WorldWideScience

Sample records for kinetic photoionization mass

  1. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Feyer, Vitaliy, E-mail: vitaliy.feyer@elettra.trieste.it [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Plekan, Oksana [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [Institute of Electron Physics, 21 Universitetska St., 88017 Uzhgorod (Ukraine); Richter, Robert [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Coreno, Marcello [CNR-IMIP, Area della Ricerca di Roma 1, CP10, I-00016 Monterotondo Scalo (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy); Prince, Kevin C. [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy)

    2009-03-30

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  2. Atomic kinetics of a neon photoionized plasma experiment at Z

    Science.gov (United States)

    Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration

    2018-06-01

    We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  3. Mass-Selective Laser Photoionization.

    Science.gov (United States)

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  4. Vacuum ultraviolet photofragmentation of octadecane: photoionization mass spectrometric and theoretical investigation.

    Science.gov (United States)

    Xu, Jing; Sang, Pengpeng; Zhao, Lianming; Guo, Wenyue; Qi, Fei; Xing, Wei; Yan, Zifeng

    The photoionization and fragmentation of octadecane were investigated with infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IRLD/VUV PIMS) and theoretical calculations. Mass spectra of octadecane were measured at various photon energies. The fragment ions were gradually detected with the increase of photon energy. The main fragment ions were assigned to radical ions (C n H 2 n +1 + , n  = 4-11) and alkene ions (C n H 2 n + , n  = 5-10). The ionization energy of the precursor and appearance energy of ionic fragments were obtained by measuring the photoionization efficiency spectrum. Possible formation pathways of the fragment ions were discussed with the help of density functional theory calculations.

  5. Photoionization mass spectrometry of UF6

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1979-01-01

    The photoionization mass spectrum of 238 UF 6 was obtained. At 600 A = 20.66 eV, the relative ionic abundances were as follows: UF 6 + , 1.4; UF 5 + , 100; UF + , 17; UF 3 + , approx. 0.7; UF 2 + , very weak; UF + , very weak; U + , essentially zero. The adiabatic ionization potential for UF 6 was 13.897 +- 0.005 eV. The production of UF 5 + begins at approx. 887 A = 13.98 eV, at which energy the UF 6 + partial cross section abruptly declines and then levels off. This behavior suggests the vague possibility of an isotope effect. The UF 4 + signal begins at approx. 725 A = 17.10 eV, at which energy the UF 5 + signal reaches a plateau value. The UF 5 + photoionization yield curve displays some autoionization structure from its threshold to approx. 750 A

  6. A VUV photoionization organic aerosol mass spectrometric study with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fang Wenzheng; Lei Gong; Shan Xiaobin; Liu Fuyi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China); Wang Zhenya [Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sheng Liusi, E-mail: lssheng@ustc.edu.cn [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China)

    2011-04-15

    Research highlights: {yields} A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. {yields} The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. {yields} The direct determination of the IEs of benzopheneone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra. {yields} The species can be identified by their molecular and fragment ions weights as well as by the comparisions between their theoretical and experimental ionization energies. - Abstract: A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. Aerosol particles can be sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. The particles are vaporized when they impact on a heater, and then the nascent vapor is softly photoionized by synchrotron radiation. The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. Thus, fragment-free tunable VUV mass spectra are obtained by tuning the photon energy close to the ionization energies (IEs) of the sample molecules. The direct determination of the IEs of benzophenone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra with uncertainties of {+-}50 meV. Ab initio calculations have been employed to predict the theoretical ionization energy.

  7. Photoionization mass spectrometric studies of selected compounds in a molecular beam

    Energy Technology Data Exchange (ETDEWEB)

    Trott, W.M.

    1979-03-01

    Photoionization efficiency curves have been measured at moderate to high resolution for several species produced in supersonic molecular beams of acetone, acetone-d/sub 6/ and CS/sub 2/. The molecular beam photoionization mass spectrometer which has been assembled for this work is described. The performance of this instrument has been characterized by a number of experiments and calculations.

  8. Photoionization mass spectrometric studies of selected compounds in a molecular beam

    International Nuclear Information System (INIS)

    Trott, W.M.

    1979-03-01

    Photoionization efficiency curves have been measured at moderate to high resolution for several species produced in supersonic molecular beams of acetone, acetone-d 6 and CS 2 . The molecular beam photoionization mass spectrometer which has been assembled for this work is described. The performance of this instrument has been characterized by a number of experiments and calculations

  9. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    Science.gov (United States)

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  10. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    Science.gov (United States)

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Vacuum ultraviolet photoionization cross section of the hydroxyl radical.

    Science.gov (United States)

    Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio

    2018-05-14

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  12. Vacuum ultraviolet photoionization cross section of the hydroxyl radical

    Science.gov (United States)

    Dodson, Leah G.; Savee, John D.; Gozem, Samer; Shen, Linhan; Krylov, Anna I.; Taatjes, Craig A.; Osborn, David L.; Okumura, Mitchio

    2018-05-01

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

  13. Gadolinium photoionization process

    Science.gov (United States)

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  14. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  15. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  16. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  17. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  18. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations.

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  19. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-01

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH3COOH)n.H+, the feature related to the fragment ions (CH3COOH)H+.COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH3COOH).H+ and (CH3COOH)H+.COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH3COOH)H+.COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH3COOH)+ becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH3COOH).CH3CO+. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  20. Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M

    2014-09-01

    In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

  1. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  2. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  3. Photoionization of H2O at high resolution

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Chupka, W.A.

    1978-01-01

    The relative photoionization cross sections for the formation of H 2 O + , OH + , and H + from H 2 O were measured at high wavelength resolution using a 3-meter photoionization mass spectrometer equipped with a quadrupole mass flter and a 1-meter photoionization mass spectrometer equipped with a 12-inch radius, 60 0 sector magnetic mass spectrometer. Discrete structure in the parent ion photoionization efficiency curve is interpreted in terms of Rydberg series converging to excited states of the H 2 O + ion. 9 references

  4. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  5. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  6. Vacuum ultraviolet photoionization mass spectrometric study of cyclohexene.

    Science.gov (United States)

    Chen, Jun; Cao, Maoqi; Wei, Bin; Ding, Mengmeng; Shan, Xiaobin; Liu, Fuyi; Sheng, Liusi

    2016-02-01

    In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time-of-flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6 H9 (+) , C6 H7 (+) , C5 H7 (+) , C5 H5 (+) , C4 H6 (+) , C4 H5 (+) , C3 H5 (+) and C3 H3 (+) were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X-D/6-31+g(d,p) level. The coupled cluster method, CCSD(T)/cc-pVTZ, was employed to calculate the corresponding energies with the zero-point energy corrections by the ωB97X-D/6-31+g(d,p) approach. Combining experimental and theoretical results, possible formation pathways of the fragment ions were proposed and discussed in detail. The retro-Cope rearrangement was found to play a crucial role in the formation of C4 H6 (+) , C4 H5 (+) and C3 H5 (+) . Intramolecular hydrogen migrations were observed as dominant processes in most of the fragmentation pathways of cyclohexene. The present research provides a clear picture of the photoionization and dissociation processes of cyclohexene in the 8- to 15.5-eV photon energy region. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.

    Science.gov (United States)

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-05-01

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...

  9. Development of a hand-portable photoionization time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Raptis, A.C.

    1996-01-01

    ANL is currently developing a portable chemical sensor system based on laser desorption photoionization time-of-flight mass spectrometry. It will incorporate direct sampling, a cryocooler base sample adsorption and concentration, and direct surface multiphoton ionization. All components will be in a package 9 x 11 x 4 in., weighing 15-18 lbs. A sample spectrum is given for a NaCl sample

  10. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  11. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    International Nuclear Information System (INIS)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-01

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH 2 Cl 2 produces intact [M + Cl] − ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy

  12. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  13. Note: a novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang

    2014-04-01

    A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.

  14. Single- and double-photoionization cross-sections of nitrogen dioxide (NO2) and ionic fragmentation of NO2+ and NO22+

    International Nuclear Information System (INIS)

    Masuoka, Toshio; Kobayashi, Ataru

    2004-01-01

    Single- and double-photoionization processes of nitrogen dioxide (NO 2 ) have been studied in the photon energy region of 37-125 eV by use of time-of-flight mass spectrometry and the photoion-photoion coincidence method together with synchrotron radiation. The single- and double-photoionization cross-sections of NO 2 are determined. Ion branching ratios and the partial cross-sections for the individual ions, respectively, produced from the parent NO 2 + and NO 2 2+ ions are also determined separately at excitation energies where the molecular and dissociative single- and double-photoionization processes occur simultaneously. It was found that dissociation of the parent ions is dominant both in single and double photoionization. The thresholds for the O + + NO + and N + + O + dissociation channels of NO 2 2+ are at 35.0 ± 0.3 and 43.6 ± 0.3 eV, respectively. Kinetic energy releases in these two dissociation channels of NO 2 2+ have also been elucidated

  15. Photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed

  16. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    International Nuclear Information System (INIS)

    Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.; Qi, Fei; McIlroy, Andrew; Westmoreland, Phillip R.; Law, Matthew E.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2003-01-01

    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C 3 H 4 in low-pressure laminar ethylene-oxygen and benzene-oxygen flames. Similar measurements of the isomeric composition of C 2 H 4 O species in a fuel-rich ethylene-oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames

  17. A vacuum ultraviolet photoionization mass spectrometric study of acetone.

    Science.gov (United States)

    Wei, Lixia; Yang, Bin; Yang, Rui; Huang, Chaoqun; Wang, Jing; Shan, Xiaobin; Sheng, Liusi; Zhang, Yunwu; Qi, Fei; Lam, Chow-Shing; Li, Wai-Kee

    2005-05-19

    The photoionization and dissociative photoionization of acetone have been studied at the photon energy range of 8-20 eV. Photoionization efficiency spectra for ions CH3COCH3+, CH3+, C2H3+, C3H3+, C3H5+, CH(2-)CO+, CH3CO+, C3H4O+, and CH3COCH2+ have been measured. In addition, the energetics of the dissociative photoionization has been examined by ab initio Gaussian-3 (G3) calculations. The computational results are useful in establishing the dissociation channels near the ionization thresholds. With the help of G3 results, the dissociation channels for the formation of the fragment ions CH3CO+, CH2CO+, CH3+, C3H3+, and CH3COCH2+ have been established. The G3 results are in fair to excellent agreement with the experimental data.

  18. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    Science.gov (United States)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  19. Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry

    NARCIS (Netherlands)

    Mol, Roelof; De Jong, Gerhardus J.; Somsen, Govert W.

    2005-01-01

    Atmospheric pressure photoionization (APPI) is presented as a novel means for the combination of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS). The on-line coupling is achieved using an adapted sheath flow interface installed on an orthogonal APPI source. Acetone or

  20. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation

    International Nuclear Information System (INIS)

    Huang Chaoqun; Wei Lixia; Yang Bin; Yang Rui; Wang Sisheng; Shan Xiaobin; Qi Fei; Zhang Yunwu; Sheng Liusi; Hao Liqing; Zhou Shikang; Wang Zhenya

    2006-01-01

    Photoionization and dissociative photoionization of HFC-152a have been studied using synchrotron radiation and a reflection time-of-flight mass spectrometry (RTOF-MS). The ionization energy of parent molecule (11.94 ± 0.04 eV) and appearance potentials of various fragment ions have been determined by measuring their photoionization efficiency curves. Energies, symmetry point groups and ground electronic states of neutrals and cations of parent and its fragments have been calculated using GAUSSIAN-03 program with the G3 method. According to the theoretical and experimental results, some dissociation channels and their dissociation energies of CH 3 CHF 2 + have been analyzed. (authors)

  1. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  2. Branching fractions of the CN + C3H6 reaction using synchrotron photoionization mass spectrometry: evidence for the 3-cyanopropene product.

    Science.gov (United States)

    Trevitt, Adam J; Soorkia, Satchin; Savee, John D; Selby, Talitha S; Osborn, David L; Taatjes, Craig A; Leone, Stephen R

    2011-11-24

    The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8-11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C(3)H(3)N and C(4)H(5)N, corresponding to CH(3) and H elimination, respectively. The CH(3) and H elimination channels are measured to have branching fractions of 0.59 ± 0.15 and 0.41 ± 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C(4)H(5)N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113-118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 ± 0.12 and 0.50 ± 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH(2)CHCD(3) reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH(2)CHCD(2)CN), providing further evidence for the formation of the 3-cyanopropene reaction product.

  3. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  4. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Science.gov (United States)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  5. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Ng, C.Y. [Ames Lab., IA (United States); Hsu, C.W.; Heimann, P. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  6. A coincidence method for the simultaneous measurement of the photoionization of several masses

    International Nuclear Information System (INIS)

    Broeker, G.

    1989-11-01

    This study was made in the working team Ding (Hahn-Meitner Institute Berlin) in the framework of photoionization experiments on Van-der-Waals clusters. The experiments were performed at the Berlin electron storage ring (BESSY). In a molecular-beam source clusters are produced and ionized by monochromatic light. The mass of the ions arising hereby is determined with a time-of-flight mass spectrometer. Within this thesis a method and an electronic device was developed, by which it is made possible to gather simultaneously the wave-length dependence of several masses. (orig.) With 27 refs [de

  7. Photoionization Efficiencies of Five Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Johansson, K Olof; Campbell, Matthew F; Elvati, Paolo; Schrader, Paul E; Zádor, Judit; Richards-Henderson, Nicole K; Wilson, Kevin R; Violi, Angela; Michelsen, Hope A

    2017-06-15

    We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.

  8. Online characterization of isomeric/isobaric components in the gas phase of mainstream cigarette smoke by tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry and photoionization efficiency curve simulation.

    Science.gov (United States)

    Pan, Yang; Hu, Yonghua; Wang, Jian; Ye, Lili; Liu, Chengyuan; Zhu, Zhixiang

    2013-12-17

    A newly developed, qualitative and quantitative method based on tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry (SR-VUV-PI-TOFMS) and photoionization efficiency (PIE) curve simulation was applied for the online analysis of isomers and isobaric compounds in the gas phase of mainstream cigarette smoke. After blocking the particulate phase components by the Cambridge filter pad, a puff of fresh gas-phase cigarette smoke was immediately introduced into a vacuum ionization chamber through a heated capillary, then was photoionized, and analyzed by a TOF mass spectrometer. The PIE curves for the mass peaks up to m/z = 106 were measured between 8.0 and 10.7 eV. Some components could be directly identified by their discriminated ionization energies (IEs) on the PIE curve. By simulating the PIE curve with the sum of scaled absolute photoionization cross sections (PICSs), complex isomeric/isobaric compounds along with their mole fractions could be obtained when the best-fitting was realized between experimental and simulated PIE curves. A series of reported toxic compounds for quantification, such as 1,3-butadiene (m/z = 54), 1,3-cyclopentadiene (m/z = 66), benzene (m/z = 78), xylene (m/z = 106), 2-propenal (m/z = 56), acetone and propanal (m/z = 58), crotonaldehyde (m/z = 70), furan and isoprene (m/z = 68), were all found to have other isomers and/or isobaric compounds with considerable abundances. Some isomers have never been reported previously in cigarette smoke, like C5H6 isomers 1-penten-3-yne, 3-penten-1-yne, and 1-penten-4-yne at m/z = 66. Isomeric/isobaric compounds characterization for the mass peaks and mole fraction calculations were discussed in detail below 10.7 eV, an energy value covering several conventional used VUV light sources.

  9. Study of photoionization and dissociative photoionization of carbon monoxide from ionization threshold to 38 eV by using synchrotron radiation

    International Nuclear Information System (INIS)

    Zhao, Yujie; Cao, Maoqi; Li, Yuquan; Shan, Xiaobin; Liu, Fuyi; Sheng, Liusi; Li, Li; Liu, Wanfang

    2014-01-01

    Highlights: • The high resolution photoionization spectrum of carbon monoxide has been investigated using tunable synchrotron radiation. • This work has investigated comprehensively almost all kinds of photo excitation processes of CO in wide photon region. • The mechanisms of photoionization and dissociative photoionization of CO have been researched in detail. - Abstract: The vacuum-ultraviolet photoionization and dissociative photoionization of carbon monoxide in a region 14–38 eV have been investigated with time-of-flight (TOF) photoionization mass spectrometry (PIMS) using tunable synchrotron radiation (SR). The adiabatic ionization energy (IE) of carbon monoxide and appearance energies (AE) for its fragment ions in different states are determined by measurements of photoionization efficiency spectra (PIES). Ab initio calculations have been performed to investigate the reaction mechanism of dissociative photoionization of carbon monoxide. On the basis of experimental and predicted theoretical results, the mechanisms of photoionization and dissociative photoionization of molecular CO are discussed, and sixteen dissociative photoionization processes are proposed. The equilibrium geometries and harmonic vibrational frequencies of CO molecule, and its parent cation were calculated by using MP2 (full) method. The differences of configurations between them are also discussed on the basis of theoretical calculations. According to our results, the experimental IE of CO molecule, and dissociation energies (E d ) of possible dissociative channels are in reasonable agreement with the calculated values of the proposed photodissociation channels

  10. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented.

  11. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Science.gov (United States)

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  12. Photoionization studies with molecular beams

    International Nuclear Information System (INIS)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C 2 H 2 and CH 3 I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO) 2 , ArICl, Ar 2 , Kr 2 and Xe 2 have been obtained near the thresholds. Using the known dissociation energies of the (NO) 2 , Ar 2 , Kr 2 and Xe 2 van der Waals molecules, the corresponding dissociation energies for NO-NO + , Ar 2 + , Kr 2 + , and Xe 2 + have been determined. The ionization mechanisms for this class of molecules are examined and discussed

  13. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  14. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  15. Double photoionization of H2: An experimental test of electronic-correlation models in molecules

    International Nuclear Information System (INIS)

    Dujardin, G.; Besnard, M.J.; Hellner, L.; Malinovitch, Y.

    1987-01-01

    The double-photoionization cross sections of molecular hydrogen (H 2 ) and molecular deuterium (D 2 ) were measured by using the photoion-photoion coincidence method for photon energies ranging from the threshold energy around 50 eV up to, respectively, 140 and 98 eV. The comparison with the recent ab initio calculations of Le Rouzo [J. Phys. B 19, L677 (1986)] indicates that an important part of the double-photoionization process is accounted for by a rigorous description of the electron-electron interaction in the initial state. As a by-product of this work, it was also concluded that double photoionization of hydrogen can be considered as a vertical process and that Franck-Condon approximations are quite valid to calculate the kinetic energy of the resulting H + +H + fragments

  16. Study of Photoionization and Fragmentation on CHClF2 : Experiments and Calculations

    International Nuclear Information System (INIS)

    Sheng, L.; Yang, B.; Huang, C.; Qi, F.; Zhang, Y.; Wang, Z.; Zhou, S.

    2004-01-01

    Full text: The photoionization and fragmentation of CHClF 2 are studied with VUV radiation and photoionization mass spectroscopy at NSRL. Ionization potential of Parent molecule CHClF 2 , appearance energies of some fragment ions, and dissociative energy of some fragmentation process are obtained from photoionization efficiency spectroscopy. Dissociative photoionization channels for formation of some fragment ions are proposed on comparison of determined appearance energies and energies predicted with Gaussian-98 calculation

  17. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  18. High sensitivity detection of desorbed biomolecules by photoionization with tunable VUV

    International Nuclear Information System (INIS)

    Moore, J.F.; Calaway, W.F.; Veryovkin, I.V.; Pellin, M.J.; Lewellen, J.W.; Li, Y.; Milton, S.V.; King, B.V.

    2004-01-01

    Full text: The spectral region from 7 to 11eV has two attributes that make it attractive for biomolecule photoionization: 1. high photoionization cross sections, leading to high detection efficiency, and 2. overlap with nearly all first ionization energies of biomolecules, allowing possible control over fragmentation by accessing different final states via tuning. The lack of available tunable lasers in this energy range has generally hindered exploitation of these features thus far. A free-electron laser in operation at Argonne National Laboratory provides high pulse energy, widely tunable VUV pulses of 300 fs duration. Coupled with a novel time-of-flight mass spectrometer, this laser is able to photoionize and detect biomolecules, including peptides and nucleosides. Either laser desorption or primary ion beams are used to desorb sample material, followed by photoionization with a VUV laser. The instrument uses novel ion optics to extract photoions from a large volume while maintaining high mass resolution. This approach is capable of yielding dramatically improved detection limits over more conventional methods such as MALDI and SIMS. In the case of the common peptide substance P, for example, a substantial improvement over the MALDI signal was observed using VUV photoionization with very little observed fragmentation of the molecule. Nucleosides and cisplatin were also measured with typically order of magnitude improvements in signal. These and other examples show clearly the benefits that can be obtained in high sensitivity mass spectrometry of biomolecules with the increasing availability of VUV laser sources

  19. Photoionization studies with molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.

  20. Dissociative Photoionization of the Elusive Vinoxy Radical.

    Science.gov (United States)

    Adams, Jonathan D; Scrape, Preston G; Lee, Shih-Huang; Butler, Laurie J

    2017-08-24

    These experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH 3 + CO or H + ketene. Photoionization of these stable vinoxy radicals, identified by their velocities, which are momentum-matched with the higher-kinetic-energy Cl atom photofragments, shows that the vinoxy radicals dissociatively photoionize to give signal at m/z = 15 and 29. We calibrated the partial photoionization cross section of vinoxy to CH 3 + relative to the bandwidth-averaged photoionization cross section of the Cl atom at 13.68 eV to put the partial photoionization cross sections on an absolute scale. The resulting bandwidth-averaged partial cross sections are 0.63 and 1.3 Mb at 10.5 and 11.44 eV, respectively. These values are consistent with the upper limit to the cross section estimated from a study by Savee et al. on the O( 3 P) + propene bimolecular reaction. We note that the uncertainty in these values is primarily dependent on the signal attributed to C-Cl primary photofission in the m/z = 35 (Cl + ) time-of-flight data. While the value is a rough estimate, the bandwidth-averaged partial photoionization cross section of vinoxy to HCO + calculated from the signal at m/z = 29 at 11.53 eV is approximately half that of vinoxy to CH 3 + . We also present critical points on the potential energy surface of the vinoxy cation calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory to support the observation of dissociative ionization of vinoxy to both CH 3 + and HCO + .

