradient expansion. We compare this asymptotic series with the exact answer for the case of the harmonic oscillator and the Morse potential. It is found that the leading (Thomas–Fermi) term is in agreement with the exact density, but the subdominant term does not agree in terms of the asymptotic behavior because of the presence of oscillations in the exact density, but their absence in the gradient expansion. However, after regularization of the density by convolution with a Gaussian, the agreement can be established even in the subdominant term. Moreover, it is found that the expansion is always divergent, and its terms grow proportionally to the factorial function of the order, similar to the well-known divergence of perturbation series in field theory and the quantum anharmonic oscillator. Padé–Hermite approximants allow summation of the series, and one of the branches of the approximants agrees with the density. (paper)
A kinetic theory description of the viscosity of dense fluids consisting of chain molecules.
de Wijn, Astrid S; Vesovic, Velisa; Jackson, George; Trusler, J P Martin
2008-05-28
An expression for the viscosity of a dense fluid is presented that includes the effect of molecular shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed, rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions between two rigid spheres belonging to different chains. The approach is thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed in terms of two molecular parameters, the diameter sigma of the spherical segment and the chain length (number of segments) m. It is demonstrated that an analysis of viscosity data of a particular pure fluid alone cannot be used to obtain independently effective values of both sigma and m. Nevertheless, the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere making up the chain can be represented by the diameter of a methane molecule. The effective chain lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The dependence can be approximated by a simple relationship m=1+(C-1)3. The same relationship was reported within the context of a statistical associating fluid theory equation of state treatment of the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same value for the chain lengths of n-alkanes.
Lachowicz, Mirosław
2016-03-01
The very stimulating paper [6] discusses an approach to perception and learning in a large population of living agents. The approach is based on a generalization of kinetic theory methods in which the interactions between agents are described in terms of game theory. Such an approach was already discussed in Ref. [2-4] (see also references therein) in various contexts. The processes of perception and learning are based on the interactions between agents and therefore the general kinetic theory is a suitable tool for modeling them. However the main question that rises is how the perception and learning processes may be treated in the mathematical modeling. How may we precisely deliver suitable mathematical structures that are able to capture various aspects of perception and learning?
Chang, Tsun-Mei; Dang, Liem X.
2017-10-01
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.
Kinetic theory of neutron gases. Progress report, October 1, 1974--June 30, 1975
Goldstein, H.; Cacuci, D.; Ku, L.P.; Ostrow, S.; Peng, W.
1975-01-01
Interim progress reports are presented on four investigations involving the transport of fast neutrons. The common theme tying together the four research projects is the manner in which details of microscopic cross sections affect the macroscopic transport behavior of neutron gases in material media. In the first, the classic problem of transport and slowing down in a non-hydrogenous medium with constant cross section is being reexamined, using Case's method of singular eigenfunctions. Both the asymptotic limit derived by Wick and the age-theory extreme have been recovered, and higher order corrections to these are being derived. Semi-numerical techniques have been developed which should permit calculation of the flux over wide ranges of distance and lethargy. The second investigation is the study of the effects of square-well minima in otherwise constant cross sections. A specialized moments-method code has been developed for the purpose, which gives the flux as far out as 80 to 100 mfp from the source. A simple but highly accurate model has been developed to include the effects of the minima, and it is now feasible to predict under what conditions a given minimum will significantly affect the penetration. In the third study Monte Carlo has been used to obtain the characteristics of neutron histories penetrating to various distances and energies in iron. The role of such cross section phenomena as inelastic scattering and cross section minima is being elucidated. In the last investigation, the discrete energy S/sub N/ method is being applied to various transport problems difficult of access by other methods. For example, an examination is under way of the dependence of fast-neutron albedo on the form of representation of the scattered neutron distribution and on the fine structure of the cross section. (U.S.)
BRANNON,REBECCA M.
2000-11-01
A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion
Liu, Wenyuan; Sk, Mahasin Alam; Manzhos, Sergei; Martin-Bragado, Ignacio; Benistant, Francis; Cheong, Siew Ann
2017-01-01
A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we propose a more comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.
Milic, B.S.; Gajic, D.Z.
1994-01-01
Quasi-perpendicular electromagnetic ion-cyclotron (QPEMIC) modes and instabilities are studied, on the ground of linear theory of perturbations and kinetic equations with BGK collision integrals, in weakly ionized, low-β and moderately non-isothermal plasmas placed in non-parallel electric and magnetic fields. The magnetization is assumed to be sufficiently high to cut off the perpendicular steady-state current. Special attention is given to evaluation of magnitudes of the threshold drifts required for the onset of instabilities. It is found that these drifts are smaller than those for the corresponding quasi-perpendicular electrostatic ion-cyclotron (QPESIC) instabilities studied previously for the same type of plasmas. Both QPEMIC and QPESIC threshold drifts exhibit the same behavioural pattern if the order of harmonic, magnetization, non-isothermality or the angle between the fields are varied. An increase of the angle between the fields lowers the threshold drifts, which means that the presence of u perpendicular to (or E perpendicular to ) facilitates the excitation of both QPEMIC and QPESIC instabilities. The QPEMIC threshold drifts are found to depend on the overall gas pressure, and to decrease as the pressure is lowered, which is a feature not found in the QPESIC case. The discrepancies between the QPEMIC and QPESIC threshold drifts increase if the pressure decreases, or if magnetization, degree of ionization or ion charge number increase. (orig.)
Viktorov, A A; Zharinov, G M; Neklasova, N Ju; Morozova, E E
2017-01-01
The article presents a methodical approach for prediction of life expectancy for people diagnosed with prostate cancer based on the kinetic theory of aging of living systems. The life expectancy is calculated by solving the differential equation for the rate of aging for three different stage of life - «normal» life, life with prostate cancer and life after combination therapy for prostate cancer. The mathematical model of aging for each stage of life has its own parameters identified by the statistical analysis of healthcare data from the Zharinov's databank and Rosstat CDR NES databank. The core of the methodical approach is the statistical correlation between growth rate of the prostate specific antigen level (PSA-level) or the PSA doubling time (PSA DT) before therapy, and lifespan: the higher the PSA DT is, the greater lifespan. The patients were grouped under the «fast PSA DT» and «slow PSA DT» categories. The satisfactory matching between calculations and experiment is shown. The prediction error of group life expectancy is due to the completeness and reliability of the main data source. A detailed monitoring of the basic health indicators throughout the each person life in each analyzed group is required. The absence of this particular information makes it impossible to predict the individual life expectancy.
Misra, K.D.; Mishra, P.K.
2002-01-01
A self-consistent theory of a free-electron laser is developed by the kinetic approach, using the method of characteristics in helical wiggler and guide magnetic fields. The detailed relativistic particle trajectories obtained in wiggler and guide magnetic fields are used in linearized Vlasov-Maxwell equations having variations in perpendicular and parallel momenta to obtain the perturbed distribution function in terms of perturbed electric and magnetic fields deviating from the vector potential approach. The perturbed distribution function thus obtained, having variations in perpendicular and parallel momenta for an arbitrary distribution function, is used to obtain current, conductivity and dielectric tensors. The full dispersion relation (FDR) and Compton dispersion relation (CDR) have been obtained. The dispersion diagram has been obtained and the interaction of the negative longitudinal space charge with the electromagnetic wave has been shown. The temporal growth rates obtained from the full dispersion relation and Compton dispersion relation for the tenuous cold relativistic beam in microwave region have been discussed
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-01-01
This third part extends the theory of Generalized Poisson–Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker–Planck–Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed. (paper)
Maggi, Federico; Riley, William J.
2009-12-01
The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.
Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.
2017-11-01
We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
McGrail, B. PETER; Icenhower, Jonathan P.; Rodriguez, Elsa A.; McGrail, B.P.; Cragnolino, G.A.
2002-01-01
Discrepancies between classical kinetic rate law theory and experiment were quantitatively assessed and found to correlate with macromolecular amorphous separation in the sodium borosilicate glass system. A quantitative reinterpretation of static corrosion data and new SPFT data shows that a recently advanced protective surface layer theory fails to describe the observed dissolution behavior of simple and complex silicate glasses under carefully controlled experimental conditions. The hypothesis is shown to be self-inconsistent in contrast with a phase separation model that is in quantitative agreement with experiments
Duan, Yifei; Feng, Zhi-Gang
2017-12-01
Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.
Gutierrez T, C.; Beltran P, M.
2006-01-01
To reach the quasi stationary work regime of a Tokamak, it is necessary to optimize the current generation by non inductive methods with the injection of radio-frequency waves (RF), such as the electron cyclotron waves, cyclotron ion, and in the inferior hybrid one. At the moment, the powers of the radiation sources are very big for what the such no-lineal effects as the ponderomotive force are very important. In the case of the electron cyclotron waves, in the mark of the lineal theory of waves propagation, using extraordinary waves (first and second harmonic), the problem of the singularity always arises in the exact resonance. One of the ways of eliminating this singularity is considering that the group of electrons under resonance conditions is big (quasi lineal theory) or introducing such non lineal effects such as the ponderomotive force. In the obtaining of the ponderomotive force under resonance conditions this indetermination arises also. In this work the kinetic theory to obtain the expression of the ponderomotive force in the cyclotron resonance of the electrons, where the Vlasov kinetic equation expands up to second order with regard to the electric field of the RF wave. The kinetic approach allows to the analysis of the ponderomotive force under resonance conditions considering the Landau integration method. (Author)
Kauzmann, Walter
2012-01-01
Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.