  1. The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid.

    Science.gov (United States)

    Heringa, Maarten F; Slowik, Jay G; Goldmann, Maximilian; Signorell, Ruth; Hemberger, Patrick; Bodi, Andras

    2017-12-15

    The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Atmospheric Pressure Photoionization Tandem Mass Spectrometry of Androgens in Prostate Cancer

    Science.gov (United States)

    Lih, Fred Bjørn; Titus, Mark A.; Mohler, James L.; Tomer, Kenneth B.

    2010-01-01

    Androgen deprivation therapy is the most common treatment option for advanced prostate cancer. Almost all prostate cancers recur during androgen deprivation therapy, and new evidence suggests that androgen receptor activation persists despite castrate levels of circulating androgens. Quantitation of tissue levels of androgens is critical to understanding the mechanism of recurrence of prostate cancer during androgen deprivation therapy. A liquid chromatography atmospheric pressure photoionization tandem mass spectrometric method was developed for quantitation of tissue levels of androgens. Quantitation of the saturated keto-steroids dihydrotestosterone and 5-α-androstanedione required detection of a novel parent ion, [M + 15]+. The nature of this parent ion was explored and the method applied to prostate tissue and cell culture with comparison to results achieved using electrospray ionization. PMID:20560527

  3. Photoionization of Ar2 at high resolution

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The relative photoionization cross section of Ar 2 was determined at a resolution of 0.07 A in the wavelength region from 800 to 850 A using a new photoionization mass spectrometer that combines a high intensity helium continuum lamp with a free supersonic molecular beam source. In the region studied, the photoionization cross section is dominated by autoionization of molecular Rydberg states, and the structure is diffuse owing to the combined effects of autoionization and predissociation. The molecular photoionization spectrum is extremely complex and shows little resemblence either to the corresponding atomic spectrum (indicating that the spectrum of the dimer is not simply a perturbed atomic spectrum) or to the molecular absorption spectrum at longer wavelengths. The regular vibrational progressions seen at longer wavelengths are absent above the first ionization potential. Detailed spectroscopic analysis is possible for only a small fraction of the observed features; however, vibrational intervals of 50--100 cm -1 suggest that some of the Rydberg states have B 2 Pi/sub 3/2g/ ionic cores. A comparison of the absorption and photoionization spectra shows that, at wavelengths shorter than approx.835 A, many of the excited states decay via mechanisms other than autoionization

  4. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    Science.gov (United States)

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  6. Determination of hydroxylated polycyclic aromatic hydrocarbons by HPLC-photoionization tandem mass spectrometry in wood smoke particles and soil samples.

    Science.gov (United States)

    Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger

    2015-06-01

    A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.

  7. Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.

    Science.gov (United States)

    Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2016-11-23

    The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.

  8. X-ray heating of laboratory photoionized plasmas at Z

    Science.gov (United States)

    Mancini, R.; Lockard, T.; Mayes, D.; Loisel, G.; Bailey, J.; Rochau, G.; Abdallah, J.; Fontes, C.; Liedahl, D.; Golovkin, I.

    2017-10-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed temperatures. DOE OFES Grant DE-SC0014451 and ZFSP.

  9. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    Science.gov (United States)

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  10. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    Science.gov (United States)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ionic fragmentation of a natural product, limonene (C10H16), following core [C 1s] photoionization

    International Nuclear Information System (INIS)

    Castilho, R.B. de; Nunez, C.V.; Coutinho, L.H.; Lago, A.F.; Bernini, R.B.; Souza, G.G.B. de

    2007-01-01

    Photoionization of the limonene [C 10 H 16 ] molecule was studied for the first time following C 1s ionization, using synchrotron radiation and time-of-fight mass spectrometry. As a reference for further analysis of the photon induced fragmentation of the limonene molecule, the He(I) mass spectrum was also obtained. Previously unreported singly charged species have been observed at 310 eV: H + , C + , CH + , CH 2 + , CH 3 + . A close similarity has been observed between the high photon energy mass spectrum and the standard electron impact mass spectrum of limonene, obtained at 70 eV. In particular, the base peak [C 5 H 8 + , m/q = 68], known to result from a Retro Diels-Alder reaction, remains the same in both cases. Approximate values for the mean kinetic energy were determined for all ionic species

  12. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    International Nuclear Information System (INIS)

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-01-01

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s 2 S J f =1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere

  13. Ozone mass transfer and kinetics experiments

    International Nuclear Information System (INIS)

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction

  14. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Streibel, T.; Muehlberger, F. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Adam, T.; Zimmermann, R. [Augsburg Univ. (Germany); Cao, L. [National Center for Iron and Steel, Beijing, BJ (China)

    2004-09-15

    Chlorinated benzenes and phenols generated from PVC pyrolysis are known to be precursors of PCDD/F formation. Therefore, selective and sensitive monitoring of these substances during PVC pyrolysis processes on an on-line, real-time basis could be very useful for the understanding of PCDD/F formation pathways. In this study, we investigated the pyrolysis gas from PVC samples derived from steel recycling by means of simultaneous single photon ionization/resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (SPI/REMPI-TOFMS). The application of these soft photo-ionization techniques in mass spectrometry enables a fast and comprehensive analysis of this complex matrix without generating fragment ions, which would interfere with molecule ions making interpretation of the obtained mass spectra very difficult.

  15. Calculation of the characteristics of carbon dioxide TEA photoionization lasers

    Energy Technology Data Exchange (ETDEWEB)

    Aver' yanov, N E; Baloshin, Yu A; Gerke, M N; Dernyatin, A I; Khurgin, Ya B

    1979-01-01

    A mathematical model is proposed for studying the characteristics of a carbon dioxide photoionization laser with pressures of the active mixture of the order of one atmosphere. The kinetics of the CO/sub 2/ molecules is described in terms of population of the group of lower vibrational levels. The part played by N/sub 2/ molecules in the general system of kinetic equations is accounted for by a harmonic oscillator model with Boltzmann population of vibrational levels and the corresponding vibrational temperature. A diagram is given of the fundamental kinetic processes in the proposed model for a TEA laser. The results of calculations are compared with a previously proposed model and with experimental data for a carbon dioxide TEA photoionization laser using preionization by ultraviolet radiation and operating in the semi-selfmaintained discharge mode. The active mixture was CO/sub 2/:N/sub 2/:He=1:1:8. It was found that optimum mixtures for maximum power are those with ratios of CO/sub 2/:N/sub 2/He=5:45:50, 10:40:50 and 5:55:40. The helium molecules supply most of the photoelectrons, and the additives give a uv spectrum that is optimum for photoionization of He. The CO/sub 2/ is the lasing molecule, but absorbs uv radiation, and therefore the optimum CO/sub 2/ concentration is low. The influence that dissociation of CO/sub 2/ molecules has on the laser depends on the electron concentration in the main discharge. Any model that reliably describes laser characteristics must take account of dissociation of the lasing molecules by means of some factor that shows how many molecules are dissociated by uv radiation, although the dissociation by electron impact can be disregarded.

  16. Photoionization of subvalence p-subshell in alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Yagishita, A.; Hayaishi, T.; Itoh, Y.

    1986-11-01

    Photoionization of alkali and alkaline-earth atoms has been investigated by means of a time-of-flight mass spectrometer combined with monochromatised synchrotron radiation and an atomic beam, in the wavelength region of 350 - 750 A. For alkaline-earth atoms, it has been made clear that a two-step autoionization following an innershell excitation plays an important role for doubly charged ions. For alkali atoms, relative photoionization cross sections have been measured for the first time. Moreover, a tentative assignment of spectral lines for Rb and Cs in the complex spectral region has been attemped based on the photoionization data. (author)

  17. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  18. Synchrotron Photoionization Study of Furan and 2-Methylfuran Reactions with Methylidyne Radical (CH) at 298 K.

    Science.gov (United States)

    Carrasco, Erica; Smith, Kenneth J; Meloni, Giovanni

    2018-01-11

    The reactions of furan and 2-methylfuran with methylidyne CH (X 2 Π) radical were investigated at 298 K using synchrotron radiation produced at the Advanced Light Source of the Lawrence Berkeley National Laboratory. Reaction products were observed by multiplexed photoionization mass spectrometry and characterized based on their photoionization spectra and kinetic time traces. Primary products observed in furan + CH are 2,4-cyclopentadien-1-one (m/z = 80), 2-penten-4-ynal (m/z = 80), and vinylacetylene (m/z = 52). From 2-methylfuran + CH, 2-4-cyclopentadien-1-carbaldehyde (m/z = 94), 2,3,4-hexatrienal (m/z = 94), 1,3 cyclopentadiene (m/z = 66), 3-penten-1-yne (Z) (m/z = 66), and vinylacetylene (m/z = 52) are the primary products observed. Using potential energy surface scans, thermodynamically favorable reaction pathways are proposed. CH addition to the π-bonds in furan and 2-methylfuran rings was found to be the entrance channel that led to formation of all identified primary products. Both reactions follow patterns of H loss and CHO loss, as well as formation of cyclic and acyclic isomers.

  19. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  20. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  1. The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization Orbitrap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Hanus, Robert; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2015-01-01

    Roč. 886, Jul 30 (2015), s. 91-97 ISSN 0003-2670 R&D Projects: GA ČR GP13-25137P Grant - others:GA AV ČR(CZ) M200551204 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * ambient mass spectrometry * insect chemical defense * exocrine glands * termite * stink bug Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.712, year: 2015

  2. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    International Nuclear Information System (INIS)

    Itakura, R.; Fushitani, M.; Hishikawa, A.; Sako, T.

    2015-01-01

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar + associated with a superposition of the spin-orbit states 2 PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth

  3. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  4. Photoionization in the halo of the Galaxy

    Science.gov (United States)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  5. Analysis of anabolic steroids in urine by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry with chlorobenzene as dopant.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2013-10-18

    A gas chromatography-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) method was developed for the analysis of anabolic androgenic steroids in urine as their trimethylsilyl derivatives. The method utilizes a heated nebulizer microchip in atmospheric pressure photoionization mode (μAPPI) with chlorobenzene as dopant, which provides high ionization efficiency by producing abundant radical cations with minimal fragmentation. The performance of GC-μAPPI-MS/MS was evaluated with respect to repeatability, linearity, linear range, and limit of detection (LOD). The results confirmed the potential of the method for doping control analysis of anabolic steroids. Repeatability (RSD<10%), linearity (R(2)≥0.996) and sensitivity (LODs 0.05-0.1ng/mL) were acceptable. Quantitative performance of the method was tested and compared with that of conventional GC-electron ionization-MS, and the results were in good agreement. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    Science.gov (United States)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  7. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  8. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    International Nuclear Information System (INIS)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-01-01

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  9. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  10. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Photoionization of FE3+ Ions

    International Nuclear Information System (INIS)

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  12. Dissociative photoionization of 1,3-butadiene: experimental and theoretical insights.

    Science.gov (United States)

    Fang, Wenzheng; Gong, Lei; Zhang, Qiang; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi

    2011-05-07

    The vacuum-ultraviolet photoionization and dissociative photoionization of 1,3-butadiene in a region ∼8.5-17 eV have been investigated with time-of-flight photoionization mass spectrometry using tunable synchrotron radiation. The adiabatic ionization energy of 1,3-butadiene and appearance energies for its fragment ions, C(4)H(5)(+), C(4)H(4)(+), C(4)H(3)(+), C(3)H(3)(+), C(2)H(4)(+), C(2)H(3)(+), and C(2)H(2)(+), are determined to be 9.09, 11.72, 13.11, 15.20, 11.50, 12.44, 15.15, and 15.14 eV, respectively, by measurements of photoionization efficiency spectra. Ab initio molecular orbital calculations have been performed to investigate the reaction mechanism of dissociative photoionization of 1,3-butadiene. On the basis of experimental and theoretical results, seven dissociative photoionization channels are proposed: C(4)H(5)(+) + H, C(4)H(4)(+) + H(2), C(4)H(3)(+) + H(2) + H, C(3)H(3)(+) + CH(3), C(2)H(4)(+) + C(2)H(2), C(2)H(3)(+) + C(2)H(2) + H, and C(2)H(2)(+) + C(2)H(2) + H(2). Channel C(3)H(3)(+) + CH(3) is found to be the dominant one, followed by C(4)H(5)(+) + H and C(2)H(4)(+) + C(2)H(2). The majority of these channels occur via isomerization prior to dissociation. Transition structures and intermediates for those isomerization processes were also determined.

  13. K-SHELL PHOTOIONIZATION OF NICKEL IONS USING R-MATRIX

    International Nuclear Information System (INIS)

    Witthoeft, M. C.; Bautista, M. A.; GarcIa, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ion stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  14. K-Shell Photoionization of Nickel Ions Using R-Matrix

    Science.gov (United States)

    Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  15. Optogalvanic photoionization spectroscopy

    International Nuclear Information System (INIS)

    Levesque, S.; Gagne, J.-M.; Babin, F.

    1997-01-01

    This paper presents, for the first time, a systematic study of an optogalvanic method for photoionization spectroscopy. The method is particularly attractive for refractory and complex atoms, such as lanthanides and actinides. The relevant characteristics of the hollow cathode discharges used for this study are discussed in detail, along with the experimental protocol for this spectroscopic method. The rapid optogalvanic effect, which results solely from photoionization, is also described. Finally, we present as an example of the application of this method, a table containing some of the recorded uranium photoionization lines in the 16 300-20 500 cm -1 range, along with typical samples of the uranium single-colour photoionization spectrum recorded using the rapid optogalvanic technique. A brief discussion of the sensitivity of the rapid optogalvanic effect is also presented. It appears that the rapid optogalvanic effect is very effective in the detection of highly excited levels. This technique permitted the observation of many new single-colour resonant ionization uranium lines. (Author)

  16. Photoionization effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Fontelos, Marco A; Trueba, Jose L

    2006-01-01

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work

  17. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  18. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels.

    Science.gov (United States)

    Winfough, Matthew; Meloni, Giovanni

    2017-12-01

    Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Single-, double-, and triple-photoionization cross sections of carbon monoxide (CO) and ionic fragmentation of CO+, CO2+, and CO3+

    International Nuclear Information System (INIS)

    Masuoka, T.; Nakamura, E.

    1993-01-01

    Single-, double-, and triple-photoionization processes of carbon monoxide (CO) have been studied in the photon-energy region of 37--100 eV by use of time-of-flight mass spectrometry and a photoion-photoion-coincidence method together with synchrotron radiation. The single-, double-, and triple-photoionization cross sections of CO are determined. Ion branching ratios and the partial cross sections for the individual ions respectively produced from the precursors CO + and CO 2+ are determined separately at excitation energies where the molecular and dissociative single- and double-photoionization processes compete. The threshold for the molecular double photoionization was found to be 41.3±0.2 eV. Furthermore, in single photoionization, the production of CO + is dominant whereas with double photoionization dissociation becomes dominant

  20. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  1. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    Science.gov (United States)

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  2. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  3. Photoionization and molecular structure

    International Nuclear Information System (INIS)

    Palma, A.

    1983-01-01

    A presentation is here given of the theoretical work on photoionization and molecular structure carried out by the author and coworkers. The implications of the photoionization process on the molecular geometry are emphasized. In particular, the ionization effect on deep orbitals is considered and it is shown that, contrary to traditional thinking, these orbitals have relevant effects on the molecular geometry. The problem of calculating photoionization relative intensities for the full spectrum is also considered, and the results of the present model are compared with experimental and other theoretical results. (author)

  4. 2001 Gordon Research Conference on Photoions, Photoionization and Photodetachment. Final progress report [agenda and attendees list

    International Nuclear Information System (INIS)

    Johnson, Mark

    2001-01-01

    The Gordon Research Conference on Photoions, Photoionization and Photodetachment was held at Williams College, Williamstown, Massachusetts, July 8-13, 2001. The 72 conference attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and including US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Time for formal presentations was limited. Sessions included the following topics: Vibrational structure, Time resolved studies: nuclear wavepackets, Valence photoionization, Clusters and networks, Resonance structures and decay mechanisms, Ultrafast photoionization, Threshold photoionization, Molecule fixed properties, and Collisional phenomena

  5. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  6. Direct sampling of chemical weapons in water by photoionization mass spectrometry.

    Science.gov (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D

    2006-05-01

    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  7. Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics.

    Science.gov (United States)

    Lehmann, C Stefan; Ram, N Bhargava; Irimia, Daniel; Janssen, Maurice H M

    2011-01-01

    The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.

  8. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin-layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  9. Photoionization of three isomers of the C9H7 radical.

    Science.gov (United States)

    Hemberger, Patrick; Steinbauer, Michael; Schneider, Michael; Fischer, Ingo; Johnson, Melanie; Bodi, Andras; Gerber, Thomas

    2010-04-15

    Three resonance-stabilized radicals, 1-indenyl (Ind), 1-phenylpropargyl (1PPR), and 3-phenylpropargyl (3PPR), all isomers of the composition C(9)H(7), were generated by jet flash pyrolysis. Their photoionization was examined by VUV synchrotron radiation. The mass spectra show a clean and efficient radical generation when the pyrolysis is turned on. To study the photoionization, photoion yield measurements and threshold photoionization spectroscopy techniques were applied. We determined adiabatic ionization energies (IE(ad)) of 7.53 eV for Ind, 7.20 eV for 3PPR, and 7.4 eV for 1PPR. Ab initio calculations show no major change in geometry upon ionization, in agreement with ionization from a nonbonding molecular orbital. The IEs were also computed and are in agreement with the measured ones. The difference in the IE might allow a distinction of the three isomers in flames. In the indenyl spectrum, an excited a(+) (3)B(2) state of the cation was identified at 8.10 eV, which shows a low-energy vibrational progression of 61 meV. Furthermore, we have examined the dissociative photoionization of the precursors. The indenyl precursor, 1-indenyl bromide, undergoes dissociative photoionization to Ind(+). An appearance energy (AE(0K)) of 10.2 eV was obtained from fitting the experimental breakdown diagram. A binding energy of 1.8 eV can thus be determined for the C-Br bond in 1-indenyl bromide. The phenylpropargyl precursors 1PPBr (1-phenylpropargyl bromide/3-phenyl-3-bromopropyne) and 3PPBr (3-phenylpropargyl bromide/1-phenyl-3-bromopropyne) also lose a bromine atom upon dissociative photoionization. Approximate appearance energies of 9.8 eV for 3PPBr and 9.3 eV for 1PPBr have been determined.

  10. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  11. Characterization of Hydrophobic Peptides in the Presence of Detergent by Photoionization Mass Spectrometry

    Science.gov (United States)

    Bagag, Aïcha; Jault, Jean-Michel; Sidahmed-Adrar, Nazha; Réfrégiers, Matthieu; Giuliani, Alexandre; Le Naour, François

    2013-01-01

    The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI) for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI). Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM) was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI–MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent. PMID:24236085

  12. Characterization of hydrophobic peptides in the presence of detergent by photoionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Aïcha Bagag

    Full Text Available The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI. Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI-MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent.

  13. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  14. Ionic fragmentation following core-level photoionization of Sn(CH3)4 by soft X-rays

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi; Shigemasa, Eiji; Sato, Yukinori; Yagishita, Akira; Hayaishi, Tatsuji

    1990-01-01

    Ionic fragmentation following the photoionization of Sn(CH 3 ) 4 (TMT) has been studied in the photon energy range of 60-600 eV using synchrotron radiation and time-of-flight mass spectrometry. Each of the Sn:4d, 4p, 3d and C:1s photoionization leads to a type of ionic fragmentation that is characteristic of each ionized core. The Sn:4d photoionization above 60 eV predominantly produces the doubly-charged TMT which dissociates into two singly-charged ions and some neutral fragments. The ions produced in this pathway are CH 3 + , C 2 H 3 + , C 2 H 5 + , SnCH m + and/or Sn + . The Sn:4p photoionization produces the triply-charged TMT and enhances the production of H + , CHsub(m' + ) (m' = 0-3) and Sn + significantly. The Sn:3d photoionization produces multiply-charged TMT whose charges are 3-5 and enhances the production of H + , CHsub(m' + ) (m' = 0-2) and Sn + significantly. The C:1s photoionization produces doubly-charged TMT via the KVV Auger transition and enhances the production of CH 3 + , C 2 H 3 + , SnCH m + and/or Sn + . (orig.)

  15. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  16. Stability and dissociation dynamics of N{sub 2}{sup ++} ions following core ionization studied by an Auger-electron–photoion coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Iwayama, H.; Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan); SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan); Kaneyasu, T. [SAGA Light Source, Tosu 841-0005 (Japan); Hikosaka, Y. [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2016-07-21

    An Auger-electron–photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N{sub 2}{sup ++} ions and dissociative states leading to N{sub 2}{sup ++} → N{sup +} + N{sup +} and N{sup ++} + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states.

  17. Many body perturbation calculations of photoionization

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1979-01-01

    The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)

  18. 2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Muller-Dethefs

    2009-03-31

    This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.

  19. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  20. Measurements of excited-state-to-excited-state transition probabilities and photoionization cross-sections using laser-induced fluorescence and photoionization signals

    International Nuclear Information System (INIS)

    Shah, M.L.; Sahoo, A.C.; Pulhani, A.K.; Gupta, G.P.; Dikshit, B.; Bhatia, M.S.; Suri, B.M.

    2014-01-01

    Laser-induced photoionization and fluorescence signals were simultaneously observed in atomic samarium using Nd:YAG-pumped dye lasers. Two-color, three-photon photoionization and two-color fluorescence signals were recorded simultaneously as a function of the second-step laser power for two photoionization pathways. The density matrix formalism has been employed to analyze these signals. Two-color laser-induced fluorescence signal depends on the laser powers used for the first and second-step transitions as well as the first and second-step transition probability whereas two-color, three-photon photoionization signal depends on the third-step transition cross-section at the second-step laser wavelength along with the laser powers and transition probability for the first and second-step transitions. Two-color laser-induced fluorescence was used to measure the second-step transition probability. The second-step transition probability obtained was used to infer the photoionization cross-section. Thus, the methodology combining two-color, three-photon photoionization and two-color fluorescence signals in a single experiment has been established for the first time to measure the second-step transition probability as well as the photoionization cross-section. - Highlights: • Laser-induced photoionization and fluorescence signals have been simultaneously observed. • The density matrix formalism has been employed to analyze these signals. • Two-color laser-induced fluorescence was used to measure the second-step transition probability. • The second-step transition probability obtained was used to infer the photoionization cross-section. • Transition probability and photoionization cross-section have been measured in a single experiment

  1. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  2. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Garcí a, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  3. X-ray emission lines from photoionized plasmas

    International Nuclear Information System (INIS)

    Liedahl, D.A.

    1992-11-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae, which are likely to exist in the circumsource environments of compact X-ray sources. X-ray line production in a photoionized plasma is primarily the result of radiative cascades following recombination. Through the development of atomic models of several highly-charged ions, this work extends the range of applicability of discrete spectral models to plasmas dominated by recombination. Assuming that ambient plasma conditions lie in the temperature range 10 5 --10 6 K and the density range 10 11 --10 16 cm -3 , X-ray line spectra are calculated over the wavelength range 5--45 angstrom using the HULLAC atomic physics package. Most of the work focuses on the Fe L-shell ions. Line ratios of the form (3s-2p)/(3d-2p) are shown to characterize the principal mode of line excitation, thereby providing a simple signature of photoionization. At electron densities exceeding 10 12 cm -3 , metastable state populations in the ground configurations approach their LTE value, resulting in the enrichment of the Fe L-shell recombination spectrum and a set of density-sensitive X-ray line ratios. Radiative recombination continua and emission lines produced selectively by Δn = 0 dielectronic recombination are shown to provide two classes of temperature diagnostics. Because of the extreme overionization, the recombination continua are expected to be narrow (ΔE/E much-lt 1), with ΔE = kT. Dielectronic recombination selectively drives radiative transitions that originate on states with vacancies in the 2s subshell, states that are inaccessible under pure RR population kinetics

  4. Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu

    2017-11-01

    With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  6. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  7. Feasibility of gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Franssila, Sami; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2010-12-24

    Mass spectrometers equipped with atmospheric pressure ion sources (API-MS) have been designed to be interfaced with liquid chromatographs (LC) and have rarely been connected to gas chromatographs (GC). Recently, we introduced a heated nebulizer microchip and showed its potential to interface liquid microseparation techniques and GC with API-MS. This study demonstrates the feasibility of GC-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) in the analysis of underivatized anabolic steroids in urine. The APPI microchip provides high ionization efficiency and produces abundant protonated molecules or molecular ions with minimal fragmentation. The feasibility of GC-μAPPI-MS/MS in the analysis of six selected anabolic steroids in urine samples was studied with respect to intra-batch repeatability, linearity, linear range, and limit of detection (LOD). The method showed good sensitivity (LODs 0.2-1 ng/mL), repeatability (relative standard deviationanabolic steroids. Quantitative performance of the method was tested with two authentic urine samples, and the results were in good agreement with those obtained with conventional GC-electron ionization-MS after derivatization. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Photoionization of the Buckminsterfullerene Cation.

    Science.gov (United States)

    Douix, Suzie; Duflot, Denis; Cubaynes, Denis; Bizau, Jean-Marc; Giuliani, Alexandre

    2017-01-05

    Photoionization of a buckminsterfullerene ion is investigated using an ion trap and a merged beam setup coupled to synchrotron radiation beamlines and compared to theoretical calculations. Absolute measurements derived from the ion trap experiment allow discrepancies concerning the photoionization cross section of C 60 + to be solved.

  9. Rotational distributions of molecular photoions following resonant excitation

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Chan, J.C.K.; White, M.G.

    1986-01-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N + 2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N + 2 (B 2 Σ + /sub u/) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron--ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed

  10. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    Science.gov (United States)

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-07

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H.

  11. Heterogeneous reaction of particulate chlorpyrifos with NO3 radicals: Products, pathways, and kinetics

    Science.gov (United States)

    Li, Nana; Zhang, Peng; Yang, Bo; Shu, Jinian; Wang, Youfeng; Sun, Wanqi

    2014-08-01

    Chlorpyrifos is a typical chlorinated organophosphorus pesticide. The heterogeneous reaction of chlorpyrifos particles with NO3 radicals was investigated using a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) and a real-time atmospheric gas analysis mass spectrometer. Chlorpyrifos oxon, 3,5,6-trichloro-2-pyridinol, O,O-diethyl O-hydrogen phosphorothioate, O,O-diethyl ester thiophosphoric acid, diethyl hydrogen phosphate and a phosphinyl disulfide compound were identified as the main degradation products. The heterogeneous reaction pathways were proposed and their kinetic processes were investigated via a mixed-phase relative rate method. The observed effective rate constant is 3.4 ± 0.2 × 10-12 cm3 molecule-1 s-1.

  12. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.

    2015-03-30

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  13. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.; Lucassen, A.; Hansen, N.; Sarathy, Mani

    2015-01-01

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  14. Laboratory studies of photoionized plasma related to astrophysics

    International Nuclear Information System (INIS)

    Yang Peiqiang; Wang Feilu; Zhao Gang

    2011-01-01

    Photoionized plasma is universal in astronomy and has great importance on account of its close relation to compact astrophysical objects such as black holes. Recently, with the development of high energy density lasers and Z-pinch facilities, it has become possible to simulate astronomical photoionized plasma in the laboratory. These experiments help us to benchmark and modify the photoionization models, and to understand the photoionization processes to diagnose related astronomical plasma environments. (authors)

  15. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  16. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  17. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.

    Science.gov (United States)

    Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi

    2017-01-01

    Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.

  18. Schwinger variational principle applied to molecular photoionization

    International Nuclear Information System (INIS)

    Smith, M.E.

    1985-01-01

    A method based upon the Schwinger variational principle was developed to study molecular photoionization and electron-molecule scattering. Exact static-exchange solutions to the equations for the continuum orbitals are obtained within the Hartree-Fock approximation; and from these cross sections and angular distributions are derived for both of the above processes. This method was applied to photoionization of the valence levels of three different systems. The first application of this method is a study of the photoionization of the valence levels of NO. Next, vibrationally resolved branching ratios and vibrational state-specific asymmetry parameters for photoionization of the 5sigma level of CO are presented. Finally, a study of the photoionization of the 5sigma level of CO absorbed on a nickel surface is reported. Approximating this system by the linear triatomic molecule NiCO leads to cross sections and angular distributions which are in good agreement with experimental data

  19. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.

    Science.gov (United States)

    Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul

    2017-08-25

    Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.

  20. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  1. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.; Sioud, Salim

    2012-01-01

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  2. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    Science.gov (United States)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically

  3. The role of photoionization in negative corona discharge

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2016-09-01

    Full Text Available The effect of photoionization on the negative corona discharge was simulated based on the needle to plane air gaps. The Trichel pulse, pulse train, electron density and the distribution of electric field will be discussed in this manuscript. Effect of photoionization on the magnitude and interval of the first pulse will be discussed for different applied voltages. It is demonstrated that the peak of the first pulse current could be weakened by photoionization and a critical voltage of the first pulse interval influenced by photoionization was given.

  4. Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications.

    Science.gov (United States)

    Eschner, Markus S; Zimmermann, Ralf

    2011-07-01

    This work describes a fast and reliable method for determination of photoionization cross-sections (PICS) by means of gas chromatography (GC) coupled to single-photon ionization mass spectrometry (SPI-MS). Photoionization efficiency (PIE) data for 69 substances was obtained at a photon energy of 9.8 ± 0.4 eV using an innovative electron-beam-pumped rare gas excimer light source (EBEL) filled with argon. The investigated analytes comprise 12 alkylbenzenes as well as 11 other substituted benzenes, 23 n-alkanes, ten polyaromatic hydrocarbons, seven aromatic heterocycles, and six polyaromatic heterocycles. Absolute PICS for each substance at 9.8 eV are calculated from the relative photoionization efficiencies of the compounds with respect to benzene, whose photoionization cross-section data is well known. Furthermore, a direct correlation between the type of benzene substituents and their absolute PICS is presented and discussed in depth. Finally, comparison of previously measured photoionization cross-sections for 20 substances shows good agreement with the data of the present work.

  5. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Ha, Ji-Hyoung; Kim, Sunghwan

    2017-08-01

    Herein we report the observation of atmospheric pressure in-source hydrogen-deuterium exchange (HDX) of thiol group for the first time. The HDX for thiol group was optimized for positive atmospheric pressure photoionization (APPI) mass spectrometry (MS). The optimized HDX-MS was applied for 31 model compounds (thiols, thiophenes, and sulfides) to demonstrate that exchanged peaks were observed only for thiols. The optimized method has been successfully applied to the isolated fractions of sulfur-rich oil samples. The exchange of one and two thiol hydrogens with deuterium was observed in the thiol fraction; no HDX was observed in the other fractions. Thus, the results presented in this study demonstrate that the HDX-MS method using APPI ionization source can be effective for speciation of sulfur compounds. This method has the potential to be used to access corrosion problems caused by thiol-containing compounds. Graphical Abstract ᅟ.

  6. Dissociative Photoionization of Diethyl Ether.

    Science.gov (United States)

    Voronova, Krisztina; Mozaffari Easter, Chrissa M; Covert, Kyle J; Bodi, Andras; Hemberger, Patrick; Sztáray, Bálint

    2015-10-29

    The dissociative photoionization of internal energy selected diethyl ether ions was investigated by imaging photoelectron photoion coincidence spectroscopy. In a large, 5 eV energy range Et2O(+) cations decay by two parallel and three sequential dissociative photoionization channels, which can be modeled well using statistical theory. The 0 K appearance energies of the CH3CHOCH2CH3(+) (H-loss, m/z = 73) and CH3CH2O═CH2(+) (methyl-loss, m/z = 59) fragment ions were determined to be 10.419 ± 0.015 and 10.484 ± 0.008 eV, respectively. The reemergence of the hydrogen-loss ion above 11 eV is attributed to transition-state (TS) switching, in which the second, outer TS is rate-determining at high internal energies. At 11.81 ± 0.05 eV, a secondary fragment of the CH3CHOCH2CH3(+) (m/z = 73) ion, protonated acetaldehyde, CH3CH═OH(+) (m/z = 45) appears. On the basis of the known thermochemical onset of this fragment, a reverse barrier of 325 meV was found. Two more sequential dissociation reactions were examined, namely, ethylene and formaldehyde losses from the methyl-loss daughter ion. The 0 K appearance energies of 11.85 ± 0.07 and 12.20 ± 0.08 eV, respectively, indicate no reverse barrier in these processes. The statistical model of the dissociative photoionization can also be used to predict the fractional ion abundances in threshold photoionization at large temperatures, which could be of use in, for example, combustion diagnostics.

  7. Theoretical treatment of molecular photoionization based on the R-matrix method

    International Nuclear Information System (INIS)

    Tashiro, Motomichi

    2012-01-01

    The R-matrix method was implemented to treat molecular photoionization problem based on the UK R-matrix codes. This method was formulated to treat photoionization process long before, however, its application has been mostly limited to photoionization of atoms. Application of the method to valence photoionization as well as inner-shell photoionization process will be presented.

  8. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  9. An alternative approach to condensed-phase photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Department of Physics, Yantai Normal University, Yantai 264025 (China)]. E-mail: hsiaoguangma@163.com

    2006-01-02

    Starting from Maxwell's equations for the electromagnetic field in a linear Kramers-Kronig dielectric, a general expression for photoionization cross sections of atoms or molecules embedded in a medium and a dielectric influence function (DIF) are derived in this Letter firstly. It is also suggested that a density turning point (DTP) of a photoionization process may be viewed as the critical density N{sub c}({omega}) where the photoionization properties may have notable and different variations with density.

  10. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Sun Weiguo; Cheng Yansong

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  11. ELEMENT MASSES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M. [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  12. Molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1982-01-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed

  13. PHOTOIONIZATION IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Lepri, S. T., E-mail: elandi@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  14. Theory of attosecond delays in molecular photoionization.

    Science.gov (United States)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-28

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  15. Multiple photoionization from 3p excitation of Kr and 4p excitation of Xe

    International Nuclear Information System (INIS)

    Hayaishi, T.

    1986-01-01

    The photoionization cross sections for multiply charged ions produced by 3p excitation of Kr and 4p excitation of Xe have been obtained by means of a time-of-flight mass spectrometer and synchrotron radiation. It is found that the main formation of doubly to quadruply charged ions in both Kr and Xe is caused from the each initial p-hole state through a Coster-Kronig transition followed by Auger of double Auger processes. The formation of singly charged ions in these excitation energy regions is caused by direct photoionization from outermost shell electrons in both Kr and Xe. Triply charged ions are prominently produced among the multiply charged ions. The quadruple photoionization cross sections show clearly the structures due to the Rydberg series, 3p -1 nl of Kr and 4p -1 nl of Xe. Their main structures were assigned to the 3p -1 nd series in Kr and the 4p -1 nd series in Xe. (orig.)

  16. Two-step photoionization of hydrogen atoms in interplanetary space

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1990-01-01

    Photoionization is one of the key processes which determine the properties of fluxes of neutral atoms in interplanetary space. A new two-step channel (called indirect) of photoionization of hydrogen atoms is proposed. Hydrogen atoms are at first excited to states with principal quantum number n > 2, then decay to metastable H(2S) states, where they can be photoionized. Competing processes due to the interaction with solar wind plasma and solar radiation are considered and the photoionization rate through the proposed indirect channel is calculated. This rate depends on distance from the Sun as ∝ 1/R 4 at large distances (R > 1-2 a.u.) and as ∝ 1/R 2 at close approaches, where it is higher than the rate of direct photoionization. (author)

  17. Spectroscopy of X-ray Photoionized Plasmas in the Laboratory

    Science.gov (United States)

    Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.

    2018-06-01

    The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.

  18. Liquid chromatography/mass spectrometric determination of patulin in apple juice using atmospheric pressure photoionization.

    Science.gov (United States)

    Takino, Masahiko; Daishima, Shigeki; Nakahara, Taketoshi

    2003-01-01

    This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) technique for the liquid chromatography/mass spectrometric (LC/MS) determination of patulin in clear apple juice. A column switching technique for on-line extraction of clear apple juice was developed. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for both APCI and APPI. The results indicated that APPI provides lower chemical noise and signal suppression in comparison with APCI. The linear range for patulin in apple juice (correlation coefficient >0.999) was 0.2-100 ng mL(-1). Mean recoveries of patulin in three apple juices ranged from 94.5 to 103.2%, and the limit of detection (S/N = 3), repeatability and reproducibility were 1.03-1.50 ng mL(-1), 3.9-5.1% and 7.3-8.2%, respectively. The total analysis time was 10.0 min. Copyright 2003 John Wiley & Sons, Ltd.

  19. The use of isoprene as a novel dopant in negative ion atmospheric pressure photoionization mass spectrometry coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Dousty, Faezeh; O'Brien, Rob

    2015-06-15

    As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Application of the R-matrix method to photoionization of molecules.

    Science.gov (United States)

    Tashiro, Motomichi

    2010-04-07

    The R-matrix method has been used for theoretical calculation of electron collision with atoms and molecules for long years. The method was also formulated to treat photoionization process, however, its application has been mostly limited to photoionization of atoms. In this work, we implement the R-matrix method to treat molecular photoionization problem based on the UK R-matrix codes. This method can be used for diatomic as well as polyatomic molecules, with multiconfigurational description for electronic states of both target neutral molecule and product molecular ion. Test calculations were performed for valence electron photoionization of nitrogen (N(2)) as well as nitric oxide (NO) molecules. Calculated photoionization cross sections and asymmetry parameters agree reasonably well with the available experimental results, suggesting usefulness of the method for molecular photoionization.

  1. Double Photoionization Near Threshold

    Science.gov (United States)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  2. Inner-shell photoionization in weak and strong radiation fields

    International Nuclear Information System (INIS)

    Southworth, S.H.; Dunford, R.W.; Ederer, D.L.; Kanter, E.P.; Kraessig, B.; Young, L.

    2004-01-01

    The X-ray beams presently produced at synchrotron-radiation facilities interact weakly with matter, and the observation of double photoionization is due to electron-electron interactions. The intensities of future X-ray free-electron lasers are expected to produce double photoionization by absorption of two photons. The example of double K-shell photoionization of neon is discussed in the one- and two-photon cases. We also describe an experiment in which X rays photoionize the K shell of krypton in the presence of a strong AC field imposed by an optical laser

  3. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  4. MASS TRANSFER KINETICS AND EFFECTIVE DIFFUSIVITIES DURING COCOA ROASTING

    Directory of Open Access Journals (Sweden)

    Y. M. BAGHDADI

    2017-01-01

    Full Text Available The current studies investigated the effects of temperature and moisture addition on the mass transfer kinetics of cocoa nibs during roasting. Experiments were carried out by roasting 500 gm of cocoa nibs inside an air ventilated oven at three temperature levels (120°C, 140°C and 160°C under medium air flowrate for one hour. Two types of samples were prepared namely the raw and soaked nib samples. The soaked nib samples were prepared by soaking the raw nibs in 200 ml of water at room temperature for 5 and 10 hours. Mathematical modelling was carried out to model the mass transfer process using semi-empirical models. Modelling showed that both Page and two-term models were able to give close fitting between the experimental and predicted values. Effective diffusivity values were estimated in the order of magnitude of 10-5 m2/s for the mass transfer process. Results obtained from these studies fill the current knowledge gap on the mass transfer kinetics of cocoa roasting.

  5. Inner-shell photoionization of group-IIB atoms

    International Nuclear Information System (INIS)

    Kutzner, M.; Tidwell, C.; Vance, S.E.; Radojevic, V.

    1994-01-01

    Total and partial photoionization cross sections, branching ratios, and angular-distribution asymmetry parameters for inner subshells (nl,l≥2) of the group-IIB elements zinc, cadmium, and mercury have been calculated in both the relativistic random-phase approximation and the relativistic random-phase approximation modified to include relaxation. Comparisons are made between the results of the two theoretical methods and with experiment where available. The present theoretical results for the 3d inner-shell photoionization of zinc are not in accord with experiment. We confirm previous work [S. L. Carter and H. P. Kelly, J. Phys. B 11, 2467 (1978)] which demonstrated that relaxation is an important effect in photoionization of the 4d subshell of atomic cadmium. It is also found that the inclusion of relaxation effects resolves a discrepancy between theory and experiment for the 4f inner-shell photoionization of atomic mercury

  6. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  7. Photoionization by a bichromatic field: Adiabatic theory

    International Nuclear Information System (INIS)

    Pazdzersky, V.A.; Yurovsky, V.A.

    1995-01-01

    Atom photoionization by the superposition of a fundamental field and its second harmonic is considered. The finite analytical expressions for the photoionization probability are obtained using the adiabatic approximation. They demonstrate that the photoelectron angular distribution has a polar symmetry when the electrical field strength has a maximal polar asymmetry and the distribution is asymmetrical when the field is symmetrical. A strict proof of the polar symmetry of the photoionization probability in the case of the electrical field with maximal asymmetry is deduced using the Keldysh-Faisal-Reiss theories. The obtained results are in agreement with the experimental data available

  8. Nonthermal and screening effects on photoionizations in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Shin, Dong-Soo; Jung, Young-Dae

    2009-01-01

    The nonthermal and plasma screening effects on the x-ray photoionization process are investigated in astrophysical Lorentzian plasmas. The screened atomic wave function and energy eigenvalue of the target ion in Lorentzian plasmas are obtained by the Rayleigh-Ritz variational method. The x-ray retardation and screened Coulomb corrections are considered to obtain a photoionization cross section as a function of the spectral index and plasma parameters. It is shown that the nonthermal character of the Lorentzian plasma suppresses the photoionization cross section. Hence, the photoionization cross sections in nonthermal plasmas are found to be always smaller than those in thermal plasmas. It is also shown that the plasma screening effect is more significant for small spectral indices. In addition, the nonthermal effect on the photoionization cross section is found to be decreased with an increase in the Debye length.