Magnetized plasma kinetic theory
Hassan, M.H.A.; Watson, C.J.H.
1977-01-01
The magnetized Balescu-Lenard Collision integral for a multi-species plasma in the form derived by Hassan and Watson (1976) is approximated by ignoring wave effects. The resulting collision integral is put in Fokker-Planck form and most of the integrals occurring in the coefficients are performed analytically. The remaining integral is evaluated approximately in various limits for ion-electron, electron-electron and electron-ion interactions. (author)
Oeien, A.H.
1977-06-01
Sets of lower order and higher order kinetic and macroscopic equations are developed for a plasma where collisions are important but electrons and ions are allowed to have different temperatures when transports, due to gradients and fields, set in. Solving the lower order kinetic equations and taking appropriate velocity moments we show that usual classical transports emerge. From the higher order kinetic equations special notice is taken of some new correction terms to the classical transports. These corrections are linear in gradients and fields, some of which are found in a two-temperature state only. (Auth.)
Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.
2018-06-01
Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.
Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-01-01
ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442
Shiroudi, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza; Deleuze, Michael S.
2017-03-01
The thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si-C bonds and formation of Si-Cl bonds occur in the vicinity of the transition state.
Robson, R. E.; White, R. D.; Morrison, Michael A.
2003-10-01
We commence a fundamental re-examination of the kinetic theory of charged particle swarms in molecular gases, focusing on collisional excitation of molecular rotational and ro-vibrational states by electrons. Modern day analysis of electron swarms has been based upon the kinetic equation of Wang-Chang et al, which simply treats all processes as scalar energy excitations, and ignores angular momentum conservation and the vector dynamics associated with rotational excitation. It is pointed out that there is no alternative, more exact kinetic equation readily available for electrons which enables one to directly ascertain the degree of error introduced by this approximation. Thus in this preliminary study, we approach the problem indirectly, from the standpoint of the neutral molecules, using the Waldmann-Snider quantum kinetic equation, and insist that an electron-molecule collision must look the same from the perspective of both electron and molecule. We give a formula for quantitatively assessing the importance of scalar versus vectorial treatments of rotational excitation by looking at the post-collisional 'echo' produced by an electron swarm as it passes through the gas. It is then pointed out that in order to remedy any deficiency, it will be necessary to introduce a kinetic collisional operator non-local in space to properly account for angular momentum conservation, as has long been established in the literature. This is a major exercise and given the preliminary nature of this study, we consider the inclusion of such effects from a formal point of view only. In particular we show how non-local effects lead to a spatially dependent 'source' term in the equation of continuity, and hence to corrections for both drift velocity and diffusion coefficients. The magnitude of these corrections has yet to be established.
Robson, R E; White, R D; Morrison, Michael A
2003-01-01
We commence a fundamental re-examination of the kinetic theory of charged particle swarms in molecular gases, focusing on collisional excitation of molecular rotational and ro-vibrational states by electrons. Modern day analysis of electron swarms has been based upon the kinetic equation of Wang-Chang et al, which simply treats all processes as scalar energy excitations, and ignores angular momentum conservation and the vector dynamics associated with rotational excitation. It is pointed out that there is no alternative, more exact kinetic equation readily available for electrons which enables one to directly ascertain the degree of error introduced by this approximation. Thus in this preliminary study, we approach the problem indirectly, from the standpoint of the neutral molecules, using the Waldmann-Snider quantum kinetic equation, and insist that an electron-molecule collision must look the same from the perspective of both electron and molecule. We give a formula for quantitatively assessing the importance of scalar versus vectorial treatments of rotational excitation by looking at the post-collisional 'echo' produced by an electron swarm as it passes through the gas. It is then pointed out that in order to remedy any deficiency, it will be necessary to introduce a kinetic collisional operator non-local in space to properly account for angular momentum conservation, as has long been established in the literature. This is a major exercise and given the preliminary nature of this study, we consider the inclusion of such effects from a formal point of view only. In particular we show how non-local effects lead to a spatially dependent 'source' term in the equation of continuity, and hence to corrections for both drift velocity and diffusion coefficients. The magnitude of these corrections has yet to be established
Raudino, Antonio; Pannuzzo, Martina
2010-01-28
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
Sarmah, Amrit; Roy, Ram Kinkar, E-mail: rkroy2@rediffmail.com
2016-06-15
Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C{sub 32}) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C{sub 32}) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C{sub 32} fullerene and its site of covalent attachment to the SWCNT.
Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik
2010-09-28
Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the
Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf
2013-02-07
Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.
Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei
2017-11-30
The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.
Eliyahu, Ian
2015-01-01
In this research, various kinetic models were developed for LiF:Mg,Ti crystals, both in the irradiation and recombination stages. The models were later used to improve on track structure theory, which attempts to describe radiation effects of Heavy charged particle. To achieve this goal, the research focused on three main areas of endeavor. 1. In the first experimental measurements of optical absorption on LiF:Mg,Ti following low ionization density radiation (photons) and high ionization density protons and He ions were carried out in order to investigate the degree of applicability of track structure theory to the prediction of heavy charged particle induced effects of radiation. These measurements are described below. a) Photon induced optical absorption (OA) dose response was measured over an extended dose-range from 10 Gy to 105 Gy for the main OA bands in LiF:Mg,Ti, i.e., the 4.0 eV band (trapping center associated with glow peak 5 in the thermoluminescence glow curve), 4.77 eV band , 5.08 eV (F band) and 5.45 eV band. The extended dose-range allowed the unambiguous determination of linear/exponentially saturation behavior for all the OA bands. For the two main OA bands of interest at 4.0 eV and 5.08 eV, the dose filling factor was determined to be 5 ± 0.6.10-4 Gy-1 and 6.1 ± 0.4 × 10-5 Gy-1 respectively. The surprising, previously unexplained, linear/exponentially saturating dose response of the F band even though vacancies/F centers are being created by the radiation was explained in a kinetic analysis also described in the following. b) Heavy charged particle (HCP) optical absorption was carried out for 1.4 MeV protons and 4 MeV He ions at the SARAF, RARAF and BINA accelerators. Fluence response was measured over the extended range from 1010 cm-2 to 2.1014 cm-2. The low fluence region from 1010 cm-2 to 1011 cm-2 in the no-track-overlap regime allows a comparison of the experimental measurements and the track structure theory (TST) evaluations of the
Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.
2018-01-01
The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Kreuzer, Hans Jürgen
1986-01-01
This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)
2011-06-15
A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.
Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field
Londer, Ya. I.; Ul’yanov, K. N.
2011-01-01
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.
Kobayashi, K.
1979-03-01
TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de
Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2013-12-15
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.
Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa
2013-01-01
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior
Grima, R
2010-07-21
regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.
Yongbin Chang
2011-09-01
Full Text Available By introducing a cutoff on the cumulative measure of a force, a unified kinetic theory is developed for both rigid-sphere and inverse-square force laws. The difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and -3 for inverse-square force law interactions. The quantities governed by γ include the specific reaction rates, kernels, collision frequencies, arbitrarily high orders of transition moments, arbitrarily high orders of Fokker-Planck expansion (also called Kramers-Moyal expansion coefficients, and arbitrarily high orders of energy exchange rates. The cutoff constants are shown to be incomplete gamma functions of different orders. The widely used cutoff constant in plasma physics (usually known as Coulomb logarithm is found to be exactly the zeroth order of the incomplete gamma function. The well known Arrhenius reaction rate formula comes from the first order of the incomplete gamma functions, while the negative first order can be used for fitting the fusion reaction rate between deuterium and tritium.
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-01-01
Near thermal energy reactive collisions of small mixed metal cluster cations Ag m Au n + (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu 3 + and Ag 2 Au 2 + are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu 2 CO + . In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a ''head-on'' fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag 2 Au 2 + suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-09-01
Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.
Hu, Shenyang; Setyawan, Wahyu; Van Ginhoven, Renee M.; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.
2014-01-01
Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C–SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C–SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state nudged elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg 2 Si formation demonstrates that the formation of Mg 2 Si needs to overcome a critical nucleus size and nucleation barrier. It is found that C vacancies promote the formation of the Mg 2 Si nucleus, and formation of which results in a compressive stress field around the nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures
Tarasov, V.A.; Borikov, T.L.; Kryzhanovskaya, T.V.; Chernezhenko, S.A.; Rusov, V.D.