  9. Attosecond Delays in Molecular Photoionization.

    Science.gov (United States)

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  10. Modelling injection rates of PUIs from photoionization using kinetic simulations of interstellar neutrals traversing the heliosphere

    Science.gov (United States)

    Keilbach, D.; Drews, C.; Taut, A.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Recent studies of the inflow direction of the local insterstellar medium from PUI density distributions have shown that the extrema of the longitudinal distribution of PUI velocities (with respect to the solar wind speed) can be attributed to the radial velocity of the interstellar neutral seed population and is symmetric around the inflow direction of the local interstellar medium. This work is aimed to model pickup ion injection rates from photoionization (which is the main process of interstellar PUI production) throughout the heliosphere. To that end a seed population of interstellar neutrals is injected into a model heliosphere at 60 AU distance from the sun, whereas each particle's initial speed is given by a maxwellian distribution at a temperature of 1 eV and an inflow speed of 22 km/s. Then the density of the interstellar neutrals is integrated over the model heliosphere, while the movement of the neutrals is simulated using timestep methods. To model the focusing of the interstellar neutral trajectories from the sun's gravitational potential the model heliosphere contains a central gravitational potential.Each neutral test particle can be ionized via photoionization with a per-timestep probability antiproportional to the neutral's distance to the sun squared. By tracking the ionization rate location-dependently, PUI injection rates have been determined. Therefore using these simulations the density distributions of different species of interstellar neutrals have been calculated. In addition location-dependent injection rates of different species of PUIs have been calculated, which show an increased rate of PUI production in the focusing cone region (e.g. for He+ PUIs), but also in the crescent region (e.g. for O+ PUIs).Furthermore the longitudinal distribution of the neutrals' velocity at 1 AU is calculated from the simulation's results in order to estimate the PUI cut-off as a function of ecliptic longitude. Figure: Simulated He neutral density (left

  11. Relativistic Photoionization Computations with the Time Dependent Dirac Equation

    Science.gov (United States)

    2016-10-12

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6795--16-9698 Relativistic Photoionization Computations with the Time Dependent Dirac... Photoionization Computations with the Time Dependent Dirac Equation Daniel F. Gordon and Bahman Hafizi Naval Research Laboratory 4555 Overlook Avenue, SW...Unclassified Unlimited Unclassified Unlimited 22 Daniel Gordon (202) 767-5036 Tunneling Photoionization Ionization of inner shell electrons by laser

  12. Double photoionization of propylene oxide: A coincidence study of the ejection of a pair of valence-shell electrons

    Science.gov (United States)

    Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando

    2018-03-01

    Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.

  13. Photoionization modeling of Magellanic Cloud planetary nebulae. I

    Science.gov (United States)

    Dopita, M. A.; Meatheringham, S. J.

    1991-01-01

    The results of self-consistent photoionization modeling of 38 Magellanic Cloud PNe are presented and used to construct an H-R diagram for the central stars and to obtain both the nebular chemical abundances and the physical parameters of the nebulae. T(eff)s derived from nebular excitation analysis are in agreement with temperatures derived by the classical Zanstra method. There is a linear correlation between log T(eff) and the excitation class. The majority of the central stars in the sample with optically thick nebulae have masses between 0.55 and 0.7 solar mass and are observed during their hydrogen-burning excursion toward high temperatures. Optically thin objects are found scattered throughout the H-R diagram, but tend to have a somewhat smaller mean mass. Type I PN are found to have high core masses and to lie on the descending branch of the evolutionary tracks. The nebular mass of the optically thick objects is closely related to the nebular radius, and PN with nebular masses over one solar are observed.

  14. Charge state distribution of ionic kryptons after photoionization

    International Nuclear Information System (INIS)

    Cai Xiaohong

    1992-01-01

    Monochromatic X-rays from the 2.3 GeV synchrotron at University Bonn (Germany) are employed for inner shell excitation of krypton. Various ionic kryptons and a number of electrons are produced due to photoionization. In order to study the equilibrium charge state distribution of ionic kryptons, a time of flight mass spectrometer is set up and used to measure the resulting ionic charge spectra with photo energies near the L 1 - , L 2 - and L 3 - absorption edges of krypton. The energy dependence of relative probabilities is presented

  15. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    Directory of Open Access Journals (Sweden)

    Xianfeng Zheng

    2014-10-01

    Full Text Available We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  16. Attosecond interference control of XUV photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: lupeixiang@mail.hust.edu.cn

    2008-04-28

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution.

  17. Attosecond interference control of XUV photoionization

    International Nuclear Information System (INIS)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin

    2008-01-01

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution

  18. Photoionization and cold collision studies using trapped atoms

    International Nuclear Information System (INIS)

    Gould, P.L.

    1996-01-01

    The authors have used laser cooling and trapping techniques to investigate photoionization and cold collisions. With laser-trapped Rb, they have measured the photoionization cross section from the first excited (5P) level by observing the photoionization-induced loss rate of neutral atoms from the trap. This technique has the advantage that it directly measures the photoionization rate per atom. Knowing the ionizing laser intensity and the excited-state fraction, the measured loss rate gives the absolute cross section. Using this technique, the Rb 5P photoionization cross section at ∼400 nm has been determined with an uncertainty of 9%. The authors are currently attempting to extend this method to the 5D level. Using time-ordered pulses of diode-laser light (similar to the STIRAP technique), they have performed very efficient two-photon excitation of trapped Rb atoms to 5D. Finally, they will present results from a recent collaboration which combines measurements form conventional molecular spectroscopy (single photon and double resonance) with photoassociation collisions of ultracold Na atoms to yield a precise (≤1 ppm) value for the dissociation energy of the X Σ g+ ground state of the Na 2 molecule

  19. EMISSION SPECTRUM OF HELIUM-LIKE IONS IN PHOTOIONIZED PLASMAS

    International Nuclear Information System (INIS)

    Wang, Feilu; Salzmann, David; Zhao, Gang; Takabe, Hideaki

    2012-01-01

    The aim of the present paper is to investigate the influence of inner-shell photoionization and photoexcitation on He α and its satellite's spectra in photoionized plasmas. An analysis is carried out on the relative importance of the various atomic processes in photoionized plasmas as a function of the electron temperature and irradiation conditions. In particular, we investigate the influence of K-shell photoionization of Li-like ions on the He α spectrum and of Be-like ions on the He α satellites. It is found that in photoionized plasmas these inner-shell processes contribute significantly under low radiation temperature and/or intensity, when Li- and Be-like ions are highly abundant but highly ionized H-like ions are rare. A short discussion is presented about the parameter space in which the excited 1s2p state has statistical or non-statistical distributions, and how such distributions affect the emission spectrum.

  20. Photoionization of Li and Na in Debye plasma environments

    International Nuclear Information System (INIS)

    Sahoo, Satyabrata; Ho, Y.K.

    2006-01-01

    A calculation of the photoionization cross sections is presented for alkali-metal atoms such as Li and Na in plasma environments. The computational scheme is based on the complex coordinate rotation method. A model potential formalism has been used to simplify the computational complexity of the problems of making quantitative predictions of properties and interactions of many electron systems in Debye plasmas. The plasma environment is found to appreciably influence the photoionization cross sections. In this regard the photoionization cross sections of isolated atoms are also discussed that is found to be in good agreement with the previous theoretical results. It is observed that the strong plasma screening effect remarkably alters the photoionization cross sections near the ionization threshold. The Cooper minimum in the photoionization cross sections of Na shifts toward the higher energy as the plasma screening effect increases. For Li, the Cooper minimum is uncovered in strong plasma environments. This is the first time such structures have been determined

  1. Theoretical Studies on Expressions of Condensed-Phase Photoionization Cross Section

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Wang Meishan; Wang Dehua; Qu Zhaojun

    2006-01-01

    A set of general expressions for photoionization cross sections of atoms or molecules embedded in a medium and a dielectric influence function are derived based on Maxwell's equations and the Beer-Lambert's law in this work. The applications are performed for the photoionization process of solid gold both in the Clausius-Mossotti (virtual cavity) model and the Glauber-Lewenstein (real cavity) model firstly. The results show that the present theoretical expressions of photoionization cross section can be used to describe the photoionization process of atoms in condensed matter properly.

  2. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Fendt, Alois; Geissler, Robert; Streibel, Thorsten

    2013-01-01

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  3. Low-Temperature Synchrotron Photoionization Study of 2-Methyl-3-buten-2-ol (MBO) Oxidation Initiated by O(3P) Atoms in the 298-650 K Range.

    Science.gov (United States)

    Fathi, Yasmin; Price, Chelsea; Meloni, Giovanni

    2017-04-20

    This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O( 3 P) atoms. The oxidation was investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identity. Using electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined and presented in this paper to further validate the primary chemistry occurring. Branching fractions of primary products at all three temperatures were also provided. At room temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone (53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene (2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses corresponds to the 550 K data. At the highest temperature, a small amount of propyne (1.0%) was also observed.

  4. K-shell photoionizations in classical nonideal plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae

    2001-01-01

    Collective and plasma screening effects on photoionization cross sections from the 1s state of hydrogenic ions in classical nonideal plasmas are investigated. An effective pseudopotential model taking into account the collective and plasma screening effects is applied to describe the interaction potential in nonideal plasmas. The screened atomic wave function and energy eigenvalue for the ground state of the hydrogenic ion in classical nonideal plasmas are obtained by the Ritz variational method. The photoionization cross section is obtained by the acceleration form of the transition matrix element in order to investigate the collective and plasma screening effects on the interaction potential. The retardation and Coulomb correction effects are also considered in nonideal plasmas. The total correlation effect is obtained as a function of the nonideality plasma parameter, Debye length, and incident photon energy. The result shows that the collective effect significantly reduces the photoionization cross section. It is also found that the collective effect on the photoionization cross section is increased with increasing the incident photon energy

  5. Photoionization-photoelectron research

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.; Ruscic, B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  6. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  7. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  8. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Inner-shell near-threshold photoionization of A-C60 endohedral atoms

    International Nuclear Information System (INIS)

    Baltenkov, Arkadiy S.; Dolmatov, Valery K.; Manson, Steven T.

    2002-01-01

    Photoelectron angular distributions and total photoionization cross sections of near-threshold 1s photoionization of Li from the oriented-in-space endohedral Li-C 60 fullerene are investigated within the framework of our recently developed photoionization theory of multicenter formations. Both at-the-center and off-the-center endohedral Li are considered, and off-the-center effects are shown to be of extreme importance, in contrast to the conventional wisdom. Multiple-scattering effects on the outgoing photoelectron are included and found to influence the photoionization spectra strongly, e.g., decreasing the cross section by more than an order of magnitude in certain cases, as compared to the situation when such effects are neglected. Diffraction resonances in the photoionization cross section of the endohedral Li atom are found as a result of the multicenter nature of the C 60 surrounding cage, and these are compared with the results of other empirical and ab initio theories. Since there is nothing particularly special about Li 1s with respect to photoionization, the trends uncovered in this paper should qualitatively apply to near-threshold inner-shell ns photoionization spectra of virtually any endohedral atom A from any A-C 60 endohedral fullerene formation

  10. Photoionization and vacancy decay of endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.

    2007-01-01

    We demonstrate the role played by the fullerenes shell in the photoionization and vacancy decay of endohedral atoms A-C 60 . It is shown, partly in the frame of a rather simple model that describes the fullerene shell, partly using only the assumption on the smallness of the atom A in comparison to the size of C 60 that it affects photoionization and the vacancy decay of A-C 60 profoundly. Namely, it leads to a number of new resonances in photoionization cross-section and other photoionization characteristics as well as strong modifications of the vacancy decay probabilities and to opening of new decay channels. We will discuss the problem of photon propagation through the C 60 shell and conclude that at any considered frequency ω, 0 ≤ ω ≤ 60 eV the C 60 enhances the incoming radiation. This shows non-metallic dielectric behavior of the 240 collectivized electrons in C 60 . We also discuss the effects of C 60 upon the fast electron inelastic scattering. The results obtained are valid qualitatively also for other than C 60 molecules, e.g. for C 70 or C 76

  11. Photoionization and vacancy decay of endohedral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M. Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)], E-mail: amusia@vms.huji.ac.il

    2007-10-15

    We demonstrate the role played by the fullerenes shell in the photoionization and vacancy decay of endohedral atoms A-C{sub 60}. It is shown, partly in the frame of a rather simple model that describes the fullerene shell, partly using only the assumption on the smallness of the atom A in comparison to the size of C{sub 60} that it affects photoionization and the vacancy decay of A-C{sub 60} profoundly. Namely, it leads to a number of new resonances in photoionization cross-section and other photoionization characteristics as well as strong modifications of the vacancy decay probabilities and to opening of new decay channels. We will discuss the problem of photon propagation through the C{sub 60} shell and conclude that at any considered frequency {omega}, 0 {<=} {omega} {<=} 60 eV the C{sub 60} enhances the incoming radiation. This shows non-metallic dielectric behavior of the 240 collectivized electrons in C{sub 60}. We also discuss the effects of C{sub 60} upon the fast electron inelastic scattering. The results obtained are valid qualitatively also for other than C{sub 60} molecules, e.g. for C{sub 70} or C{sub 76}.

  12. Separation of different ion structures in atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS).

    Science.gov (United States)

    Laakia, Jaakko; Adamov, Alexey; Jussila, Matti; Pedersen, Christian S; Sysoev, Alexey A; Kotiaho, Tapio

    2010-09-01

    This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O(2)](+*), which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M](+*). Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M](+*) typically had a higher intensity than the protonated molecule [M + H](+). Interestingly, the latter drifts slower than the radical cation [M](+*), which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  13. Kinetics and mass transfer phenomena in anaerobic granular sludge

    NARCIS (Netherlands)

    Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.

    2001-01-01

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each

  14. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    International Nuclear Information System (INIS)

    Blais, N.; Podgorsak, E.B.

    1992-01-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author)

  15. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  16. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2015-01-01

    The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimer's disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study.

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-07

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  18. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  19. Absolute photoionization cross-section measurements of the Kr I isoelectronic sequence

    International Nuclear Information System (INIS)

    Kilbane, D.; Banahan, C.; Kampen, P. van; Costello, J. T.; Folkmann, F.; Kjeldsen, H.; Bizau, J.-M.; Scully, S.; Mansfield, M. W. D.; West, J. B.

    2007-01-01

    Photoionization spectra have been recorded in the 4s, 4p, and 3d resonance regions for the Kr I isoelectronic sequence using both the dual laser produced plasma (DLP) technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s-np resonances of Rb + and Sr 2+ . Many 4p→ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb + and Sr 2+ ions show preferential decay via double photoionization. This is only the second report to our knowledge where both the DLP technique and the merged-beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e., better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged-beam technique) are highlighted

  20. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    Energy Technology Data Exchange (ETDEWEB)

    Fendt, Alois [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Geissler, Robert [Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); and others

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. Black-Right-Pointing-Pointer Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. Black-Right-Pointing-Pointer Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. Black-Right-Pointing-Pointer The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. Black-Right-Pointing-Pointer The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  1. Photoionization and electron-ion recombination of Cr I

    International Nuclear Information System (INIS)

    Nahar, Sultana N.

    2009-01-01

    Using the unified method, the inverse processes of photoionization and electron-ion recombination are studied in detail for neutral chromium, (CrI+hν↔CrII+e), for the ground and excited states. The unified method based on close-coupling approximation and R-matrix method (i) subsumes both the radiative recombination (RR) and dielectronic recombination (DR) for the total rate and (ii) provides self-consistent sets of photoionization cross sections σ PI and recombination rates α RC . The present results show in total photoionization of the ground and excited states an enhancement in the background at the first excited threshold, 3d 4 4s 5 D state of the core. One prominent phot-excitation-of-core (PEC) resonance due to one dipole allowed transition ( 6 S- 6 P o ) in the core is found in the photoionization cross sections of most of the valence electron excited states. Structures in the total and partial photoionization, for ionization into various excited core states and ground state only, respectively, are demonstrated. Results are presented for the septet and quintet states with n≤10 and l≤9 of Cr I. These states couple to the core ground state 6 S and contribute to the recombination rates. State-specific recombination rates are also presented for these states and their features are illustrated. The total recombination rate shows two DR peaks, one at a relatively low temperature, at 630 K, and the other around 40,000 K. This can explain existence of neutral Cr in interstellar medium. Calculations were carried out in LS coupling using a close-coupling wave function expansion of 40 core states. The results illustrate the features in the radiative processes of Cr I and provide photoionization cross sections and recombination rates with good approximation for this astrophysically important ion.

  2. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    Science.gov (United States)

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  3. Influence of flotation cell volume and solids mass on kinetics of sulfide ore flotation

    Directory of Open Access Journals (Sweden)

    Plawski Michal

    2016-01-01

    Full Text Available The paper presents studies on the influence of flotation cell capacity and mass of solids in the suspension on the flotation kinetics of sulfide copper ore. A sample of copper ore that was collected from the Polkowice Mine of KGHM Polska Miedz S.A. in Poland was used in the experiments. It was determined that neither the volume of flotation cell nor the mass of solids had influence on the type of kinetics equation of flotation. Copper-bearing minerals floated according to the second-order equation, while the remaining components according to the first-order equation. The kinetic rate constants and maximum recovery of the studied components decreased with increasing solids mass in the flotation cell, regardless of the capacity of the cell. The best results were obtained for tests using a 1.0 dm3 cell, while the less favorable kinetics results were observed in the test with the smallest cell of 0.75 dm3 volume. The obtained results can be helpful in choosing the most appropriate methodology of upgrading the sulfide copper ore from Poland in order to obtain the best kinetics results.

  4. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    Science.gov (United States)

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  5. Photoionization of Ne8+

    Science.gov (United States)

    Pindzola, M. S.; Abdel-Naby, Sh. A.; Robicheaux, F.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Ne8+ are calculated using a non-perturbative fully relativistic time-dependent close-coupling method. A Bessel function expansion is used to include both dipole and quadrupole effects in the radiation field interaction and the repulsive interaction between electrons includes both the Coulomb and Gaunt interactions. The fully correlated ground state of Ne8+ is obtained by solving a time-independent inhomogeneous set of close-coupled equations. Propagation of the time-dependent close-coupled equations yields single and double photoionization cross sections for Ne8+ at energies easily accessible at advanced free electron laser facilities. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  6. Dynamics of photoionization of hydrogenlike ions in Debye plasmas

    International Nuclear Information System (INIS)

    Qi, Y. Y.; Wang, J. G.; Janev, R. K.

    2009-01-01

    Photoionization processes for the ground state and n≤3 excited states of hydrogenlike ions embedded in a weakly coupled plasma are investigated in the entire energy range of a nonrelativistic regime. The plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hueckel model. The energy levels and wave functions for both the bound and continuum states are calculated by solving the Schroedinger equation numerically by the symplectic integrator. The screening of Coulomb interactions reduces the number of bound electron states, decreases their binding energies, broadens the radial distribution of electron wave functions of these states, and changes significantly the phases and the amplitudes of continuum wave functions. These changes strongly affect the dipole matrix elements between the bound and continuum states and, hence, the photoionization cross sections. The most significant effects of the screened Coulomb interactions on the energy behavior of photoionization cross sections are manifested in its low-energy behavior (Wigner threshold law), the appearance of multiple shape and virtual-state resonances when the energy levels of upper bound states enter the continuum after certain critical strength of the screening, and in the (slight) reduction of the cross section at high photon energies. All these features of the photoionization cross section are related to the short-range character of the Debye-Hueckel potential. The effects of the potential screening on the Combet-Farnoux and Cooper minima in the photoionization cross section are also investigated. Comparison of calculated photoionization cross sections with the results of other authors, when available, is made.

  7. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    Science.gov (United States)

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  8. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  9. Molecular beam photoionization and gas-surface scattering

    International Nuclear Information System (INIS)

    Ceyer, S.T.

    1979-09-01

    The energetics of the ethylene ion-molecule reactions was investigated in more detail than previously possible in two body collision experiments by photoionization of the neutral van der Waals ethylene dimer. The stability of the (C 2 H 4 ) + C 2 H 4 ion-molecule collision complex has been determined to be 18.2 +- 0.5 kcal. The highest potential barriers along the reaction coordinate for decomposition of this collision complex into C 4 H 7 + + H and C 3 H 5 + + CH 3 have been determined to be 0 +- 1.5 and 8.7 +- 1.5 kcal. In a similar manner, the energetics of the solvated ethylene dimer ion was investigated by the photoionization of the ethylene trimer. The absolute proton affinity of NH 3 (203.6 +- 1.3 kcal/mole) and the proton solvation energies by more than one NH 3 have been determined by molecular beam photoionization. In addition, the NH 3 + -NH 3 interaction energy (0.79 +- 0.05 eV) was measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method of determining the energetics of gas phase proton solvation. The scattering of helium atomic beams from a high Miller index platinum surface that exhibits ordered, periodic steps on the atomic scale to probe the effect of atomic steps on the scattering distribution is explored. Rainbow scattering is observed when the step edges are perpendicular to the incident helium atoms. The design, construction and operation of a beam-surface scattering apparatus are described. The first data obtained in this apparatus are presented and the interesting dynamical aspects of the oxidation of D, D 2 and CO are discussed. 75 references

  10. Diagrammatic Representation of Electronic Correlations in Photoionization Process: Application to Scandium

    International Nuclear Information System (INIS)

    Liu Mengmeng; Ma Xiaoguang

    2011-01-01

    The conversion rules under which an algebraic expression can be obtained from a corresponding photoionization Goldstone diagram have been given systematically in the present work. The electronic correlations in the photoionization processes then could be studied diagrammatically. The application to atomic scandium shows that the present theoretical scheme can give reasonable photoionization cross sections, which agree well with the experimental results. (atomic and molecular physics)

  11. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Science.gov (United States)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-09-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  12. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, S. G. [Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Burshtein, A. I. [Weizmann Institute of Science, 76100, Rehovot (Israel)

    2014-09-21

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  13. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    International Nuclear Information System (INIS)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-01-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics

  14. Photoionization of multiply charged ions at the advanced light source

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Kilcoyne, A.L.D.; Aguilar, A.; Gharaibeh, M.F.; Emmons, E.D.; Scully, S.W.J.; Phaneuf, R.A.; Muller, A.; Schippers, S.; Alvarez, I.; Cisneros, C.; Hinojosa, G.; McLaughlin, B.M.