2007-01-01
The kinetic system for defects of physical nonlinear system 'metal + load + irradiation' is specified [1, 2, 3]. Developing the approaches offered in [4], where distinctions of mechanisms of radiating creep and areas of their applicability are formalized (depending on external parameters) for fuel and constructional metals, division of kinetic systems for defects of constructional and fuel metals is carrying out. Thus the accent on the autocatalytic features of kinetic system for defects of reactor fuel metals, resulting from the exoenergic autocatalytic character of nuclear fission reactions being the main point defect source is done. In this part of the article the basic attention is given to the kinetic of sink drains for point defects. For kinetic systems of sinks-sources new approaches for the task of boundary conditions are offered. The possible structure of the computer program modelling kinetic system for defects of nonlinear physical system 'metal + load + irradiation' is considered
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.
Eslava, L.A.
1983-01-01
This thesis is an investigation of two topics in the area of molecular and chemical dynamics phenomena. The first topic, Sensitivity Analysis in Molecular Dynamics and Chemical Kinetics, explores the response of the numerical solutions to variation in the input information. After a brief consideration of elementary sensitivity coefficients (i.e. partial derivatives of observables with respect to model parameters), attention is focused on an entire new family of derived coefficients capable of exhibiting important aspects of the underlying dynamics. Each derived sensitivity coefficient has a unique physical interpretation in terms of an experiment or modeling calculation. Also, a fitting model for rotationally inelastic cross sections that accurately predicts cross sections away from the region of parameter space used in the fitting is presented. The global behavior of cross sections in parameter space is examined, and a nonlinear interpolation formula is suggested which utilizes sensitivity information. The second topic, A Theory of Intramolecular Energy Transfer in the Presence of Intense Radiation Fields, represents a theoretical formulation of energy redistribution based on stochastic considerations. The fundamental assumption is that a random phase approximation is valid at specific time intervals. This results in the replacement of the Schrodinger equation by a master-type equation, which is further approximated by a Fokker-Planck diffusion like equation. Energy transfer is described as a flow of probability among the quantum states, and the dissociation of dynamics are embodied in the boundary conditions. By virtue of the continuous character of the Fokker-Planck equation, the computational difficulty of its numerical solution depends only on the number of degrees of freedom and not on the number of states
Goerigk, Lars; Hansen, Andreas; Bauer, Christoph; Ehrlich, Stephan; Najibi, Asim; Grimme, Stefan
2017-12-13
We present the GMTKN55 benchmark database for general main group thermochemistry, kinetics and noncovalent interactions. Compared to its popular predecessor GMTKN30 [Goerigk and Grimme J. Chem. Theory Comput., 2011, 7, 291], it allows assessment across a larger variety of chemical problems-with 13 new benchmark sets being presented for the first time-and it also provides reference values of significantly higher quality for most sets. GMTKN55 comprises 1505 relative energies based on 2462 single-point calculations and it is accessible to the user community via a dedicated website. Herein, we demonstrate the importance of better reference values, and we re-emphasise the need for London-dispersion corrections in density functional theory (DFT) treatments of thermochemical problems, including Minnesota methods. We assessed 217 variations of dispersion-corrected and -uncorrected density functional approximations, and carried out a detailed analysis of 83 of them to identify robust and reliable approaches. Double-hybrid functionals are the most reliable approaches for thermochemistry and noncovalent interactions, and they should be used whenever technically feasible. These are, in particular, DSD-BLYP-D3(BJ), DSD-PBEP86-D3(BJ), and B2GPPLYP-D3(BJ). The best hybrids are ωB97X-V, M052X-D3(0), and ωB97X-D3, but we also recommend PW6B95-D3(BJ) as the best conventional global hybrid. At the meta-generalised-gradient (meta-GGA) level, the SCAN-D3(BJ) method can be recommended. Other meta-GGAs are outperformed by the GGA functionals revPBE-D3(BJ), B97-D3(BJ), and OLYP-D3(BJ). We note that many popular methods, such as B3LYP, are not part of our recommendations. In fact, with our results we hope to inspire a change in the user community's perception of common DFT methods. We also encourage method developers to use GMTKN55 for cross-validation studies of new methodologies.
Vlad, G.
1988-01-01
The linear stability of the electrostatic drift waves in slab geometry has been studied analytically and numerically. The effects of magnetic field with shear, of the finite Larmor radius, of an electron streaming, of a temperature gradient and of collisions have been retained. The analytical solution has been obtained using the matched asymptotic expansion technique, and an expression for the critical streaming parameter has been derived. Finally, assuming that the transport in the Reversed Field Pinches is dominated by this instability, a scaling law for the temperature in such machine is derived
Chemical kinetics and reaction mechanism
Jung, Ou Sik; Park, Youn Yeol
1996-12-01
This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.
Chemical kinetics of gas reactions
Kondrat'Ev, V N
2013-01-01
Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema
Kipriyanov, Alexey A; Doktorov, Alexander B
2014-10-14
The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.
Chang, Tsun-Mei [Department of Chemistry, University of Wisconsin–Parkside, Kenosha, Wisconsin 53141, USA; Dang, Liem X. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 93352, USA
2017-10-28
Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux; Impey, Madden, and McDonald approaches; and Grote-Hynes theory. We found the residence times of EC around Li+ ions varied from 70 to 450 ps, depending on the correction method used. We found the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influence the dissociation kinetics of ion pairing. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.
Swart, C.A.M. de.
1983-01-01
The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)
2009-01-01
A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....
Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram
2012-01-01
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)
2012-04-15
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.
Ai Hongtao
1989-01-01
An isothermal equation for ion exchange-adsorption is derived by mass action law. The equation can be used to sum up empirical and semiempirical formulas of the exchange adsorption, such as Gapon Equation, Sips Formula, Langmuir Equation and Freundlich Formula. In this paper, by adopting the ion exchange reaction to act as the determining step of the ion exchange adsorption kinetics, and exchange-adsorption kinetics equation is derived. It is verified by he results of a series of experiments in which uranium is extracted form enriched sea-water and natural sea-water with hydrous titanium oxide (titanic gel). This equation can be used to explain not only the results of test which have been applied to prove fast intraparticle diffusion of liquid film deffusion mechanism, but also test data which can be expalined by the co-controlling fast intraparticle and liquid film diffusion, and the kinetic data which can not be clarified by diffusion mechanism. It is proposed that the mechanism of the exchange adsorption of uranium from sea-water with titanic gel is a cationic exchange reaction. A method for calculating the quantity of exchange-adsorption at equilibrium is also given
Kinetic effects on magnetohydrodynamic phenomena
Naito, Hiroshi; Matsumoto, Taro
2001-01-01
Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)
Mojtaba Ahmadi
2016-11-01
Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.
Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.
1985-01-01
By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction
Farazdaghi, Hadi
2011-02-01
Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at
Poli, D. de C.R.; Mesquita, C.H. de
1999-01-01
The compartmental analysis was used for evaluation of kinetic parameters of the rainfall infiltration and determination of ground water recharge in Abadia-Goiania-Brazil. A model containing 13 compartments was proposed to explain the water infiltration and the kinetics of the unsaturated zone. To validate the model, tracer injections were carried out at a representative site of the region, at a depth of 50 cm, below the root zone. Soil samples were taken 4,9 and 12 months after the injection. In the first compartment, one component of the evaporation (K 4,0 ) was considered and for the last compartment, one constant of removal for the water table (k 13,0 ). Compartments 1, 2 and 3 were added to the system to consider precipitation effect. The AnaComp program, developed at IPEN, was used to determine the transfer constants k i,j ( from compartment i to compartment j)were i and j range from 0 to 13. In this program the constants k i,j were determined by the nonlinear last squares method, using eigenvalues - eigenvectors routines or alternatively, the fourth order Runge-Kutta routine. In this compartment model, the radioactive tracer was introduced as a single pulse, into the 6th compartment (50 cm depth). This permits to characterize the tracer diffusion processes in the soil studied. The adopted model showed an explanation coefficient f 2 equal to 0.78, which is satisfactory for the methodology used. (author)
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Jeffery, Kathleen A; Pelaez, Nancy; Anderson, Trevor R
2018-01-01
To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing instruction. Previous research has modeled how expert biologists incorporate research methods, social or biological context, and analogies when they talk about their research on mechanisms. We used this model as a guiding framework to collect and analyze interview data from four experts. The similarities and differences that emerged from analysis indicate that all experts integrated theoretical knowledge with their research context, methods, and analogies when they explained how phenomena operate, in particular by mapping phenomena to mathematical models; they explored different processes depending on their explanatory aims, but readily transitioned between different perspectives and explanatory models; and they explained thermodynamic and kinetic concepts of relevance to protein folding in different ways that aligned with their particular research methods. We discuss how these findings have important implications for teaching and future educational research. © 2018 K. A. Jeffery et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Selected readings in chemical kinetics
Back, Margaret H
2013-01-01
Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti
Mezzache, S; Pepe, C; Karoyan, P; Fournier, F; Tabet, J-C
2005-01-01
The proton affinity (PA) of cis/trans-3-prolinoleucines and cis/trans-3-prolinoglutamic acids have been studied by the kinetic method and density functional theory (DFT) calculations. Several conformations of the neutral and the protonated modified prolines, in particular the endo and exo ring conformations, were analyzed with respect to their contribution to the PA values. When the substituent is an alkyl, both the diastereoisomers have the same PA value. However, the PA values for the diastereoisomers are different when the substituted chain contains functional groups (e.g. a carboxyl group). This variation in PA values could be attributed to the existence of intramolecular hydrogen bonds. Copyright (c) 2005 John Wiley & Sons, Ltd.