    2004-01-01

    Photoionization of multiply charged ions is studied using the merged-beams technique at the Advanced Light Source. Absolute photoionization cross sections have been measured for a variety of ions along both isoelectronic and isonuclear sequences

  15. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  16. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  17. Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid

    NARCIS (Netherlands)

    Kok, Jacobus B.W.

    1988-01-01

    By averaging the basic equations on microscale, expressions are derived for the effective added mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to hydrodynamic interaction between the bubbles there appears to be a difference between the effective added mass

  18. Combination of lasers and synchrotron radiation in studies of atomic photoionization

    International Nuclear Information System (INIS)

    Meyer, M.

    2009-01-01

    Recent experiments using the combination of conventional lasers and synchrotron radiation are presented and discussed. The controlled laser-manipulation of atoms prior to ionization by the synchrotron radiation provides an ideal experimental basis for detailed investigations of atomic photoionization. Due to the recent advances in high-resolution electron spectroscopy, it has become possible to analyze the J-resolved fine structure of the final ionic states in the photoionization of laser-excited atoms enabling thereby the determination of the specific influence of the outer electron to the ionization from inner subshells. Especially, the analysis of photoemission satellites and their relative intensities bring out directly the importance of electron correlations. Furthermore, it is shown through some examples of experiments using linearly and circularly polarized radiations, how the study of magnetic dichroisms in the photoionization opens the access to a complete description of the photoionization process, in particular to the determination of partial photoionization cross-sections.

  19. Selectivity, specificity, and sensitivity in the photoionization of sputtered species

    International Nuclear Information System (INIS)

    Gruen, D.M.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Spiegel, D.R.; Clayton, R.N.; Davis, A.M.; Blum, J.D.

    1990-01-01

    To deal with the problem of non- or near-resonant ionization, one needs to achieve the highest selectively for photoionization of the species of interest relative to isobarically overlapping species by choosing a specific photoionization scheme tailoring are that is could not have near-overlap with known atomic or molecular energy levels of isobaric species, and that it should lead to saturation of the resonance transitions at the lowest possible laser power levels so as to minimize two- and three-photon nonresonant photoionization processes. Experience has shown that, even when these two conditions are met as closely as possible, non- or near-resonant ionization can still occur, perhaps because of the existence of hitherto unobserved energy levels, photodissociation of sputtered molecules, or other effects. It is becoming clear that maximizing detection sensitivity for a particular species requires one to pay careful attention to the selection of an optimal photoionization scheme. It is the purpose of the present paper to illustrate this point with several examples and to help point the way to still further improvements in detection sensitivity by non- or near-resonant. ionization through detailed exploration of alternative photoionization schemes

  20. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  1. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  2. Photoionization of Co+ and electron-impact excitation of Co2 + using the Dirac R-matrix method

    Science.gov (United States)

    Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.

    2016-11-01

    Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound-bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.

  3. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  4. Dissociative phototionization cross sections of H2, SO2 and H2O

    International Nuclear Information System (INIS)

    Chung, Y.

    1989-01-01

    The partial photoionization cross sections of H 2 , SO 2 , and H 2 O were calculated from the measured photoionization branching ratios and the known total photoionization cross sections. The branching ratios were measured with a time-of-flight mass spectrometer and synchrotron radiation. The branching ratios Of H 2 , SO 2 , and H 2 O were measured for 100 ∼ 410, 150 ∼ 380 and 120 ∼ 720 angstrom. The author also measured the photoionization yield Of SO 2 from 520 to 665 angstrom using a double ion chamber and a glow discharge light source. The principle of a time-of-flight mass spectrometer is explained. New calculations were made to see how the design of the mass spectrometer, applied voltage, and kinetic energy of the ions affect the overall performance of the mass spectrometer. Several useful techniques that we used at the synchrotron for wavelength calibration and higher order suppression are also discussed

  5. Two-color photoionization and photoelectron studies by combining infrared and vacuum ultraviolet

    International Nuclear Information System (INIS)

    Ng, C.Y.

    2005-01-01

    Recent developments of two-color infrared (IR)-vacuum ultraviolet (VUV) and VUV-IR photoionization and photoelectron detection schemes for spectroscopic studies are described. By preparing molecules in selected rovibrational states by IR excitation prior to VUV-photoionization, state-selected and state-to-state photoionization cross sections can be obtained by IR-VUV-photoionization efficiency (IR-VUV-PIE) and IR-VUV-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) measurements, respectively. Rotationally resolved autoionizing Rydberg states converging to excited ionic states, which cannot be observed by single-photon VUV-PIE measurements, can be examined by the IR-VUV-PIE scheme. By monitoring the photoion and the PFI-PE intensities at a fixed VUV energy as a function of IR frequency, the respective IR photoion and IR absorption spectra of the corresponding neutral molecule can be measured. Two-color VUV-IR photo-induced Rydberg ionization (PIRI) experiment, in which high-n Rydberg states are prepared by VUV-photoexcitation followed by IR-induced autoionization, has also been demonstrated. Since the IR-VUV-PIE, IR-VUV-PFI-PE, and VUV-IR-PIRI methods do not require the existence of a bound intermediate electronic state in the UV and are generally applicable to all molecules, the development of these two-color photoionization and photoelectron schemes is expected to significantly enhance the scope of VUV spectroscopy and chemistry

  6. Effects of time-dependent photoionization on interstellar pickup atoms

    International Nuclear Information System (INIS)

    Isenberg, P.A.; Lee, M.A.

    1995-01-01

    We present an analytical model for the density variations of interstellar pickup ions in the solar wind due to a time-dependent variation in the photoionization rate, our model predicts a pickup ion density enhancement lasting for a time of the order of the duration of the increase plus the solar wind convection time to the observation point. If the photoionization rate returns to its initial value, this enhancement is followed by a decreased pickup ion density resulting from a depleted interstellar neutral particle density. In the absence of further variations in the photoionization rate, the pickup ion density recovers on a time which scales as the radial position of the observation point divided by the inflow speed of the neutral particles. Gradual variations in the photoionization rate result in a pickup ion density which tends to track the ionization rate, though the density variations are smoothed and delayed in time due to the solar wind convection of ions picked up at points closer to the Sun. 27 refs., 4 figs

  7. Photoionization of Rydberg hydrogen atom in a magnetic field

    International Nuclear Information System (INIS)

    Wang, Dehua; Cheng, Shaohao; Chen, Zhaohang

    2015-01-01

    Highlights: • The ionization of Rydberg hydrogen atom in a magnetic field has been studied. • Oscillatory structures appear in the electron probability density distributions. • This study can guide the experimental research on the photoionization microscopy. - Abstract: The ionization of Rydberg hydrogen atom in a magnetic field has been studied on the basis of a semiclassical analysis of photoionization microscopy. The photoionization microscopy interference patterns of the photoelectron probability density distribution on a given detector plane are calculated at different scaled energies. We find that due to the interference effect of different types of electron trajectories arrived at a given point on the detector plane, oscillatory structures appear in the electron probability density distributions. The oscillatory structure of the interference pattern, which contains the spatial component of the electronic wave function, evolves sensitively on the scaled energy, through which we gain a deep understanding on the probability density distribution of the electron wave function. This study provides some reference values for the future experiment research on the photoionization microscopy of the Rydberg atom in the presence of magnetic field

  8. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  9. Variable elimination in chemical reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.

    2012-01-01

    We consider chemical reaction networks taken with mass-action kinetics. The steady states of such a system are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop an algebraic framework and procedure for linear elimination...

  10. The photoionization of the diffuse galactic gas

    Science.gov (United States)

    Mathis, J. S.

    1986-01-01

    In a study of the diffuse ionized gas (DIG) component of the interstellar medium, it is attempted to see if the general properties of dilute gas ionized by O stars are similar to observations and to what extent the observations of the DIG can be used to determine the nature of the ionizing radiation field at great distances above the plane of the Galaxy. It has been suggested by Reynolds (1985) that either shocks or photoionization might be responsible for the DIG. The photoionization model seems required by the observations.

  11. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  12. Photoionization from the 6p 2P3/2 state of neutral cesium

    International Nuclear Information System (INIS)

    Haq, S. U.; Nadeem, Ali

    2010-01-01

    We report the photoionization studies of cesium from the 6p 2 P 3/2 excited state to measure the photoionization cross section at and above the first ionization threshold, oscillator strength of the highly excited transitions, and extension in the Rydberg series. The photoionization cross section at the first ionization threshold is measured as 25 (4) Mb and at excess energies 0.02, 0.04, 0.07, and 0.09 eV as 21, 19, 17, and 16 Mb, respectively. Oscillator strength of the 6p 2 P 3/2 → nd 2 D 5/2 (23 ≤ n ≤ 60) Rydberg transitions has been extracted utilizing the threshold value of photoionization cross section and the recorded nd 2 D 5/2 photoionization spectra.

  13. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 234U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-01-01

    The standard deviation of the final kinetic energy distribution (σ e ) as a function of mass of final fragments (m) from low energy fission of 234 U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution (σ E ) as a function of primary fragment mass (A). The second peak is attributed to a real peak on σ E (A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on σ E (A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on σ e (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the σ E (A) curve, and the observed peaks on σ e (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  14. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  15. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  16. Impact of kinetic mass transfer on free convection in a porous medium

    Science.gov (United States)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  17. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  18. Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...

  19. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  20. The diverse pathology and kinetics of mass, nonmass and focus enhancement on MR imaging of the breast

    Science.gov (United States)

    Jansen, Sanaz A.; Shimauchi, Akiko; Zak, Lindsay; Fan, Xiaobing; Karczmar, Gregory S.; Newstead, Gillian M.

    2011-01-01

    Purpose To compare the pathology and kinetic characteristics of breast lesions with focus, mass and nonmass-like enhancement. Materials and Methods 852 MRI detected breast lesions in 697 patients were selected for an IRB approved review. Patients underwent dynamic contrast enhanced MRI using one pre and three to six post-contrast T1 weighted images. The ‘type’ of enhancement was classified as mass, non-mass or focus, and kinetic curves quantified by the initial enhancement percentage (E1), time to peak enhancement (Tpeak) and signal enhancement ratio (SER). These kinetic parameters were compared between malignant and benign lesions within each morphologic type. Results 552 lesions were classified as mass (396 malignant, 156 benign), 261 as nonmass (212 malignant,49 benign) and 39 as focus (9 malignant,30 benign). The most common pathology of malignant/benign lesions by morphology: for mass, invasive ductal carcinoma/fibroadenoma; for nonmass, ductal carcinoma in situ (DCIS)/fibrocystic change(FCC); for focus, DCIS/FCC. Benign mass lesions exhibited significantly lower E1, longer Tpeak and lower SER compared with malignant mass lesions (p < 0.0001). Benign nonmass lesions exhibited only a lower SER compared to malignant nonmass lesions (p<0.01). Conclusions By considering the diverse pathology and kinetic characteristics of different lesion morphologies, diagnostic accuracy may be improved. PMID:21591007

  1. Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study

    Science.gov (United States)

    Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.

    2018-05-01

    Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.

  2. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  3. Photoionization of excited atoms and ions: recent progress and future prospects

    International Nuclear Information System (INIS)

    Wuilleumier, F.J.

    2004-01-01

    Full text: Photoionization of atoms in the ground state using synchrotron radiation (SR) has contributed extensively to a better knowledge of atomic structure and of its dynamical response to photon interaction. Since the st use in 1963 of an SR facility in the ultraviolet to investigate autoionizing states in helium, each improvement in the performance of available SR beams has allowed to go deeper and deeper into the understanding of isolated atomic systems. The study of very dilute targets such as atoms prepared in selected excited states or multiply-charged ions is more challenging. Using dye lasers, the excited state can be prepared with a well defined set of quantum numbers and SR photoionization of this prepared state can be studied as a function of photon energy and emission-angle. For ions, the equivalent ionic densities achievable in a merged-beam experiment do not exceed, usually, 10 6 cm -3 , i.e. they are lower by 5 orders of magnitude than for atoms in the ground state. This explains why the response of ionized matter to photoionizing radiation has been largely unexplored until recently. Theoretical methods, still to be tested by experimental measurements, have been developed to model stellar atmospheres as well as laboratory plasmas. After the pioneering experiments using plasma discharge technology and laser-produced plasmas to measure photoionization in excited states and ions, the use of SR has allowed to dramatically improve experiments for excited- and ionic-species, starting with the first measurements of electron spectra from photoionization of laser-excited sodium atoms, and with the first determination of doubly-charged ion rate resulting from photoionization of singly-charged ions in merged beam experiments. Over the past 5 years, photoionization of singly- and multiply-charged ions using the merged beam technique has been intensively performed at four SR facilities (ASTRID, Spring-8, the Advanced Light Source (ALS), and Super-ACO), all of

  4. Novel determination of polychlorinated naphthalenes in water by liquid chromatography-mass spectrometry with atmospheric pressure photoionization.

    Science.gov (United States)

    Moukas, Athanasios I; Thomaidis, Nikolaos S; Calokerinos, Antony C

    2016-01-01

    This study presents the development, optimization, and validation of a novel method for the determination of polychlorinated naphthalenes (PCNs) by liquid chromatography-atmospheric pressure photoionization (APPI), using toluene as dopant. The mass spectra of PCN 52, 54, 66, 67, 73, and 75 were recorded in negative ionization. The base ions corresponded to [M-Cl+O](-), where M is the analyte molecule. A strategy, which includes designs of experiments, for the development, the evaluation, and the optimization of the LC-APPI-MS/MS methods is also described. Finally, a highly sensitive method with low instrumental limits of detection (LoDs), ranging from 0.8 pg for PCN 75 to 16 pg for PCN 54 on column, was validated. A Thermo Hypersil Green PAH (100 mm × 2.1 mm, 3 μm) column was used with acetonitrile/water/methanol as mobile phase. The method was applied for the determination of the selected PCNs in surface and tap water samples. A simple liquid-liquid extraction method for the extraction of PCNs from water samples was used. Method LoQs ranged from 29 ng L(-1), for PCN 73, to 63 ng L(-1), for PCN 54, and the recoveries ranged from 97 to 99%, for all congeners. This is the first LC-APPI-MS/MS method for the determination of PCNs in water samples.

  5. Rotationally resolved flurorescence as a probe of molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Kakar, S.; Choi, H.C.

    1993-01-01

    We present rotationally resolved data for N 2 (2σ u -1 ) photoionization in the excitation energy range 19 ≤ hν ≤ 35 eV. These are the first rotationally resolved measurements on the photoion over an extended spectral range above the ionization threshold. The requisite resolution is obtained by measuring rotationally resolved fluorescence from electronically excited photoions created by synchrotron radiation. This technique is useful for studying dynamical features embedded deep in the ionization continua and should supplement laser-based methods that are limited to probing near-threshold phenomena. The present study shows that the outgoing photoelectron can alter the rotational motion of the more massive photoion by exchanging angular momentum and this partitioning of angular momentum depends on the ionization dynamics. Thus, our data directly probe electron-molecule interactions and are sensitive probes of scattering dynamics. We are currently investigating dynamical features such as shape resonances and Cooper minima with rotational resolution for deciphering microscopic aspects of molecular scattering and these efforts will be discussed

  6. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  7. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    Science.gov (United States)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH 2 Cl 2 ) doping. CH 2 Cl 2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH 2 Cl 2 , meanwhile CH 2 Cl 2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  8. Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot

    Science.gov (United States)

    Shi, L.; Yan, Z. W.

    2018-04-01

    Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.

  9. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saettone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  10. A theoretical study on the photoionization of the valence orbitals of phosphine

    Directory of Open Access Journals (Sweden)

    Nascimento Edmar M.

    2006-01-01

    Full Text Available We report a theoretical study on the photoionization of phosphine in the static-exchange level and frozen core approximation, using the method of continued fractions. The main subject of the present study is to investigate in which extent the Hartree-Fock description of the target applied to molecular photoionization is valid. Also, the role played by multichannel coupling is analysed. Our study shows that single-channel Hartree-Fock calculations can provide reliable results except for photon energies near the photoionization threshold.

  11. Photoionization dynamics of excited Ne, Ar, Kr and Xe atoms near threshold

    International Nuclear Information System (INIS)

    Sukhorukov, V L; Petrov, I D; Schäfer, M; Merkt, F; Ruf, M-W; Hotop, H

    2012-01-01

    A review of experimental and theoretical studies of the threshold photoionization of the heavier rare-gas atoms is presented, with particular emphasis on the autoionization resonances in the spectral region between the lowest two ionization thresholds 2 P 3/2 and 2 P 1/2 , accessed from the ground or excited states. Observed trends in the positions, widths and shapes of the autoionization resonances depending on the atomic number, the principal quantum number n, the orbital angular momentum quantum number ℓ and further quantum numbers specifying the fine- and hyperfine-structure levels are summarized and discussed in the light of ab initio and multichannel quantum defect theory calculations. The dependence of the photoionization spectra on the initially prepared neutral state are also discussed, including results on the photoionization cross sections and photoelectron angular distributions of polarized excited states. The effects of various approximations in the theoretical treatment of photoionization in these systems are analysed. The very large diversity of observed phenomena and the numerous anomalies in spectral structures associated with the threshold ionization of the rare-gas atoms can be described in terms of a limited set of interactions and dynamical processes. Examples are provided illustrating characteristic aspects of the photoionization, and sets of recommended parameters describing the energy-level structure and photoionization dynamics of the rare-gas atoms are presented which were extracted in a critical analysis of the very large body of experimental and theoretical data available on these systems in the literature. (topical review)

  12. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  13. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  14. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  15. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    Science.gov (United States)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  16. The kinetic of mass loss of grades A and B of melted TNT by isothermal and non-isothermal gravimetric methods

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pouretedal

    2018-04-01

    Full Text Available The kinetic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 °C, respectively, were studied by isothermal and non-isothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 °C. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminum metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30–330 °C at heating rates of 10, 15 and 20 °C⋅min−1. The TG/DTG data were used for determination of activation energy (Ea of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW and Kissinger-Akahira-Sunose (KAS methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99–120 and 66–70 kJ mol−1, respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade. Keywords: TNT, Isothermal, Non-isothermal, Kinetic, Mass loss

  17. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  18. Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne-Cz-60

    International Nuclear Information System (INIS)

    Dolmatov, V K; Craven, G T; Keating, D

    2010-01-01

    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A-C z- 60 are theoretically studied and exemplified by the photoionization of Ne in Ne-C z- 60 . Remarkably, above a particular nl ionization threshold of Ne in neutral Ne-C 60 (I z=0 nl ), confinement resonances in corresponding partial photoionization cross sections σ nl of Ne in any charged Ne-C z- 60 are not affected by a variation in the charge z of the carbon cage, as a general phenomenon. At lower photon energies, ω z=0 nl , the corresponding photoionization cross sections of charged Ne-C z- 60 (i.e., those with z ≠ 0) develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section σ 2p of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.

  19. Photoionization sensors for non-invasive medical diagnostics

    Science.gov (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  20. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  1. Photoionization of atoms. Progress report, 1 April 1979-30 March 1980

    International Nuclear Information System (INIS)

    Samson, J.A.R.; Starace, A.F.