Chemical Kinetic Modeling of 2-Methylhexane Combustion
Mohamed, Samah Y.; Sarathy, Mani
2015-01-01
necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values
S. Yahaya
2009-05-01
Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.
Abisset-Chavanne, Emmanuelle; Duval, Jean Louis; Cueto, Elias; Chinesta, Francisco
2018-05-01
Traditionally, Simulation-Based Engineering Sciences (SBES) has relied on the use of static data inputs (model parameters, initial or boundary conditions, … obtained from adequate experiments) to perform simulations. A new paradigm in the field of Applied Sciences and Engineering has emerged in the last decade. Dynamic Data-Driven Application Systems [9, 10, 11, 12, 22] allow the linkage of simulation tools with measurement devices for real-time control of simulations and applications, entailing the ability to dynamically incorporate additional data into an executing application, and in reverse, the ability of an application to dynamically steer the measurement process. It is in that context that traditional "digital-twins" are giving raise to a new generation of goal-oriented data-driven application systems, also known as "hybrid-twins", embracing models based on physics and models exclusively based on data adequately collected and assimilated for filling the gap between usual model predictions and measurements. Within this framework new methodologies based on model learners, machine learning and kinetic goal-oriented design are defining a new paradigm in materials, processes and systems engineering.
Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)
2017-03-15
Phonon dynamics in nanostructure is critically important to thermoelectric and optoelectronic devices because it determines the transport and other crucial properties. However, accurately evaluating the phonon lifetimes is extremely difficult. This study reports on the development of a new semi-empirical method to estimate the full-spectrum phonon lifetimes in thin silicon films at room temperature based on the experimental data on the phonon mean-free-path spectrum in bulk silicon and a phenomenological consideration of phonon transport in thin films. The bulk of this work describes the theory and the validation; then, we discuss the trend of the phonon lifetimes in thin silicon films when their thicknesses decrease.
Schiffter, Heiko; Lee, Geoffrey
2007-09-01
The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.
1975-01-01
A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)
Oeien, Alf H.
2001-08-01
The component of the ambipolar field along the magnetic field B, though weak, may, acting together with the gravitational field, give rise to along-B ''ambipolar wells'' where light ions (test particles) in the ionosphere in equatorial regions are trapped. We also take into account magnetic field wells, especially in cases when the along-B velocity of test particles are much less than the transverse-B velocities. For heavy ions, or, for light ions high up, when the ambipolar trap ceases to function, the along-B ambipolar- and gravitational field effects may combine with the magnetic field trap to form a double well for the along-B movement of test particles. The magnetic field trap and its contribution to the double well may be nearly stationary for particles obeying the same velocity condition as above even when collisional effects between the test particles and the background plasma are incorporated. Ions trapped in wells like this, may ''feel'' a varying background, for instance because of Earth rotation, that may be incorporated as time-variation of parameters in the along-B motion. An along-B kinetic equation for groups of test particles is solved both for the case of simple wells and for double wells, including time-varying collisional coefficients and additional fields, and in some cases analytic solutions are obtained. Peculiar along-B distribution functions may arise due to the time-dependency of coefficients and to various combinations of collision- and field parameter values. In particular ''breathing'' distributions that alternate between wide and narrow forms in phase-space may arise, and also distributions where strange attractors may play some role.
Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng
2015-05-28
A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen
Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.
1984-01-01
The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate
Nuclear reactor kinetics and plant control
Oka, Yoshiaki
2013-01-01
Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit
Lifshitz, Evgenii Mikhailovich
1981-01-01
This volume is mainly concerned with a systematic development of the theory of plasmas, the authority being firmly rooted in the pioneering work of Landau. Corresponding results are also given for partially ionized plasmas, relativistic plasmas, degenerate or non-ideal plasmas and solid state plasmas.
Chen, Xin; Sánchez-Arriaga, Gonzalo
2018-02-01
To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.
Chemical kinetics and combustion modeling
Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.
Space-time reactor kinetics for heterogeneous reactor structure
Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1969-11-15
An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.
Resonance transport and kinetic entropy
Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.
2000-01-01
We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3
Kinetic approach to relativistic dissipation
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
2017-08-01
Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.
Gutierrez T, C.; Beltran P, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgt@nuclear.inin.mx
2006-07-01
To reach the quasi stationary work regime of a Tokamak, it is necessary to optimize the current generation by non inductive methods with the injection of radio-frequency waves (RF), such as the electron cyclotron waves, cyclo ion, and in the inferior hybrid one. At the moment, the powers of the radiation sources are very big for what the such no-lineal effects as the ponderomotive force are very important. In the case of the electron cyclotron waves, in the mark of the lineal theory of waves propagation, using extraordinary waves (first and second harmonic), the problem of the singularity always arises in the exact resonance. One of the ways of eliminating this singularity is considering that the group of electrons under resonance conditions is big (quasi lineal theory) or introducing such non lineal effects such as the ponderomotive force. In the obtaining of the ponderomotive force under resonance conditions this indetermination arises also. In this work the kinetic theory to obtain the expression of the ponderomotive force in the cyclotron resonance of the electrons, where the Vlasov kinetic equation expands up to second order with regard to the electric field of the RF wave. The kinetic approach allows to the analysis of the ponderomotive force under resonance conditions considering the Landau integration method. (Author)
Kinetic Theory of Reactive Molecular Gases
2009-09-01
vibrational non-equilibrium, i.e. 1 V V VD VD D V E E E E k k E kT , (35) where VDE represents the...162 The term VDE , is calculated at first order, like Dk . We can note that realistic values for VDE lie in the range 0.3-0.5 DE [13]. In
Chemical Kinetic Modeling of 2-Methylhexane Combustion
Mohamed, Samah Y.
2015-03-30
Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.
Isoconversional kinetics of thermally stimulated processes
Vyazovkin, Sergey
2015-01-01
The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.
Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)
2017-02-15
We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.
Variational Transition State Theory
Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)
2016-09-29
This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.
Cesium removal and kinetics equilibrium: Precipitation kinetics
Barnes, M.J.
1999-01-01
This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics
Kinetic Scale Structure of Low-frequency Waves and Fluctuations
López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)
2017-08-10
The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.
Callen, J.D.; Dory, R.A.; Aghevli, R.
1977-01-01
The progress during the past year is organized by group efforts and divided into five major areas. The basic tokamak areas and the sections in which their work is summarized are: magnetohydrodynamic (MHD) theory, kinetic theory, and transport simulation. The ELMO Bumpy Torus (EBT) theory work has its own research projects on MHD theory, kinetic theory, and transport simulation. In the plasma engineering area, relevant research work is further developed and synthesized into models that are used in the design of advanced fusion systems--The Next Step (TNS), demonstration fusion reactor (Demo), EBT ignition test, etc. Specific plasma engineering projects on providing the TNS physics basis and the development of the EBT reactor study are discussed. The computing support activities during the past year are summarized
Sun, Yan; Lu, Wenchao; Liu, Jianbo
2017-02-09
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is one of the most common DNA lesions resulting from reactive oxygen species and ionizing radiation, and is involved in mutagenesis, carcinogenesis, and cell death. Notably, 8-oxodGuo is more reactive toward singlet (a 1 Δ g ) O 2 than the undamaged guanosine, and the lesions arising from the secondary oxidation of 8-oxodGuo are more mutagenic. Herein the 1 O 2 oxidation of free base 8-oxoguanine (8-oxoG) was investigated at different initial conditions including protonated [8-oxoG + H] + , deprotonated [8-oxoG - H] - , and their monohydrates. Experiment was carried out on a guided-ion beam scattering tandem mass spectrometer. Measurements include the effects of collision energy (E col ) on reaction cross sections over a center-of-mass E col range from 0.1 to 0.5 eV. The aim of this study is to quantitatively probe the sensitivity of the early stage of 8-oxoG oxidation to ionization and hydration. Density functional theory and Rice-Ramsperger-Kassel-Marcus calculations were performed to identify the intermediates and the products along reaction pathways and locate accessible reaction potential energy surfaces, and to rationalize reaction outcomes from energetic and kinetic points of view. No product was observed for the reaction of [8-oxoG + H] + ·W 0,1 (W = H 2 O) because insurmountable barriers block the addition of 1 O 2 to reactant ions. Neither was [8-oxoG - H] - reactive with 1 O 2 , in this case due to the rapid decay of transient intermediates to starting reactants. However, the nonreactivity of [8-oxoG - H] - was inverted by hydration; as a result, 4,5-dioxetane of [8-oxoG - H] - was captured as the main oxidation product. Reaction cross section for [8-oxoG - H] - ·W + 1 O 2 decreases with increasing E col and becomes negligible above 0.3 eV, indicating that the reaction is exothermic and has no barriers above reactants. The contrasting oxidation behaviors of [8-oxoG + H] + ·W 0,1 and [8-oxoG - H] - ·W 0
Kinetic mixing and the supersymmetric gauge hierarchy
Dienes, K.R.; Kolda, C.; March-Russell, J.
1997-01-01
The most general Lagrangian for a model with two U(1) gauge symmetries contains a renormalizable operator which mixes their gauge kinetic terms. Such kinetic mixing can be generated at arbitrarily high scales but will not be suppressed by large masses. In models whose supersymmetry (SUSY)-breaking hidden sectors contain U(1) gauge factors, we show that such terms will generically arise and communicate SUSY breaking to the visible sector through mixing with hypercharge. In the context of the usual supergravity- or gauge-mediated communication scenarios with D-terms of order the fundamental scale of SUSY breaking, this effect can destabilize the gauge hierarchy. Even in models for which kinetic mixing is suppressed or the D-terms are arranged to be small, this effect is a potentially large correction to the soft scalar masses and therefore introduces a new measurable low-energy parameter. We calculate the size of kinetic mixing both in field theory and in string theory, and argue that appreciable kinetic mixing is a generic feature of string models. We conclude that the possibility of kinetic mixing effects cannot be ignored in model building and in phenomenological studies of the low-energy SUSY spectra. (orig.)
Consistent guiding center drift theories
Wimmel, H.K.
1982-04-01
Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)
Kinetics of oxidic phase dissolution in acids
Gorichev, I.G.; Kipriyanov, N.A.
1981-01-01
The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Kinetics and spectroscopy of low temperature plasmas
Loureiro, Jorge
2016-01-01
This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...
Nuclear reactor kinetics and control
Lewins, J.
1978-01-01
A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)
Vesely, W.E.; Narum, R.E.
1997-01-01
1 - Description of problem or function: The PREP/KITT computer program package obtains system reliability information from a system fault tree. The PREP program finds the minimal cut sets and/or the minimal path sets of the system fault tree. (A minimal cut set is a smallest set of components such that if all the components are simultaneously failed the system is failed. A minimal path set is a smallest set of components such that if all of the components are simultaneously functioning the system is functioning.) The KITT programs determine reliability information for the components of each minimal cut or path set, for each minimal cut or path set, and for the system. Exact, time-dependent reliability information is determined for each component and for each minimal cut set or path set. For the system, reliability results are obtained by upper bound approximations or by a bracketing procedure in which various upper and lower bounds may be obtained as close to one another as desired. The KITT programs can handle independent components which are non-repairable or which have a constant repair time. Any assortment of non-repairable components and components having constant repair times can be considered. Any inhibit conditions having constant probabilities of occurrence can be handled. The failure intensity of each component is assumed to be constant with respect to time. The KITT2 program can also handle components which during different time intervals, called phases, may have different reliability properties. 2 - Method of solution: The PREP program obtains minimal cut sets by either direct deterministic testing or by an efficient Monte Carlo algorithm. The minimal path sets are obtained using the Monte Carlo algorithm. The reliability information is obtained by the KITT programs from numerical solution of the simple integral balance equations of kinetic tree theory. 3 - Restrictions on the complexity of the problem: The PREP program will obtain the minimal cut and
Principles of chemical kinetics
House, James E
2007-01-01
James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela
Introduction to chemical kinetics
Soustelle, Michel
2013-01-01
This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re
Kinetic parameters for source driven systems
Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.
2006-01-01
The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)
A kinetic model for hydrodesulfurisation
Sau, M.; Narasimhan, C.S.L.; Verma, R.P. [Indian Oil Corporation Limited, Research and Development Centre, Faridabad (India)
1997-07-01
Due to stringent environmental considerations and related insistence on low sulfur fuels, hydrodesulfurisation has emerged as an important component of any refining scheme globally. The process is used ranging from Naphta/Kerosine hydrotreating to heavy oil hydrotreating. Processes such as Deep gas oil desulfurisation aiming at reduction of sulfur levels to less than 500 ppm have emerged as major players in the scenario. Hydrodesulfurisation (HDS) involves parallel desulfurisation of different organo-sulfur compounds present in the complex petroleum mixtures. In order to design, monitor, optimise and control the HDS reactor, it is necessary to have a detailed, yet simple model which follows the reaction chemistry accurately. In the present paper, a kinetic model is presented for HDS using continuum theory of lumping. The sulfur distribution in the reaction mixture is treated as continuum and parallel reaction networks are devised for kinetic modelling using continuum theory of lumping approach. The model based on the above approach follows the HDS chemistry reasonably well and hence the model parameters are almost feed invariant. Methods are also devised to incorporate heat and pressure effects into the model. The model has been validated based on commercial kero-HDS data. It is found that the model predictions agree with the experimental/commercial data. 17 refs.
Kinetic equation solution by inverse kinetic method
Salas, G.
1983-01-01
We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance
Kinetic partitioning mechanism of HDV ribozyme folding
Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)
2014-01-14
RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.
Kinetic Parameters of Thermal Degradation of Polymers
朱新生; 程嘉祺
2003-01-01
The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.
Kinetics in radiation chemistry
Hummel, A.
1987-01-01
In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants
Non-kinetic capabilities: complementing the kinetic prevalence to targeting
Ducheine, P.
2014-01-01
Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...
Reactivity and kinetic parameters determination in a multiplicative non-stationary system
Minguez, E.
1982-01-01
A revision of several methods used for solving kinetic equations of a neutronic system is considered. Firstly, kinetic equations in general form are analized, before to revise more important aproximations: point-kinetic method; adiabatic; cuasistatic; eigenvalue equations; nodal, modal and systhesis methods; and variational principles for obtaining kinetic equations. Perturbation theory is used to obtain these parameters, with differents eigenvalue equations representatives of the parameter to be calculated. Also, experimental methods have been included in this work, because of importance the parameters can be measured, and related with those obtained by calculations. Finally, adjoint kinetic equations are resolved to obtain the importance function used in weighted reactivity and kinetic parameters determinations. (author)
Transient processes in cell proliferation kinetics
Yakovlev, Andrej Yu
1989-01-01
A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...
Kinetics and thermodynamics of living copolymerization processes.
Gaspard, Pierre
2016-11-13
Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Kinetics of phase transformations
Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.
1992-01-01
This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations
Detector response theory and its applications
Keijzer, J.
1992-11-01
Some methods to describe the dynamics of fission reactors are investigated. First the reactivity of a reactor is regarded. The values of an exact calculation of the reactivity are compared with values obtained by first-order perturbation theory. Then a description of the point reactor kinetic theory and the detector response theory is given. A comparison of the two methods is made, using models of some well defined perturbations. Two of the perturbations are such that a physical movement of some absorber is regarded. A new way of modelling these moving objects is proposed. The result of the point reactor kinetic theory and the detecor response theory did not differ too much for perturbations which were far from the detector position. Locally however point reactor kinetic theory was not, in contrast with detector response theory, able to produce reliable results. The results of these calculations are to be compared with experiments, which will be performed later. (orig.)
Quantal density functional theory
Sahni, Viraht
2016-01-01
This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...
SHORT COMMUNICATION CATALYTIC KINETIC ...
IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...
Growth kinetics in multicomponent fluids
Chen, S.; Lookman, T.
1995-01-01
The hydrodynamic effects on the late-stage kinetics in spinodal decomposition of multicomponent fluids are examined using a lattice Boltzmann scheme with stochastic fluctuations in the fluid and at the interface. In two dimensions, the three- and four-component immiscible fluid mixture (with a 1024 2 lattice) behaves like an off-critical binary fluid with an estimated domain growth of t 0.4 +/= 0.03 rather than t 1/3 as previously estimated, showing the significant influence of hydrodynamics. In three dimensions (with a 256 3 lattice), we estimate the growth as t 0.96 +/= 0.05 for both critical and off-critical quenches, in agreement with phenomenological theory
Kinetic slow mode-type solitons
K. Baumgärtel
2005-01-01
Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.
Electromagnetic theory of plasma light scattering
Bobin, J.L.
1969-01-01
The theory of light scattering by a plasma is formulated using Klimontovich's microscopic distribution functions and Landau method to solve linear kinetic equations. First, Salpeter's derivation and results are given for the spectrum of light scattered by a collisionless plasma. Then, the influence of collision is investigated through B.G.K. kinetic equation. (author) [fr
Deep subcritical levels measurements dependents upon kinetic distortion factors
Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang
2013-01-01
The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)
Electron kinetics modeling in a weakly ionized gas
Boeuf, Jean-Pierre
1985-01-01
This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr
Modelling opinion formation by means of kinetic equations
Boudin , Laurent; Salvarani , Francesco
2010-01-01
In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.
Adsorption kinetics of propane on energetically heterogeneous activated carbon
Ismail, Azhar Bin
2014-11-01
The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.