    1979-12-01

    A strong 304 A fluorescent signal from He + (n = 2) has been observed as a function of incident photon wavelength; strong autoionizing structure arising from 3n + states are seen in the spectrum. Measurements of the ratio of photoproduced Ne + ions to Ne 2+ ions indicate that further calibration of detector response is required. The dissociative photoionization of O 2 has been measured successfully as a necessary preliminary to measuring the photoionization cross section of atomic oxygen. The experimental apparatus has been built to measure the photoelectron angular distribution of atomic cesium. In order to measure rare gas photoionization cross sections to +-1% accuracy, a new gas tight window has been developed and second order lines in the laboratory light sources have been classified. A new random phase approximation (RPA) for the theoretical calculation of open- or closed-shell atom photoionization cross sections has been developed; the close-coupling approximation and the closed-shell atom RPA of Chang and Fano are limiting cases of a new set of coupled differential equations. The Rydberg energy spectrum and oscillator strengths of atomic hydrogen have been calculated for magnetic fields of order 10 5 Gauss using a basis of oblate spheroidal angle functions. Below N approx. = 12 an adiabatic approximation is excellent. Above n approx. = 12 non-adiabatic coupling terms rapidly become important, and the perturbed energy levels for n greater than or equal to 16 cross, indicating quasi-conserved dynamical symmetries. A previous calculation of the cesium 6s → epsilon p photoionization cross section has been extended to include interchannel coupling to the 5p → epsilon d photoionization channels; above the near threshold cross section minimum, the cross section is dominated by 5p → 5d resonance transitions

  2. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  4. Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field

    International Nuclear Information System (INIS)

    Cheng Shao-Hao; Wang De-Hua; Chen Zhao-Hang; Chen Qiang

    2016-01-01

    In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. (paper)

  5. Photoionization of rhodamine dyes adsorbed at the aqueous solution surfaces investigated by synchrotron radiation

    International Nuclear Information System (INIS)

    Seno, Koichiro; Ishioka, Toshio; Harata, Akira; Hatano, Yoshihiko

    2002-01-01

    Photoionization spectroscopy using synchrotron radiation as a photon source was applied to the aqueous solution surfaces of rhodamine B (RhB), rhodamine 6G (Rh6G), and rhodamine 101 (Rh101) with their concentration of 0-100 μmol dm -3 . Synchrotron radiation was irradiated upon the solution surface between two electrodes in the photon energy range of 4-7 eV, and photoionization current was measured by a pico-ammeter. The photocurrent for each of the rhodamine aqueous solution surface showed an increase with the photon energy above a threshold photon energy. The photoionization threshold of RhB at the aqueous solution surface was 5.6 eV, which was smaller than that in the gas phase. The intensity of photoionization current of Rh6G was smaller than that of RhB or Rh101. Photoionization processes and the state of Rhodamine dye molecules at the aqueous solution surface were discussed in connection with results of surface tension measurements. (author)

  6. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  7. The effect of the electric field on the photoionization cross-section

    International Nuclear Information System (INIS)

    Sali, A.; Loumrhari, H.; Fliyou, M.

    1998-01-01

    The effect of the electric field on the donor impurity is investigated in the case of a spherical conduction band with the use of a variational procedure. An analytical expression for the photoionization cross-section as a function of photon energy within the effective mass approximation of an impurity atom in an applied field was obtained. The effect of central cell correction by means of a semi-empirical short-range potential is taken into account. It has been found that the binding energy and the spectral dependence of the cross-section are very sensitive to the electric field, the shape of the impurity potential and their combined effect

  8. Heterogeneous chemical kinetics by modulated molecular beam mass spectrometry: limitations of technique

    International Nuclear Information System (INIS)

    Olander, D.R.

    1977-01-01

    The advantages and limitations of modulated molecular beam, mass spectrometry as applied to the study of heterogeneous chemical kinetics are reviewed. The process of deducing a model of the surface reaction from experimental data is illustrated by analysis of the hydrogen reduction of uranium dioxide

  9. Photodissociation of anisole and absolute photoionization cross-section of the phenoxy radical.

    Science.gov (United States)

    Xu, Hong; Pratt, S T

    2013-11-21

    We have studied the photodissociation dynamics of anisole (C6H5OCH3) at 193 nm and determined the absolute photoionization cross-section of the phenoxy radical at 118.2 nm (10.486 eV) relative to the known cross-section of the methyl radical. Even at this energy, there is extensive fragmentation of the phenoxy radical upon photoionization, which is attributed to ionizing transitions that populate low-lying excited electronic states of the cation. For phenoxy radicals with less than ∼1 eV of internal energy, we find a cross-section for the production of the phenoxy cation of 14.8 ± 3.8 Mb. For radicals with higher internal energy, dissociative ionization is the dominant process, and for internal energies of ∼2.7-3.7 eV, we find a total cross-section (photoionization plus dissociative ionization) of 22.3 ± 4.1 Mb. The results are discussed relative to the recently reported photoionization cross-section of phenol.

  10. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  11. Dissociative photoionization of quinoline and isoquinoline

    NARCIS (Netherlands)

    Bouwman, J.; Sztáray, B.; Oomens, J.; Hemberger, P.; Bodi, A.

    2015-01-01

    Two nitrogen-containing polycyclic aromatic hydrocarbon isomers of C9H7N composition, quinoline, and isoquinoline have been studied by imaging photoelectron photoion coincidence spectroscopy at the VUV beamline of the Swiss Light Source. High resolution threshold photoelectron spectra have been

  12. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  13. Photoionization Modeling and the K Lines of Iron

    Science.gov (United States)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  14. Photoionization cross-section of donor impurities in spherical GaAs quantum dots: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Correa, J.D.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Using a variational procedure for a hydrogenic donor-impurity we have calculated the photoionization cross-section in spherical GaAs quantum dots. We discuss the dependence on the photoionization cross-section for hydrogenic donor impurity in in nite and nite barrier quantum dots as a function of the size of the dot, impurity position, polarization of the photon, applied hydrostatic pressure, and normalized photon energy. For the nite case, calculations for the pressure effects are both in direct and indirect GaAsAl gap regime. We have considered the different transition rules that depend of the impurity position and photon polarization. Calculations are presented for impurity on-center, and o -center in the spherical quantum dots. We found that the photoionization cross-section increases with the applied hydrostatic pressure both for on-center and o - center impurities. The photoionization cross-section increases or decreases depending of the impurity position, photon polarization, and radius of dots. Also we have showed that the photoionization cross-section decreases as the normalized photon energy increases. The results we have obtained show that the photoionization cross- section is strongly a effected by the quantum dot size, and the position of the impurity. The measurement of photoionization in such systems would be of great interest in understanding the optical properties of carriers in quantum dots. (author)

  15. Time-dependent Cooling in Photoionized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gnat, Orly, E-mail: orlyg@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2017-02-01

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).

  16. Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O.

    Science.gov (United States)

    Acter, Thamina; Lee, Seulgidaun; Cho, Eunji; Jung, Maeng-Joon; Kim, Sunghwan

    2018-01-01

    In this study, continuous in-source hydrogen/deuterium exchange (HDX) atmospheric pressure photoionization (APPI) mass spectrometry (MS) with continuous feeding of D 2 O was developed and validated. D 2 O was continuously fed using a capillary line placed on the center of a metal plate positioned between the UV lamp and nebulizer. The proposed system overcomes the limitations of previously reported APPI HDX-MS approaches where deuterated solvents were premixed with sample solutions before ionization. This is particularly important for APPI because solvent composition can greatly influence ionization efficiency as well as the solubility of analytes. The experimental parameters for APPI HDX-MS with continuous feeding of D 2 O were optimized, and the optimized conditions were applied for the analysis of nitrogen-, oxygen-, and sulfur-containing compounds. The developed method was also applied for the analysis of the polar fraction of a petroleum sample. Thus, the data presented in this study clearly show that the proposed HDX approach can serve as an effective analytical tool for the structural analysis of complex mixtures. Graphical abstract ᅟ.

  17. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  18. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  20. Resonances in electron-molecule scattering and photoionization

    International Nuclear Information System (INIS)

    Schneider, B.I.; Collins, L.A.

    1984-05-01

    The development of reliable theoretical models for calculating the decay of quasi-stationary states of molecular systems has become an important endeavor for theoretical chemists. The understanding and analysis of a wide variety of physical and chemical phenomena depend on a knowledge of the behavior of these states in both collisional and photoionization problems. In this article we describe the theory and calculation of these cross sections using our Linear Algebraic/Optical Potential method. The theory makes optimal use of the numerical methods developed to solve large sets of coupled integral equations and the bound state techniques used by quantum chemists. Calculations are presented for a representative class of diatomic and triatomic molecules at varying levels of sophistication and for collisional and photoionization cross sections. 48 references, 11 figures

  1. A non-invasive online photoionization spectrometer for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Braune, Markus, E-mail: markus.braune@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Brenner, Günter [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dziarzhytski, Siarhei [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Juranić, Pavle [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Sorokin, Andrey; Tiedtke, Kai [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2016-01-01

    A description of the design of an instrument for FEL wavelength monitoring based on photoionization of rare gases is given, as well as a report on calibration and characterization studies. The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  2. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  3. Attosecond-resolved photoionization of chiral molecules.

    Science.gov (United States)

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  5. The photoionization mechanism of LINERs - Stellar and nonstellar

    Science.gov (United States)

    Ho, Luis C.; Filippenko, Alexei V.

    1993-01-01

    We present high quality spectroscopic observations of a sample of 14 LINERs. Starlight removal is achieved by the subtraction of a suitable absorption-line 'template' galaxy, allowing accurate measurements of emission lines. We use these line fluxes to examine the possible excitation mechanisms of LINERs. We suggest that LINERs with weak forbidden O I 6300-A emission may be H II regions photoionized by unusually hot O-type stars. LINERs with forbidden O I/H-alpha approximately greater than 1/6 may be powered by photoionization from a nonstellar continuum. This is supported by the detection of broad H-alpha emission, a correlation between line width and critical density, and pointlike X-ray emission in several of these objects.

  6. Strong electron correlation in photoionization of spin-orbit doublets

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.

    2002-01-01

    A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2

  7. Higher-order processes in x-ray photoionization of atoms

    International Nuclear Information System (INIS)

    Kanter, E. P.; Dunford, R. W.; Krassig, B.; Southworth, S. H.; Young, L.

    2006-01-01

    There are several fourth-generation X-ray light source projects now underway around the world and it is anticipated that by the end of the decade, one or more of these X-ray free-electron lasers will be operational. In this contribution, we describe recent measurements and future plans to study both multielectron and multiphoton atomic photoionization. Although such higher-order processes are rare with present third-generation sources, they will be commonplace in experimental work with the new sources. The topics we discuss here are double K-shell ionization and two-photon X-ray photoionization

  8. Use of synchrotron and laser radiations for present and future photoionization studies in excited atoms and ions

    International Nuclear Information System (INIS)

    Wuilleumier, F.J.

    1984-01-01

    The status of experiments in photoionization of atoms in excited states is reviewed, with emphasis given to synchrotron and laser photon sources. A technique for exciting the photoionization spectrum of Na atoms using the flux emitted from the bending magnetic of a storage ring is discussed in detail. Some problems in interpreting photoionization spectrum of Ba in the excited state, due to the presence of higher orders are considered. A design approach for a positron storage ring to produce coherent radiation in the VUV is described. It is shown that combined use of a CW dye laser and the positron storage ring will allow new progress to be made in photoionization studies of excited atoms. Some of the experiments to be carried out using the positron storage ring include: measurements of collisional ionization in rare earth metal atoms of low atomic density; photoionization measurements at lower laser powers, leading to an extension of the CW tunability range; and photoionization studies of multiply charged positive ions. 21 references

  9. The photoionization of atomic Eu in the vicinity of its giant resonance

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1989-01-01

    It is demonstrated that the partial photoionization cross sections of outer subshells of atomic Eu in the giant resonance region are determined by the action of the 4d-electron excitations. The cross section for photoionization of the semifilled 4f 7 subshell is also entirely dominated by the interaction with 4d 10 electrons. (orig.)

  10. Application of a VMI spectrometer to near-threshold photoionization with synchrotron radiation

    International Nuclear Information System (INIS)

    O'Keeffe, P; Bolognesi, P; Ovcharenko, E; Avaldi, L; Mihelic, A; Richter, R; Moise, A; King, G C

    2011-01-01

    A new developed velocity map imaging spectrometer has been used to study the photoionization of atoms near threshold. The application of the spectrometer to the measurement of the angular distributions of the photoelectrons emitted in the photoionization of the Ne 2p 3/2 state between the 2p spin orbit thresholds and of polarised Ne atoms are presented.

  11. Characterization of combustion-generated carbonaceous nanoparticles by size-dependent ultraviolet laser photoionization.

    Science.gov (United States)

    Commodo, Mario; Sgro, Lee Anne; Minutolo, Patrizia; D'Anna, Andrea

    2013-05-16

    Photoelectric charging of particles is a powerful tool for online characterization of submicrometer aerosol particles. Indeed photoionization based techniques have high sensitivity and chemical selectivity. Moreover, they yield information on electronic properties of the material and are sensitive to the state of the surface. In the present study the photoionization charging efficiency, i.e., the ratio between the generated positive ions and the corresponding neutral ones, for different classes of flame-generated carbonaceous nanoparticles was measured. The fifth harmonics of a Nd:YAG laser, 213 nm (5.82 eV), was used as an ionization source for the combustion generated nanoparticles, whereas a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the flame conditions. In particular, we observed that the richer the flame is, i.e., the higher the equivalent ratio is, the higher the photon charging efficiency is. We hypothesized that such an increase in the photoionization propensity of the carbonaceous nanoparticles from richer flame condition is associated to the presence within the particles of larger aromatic moieties. The results clearly show that photoionization is a powerful diagnostic tool for the physical-chemical characterization of combustion aerosol, and it may lead to further insights into the soot formation mechanism.

  12. Photoionization Modeling

    Science.gov (United States)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  13. Feasibility study for implementing an optical Thomson scattering system for studying photoionized plasmas on Z

    OpenAIRE

    Kozlowski, Pawel M.; Mancini, Roberto C.; Koepke, Mark E.

    2018-01-01

    Many astrophysical environments such as X-ray binaries, active galactic nuclei, and accretion disks of compact objects have photoionized plasmas. The strong photoionizing environment found near these bright X-ray sources can be produced in a scaled laboratory experiment, and direct measurements can form a testbed for spectroscopic models and photoionization codes used in analysis of these astrophysical objects. Such scaled experiments are currently being conducted using Ne filled gas cells on...

  14. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  15. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  16. Double photoionization of lithium at medium energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Bluett, J.B.; Martinez, M.M.; Lukic, D.; Whitfield, S.B.

    2004-01-01

    Full text: The double-to-single photoionization ratio of atomic lithium has been measured for photon energies ranging from 120 eV to 910 eV . Through the extensive use of various filters we were able to significantly extend the previous range of measurements. We d that our data are in agreement with the predicted high-energy limit of 3.4%. By applying simple model curves to our data, we attempt to disentangle the different processes leading to a doubly charged Li ion. Our model corroborates the notion that sequential processes contribute substantially to the double-photoionization cross-section ratio as predicted by theory. This work was supported by NSF under Grant No. PHY-9987638. The SRC is supported by NSF Grant No. DMR-0084402. M.M.M. acknowledges financial support through the NSF REU program

  17. DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Garcia, G. A.; Tang, X.-F.; Nahon, L., E-mail: cornelia.jaeger@uni-jena.de [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-10

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy of the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.

  18. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  19. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    Science.gov (United States)

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  20. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres.

    Science.gov (United States)

    Nin, Darren Z; Lam, Wing K; Kong, Pui W

    2016-01-01

    This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.

  1. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields

    International Nuclear Information System (INIS)

    Burileanu, L.M.

    2014-01-01

    Using a perturbative method we have investigated the behavior of the binding energy and photoionization cross-section of a donor impurity in spherical GaAs–GaAlAs quantum dots under the influence of electric and intense high-frequency laser fields. The dependencies of the binding energy and photoionization cross-section on electric and laser field strength, dot radius and impurity position were investigated. Our results show that the amplitude of photoionization cross-section grows with the dot radius increase and the peak of the cross-section blue shifts with the laser intensity increment. We have found that the binding energy is not a monotonically function of laser intensity: it decreases or increases depending on electric field regime. The studied effects are even more pronounced as the quantum dot radius is smaller. -- Highlights: • A photoionization cross-section study in quantum dots under laser and electric fields. • The photoionization cross-section peaks are red shifted by the electric field. • The photoionization cross-section peaks are blue shifted by the laser field. • The combined effects of applied fields strongly affect the binding energy

  2. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  3. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  4. Double K-vacancy production by x-ray photoionization

    International Nuclear Information System (INIS)

    Southworth, S. H.; Dunford, R. W.; Kanter, E. P.; Krassig, B.; Young, L.; Armen, G. B.; Levin, J. C.; Chen, M. H.; Ederer, D. L.

    2002-01-01

    We have studied double K-shell photoionization of Ne and Mo (Z = 10 and 42) at the Advanced Photon Source. Double K-vacancy production in Ne was observed by recording the KK-KLL Auger hypersatellite spectrum. Comparison is made with calculations using the multiconfiguration Dirac-Fock method. For Mo, double K-vacancy production was observed by recording the Kα, β fluorescence hypersatellite and satellite x rays in coincidence. From the intensities of the Auger or x-ray hypersatellites relative to diagram lines, the probabilities for double K-vacancy production relative to single K-vacancies were determined. These results, along with reported measurements on other atoms, are compared with Z-scaling calculations of the high-energy limits of the double-to-single K-shell photoionization ratio

  5. A merged-beam setup at SOLEIL dedicated to photoelectron–photoion coincidence studies on ionic species

    Energy Technology Data Exchange (ETDEWEB)

    Bizau, J.M., E-mail: jean-marc.bizau@u-psud.fr [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Cubaynes, D. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Guilbaud, S.; El Eassan, N.; Al Shorman, M.M.; Bouisset, E.; Guigand, J.; Moustier, O.; Marié, A.; Nadal, E. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Robert, E.; Nicolas, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Miron, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure—Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2016-07-15

    Highlights: • Description of a merged-beam setup at SOLEIL synchrotron radiation facility. • Unique setup of this kind allowing photoelectron spectroscopy on ionic species. • Use of electron-ion coincidence to reduce the background. • Examples on the photoionization of Xe{sup 5+} multiply-charged ion. - Abstract: We describe the merged-beam setup permanently installed on a dedicated optical branch of the PLEIADES beamline at SOLEIL, the French synchrotron radiation facility in St-Aubin, delivering photons in the 10–1000 eV photon energy range. The setup is designed both for photoion and photoelectron spectroscopy experiments on atomic and molecular ions. Ion spectrometry is dedicated to the determination of absolute single and multiple photoionization cross sections. Electron spectroscopy brings additional information on the non-radiative decay of inner-vacancies produced in the photoionization processes and allows for the determination of partial cross sections. Efficient reduction of the background in the electron spectra is achieved by the use of the electron-ion coincidence technique. Examples of photoion and photoelectron spectra are given for the Xe{sup 5+} ion.

  6. Photoionization cross-section of shallow donors impurities at all magnetic fields

    International Nuclear Information System (INIS)

    Zorkani, I.; Filali, L.

    1998-09-01

    The dependence of the photoionization cross-section for shallow donors on photon energy is calculated. The effects of strong and weak magnetic fields are considered by means of a variational wave function which is a linear combination of the cylindrical wave function and the oscillator one. Simple analytical expressions, valid for all magnetic fields, are obtained. It has been found that the photoionization cross-section is affected by the magnetic field. We give some results of Germanium. (author)

  7. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  8. Technical report Development of a piezoelectric inkjet dopant delivery device for an atmospheric pressure photoionization source with liquid chromatography/mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2013-01-01

    This paper describes a simple robust and integrated piezoelectric actuated printhead as a dopant delivery system for atmospheric pressure photoionization with liquid chromatography/mass spectrometry The newly designed dopant delivery system avoids problems associated with traditional liquid delivery systems such as solvent immiscibility backpressure and increased post-column dead volume issues The performance of the new device was tested and evaluated using chlorobenzene as a dopant with a test mixture consisting of 18 different polycyclic aromatic hydrocarbons (PAHs) The results show that the new system works robustly at low dopant consumption level (16 uL min-1) consuming only approximately 5% of the amount used by conventional sources The low dopant consumption has resulted in up to a 20-fold reduction in signal intensity of tested PAH molecules but has led to less presence of background cluster ions and dopant trace contaminant background ions in the source area Consequently all tested PAHs were detected with excellent signal-to-noise ratio with at least two-to ten-fold improvements in the limit of detection and quantification compared to those obtained with traditional dopant assistance using a post-column addition method © IM Publications LLP 2013.

  9. Multiple photoionization following 3d5/2-shell threshold ionization of

    International Nuclear Information System (INIS)

    Matsui, T; Yoshii, H; Tsukamoto, K; Kawakita, S; Murakami, E; Adachi, J; Yagishita, A; Morioka, Y; Hayaishi, T

    2004-01-01

    Multiple photoionization of Xe near the 3d 5/2 -shell threshold photoionization region is studied by threshold electron-ion coincidence spectroscopy. The coincidence spectra of Xe 3+ to Xe 7+ ions exhibit characteristic profiles associated with multi-step post-collision interactions in Auger cascades following 3d 5/2 -shell threshold photoionization. The Auger cascade decay channels leading to the formation of multiply charged ions are deduced from the energies of the profile peaks, which increase gradually with increasing charge state. The formation of Xe 3+ to Xe 5+ ions is found to arise from cascades of normal Auger decays, whereas the formation of Xe 6+ and Xe 7+ ions involves double Auger decays. The branching ratio of double to normal Auger decays is estimated to be 0.25 (±0.1) for the decays following the creation of 3d 5/2 -hole states in Xe

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  11. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    International Nuclear Information System (INIS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5 ′ -monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results

  12. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  13. New photoionization models of intergalactic clouds

    Science.gov (United States)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  14. Binding energy and photoionization cross-section of hydrogen-like impurity in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimifard, A.

    2010-01-01

    The effect of the donor impurity position and the form of confining potential on the binding energy and the photoionization cross-section if a semiconductor quantum well with Poschl-Teller potential is investigated. An analytical expression for the photoionization cross-section is obtained for the case when the polarization vector of light wave is directed along the direction of size quantization. It is shown that the photoionization cross-section has a threshold behavior

  15. Threshold photoelectron--photonion coincidence mass spectrometric study of ethylene and ethylene-d4

    International Nuclear Information System (INIS)

    Stockbauer, R.; Inghram, M.G.

    1975-01-01

    Experimental curves have been obtained for the fragmentation of ethylene and ethylene-d 4 ions as a function of the internal energy of those ions using threshold photoelectron--photoion coincidence mass spectrometry. The results are compared with the previous results of photoionization mass spectrometry, He I photoelectron--photoion coicidence, charge exchange experiments, and with quasiequilibrium theory (QET) calculations. The discrepancies between results of these previous experiments and QET calculations do not appear in the present data. It is suggested that ion--molecule reactions competing with charge exchange has led to erroneous conclusions in the interpretation of the charge exchange data. It is concluded that QET does describe the fragmentation of ethylene and ethylene-d 4 within the limits of the data and calculations available. The secondary ion fragmentation C 2 H 4 + → C 2 H 3 + +H → C 2 H 2 + +2H is discussed in detail with regard to the C 2 H 3 + fragment ion internal energy distribution

  16. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  17. Double-Exponentially Decayed Photoionization in CREI Effect: Numerical Experiment on 3D H2+

    International Nuclear Information System (INIS)

    Feng, Li; Ting-Ying, Wang; Gui-Zhong, Zhang; Wang-Hua, Xiang; III, W. T. Hill

    2008-01-01

    On the platform of the 3D H 2 + system, we perform a numerical simulation of its photoionization rate under excitation of weak to intense laser intensities with varying pulse durations and wavelengths. A novel method is proposed for calculating the photoionization rate: a double exponential decay of ionization probability is best suited for fitting this rate. Confirmation of the well-documented charge-resonance-enhanced ionization (CREI) effect at medium laser intensity and finding of ionization saturation at high light intensity corroborate the robustness of the suggested double-exponential decay process. Surveying the spatial and temporal variations of electron wavefunctions uncovers a mechanism for the double-exponentially decayed photoionization probability as onset of electron ionization along extra degree of freedom. Henceforth, the new method makes clear the origins of peak features in photoionization rate versus internuclear separation. It is believed that this multi-exponentially decayed ionization mechanism is applicable to systems with more degrees of motion

  18. Preclusion of switch behavior in reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.

    2012-01-01

    We study networks taken with mass-action kinetics and provide a Jacobian criterion that applies to an arbitrary network to preclude the existence of multiple positive steady states within any stoichiometric class for any choice of rate constants. We are concerned with the characterization...... precludes the existence of degenerate steady states. Further, we relate injectivity of a network to that of the network obtained by adding outflow, or degradation, reactions for all species....

  19. Photoionization of the 4d subshell of the La isonuclear sequence

    Science.gov (United States)

    Kalyadan, Sindhu; Varma, Hari R.; Deshmukh, P. C.; Costello, J. T.; Hayden, P.; Manson, S. T.

    2015-05-01

    Photoionization studies along isonuclear sequences provide the required systematic data which are useful in many practical applications and also for testing the accuracy of various theoretical models. In the present work, we report on 4d subshell photoionization studies of some of the members of La (Z = 57) isonuclear sequence (La3+, La9+ and La11+) using relativistic random phase approximation (RRPA). Photoionization cross sections, σ, angular distribution asymmetry parameters, β, and the individual dipole matrix elements for 4d3/2 and 4d5/2 subshells are presented along with the 4d branching ratios of these ions. It is found that in La3+, the branching ratios show significant departure from the statistical value 1.5 due to the presence of Cooper minimum in the 4d --> f ionization channels. This departure is minor for the case of La9+ and La11+ since the Cooper minimum in these cases occur in the discrete part of the 4d spectrum.

  20. Photoionization of sodium atoms and electron scattering from ionized sodium

    Science.gov (United States)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  1. Study of the Synchrotron Photoionization Oxidation of 2-Methylfuran Initiated by O(3P) under Low-Temperature Conditions at 550 and 650 K.

    Science.gov (United States)

    Fathi, Yasmin; Meloni, Giovanni

    2017-09-21

    The O-( 3 P)-initiated oxidation of 2-methylfuran (2-MF) was investigated using vacuum-ultraviolet synchrotron radiation from the Advanced Light Source at Lawrence Berkeley National Laboratory. Reaction species were studied by multiplexed photoionization mass spectrometry at 550 and 650 K. The oxygen addition pathway is favored in this reaction, forming four triplet diradicals that undergo intersystem crossing into singlet epoxide species that lead to the formation of products at m/z 30 (formaldehyde), 42 (propene), 54 (1-butyne, 1,3-butadiene, and 2-butyne), and 70 (2-butenal, methyl vinyl ketone, and 3-butenal). Mass-to-charge ratios, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identities. In addition, by means of electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined to further validate the primary chemistry occurring. Branching fractions for the formation of the primary products were calculated at the two temperatures and contribute 81.0 ± 21.4% at 550 K and 92.1 ± 25.5% at 650 K.

  2. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics

    NARCIS (Netherlands)

    Schaft, Arjan van der; Rao, Shodhan; Jayawardhana, Bayu

    2013-01-01

    Motivated by recent progress on the interplay between graph theory, dynamics, and systems theory, we revisit the analysis of chemical reaction networks described by mass action kinetics. For reaction networks possessing a thermodynamic equilibrium we derive a compact formulation exhibiting at the

  3. Intershell interaction in excited atom and ion photoionization

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Avdonina, N.B.

    1989-01-01

    It is demonstrated, that the photoionization cross section of an excited electron in Cs atom isoelectronic sequence acquire additional structure if the virtual polarization of the core by the incident photon is taken into account. (orig.)

  4. Theoretical study on the photoionization of metanal and fluoromethane

    International Nuclear Information System (INIS)

    Tanaka, Helder Kenji; Silveira, Tiago Rodrigues; Nascimento, Edmar Moraes do

    2011-01-01

    Full text. The photoionization study of biological interest molecules has increased last few years due to the basic interest in the fundamental nature of electronic structures and scattering molecular processes. It was considered to this study hypothesis in that simple molecules would give birth to more complex molecules through photochemical reactions induced by interstellar radiation. This paper shows a theoretical study over photoionization of the valence shells of some biological interest molecules. Cross sections and parameters of asymmetry are set due to ab initio, using the continued fractions method to determine the scattering matrix and wave functions of the continuum. Results will be presented to the valence shell photoionization of formaldehyde (CH 2 O) and fluoromethane (CH 3 F). This work is part of a larger project to study of biological interest molecules, motivated by the hypothesis that based on these simple molecules, physicochemical processes may have given origin to more complex molecules responsible for the production of terrestrial life. The formamide, for example, has been subject of interest between researchers as a possible material from which can be created RNA bases. In this case has been studied the production of guanine from the formamide heated while irradiated by ultraviolet radiation

  5. Effective temperature of an ultracold electron source based on near-threshold photoionization.

    Science.gov (United States)

    Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.

  6. A photoionization study of hydrogen-bound clusters in a supersonic molecular beam

    International Nuclear Information System (INIS)

    Cook, K.D.; Jones, G.G.; Taylor, J.W.

    1980-01-01

    Hydrogen bonding of methanol, methanol-d, ethanol, and trifluoroethanol is investigated with a supersonic molecular beam as a sampling system for a photoionization quadrupole mass spectrometer. Monochromatized vacuum ultraviolet synchrotron radiation is used as the ionizing source. Cluster ions belonging to the series (ROH)sub(n)H + are detected when sampling up to 100-torr alcohol vapor with the molecular beam. No parent cluster molecular ions are detected. Experiments are described which exclude ion-molecule reactions in the mass spectrometer ion source as a possible origin of the cluster ions. Experimental evidence shows that nozzle temperature primarily influences the equilibrium distribution of clusters present in the nozzle source. From the dependences of relative cluster ion intensities on nozzle source temperature, the heats of formation of oligomers of the alcohols are estimated. Cooperative hydrogen bonding is not detected, expect for trifluoroethanol, where the trimer is found to be the most stable cluster. (orig.)

  7. Calculation of the photoionization cross section of the 4d10 subshell of the La atom

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Sheftel, S.I.

    1976-01-01

    The photoionization cross section of 4d 10 subshell of La atom is calculated. The cross section curve near its threshold is strongly modified by rearrangement of outer shells in the process of photoionization. (Auth.)

  8. ANALYTIC FITS FOR PARTIAL PHOTOIONIZATION CROSS-SECTIONS

    NARCIS (Netherlands)

    VERNER, DA; YAKOVLEV, DG

    We present a compact, uniform and complete set of analytic fits to the partial Hartree-Dirac-Slater photoionization cross sections for the ground state shells of all atoms and ions of elements from H to Zn (Z less-than-or-equal-to 30). Comparison with experiment and theory demonstrates generally

  9. Interference effects on the photoionization cross sections between two neighbouring atoms: nitrogen as an example

    International Nuclear Information System (INIS)

    Jian-Hua, Wu; Jian-Min, Yuan

    2009-01-01

    Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about 60 Å (1 Å = 0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N 2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections. (atomic and molecular physics)

  10. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  11. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  12. Three-colour photoionization optogalvanic spectroscopy in U-Ne hollow cathode discharges: observation of even-parity autoionization states of uranium

    International Nuclear Information System (INIS)

    Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.

    2013-01-01

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U-Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U-Ne hollow cathode discharge tube has been used as a source of uranium atomic vapour and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52150-52590 cm -1 , through three different excitation pathways, originating from its ground state, 0 cm -1 ( 5 L 0 6 ). By analyzing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. (author)

  13. Modelling massive-star feedback with Monte Carlo radiation hydrodynamics: photoionization and radiation pressure in a turbulent cloud

    Science.gov (United States)

    Ali, Ahmad; Harries, Tim J.; Douglas, Thomas A.

    2018-04-01

    We simulate a self-gravitating, turbulent cloud of 1000M⊙ with photoionization and radiation pressure feedback from a 34M⊙ star. We use a detailed Monte Carlo radiative transfer scheme alongside the hydrodynamics to compute photoionization and thermal equilibrium with dust grains and multiple atomic species. Using these gas temperatures, dust temperatures, and ionization fractions, we produce self-consistent synthetic observations of line and continuum emission. We find that all material is dispersed from the (15.5pc)3 grid within 1.6Myr or 0.74 free-fall times. Mass exits with a peak flux of 2× 10-3M⊙yr-1, showing efficient gas dispersal. The model without radiation pressure has a slight delay in the breakthrough of ionization, but overall its effects are negligible. 85 per cent of the volume, and 40 per cent of the mass, become ionized - dense filaments resist ionization and are swept up into spherical cores with pillars that point radially away from the ionizing star. We use free-free emission at 20cm to estimate the production rate of ionizing photons. This is almost always underestimated: by a factor of a few at early stages, then by orders of magnitude as mass leaves the volume. We also test the ratio of dust continuum surface brightnesses at 450 and 850μ to probe dust temperatures. This underestimates the actual temperature by more than a factor of 2 in areas of low column density or high line-of-sight temperature dispersion; the HII region cavity is particularly prone to this discrepancy. However, the probe is accurate in dense locations such as filaments.

  14. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  15. Intershell correlations in photoionization of outer shells

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Drukarev, E.G.

    2016-01-01

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  16. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  17. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  18. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  19. Isoelectronic sequence fits to configuration-averaged photoionization cross sections and ionization energies

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Cowan, R.D.; Bobrowicz, F.W.

    1986-01-01

    Hartree--Fock wave functions have been used to calculate configuration -averaged photoionization cross sections and ionization energies for orbitals 1s< or =nl< or =5g in He-like through Al-like isoelectroni csequences. The photoionization cross sections have been fitted as a function of the nuclear charge, Z, and photon energy, X, in threshold units, with average error of less than 10%. The ionization energies have been fitted as a function of Z with errors of less than 0.5%

  20. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    Science.gov (United States)

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. NIST Photoionization of CO2 (ARPES) Database

    Science.gov (United States)

    SRD 119 NIST Photoionization of CO2 (ARPES) Database (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  2. Mechanistic study on lowering the sensitivity of positive atmospheric pressure photoionization mass spectrometric analyses: size-dependent reactivity of solvent clusters.

    Science.gov (United States)

    Ahmed, Arif; Choi, Cheol Ho; Kim, Sunghwan

    2015-11-15

    Understanding the mechanism of atmospheric pressure photoionization (APPI) is important for studies employing APPI liquid chromatography/mass spectrometry (LC/MS). In this study, the APPI mechanism for polyaromatic hydrocarbon (PAH) compounds dissolved in toluene and methanol or water mixture was investigated by use of MS analysis and quantum mechanical simulation. In particular, four different mechanisms that could contribute to the signal reduction were considered based on a combination of MS data and quantum mechanical calculations. The APPI mechanism is clarified by combining MS data and density functional theory (DFT) calculations. To obtain MS data, a positive-mode (+) APPI Q Exactive Orbitrap mass spectrometer was used to analyze each solution. DFT calculations were performed using the general atomic and molecular electronic structure system (GAMESS). The experimental results indicated that methanol significantly reduced the signal in (+) APPI, but no significative signal reduction was observed when water was used as a co-solvent with toluene. The signal reduction is more significant especially for molecular ions than for protonated ions. Therefore, important information about the mechanism of methanol-induced signal reduction in (+) APPI-MS can be gained due its negative impact on APPI efficiency. The size-dependent reactivity of methanol clusters ((CH3 OH)n , n = 1-8) is an important factor in determining the sensitivity of (+) APPI-MS analyses. Clusters can compete with toluene radical ions for electrons. The reactivity increases as the sizes of the methanol clusters increase and this effect can be caused by the size-dependent ionization energy of the solvent clusters. The resulting increase in cluster reactivity explains the flow rate and temperature-dependent signal reduction observed in the analytes. Based on the results presented here, minimizing the sizes of methanol clusters can improve the sensitivity of LC/(+)-APPI-MS. Copyright © 2015 John

  3. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  4. Experimental study of linear magnetic dichroism in photoionization satellite transitions of atomic rubidium

    International Nuclear Information System (INIS)

    Jaenkaelae, K.; Alagia, M.; Feyer, V.; Richter, R.; Prince, K. C.

    2011-01-01

    Laser orientation in the initial state has been used to study the properties of satellite transitions in inner-shell photoionization of rubidium atoms. The linear magnetic dichroism in the angular distribution (LMDAD) has been utilized to probe the continuum waves of orbital angular momentum conserving monopole, and angular momentum changing conjugate satellites, accompanying the 4p ionization of atomic Rb. We show experimentally that LMDAD of both types of satellite transitions is nonzero and that LMDAD of monopole satellites, measured as a function of photon energy, mimics the LMDAD of direct photoionization, whereas the LMDAD of conjugate transitions deviates drastically from that trend. The results indicate that conjugate transitions cannot be described theoretically without explicit inclusion of electron-electron interaction. The present data can thus be used as a very precise test of current models for photoionization.

  5. Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds.

    Science.gov (United States)

    Li, Zhen; Xu, Ce; Shu, Jinian; Yang, Bo; Zou, Yao

    2017-04-01

    Real-time detection of lung cancer-related volatile organic compounds (VOCs) is a promising, non-intrusive technique for lung cancer (LC) prescreening. In this study, a novel method was designed to enhance the detection selectivity and sensitivity of LC-related polar VOCs by dichloromethane (CH 2 Cl 2 ) doping-assisted low-pressure photoionization mass spectrometry (LPPI-MS). Compared with conventional LPPI-MS, CH 2 Cl 2 doping-assisted LPPI-MS boosted the peak intensities of n-propanol, n-pentanal, acetone, and butyl acetate in nitrogen specifically by 53, 18, 16, and 43 times, respectively. The signal intensities of their daughter ions were inhibited or reduced. At relative humidity (RH) of 20%, the sensitivities of n-propanol, n-pentanal, acetone, and butyl acetate detection ranged from 116 to 452 counts/ppbv with a detection time of 10s and R 2 >0.99 for the linear calibration curves. The method was also applicable under higher RH levels of 50% and 90%. Breath samples obtained from 10 volunteers and spiked samples were investigated. Eight-fold enhancements in the signal intensities of polar VOCs were observed in the normal and spiked samples. These preliminary results demonstrate the efficacy of the dichloromethane doping-assisted LPPI technique for the detection of LC-related polar VOCs. Further studies are indispensible to illustrating the detailed mechanism and applying the technique to breath diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    Science.gov (United States)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  7. Demonstration of two-electron (shake-up) photoionization and population inversions in the visible and VUV

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II; Al-Salameh, D.Y.

    1986-01-01

    The two-electron (shake-up) photoionization process has been shown to be an effective mechanism for producing large population inversions in He/sup +/ with gain at 164 nm and in Ar/sup +/ with gain at 428 and 477 nm and for observing the first autoionizing states in Cd/sup +/. Such a mechanism was recently proposed as an excitation mechanism for a VUV laser in lithium. In each species the rapid excitation and detection using broadband emission from a 30-mJ 100-ps duration laser-produced plasma and a detection system with subnanosecond time resolution were essential in observing these effects. In He, gains of up to 0.8 cm/sup -1/ for durations of 2-4 ns at 164.0 nm on the He-like (n = 3-2) transition in He/sup +/ were measured by comparing the plasma emission from a well-defined volume with and without the presence of a mirror of known reflectivity. The n = 3 upper laser level is pumped not only directly via two-electron photoionization from the neutral ground state but also indirectly (in times of the order of 1-2 ns) via electron collisions from photoionization-pumped higher-lying levels. The decay rate of the photoionization-pumped radiation-trapped lower laser level is increased by a unique process involving absorption of radiation via photoionization of ground state neutral helium atoms

  8. Photoionization of cobalt impuritiesin zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Ivanov, V.; Godlewski, M.; Dejneka, Alexandr

    2015-01-01

    Roč. 252, č. 9 (2015), s. 1988-1992 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : absorption band * cobalt * photoionization * electron spin resonance * pulsed mode * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  9. Synchrotron-based valence shell photoionization of CH radical

    Energy Technology Data Exchange (ETDEWEB)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Holzmeier, F.; Röder, A. [Institut of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); Krüger, J.; Garcia, G. A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex (France); Lopes, A.; Alcaraz, C., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr [Laboratoire de Chimie Physique, UMR 8000 CNRS—Univ. Paris-Sud, Univ. Paris-Saclay, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex (France); Fittschen, C. [Université Lille, CNRS, UMR 8522–PC2A–Physicochimie des Processus de Combustion et de l’Atmosphère, F-59000 Lille (France); Loison, J.-C. [Institut des Sciences Moléculaires, UMR 5255 CNRS—Université de Bordeaux, Bât. A12, 351 cours de la Libération, F-33405 Talence Cedex (France)

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  10. Extended fine structure in the K-shell photoionization spectrum of Br2

    International Nuclear Information System (INIS)

    Dill, D.; Dehmer, J.L.

    1975-01-01

    The multiple-scattering approach to molecular wavefunctions in the electronic continuum has been used recently to elucidate the structure of the shape resonance just above threshold in the K-shell photoionization spectrum of N 2 . A similar calculation for Br 2 has yielded significantly different results, i.e., there is no shape resonance; appearing instead is a single resonance in the discrete spectrum, and the photoionization spectrum is found to oscillate with appreciable amplitude throughout the spectral range investigated, from threshold to 60 Ry

  11. Recoil momenta distributions in the double photoionization

    International Nuclear Information System (INIS)

    Amusia, M Ya; Liverts, E Z; Drukarev, E G; Mikhai, A I

    2014-01-01

    We calculate the distributions in recoil momenta for the high energy double photoionization of helium caused by quasifree mechanism. The distributions obtain local maxima at small values of the recoil momenta. This agrees with earlier predictions and recent experimental data. Angular correlations which reach the largest value for 'back-to-back' configuration of photoelectrons are also obtained.

  12. Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals.

    Science.gov (United States)

    Velasco, A M; Lavín, C; Dolgounitcheva, O; Ortiz, J V

    2014-08-21

    Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10-11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.

  13. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  14. Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude

    DEFF Research Database (Denmark)

    Siebenmann, C; Cathomen, A; Hug, M

    2015-01-01

    High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim...

  15. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  16. Dramatic nondipole effects in low-energy photoionization: Experimental and theoretical study of Xe 5s

    International Nuclear Information System (INIS)

    Hemmers, O.; Lindle, D.W.; Baker, J.; Hudson, A.; Lotrakul, M.; Tran, I.C.; Guillemin, R.; Stolte, W.C.; Wolska, A.; Yu, S.W.; Kanter, E.P.; Kraessig, B.; Southworth, S.H.; Wehlitz, R.; Rolles, D.; Amusia, M.Ya.; Cheng, K.T.; Chernysheva, L.V.; Johnson, W.R.; Manson, S.T.

    2003-01-01

    The Xe 5s nondipole photoelectron parameter γ is obtained experimentally and theoretically from threshold to ∼200 eV photon energy. Significant nondipole effects are seen even in the threshold region of this valence shell photoionization. In addition, contrary to previous understanding, clear evidence of interchannel coupling among quadrupole photoionization channels is found

  17. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Góbi, Sándor; Zhao, Long; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Kaiser, Ralf I.

    2018-01-01

    Pyrolysis products of ammonium perchlorate (NH4ClO4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00-17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. These results suggest a new insight into possible low-temperature decomposition pathways of NH4ClO4.

  18. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    International Nuclear Information System (INIS)

    Savukov, I. M.; Filin, D. V.

    2014-01-01

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions

  19. Observation of even-parity autoionization states of uranium by three-colour photoionization optogalvanic spectroscopy in U–Ne hollow cathode discharges

    International Nuclear Information System (INIS)

    Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.