Warm ion effects on kinetic drift cyclotron loss cone instabilities
Guo Shichong; Shen Jiewu; Cai Shidong
1988-01-01
The effects of adding warm plasmas on the kinetic DCLC mode in high β loss cone plasmas are investigated in detail. It is found that when the fluid DCLC mode is stabilized by a small amount of warm plasma, the kinetic excitation still remains due to two different mechanisms, namely, (1) magnetic drift resonance dissipation excites the negative energy wave; (2) a new type of positive energy wave can become unstable as the resonance condition is met. Comparing with fluid approximation theory, more warm plasmas are needed to suppress the kinetic DCLC instabilities
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
Kinetics of chemical reactions initiated by hot atoms
Firsova, L.P.
1977-01-01
Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given
Erbium hydride decomposition kinetics.
Ferrizz, Robert Matthew
2006-11-01
Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Oxidative desulfurization: kinetic modelling.
Dhir, S; Uppaluri, R; Purkait, M K
2009-01-30
Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.
Oxidative desulfurization: Kinetic modelling
Dhir, S.; Uppaluri, R.; Purkait, M.K.
2009-01-01
Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel
Modeling chemical kinetics graphically
Heck, A.
2012-01-01
In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could
CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...
Preferred Customer
acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...
Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...
Kimpland, R.H.
1996-01-01
A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented
Through an understanding of thermoluminescence phenomena from Einstein radiation theory
Nieto H, B; Vazquez C, G A; Azorin, J [UAM-I, 09340 Mexico D.F. (Mexico)
2005-07-01
In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)
Through an understanding of thermoluminescence phenomena from Einstein radiation theory
Nieto H, B.; Vazquez C, G.A.; Azorin, J.
2005-01-01
In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)
LLNL Chemical Kinetics Modeling Group
Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J
2008-09-24
The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.
Processes of aggression described by kinetic method
Aristov, V. V.; Ilyin, O.
2014-12-01
In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.
Processes of aggression described by kinetic method
Aristov, V. V.; Ilyin, O.
2014-01-01
In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data
Physics and kinetics of TRIGA reactor
Boeck, H.; Villa, M.
2007-01-01
This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)
Positron kinetics in an idealized PET environment
Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.
2015-08-01
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.
Kinetics of the chiral phase transition
Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)
2016-07-01
We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.
Processes of aggression described by kinetic method
Aristov, V. V.; Ilyin, O. [Dorodnicyn Computing Centre of Russian Academy of Sciences, Vavilova str. 40, Moscow, 119333 (Russian Federation)
2014-12-09
In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.
Wæver, Ole
2009-01-01
-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory......, shows the power of a dominant philosophy of science in US IR, and thus the challenge facing any ambitious theorising. The article suggests a possible movement of fronts away from the ‘fourth debate' between rationalism and reflectivism towards one of theory against empiricism. To help this new agenda...
Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.
1981-01-01
Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)
Microtubule dynamics. II. Kinetics of self-assembly
Flyvbjerg, H.; Jobs, E.
1997-01-01
Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....
Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.
2016-12-01
A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral
An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics
Kari, Jeppe; Andersen, Morten; Borch, Kim
2017-01-01
Interfacial enzyme reactions are ubiquitous both in vivo and in technical applications, but analysis of their kinetics remains controversial. In particular, it is unclear whether conventional Michaelis–Menten theory, which requires a large excess of substrate, can be applied. Here, an extensive...... experimental study of the enzymatic hydrolysis of insoluble cellulose indeed showed that the conventional approach had a limited applicability. Instead we argue that, unlike bulk reactions, interfacial enzyme catalysis may reach a steady-state condition in the opposite experimental limit, where...... for kinetic analyses of interfacial enzyme reactions and that its analogy to established theory provides a bridge to the accumulated understanding of steady-state enzyme kinetics. Finally, we show that the ratio of parameters from conventional and inverted Michaelis–Menten analysis reveals the density...
On the equipartition of kinetic energy in an ideal gas mixture
Peliti, L
2007-01-01
A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory
On the Equipartition of Kinetic Energy in an Ideal Gas Mixture
Peliti, L.
2007-01-01
A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics
Riggs, Peter J.
2016-01-01
Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…
Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.
McCarrick, Thomas A.; McLafferty, Fred W.
1984-01-01
Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)
Advanced path sampling of the kinetic network of small proteins
Du, W.
2014-01-01
This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview
Reactor kinetics methods development. Final report
Hansen, K.F.; Henry, A.F.
1978-01-01
This report is a qualitative summary of research conducted at MIT from 1967 to 1977 in the area of reactor kinetics methods. The objectives of the research were to find methods of integration of various mathematical models of nuclear reactor transients. From the beginning the work was aimed at numerical integration methods. Specific areas of research, discussed in more detail following, included: integration of multigroup diffusion theory models by finite difference and finite element methods; response matrix and nodal methods; coarse-mesh homogenization; and special treatment of boundary conditions
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Theory of homogeneous condensation from small nuclei. I. Modified Mayer theory of physical clusters
Lockett, A.M. III
1980-01-01
A theory of physical clusters is developed within the framework of the Theory of Imperfect Gases. Physical monomers and clusters are redefined diagrammatically thereby removing the unphysical nature of the usual Mayer clusters while retaining essentially all of the desirable features of the Mayer theory. The resulting formulation is simple, unambiguous, and well suited for incorporation into a kinetic theory of condensation which is computationally tractable
Nuclear methods in chemical kinetics. Technical progress report, April 1, 1978--March 31, 1979
1979-01-01
Significant progress was achieved in the following products: (1) gas phase thermal F-to-HF reactions; (II) gas phase thermal 18 F olefinic addition reactions; (III) steady state hot atom kinetic theory; (IV) moderator effects on nuclear recoil 18 F substitution reactions; and (V) new experimental methodology. New work has been initiated upon the development of a realisitic potential form of kinetic collision theory
Kinetics of tetrataenite disordering
Dos Santos, E.; Gattacceca, J.; Rochette, P.; Fillion, G.; Scorzelli, R.B.
2015-01-01
Tetrataenite is a chemically ordered L1 0 -type Fe 50 Ni 50 alloy detected for the first time in 1977 by 57 Fe Mössbauer spectroscopy studies in iron meteorites. The thermal history of meteorites, in particular short thermal events like those associated to hypervelocity impacts, can be constrained by tracing the presence of tetrataenite or its disordering into taenite. The knowledge of the disordering kinetics of tetrataenite, that is associated with changes in its magnetic properties, is still very fragmentary so that the time–temperature history of these meteorites cannot be constrained in details. Furthermore, knowledge of disordering kinetics is important due to potential technological application of tetrataenite as a rare-earth free strong magnet. Thus, this work provides the first time–temperature data for disordering reaction of tetrataenite. We have shown that disordering is not an instantaneous process but is a kinetic limited reaction. It was shown that disordering may take place at any temperature above the order–disorder transition for L 10 superstructure phase (∼320 °C) when the appropriate time-scale is considered. This result means that the apparent Curie point for tetrataenite is not an absolute property in the sense that any estimate of this parameter should be referred to a given time-scale. - Highlights: • The first time–temperature data for tetrataenite disordering reaction is provided. • Previous works does not give a complete picture of tetrataenite disordering. • Apparent Curie temperature of tetrataenite should be referred to a time-scale. • Tetrataenite can be used as a probe to detect thermal/shock events recorded in meteorites
Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F
2010-01-01
In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.
Dynamics of asymmetric kinetic Ising systems revisited
Huang, Haiping; Kabashima, Yoshiyuki
2014-01-01
The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)
On negative norm states in supersymmetric theories
Ellwanger, U.
1983-01-01
We study the effective kinetic energy of scalar fields for two classes of supersymmetric theories. In theories with very large VEVs of scalar fields, as proposed by Witten, the use of the renormalization group improved effective action prevents the appearance of negative norm states. For simpler theories a general criterium for the absence of negative norm states is given, which is violated in a model with O(N)-symmetry proposed recently. (orig.)
Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))
1989-07-01
This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.
Thames, H.D.
1989-01-01
Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Jara, Pascual; Torrecillas, Blas
1988-01-01
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Boltzmann, Ludwig
2011-01-01
One of the great masterpieces of theoretical physics, this classic work contains a comprehensive exposition of the kinetic theory of gases that is still relevant today, nearly 100 years after its first publication. Although the modifications of quantum mechanics have rendered some parts of the work obsolete, many of the topics dealt with still yield to the classical-mechanics approach outlined by Boltzmann; moreover, a variety of problems in aerodynamics, nuclear reactors, and thermonuclear power generation are best solved by Boltzmann's famous transport equation.The work is divided into two
Adsorption analysis equilibria and kinetics
Do, Duong D
1998-01-01
This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such
The effects of one-dimensional glide on the reaction kinetics of interstitial clusters
Heinisch, H.L.; Singh, B.N.; Golubov, S.I.
2000-01-01
is therefore 'mixed 1D/3D migration' along a 3D path consisting of 1D segments, The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation....... Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the size...
Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys
Lalauze, Rene
1973-01-01
This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János
2015-11-01
Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.
The temperature hydration kinetics
Mircea Oroian
2017-07-01
Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.
Relativistic kinetics of baryon production in hot Universe
Ignat'ev, Yu.G.
1985-01-01
The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed
Modeling Kinetics of Distortion in Porous Bi-layered Structures
Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus
2013-01-01
because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...
Chemical kinetics of detonation in some liquid mixtures
Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)
2005-09-01
The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
String theory or field theory?
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
Uehara, S.
1985-01-01
Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)
Johnstone, PT
2014-01-01
Focusing on topos theory's integration of geometric and logical ideas into the foundations of mathematics and theoretical computer science, this volume explores internal category theory, topologies and sheaves, geometric morphisms, other subjects. 1977 edition.
The kinetic stabilizer: Issues and opportunities
Post, R.F.
2002-01-01
Five decades of fusion research have resulted in a solid base of understanding of the physics of plasma confinement by magnetic fields, including documentation of the role of the topology of the magnetic fields, i.e., 'open' or 'closed' field lines, in determining the confinement. Without known exception, closed systems, such as tokamaks, stellarators, or reversed-field pinches, have confinement times that are dominated by turbulence. As a result, to produce net fusion power, closed systems must be so large in size as to raise questions as to their practicality. By contrast, there are examples of open (mirror-based) systems where turbulence, if present at all, was at such low levels as to have a negligible influence on the confinement. Specifically, members of a subset of open systems, those with axisymmetric fields, have demonstrated cross-field transport rates that agree with classical predictions, opening up the possibility of fusion power systems that would be much smaller than their closed-field counterparts. Standing in the way of implementing axisymmetric mirror-based fusion systems is the MHD-unstable nature of their equilibria. The kinetic stabilizer represents a proposed way to overcome this difficulty, one based on theory that has been confirmed in the gas dynamic trap (GDT) axisymmetric mirror experiment in Novosibirsk, Russia. MHD-stabilization in the GDT arises from the presence of a sufficient density of effluent plasma on the outwardly expanding field lines outside the mirrors. However, in those mirror-based fusion systems, such as tandem-mirrors, that would operate at lower plasma collisionalities than the GDT, the effluent plasma density would be too low for this stabilization method to be effective. The kinetic stabilizer overcomes this difficulty by using ion beams injected from ion sources located far out on the expanding field lines beyond the outer mirror. These ion beams, aimed at small angles to the field lines, are compressed, stagnated
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory
Pathare, S. R.; Pradhan, H. C.
2010-01-01
Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…
Towards the kinetic theory of inequilibrium cosmological nucleosynthesis
Fillipov, S.S.; Sedelnikov, E.V.; Khlopov, M.Yu.
1993-07-01
The aim of the paper is to elaborate the framework for the possible effects of nucleosynthesis by inequilirbium particles on the radiation dominance stage. Based on such an analysis the sensitivity of the astrophysical data to the presence of the sources of inequilibrium particles in the early Universe can be studied, thus providing an effective tool to probe cosmological effects of syperhight energy physics. 6 refs
Neoclassical kinetic theory near an X point: Plateau regime
Solano, E.R.; Hazeltine, R.D.
1994-01-01
Traditionally, neoclassical transport calculations ignore poloidal variation of the poloidal magnetic field. Near an X point of the confining field of a diverted plasma, the poloidal field is small, causing guiding centers to linger at that poloidal position. A study of how neoclassical transport is affected by this differential shaping is presented. The problem is solved in general in the plateau regime, and a model poloidal flux function with an X point is utilized as an analytic example to show that the plateau diffusion coefficient can change considerably (factor of 2 reduction). Ion poloidal rotation is proportional to the local value of B pol but otherwise it is not strongly affected by shaping. The usual favorable scaling of neoclassical confinement time with plasma current is unaffected by the X point
Kinetic theory of a longitudinally expanding system of scalar particles
Epelbaum, Thomas; Gelis, François; Jeon, Sangyong; Moore, Guy; Wu, Bin
2015-01-01
A simple kinematical argument suggests that the classical approximation may be inadequate to describe the evolution of a system with an anisotropic particle distribution. In order to verify this quantitatively, we study the Boltzmann equation for a longitudinally expanding system of scalar particles interacting with a ϕ 4 coupling, that mimics the kinematics of a heavy ion collision at very high energy. We consider only elastic 2→2 scatterings, and we allow the formation of a Bose-Einstein condensate in overpopulated situations by solving the coupled equations for the particle distribution and the particle density in the zero mode. For generic CGC-like initial conditions with a large occupation number, the solutions of the full Boltzmann equation cease to display the classical attractor behavior sooner than expected; for moderate coupling, the solutions appear never to follow a classical attractor solution.
On the kinetic theory of parametric resonance in relativistic plasma
El-Ashry, M.Y.
1982-08-01
The instability of relativistic hot plasma located in high-frequency external electric field is studied. The dispersion relation, in the case when the plasma electrons have relativistic oscillatory motion, is obtained. It is shown that if the electron Deby's radius is less than the wave length of plasma oscillation and far from the resonance on the overtones of the external field frequency, the oscillation build-up is possible. It is also shown that taking into account the relativistic motion of electrons leads to a considerable decrease in the frequency at which the parametric resonance takes place. (author)
Transport Theory for Kinetic Emission of Secondary Electrons from Solids
Schou, Jørgen
1980-01-01
a solid is derived. To find the former, existing computations for ion slowing down and experimental and theoretical ones for electron bombardment can be utilized. The energy and angular distribution of the secondary electrons and the secondary electron yield are both expressed as products of the deposited...... in the keV region is largely taken into account. The predicted energy and angular distribution agree with absolute spectra for incident electrons, whereas the agreement with absolute spectra for incident protons is less satisfactory. Extrapolation of the energy distribution down to the vacuum level gives...
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
Interacting systems far from equilibrium quantum kinetic theory
Morawetz, Klaus
2018-01-01
This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.
Eu, Byung Chan
2016-01-01
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...
Kinetic theory of transport processes in weakly ionized gases
Odenhoven, F.J.F. van
1984-01-01
A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)
A Simulational approach to teaching statistical mechanics and kinetic theory
Karabulut, H.
2005-01-01
A computer simulation demonstrating how Maxwell-Boltzmann distribution is reached in gases from a nonequilibrium distribution is presented. The algorithm can be generalized to the cases of gas particles (atoms or molecules) with internal degrees of freedom such as electronic excitations and vibrational-rotational energy levels. Another generalization of the algorithm is the case of mixture of two different gases. By choosing the collision cross sections properly one can create quasi equilibrium distributions. For example by choosing same atom cross sections large and different atom cross sections very small one can create mixture of two gases with different temperatures where two gases slowly interact and come to equilibrium in a long time. Similarly, for the case one kind of atom with internal degrees of freedom one can create situations that internal degrees of freedom come to the equilibrium much later than translational degrees of freedom. In all these cases the equilibrium distribution that the algorithm gives is the same as expected from the statistical mechanics. The algorithm can also be extended to cover the case of chemical equilibrium where species A and B react to form AB molecules. The laws of chemical equilibrium can be observed from this simulation. The chemical equilibrium simulation can also help to teach the elusive concept of chemical potential
Schaft, Arjan van der; Rao, Shodhan; Jayawardhana, Bayu
2013-01-01
Motivated by recent progress on the interplay between graph theory, dynamics, and systems theory, we revisit the analysis of chemical reaction networks described by mass action kinetics. For reaction networks possessing a thermodynamic equilibrium we derive a compact formulation exhibiting at the
On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics
Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der
2012-01-01
Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we
Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K.
2017-01-01
Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches
Promoting Graphical Thinking: Using Temperature and a Graphing Calculator to Teach Kinetics Concepts
Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.
2004-01-01
A combination of graphical thinking with chemical and physical theories in the classroom is encouraged by using the Calculator-Based Laboratory System (CBL) with a temperature sensor and graphing calculator. The theory of first-order kinetics is logically explained with the aid of the cooling or heating of the metal bead of the CBL's temperature…
Instabilities and chaos in a kinetic equation for active nematics
Shi, Xia-qing; Ma, Yu-qiang; Chaté, Hugues
2014-01-01
We study dry active nematics at the kinetic equation level, stressing the differences with the well-known Doi theory for non-active rods near thermal equilibrium. By deriving hydrodynamic equations from the kinetic equation, we show analytically that these two description levels share the same qualitative phase diagram, as defined by the linear instability limits of spatially-homogeneous solutions. In particular, we show that the ordered, homogeneous state is unstable in a region bordering the linear onset of nematic order, and is only linearly stable deeper in the ordered phase. Direct simulations of the kinetic equation reveal that its solutions are chaotic in the region of linear instability of the ordered homogeneous state. The local mechanisms for this large-scale chaos are discussed. (paper)
Inada, Mitsuo; Nishikawa, Mitsushige; Naito, Kimikazu; Ishii, Hitoshi; Tanaka, Kiyoshi
1980-01-01
Kinetics of thyroid hormones were outlined, and recent progress in metabolism of these hormones was also described. Recently, not only T 4 and T 3 but also rT 3 , 3,3'-T 2 , 3',5'-T 2 , and 3,5-T 2 can be measured by RIA. To clarify metabolic pathways of these hormones, metabolic clearance rate and production rate of these hormones were calculated. As single-compartment analysis was insufficient to clarify disappearance curves of thyroid hormones in blood such as T 3 and T 2 of which metabolic speed was so fast, multi-compartment analysis or non-compartment analysis were also performed. Thyroid hormones seemed to be measured more precisely by constant infusion method. At the first step of T 4 metabolism, T 3 was formed by 5'-monodeiodination of T 4 , and rT 3 was formed by 5-monodeiodination of T 4 . As metabolic pathways of T 3 and rT 3 , conversion of them to 3,3'-T 2 or to 3',5'-T 2 and 3,5-T 2 was supposed. This subject will be an interesting research theme in future. (Tsunoda, M.)
Mathematical foundations of transport theory
Ershov, Yu.I.; Shikhov, S.B.
1985-01-01
Foundations of mathematical transport theory are presented. Definitions and theorems of functional analysis are given. Linear kinetic equation of neutron transport in multiplication media is derived. A model of neutron interaction with nuclei of medium determining completely the coefficient properties in transport equation is described. Non-stationary problems regarding and without regard of d=e layed neutrons are analyzed. Results of solving Cauchy problem are discussed
Kuperus, M.; Heyvaerts, J.
1980-01-01
The MHD oscillations of the Alfven type running along surfaces of discontinuity generate motions in the discontinuity region which come rapidly out of phase. It is shown how the mathematical theory of this phase detuning predicts that surface wave should suffer dissipationless damping. Real damping is actually achieved by viscosity or kinetic effects. When detuning has grown to a large enough level, however, oscillations must be described by kinetic theory. Kinetic Alfven waves differ from perfect MHD Alfven waves in that they are able to propagate across the field. A theory of kinetic type oscillations in a finite thickness boundary is described, which predicts that surface waves generate intense kinetic Alfven waves in this boundary. The subsequent dissipation of these waves may be a powerful heating mechanism [fr
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
Number theory via Representation theory
2014-11-09
Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.
Schwarz, J.H.
1985-01-01
Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions
String theory or field theory?
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Dependence theory via game theory
Grossi, D.; Turrini, P.
2011-01-01
In the multi-agent systems community, dependence theory and game theory are often presented as two alternative perspectives on the analysis of social interaction. Up till now no research has been done relating these two approaches. The unification presented provides dependence theory with the sort
Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study
Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang
2016-01-01
Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy
Kinetics of niobium carbide precipitation in ferrite
Gendt, D.
2001-01-01
The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related
High-temperature spreading kinetics of metals
Rauch, N.
2005-05-15
In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)
Bicarbonate kinetics in Indian males
Madhu
ized kinetics of bicarbonate using a three-compartment model, to assess which compartmental fluxes changed dur- .... total VCO2 was < 3 % and the average respiratory quotient ..... a part of the nonrespiratory losses of 13CO2 occur to this.
Kinetic equations in dirty superconductors
Kraehenbuehl, Y.
1981-01-01
Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)
Cell kinetics and therapeutic efficiency
Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.
1976-01-01
The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de
Kinetics of laser irradiated nanoparticles cloud
Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha
2018-02-01
A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.
Neutral particle kinetics in fusion devices
Tendler, M.; Heifetz, D.
1986-05-01
The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub α/ emission rates, plenum pressures, and charge-exchange emission spectra
Neutral particle kinetics in fusion devices
Tendler, M.; Heifetz, D.
1986-05-01
The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub ..cap alpha../ emission rates, plenum pressures, and charge-exchange emission spectra.
Through an understanding of thermoluminescence phenomena from Einstein radiation theory
Nieto H, B.; Vazquez C, G.A.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico)
2005-07-01
In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)
Kinetic parameters from thermogravimetric analysis
Kiefer, Richard L.
1993-01-01
High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.
Electron and proton kinetics and dynamics in flaring atmospheres
Zharkova, Valentina
2012-01-01
This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.
The Imperfect Fluid behind Kinetic Gravity Braiding
Pujolas, Oriol; Vikman, Alexander
2011-01-01
We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formul...
Kinetics of current formation in molecular diode
Petrov, Eh.G.; Leonov, V.A.; Shevchenko, E.V.
2012-01-01
Based on the kinetic theory of election transfer in low-dimensional molecular systems, the formation of transient and stationary currents in a system 'electrode l-molecule-electrode 2' (molecular diode) is studied for different regimes of charge transmission. In the framework of the HOMO-LUMO molecular model, a situation is considered where the current formation is initiated either by molecule photoexcitation or by change of interelectrode voltage bias. It is found that the distant (tunnel) inelastic electron transfer plays a crucial role in changing molecular electronic states and, as a result, in generating transmission channels for hopping (sequential) and distant (direct) current components. The effect of inelastic tunneling is especially pronounced in the condition of resonant electron transmission.
Bisubstrate inhibition: Theory and application to N-acetyltransferases.
Yu, Michael; Magalhães, Maria L B; Cook, Paul F; Blanchard, John S
2006-12-12
Bisubstrate inhibitors represent a potentially powerful group of compounds that have found significant therapeutic utility. Although these compounds have been synthesized and tested against a number of enzymes that catalyze sequential bireactant reactions, the detailed theory for predicting the expected patterns of inhibition against the two substrates for various bireactant kinetic mechanisms has, heretofore, not been presented. We have derived the rate equations for all likely sequential bireactant mechanisms and provide two examples in which bisubstrate inhibitors allow the kinetic mechanism to be determined. Bisubstrate inhibitor kinetics is a powerful diagnostic for the determination of kinetic mechanisms.
Tunneling and reflection in unimolecular reaction kinetic energy release distributions
Hansen, K.
2018-02-01
The kinetic energy release distributions in unimolecular reactions is calculated with detailed balance theory, taking into account the tunneling and the reflection coefficient in three different types of transition states; (i) a saddle point corresponding to a standard RRKM-type theory, (ii) an attachment Langevin cross section, and (iii) an absorbing sphere potential at short range, without long range interactions. Corrections are significant in the one dimensional saddle point states. Very light and lightly bound absorbing systems will show measurable effects in decays from the absorbing sphere, whereas the Langevin cross section is essentially unchanged.
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Aubin, Jean-Pierre; Saint-Pierre, Patrick
2011-01-01
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai
Cox, David A
2012-01-01
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!"—Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galo
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Hashiguchi, Koichi
2009-01-01
This book details the mathematics and continuum mechanics necessary as a foundation of elastoplasticity theory. It explains physical backgrounds with illustrations and provides descriptions of detailed derivation processes..
Crystallization Kinetics within a Generic Modelling Framework
Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist
2013-01-01
An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....
From fractals to wormholes via string theory
Felce, A.G.
1992-01-01
The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view
Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde
2015-01-01
Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.
Bartlett, R.; Kirtman, B.; Davidson, E.R.
1978-01-01
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
R. Veenhoven (Ruut)
2014-01-01
markdownabstract__Abstract__ Need theory of happiness is linked to affect theory, which holds that happiness is a reflection of how well we feel generally. In this view, we do not "calculate" happiness but rather "infer" it, the typical heuristic being "I feel good most of the time, hence
Bouwkamp, C.J.
1954-01-01
A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of
Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation
Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove
2007-01-01
of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...
Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II
Fedorenko, S. G.; Burshtein, A. I.
2014-09-01
Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.
Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II
Fedorenko, S. G. [Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Burshtein, A. I. [Weizmann Institute of Science, 76100, Rehovot (Israel)
2014-09-21
Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.
Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II
Fedorenko, S. G.; Burshtein, A. I.
2014-01-01
Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics
Quiver gauge theory and extended electric-magnetic duality
Maruyoshi, Kazunobu
2009-01-01
We construct N = 1 A-D-E quiver gauge theory with the gauge kinetic term which depends on the adjoint chiral superfields, as a low energy effective theory on D5-branes wrapped on 2-cycles of Calabi-Yau 3-fold in IIB string theory. The field-dependent gauge kinetic term can be engineered by introducing B-field which holomorphically varies on the base space (complex plane) of Calabi-Yau. We consider Weyl reflection on A-D-E node, which acts non-trivially on the gauge kinetic term. It is known that Weyl reflection is related to N = 1 electric-magnetic duality. Therefore, the non-trivial action implies an extension of the electric-magnetic duality to the case with the field-dependent gauge kinetic term. We show that this extended duality is consistent from the field theoretical point of view. We also consider the duality map of the operators.
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří
1988-01-01
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...
Bjerg, Ole; Presskorn-Thygesen, Thomas
2017-01-01
The paper is a contribution to current debates about conspiracy theories within philosophy and cultural studies. Wittgenstein’s understanding of language is invoked to analyse the epistemological effects of designating particular questions and explanations as a ‘conspiracy theory......’. It is demonstrated how such a designation relegates these questions and explanations beyond the realm of meaningful discourse. In addition, Agamben’s concept of sovereignty is applied to explore the political effects of using the concept of conspiracy theory. The exceptional epistemological status assigned...... to alleged conspiracy theories within our prevalent paradigms of knowledge and truth is compared to the exceptional legal status assigned to individuals accused of terrorism under the War on Terror. The paper concludes by discussing the relation between conspiracy theory and ‘the paranoid style...