    2013-01-01

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U–Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U–Ne hollow cathode discharge tube has been used as a source of uranium atomic vapours and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52,150–52,590 cm −1 , through three different excitation pathways, originating from its ground state, 0 cm −1 ( 5 L o 6 ). By analysing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. The J-value of five autoionization resonances, which have been observed either through all three excitation pathways or through two different excitation pathways where J-value of the second excited levels differs by two, has been assigned uniquely. -- Highlights: ► Three-colour photoionization optogalvanic spectroscopy of uranium was performed in a U–Ne hollow cathode discharge tube. ► Hollow cathode discharge tube was used as a source of atomic vapour and laser ionisation detector. ► Uranium photoionization spectra were investigated through three different three-colour photoionization schemes. ► Sixty new even-parity autoionization levels of uranium were identified. ► J-value of five autoionization levels was assigned uniquely

  20. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2018-01-14

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  1. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, C. Alenka [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Dultzin, Deborah [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (Mexico); Marziani, Paola [INAF, Astronomical Observatory of Padova, I-35122 Padova (Italy); Sulentic, Jack W., E-mail: cnegrete@inaoep.mx, E-mail: deborah@astro.unam.mx, E-mail: paola.marziani@oapd.inaf.it, E-mail: sulentic@iaa.es [Instituto de Astrofisica de Andalucia, E-18008 Granada (Spain)

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  2. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    Science.gov (United States)

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  3. Selective photoionization of gadolinium isotopes with a polarized laser

    International Nuclear Information System (INIS)

    Le Guyadec, E.

    1990-06-01

    The aim of this study is the use of gadolinium 157 as burnable poison in nuclear reactors. Spectroscopic isotopic displacements between Gd 156 and Gd 157 are low and the separation method studied is based on differentiated behavior, concerning polarized light, of even and odd gadolinium isotopes coming from their difference of nuclear spin. On this principle is based the simplest photoionization scheme. Selective ionization of odd isotopes is realized from the fundamental state with three resonating photons colinearly polarized. The experimental study confirms the possibility of efficient photoionization. The measured selectivity between Gd 157 and even isotope is over 48 in defined conditions because it can be destroyed by a magnetic field or if photons are not well polarized. Calculations and observations are in good agreement. Odd gadolinium isotope separation is feasible and effects preventing separation are evidenced [fr

  4. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    International Nuclear Information System (INIS)

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-01-01

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C 60 .

  5. Study of higher hydrocarbon production during ethylacetylene pyrolysis using laser-generated vacuum-ultraviolet photoionization detection

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, J.; Pfefferle, L. (Yale Univ., New Haven, CT (USA))

    1990-04-19

    Higher hydrocarbon formation during the pyrolysis of ethylacetylene in a microjet reactor was studied by vacuum-ultraviolet photoionization time-of-flight mass spectrometry. At the wavelength employed, this ionization technique allows for the simultaneous detection of both stable and intermediate polyatomic species with ionization potentials below 10.49 eV, including most hydrocarbons with two or more carbon atoms. Minimal fragmentation simplifies the determination of parent species and allows identification of probable reaction pathways involving hydrocarbon radicals as well as stable species. The pyrolysis of ethylacetylene was carried out in the fast-flow microjet reactor (residence times 1-2 ms) at temperatures from 300 to 1,600 K.

  6. Third-harmonic generation for photoionization studies

    International Nuclear Information System (INIS)

    Compton, R.N.; Miller, J.C.

    1982-01-01

    Our group at Oak Ridge National Laboratory (ORNL) has studied resonantly enhanced multiphoton ionization (MPI) of alkali atoms, rare gases, and small molecules using tightly focused dye laser beams (power densities of 10 9 to 10 11 W/cm 2 ). In the case of alkali atoms, some ionization signals appear as a result of gas density effects (dimers or quasi-collisions) as previously discovered by Collins and his collaborators. These have been termed hybrid-resonances. By contrast, in the case of the rare gases, certain resonance ionization signals disappear with increasing gas density. The disappearance of the ionization signals in the rare gases is due to the interference of excitation of the third-harmonic and fundamental laser beam. At low pressure (10 -7 to 10 -5 torr) we have studied (1) mass spectra, (2) kinetic energy released in ionic fragmentation, and (3) photoelectron kinetic energy spectra using time-of-flight mass analysis and a 160 0 spherical sector electrostatic energy analyzer. These experiments, combined with two-color dye laser experiments, can often offer an unambiguous and detailed description of the MPI and subsequent fragmentation events. The major part of this talk will be devoted to the production and the use of vacuum ultraviolet (VUV) light from third-harmonic generation (THG) in the rare gases

  7. Spectroscopic investigations of lanthanides and actinides using simultaneous LIF and photoionization techniques

    International Nuclear Information System (INIS)

    Shah, M.L.

    2017-01-01

    Laser-induced fluorescence (LIF) and laser-induced photoionization (LIP) are powerful spectroscopic techniques individually. These techniques have been used extensively for studying the atomic spectra. The potential of these two techniques increases enormously when used simultaneously because of their complimentary nature. Among these two, the resonance ionization spectroscopy is most sensitive, but in some cases the spectra obtained using this photoionization technique can provide the incomplete atomic energy levels information. The complete energy level information can be obtained when both the LIF and LIP techniques are used simultaneously. These techniques have been developed in our laboratory. By employing together both the LIF and LIP techniques for simultaneous detection and utilization of LIF and LIP signals not only helped in developing new methodologies but also helped in getting complete spectral information apart from the measurements of atomic parameters. For the first time, laser-induced fluorescence and laser-induced photoionization techniques are used simultaneously for the spectroscopic investigations of atoms of lanthanides and actinides. The density matrix (DM) formalism is used to validate the experimental results. (author)

  8. Double-continuum wave functions and double-photoionization cross sections of two-electron systems

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1996-09-01

    The present review briefly presents the growing experimental as well as theoretical interests in recent years in the double-continuum wave functions and double-photoionization cross sections of two-electron systems. The validity of existing double-continuum wave functions is analyzed and the importance of electronic correlations in both the initial as well as final states wave functions involved in the transition amplitude for double-photoionization process is demonstrated. At present, we do not have comprehensive and practical double-continuum wave functions which account the full correlation of two-electron in the continuum. Basic difficulties in making accurate theoretical calculations of double ionization by a single high energy photon especially in the vicinity of the threshold, where the correlation plays an important role, are discussed. Illuminating, illustrative and representative examples are presented in order to show the present status and the progress in this field. Future challenges and directions, in high-precision double-photoionization cross sections calculations, have been discussed and suggested. (author). 133 refs, 9 figs

  9. Separation of uranium isotopes by selective photoionization

    International Nuclear Information System (INIS)

    Snavely, B.B.; Solarz, R.W.; Tuccio, S.A.

    1975-01-01

    Recent results of experiments on the laser photoseparation of U isotopes are reported. In the first series of experiments a two-step ionization process using a Xe laser to excite the atoms below the ionization level and then a Kr laser to ionize the atoms was described. Under the geometric conditions of the experiment and power of the Kr laser, enrichments between 2.5 and 3 percent were obtained in runs lasting 2 hrs. Calculations to describe the ion trajectories in the collector system reflected the two-band pattern observed on the Be collector plate. A system to study the photoionization process was assembled in which the U beam is excited to a desired energy level with a CW dye laser and an ultraviolet beam intercepts the excited U beam. An analysis of a photoionization spectrum obtained at a resolution of 8 A indicates that the peak cross section for transitions to autoionization states from the 7 M 7 level is large enough to be used in large-scale U separation systems. An ionization value of 6.15 +- 0.2 eV was deduced for the ionization potential of the U atom. (U.S.)

  10. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    Science.gov (United States)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  11. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  12. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin

    2017-05-23

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

  13. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg

    2017-01-01

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019

  14. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  15. Photoionization cross-section of thallium 7 2D5/2 state at 1.06 μm radiation

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Jeong, Do Young; Lim, Gwon; Kim, Jae Woo; Kim, Taek Soo; Rho, Si Pyo; Kim, Cheol Jung

    2003-01-01

    Thallium has two naturally occurring isotopes of T1-203 and T1-205, which have abundances of 30% and 70%, respectively. Development of the isotope separation technique of T1-203 has been attractive due to its industrial demand. T1-203 is raw material for production of T1-201 radioisotopes by proton bombardment in a cyclotron. The final product of 2 01 'T1C1 radiopharmaceuticals is widely used to diagnose heart disease. Electric field ionization has been proposed for isotope selective ionization of thallium atoms but it is not adequate to produce massive thallium ions. We report the result of infra-red (IR) photoionization experiment of thallium atoms. The measures photoionization cross-section of 7 2 D 5/2 state of atoms was at 1.06 μm radiation, which means that ionization efficiency higher than 80% can be achieved with a pulsed Nd:YAG laser of pulse energy density of about. For the accurate determination of the photoionization cross-section, calibration of the linearity of a energy meter should be performed. Density matrix equations were employed for the simulation of the photoionization process and its results were used to determine the photoionization cross-section.

  16. A non-invasive online photoionization spectrometer for FLASH2.

    Science.gov (United States)

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  17. Self-consistent ab initio Calculations for Photoionization and Electron-Ion Recombination Using the R-Matrix Method

    Science.gov (United States)

    Nahar, S. N.

    2003-01-01

    Most astrophysical plasmas entail a balance between ionization and recombination. We present new results from a unified method for self-consistent and ab initio calculations for the inverse processes of photoionization and (e + ion) recombination. The treatment for (e + ion) recombination subsumes the non-resonant radiative recombination and the resonant dielectronic recombination processes in a unified scheme (S.N. Nahar and A.K. Pradhan, Phys. Rev. A 49, 1816 (1994);H.L. Zhang, S.N. Nahar, and A.K. Pradhan, J.Phys.B, 32,1459 (1999)). Calculations are carried out using the R-matrix method in the close coupling approximation using an identical wavefunction expansion for both processes to ensure self-consistency. The results for photoionization and recombination cross sections may also be compared with state-of-the-art experiments on synchrotron radiation sources for photoionization, and on heavy ion storage rings for recombination. The new experiments display heretofore unprecedented detail in terms of resonances and background cross sections and thereby calibrate the theoretical data precisely. We find a level of agreement between theory and experiment at about 10% for not only the ground state but also the metastable states. The recent experiments therefore verify the estimated accuracy of the vast amount of photoionization data computed under the OP, IP and related works. features. Present work also reports photoionization cross sections including relativistic effects in the Breit-Pauli R-matrix (BPRM) approximation. Detailed features in the calculated cross sections exhibit the missing resonances due to fine structure. Self-consistent datasets for photoionization and recombination have so far been computed for approximately 45 atoms and ions. These are being reported in a continuing series of publications in Astrophysical J. Supplements (e.g. references below). These data will also be available from the electronic database TIPTOPBASE (http://heasarc.gsfc.nasa.gov)

  18. An unusual π* shape resonance in the near-threshold photoionization of S1 para-difluorobenzene

    Science.gov (United States)

    Bellm, Susan M.; Davies, Julia A.; Whiteside, Paul T.; Guo, Jingwei; Powis, Ivan; Reid, Katharine L.

    2005-06-01

    Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1p-difluorobenzene are shown to be explained by a shape resonance in the b2g symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual π* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.

  19. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...

  20. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  1. Opinion dynamics: kinetic modelling with mass media, application to the Scottish independence referendum

    OpenAIRE

    Boudin , Laurent; Salvarani , Francesco

    2016-01-01

    International audience; We consider a kinetic model describing some mechanisms of opinion formation in the framework of referendums, by allowing that the individuals, who can interact between themselves and modify their opinion by means of spontaneous self-thinking, are moreover under the influence of mass media. After proving the main properties of the model, such as existence of solutions and conservation properties, we study, at the numerical level, both the transient and the asymptotic re...

  2. Measurements of relative subshell photoionization cross-sections in several solids and nobel gases, by x-ray and UV photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kemeny, P.C.

    1974-01-01

    Subshell photoionization cross-sections of both core and valence electrons in solid samples of sodium fluoride and sodium chloride were measured at a photon energy of 1487 eV (Al Kα). Relative to the sodium 1s level, values are reported for the subshell photoionization cross-sections of the sodium 2s, 2p, chlorine 2s, 2p, 3s, 3p and fluorine 1s, 2s and 2p levels. Subshell photoionization cross-sections of outer levels in the noble gases neon through xenon were also measured, at photon energies of 21.22, 40.81 and 48.37 eV. Values are reported for the photoionization cross-sections of the neon 2p, krypton 4p, xenon 5p and xenon 5s levels, relative to that of the argon 3p level. Whereever possible, comparison was made between the present relative subshell photoionization cross-section values and those reported by other workers. (author)

  3. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    Science.gov (United States)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  4. Photoionization of disk galaxies: An explanation of the sharp edges in the H I distribution

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    We have reproduced the observed radial truncation of the H I distribution in isolated spiral galaxies with a model in which extragalactic radiation photoionizes the gaseous disk. For a galactic mass distribution model that reproduces the observed rotation curves, including dark matter in the disk and halo, the vertical structure of the gas is determined self-consistently. The ionization structure and column densities of H and He ions are computed by solving the radiation transfer equation for both continuum and lines. Our model is similar to that of Maloney, and the H I structure differs by less than 10%. The radial structure of the column density of H I is found to be more sensitive to the extragalactic radiation field than to the distribution of mass. For this reason, considerable progress can be made in determining the extragalactic flux of ionizing photons, phi(sub ex), with more 21 cm observations of isolated galaxies. However, owing to the uncertainty of the radial distribution of total hydrogen at large radii, inferring the extragalactic flux by comparing the observed edges to photoionization models is somewhat subjective. We find 1 x 10(exp 4)/sq cm/s is less than or approximately phi(sub ex) is less than or approximately 5 x 10(exp 4)/sq cm/s, corresponding to 2.1 is less than or approximately iota(sub 0) is less than or approximately 10.5 x 10(exp -23) ergs/sq cm/s/Hz/sr for a 1/nu spectrum. Although somewhat higher, our inferred range of iota(sub 0) is consistent with the large range of values obtained by Kulkarni & Fall from the 'proximity effect' toward Quasi-Stellar Objects (QSOs) at approximately 0.5.

  5. Cross section and asymmetry parameter calculations for the C 1s photoionization of CH4, CF4, and CCl4

    International Nuclear Information System (INIS)

    Natalense, Alexandra P. P.; Brescansin, Luiz M.; Lucchese, Robert R.

    2003-01-01

    We have computed cross sections and asymmetry parameters for the C 1s photoionization of CX 4 (X=H, F, Cl) using the Schwinger variational method with Pade corrections. We present a comparative study that shows the influence of the identity of the X atom on the computed cross sections. Predicted cross sections are in good agreement with available photoionization and photoabsorption experimental data. We conclude that the presence of heavy outer atoms produces resonance structures in the photoionization cross sections and in the asymmetry parameters. We find a single nonvalence resonant state in the photoionization of CF 4 and multiple resonances in CCl 4 that have significant d-orbital character in the vicinity of the Cl atoms

  6. Photoabsorption and S 2p photoionization of the SF6 molecule: resonances in the excitation energy range of 200-280 eV.

    Science.gov (United States)

    Stener, M; Bolognesi, P; Coreno, M; O'Keeffe, P; Feyer, V; Fronzoni, G; Decleva, P; Avaldi, L; Kivimäki, A

    2011-05-07

    Photoabsorption and S 2p photoionization of the SF(6) molecule have been studied experimentally and theoretically in the excitation energy range up to 100 eV above the S 2p ionization potentials. In addition to the well-known 2t(2g) and 4e(g) shape resonances, the spin-orbit-resolved S 2p photoionization cross sections display two weak resonances between 200 and 210 eV, a wide resonance around 217 eV, a Fano-type resonance around 240 eV, and a second wide resonance around 260 eV. Calculations based on time-dependent density functional theory allow us to assign the 217-eV and 260-eV features to the shape resonances in S 2p photoionization. The Fano resonance is caused by the interference between the direct S 2p photoionization channel and the resonant channel that results from the participator decay of the S 2s(-1)6t(1u) excited state. The weak resonances below 210-eV photon energy, not predicted by theory, are tentatively suggested to originate from the coupling between S 2p shake-up photoionization and S 2p single-hole photoionization. The experimental and calculated angular anisotropy parameters for S 2p photoionization are in good agreement.

  7. Absolute photoionization cross section of the ethyl radical in the range 8-11.5 eV: synchrotron and vacuum ultraviolet laser measurements.

    Science.gov (United States)

    Gans, Bérenger; Garcia, Gustavo A; Boyé-Péronne, Séverine; Loison, Jean-Christophe; Douin, Stéphane; Gaie-Levrel, François; Gauyacq, Dolores

    2011-06-02

    The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed. © 2011 American Chemical Society

  8. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  9. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  10. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao

    2017-09-05

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  11. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao; Li, Yuyang; Dagaut, Philippe; Wang, Yizun; Wang, Zhandong; Qi, Fei

    2017-01-01

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  12. Photoionization of the hydrogen atom in strong magnetic fields

    Science.gov (United States)

    Potekhin, Aleksandr IU.; Pavlov, George G.

    1993-01-01

    The photoionization of the hydrogen atom in magnetic fields B about 10 exp 11 - 10 exp 13 G typical of the surface layers of neutron stars is investigated analytically and numerically. We consider the photoionization from various tightly bound and hydrogen-like states of the atom for photons with arbitrary polarizations and wave-vector directions. It is shown that the length form of the interaction matrix elements is more appropriate in the adiabatic approximation than the velocity form, at least in the most important frequency range omega much less than omega(B), where omega(B) is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polarizations perpendicular to the magnetic field at omega less than omega(B); these cross sections are the ones that most strongly affect the properties of the radiation escaping from an optically thick medium, e.g., from the atmosphere of a neutron star. The results of the numerical calculations are fitted by simple analytical formulas.

  13. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  14. Influence of external mass transfer limitation on apparent kinetic parameters of penicillin G acylase immobilized on nonporous ultrafine silica particles.

    Science.gov (United States)

    Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein

    2002-01-01

    Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.

  15. A photoionization model for the optical line emission from cooling flows

    Science.gov (United States)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  16. [Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].

    Science.gov (United States)

    Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan

    2015-05-01

    The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.

  17. New photoionization lasers pumped by laser-induced plasma radiation

    International Nuclear Information System (INIS)

    Hube, M.; Dieckmann, M.; Beigang, R.; Welling, H.; Wellegehausen, B.

    1988-01-01

    Innershell photoionization of atomic gases and vapors by soft x rays from a laser-produced plasma is a potential method for making lasers at short wavelengths. Normally, in such experiments only a single plasma spot or plasma line is created for the excitation. This gives high excitation rates but only a short excitation length. At high excitation rates detrimental influences, such as amplified spontaneous emission, optical saturation, or quenching processes, may decrease or even destroy a possible inversion. Therefore, it seems to be more favorable to use a number of separated plasma spots with smaller excitation rates and larger excitation lengths. As a test, a three-plasma spot device was constructed and used in the well-known Cd-photoionization laser at 442 nm. With a 600-mJ Nd:YAH laser (pulse length, 8 ns) for plasma production, output energies up to 300 μJ have been measured, which is more than a doubling of so far obtained data. On innershell excitation, levels may be populated that allow direct lasers as in the case of Cd or that are metastable and cannot be directly coupled to lower levels. In this case modifications in the excitation process are necessary. Such modifications may be an optical pump process in the atom prior to the innershell photoionization or an optical pump process (population transfer process) after the innershell ionization, leading to Raman or anti-Stokes Raman-type laser emissions. With these techniques and the developed multiplasma spot excitation device a variety of new laser emissions in K and Cs ions have been achieved which are indicated in the level schemes

  18. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Kim, Donghwi [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Green Nano Center, Department of Chemistry, Daegu 702-701 (Korea, Republic of)

    2015-10-15

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N{sub 1} class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S{sub 1}O{sub 1} compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N{sup +}· and [N − H + D]{sup +} ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]{sup +} and [N + D]{sup +} ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S{sub 1}O{sub 1} + H]{sup +} and [S{sub 1}O{sub 1} + D]{sup +} ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S{sub 1} class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  19. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-01-01

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N 1 class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S 1 O 1 compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N + · and [N − H + D] + ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H] + and [N + D] + ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S 1 O 1 + H] + and [S 1 O 1 + D] + ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S 1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components

  20. Velocity distribution of laser photoionized neutrals ejected from methanol-dosed aluminium(111) by electron-stimulated desorption

    International Nuclear Information System (INIS)

    Young, C.E.; Whitten, J.E.; Pellin, M.J.; Gruen, D.M.; Jones, P.L.; Ohio State Univ., Columbus, OH

    1989-01-01

    Nonresonant multiphoton ionization at 193 nm wavelength was employed for efficient detection of electron-stimulated neutral desorption from Al(111) dosed with methanol to produce monolayer methoxide coverage. Velocity spectra were measured by the flight time from the crystal surface to the focal region of the laser beam with a pulsed primary electron beam of 3 keV and the sample at 300 K. Either the C + or HCO + photofragment indicated the same non-Boltzmann velocity spectrum for the neutral parent precursor with a peak kinetic energy of ∼0.1 eV. Identical distributions were obtained when the cleaned crystal was pre-oxidized with O 2 prior to methanol dosing. As the crystal temperature was raised, photoion signal from the HCO + fragment declined steadily, while C + increased until ∼550 K. The total cross section for loss of parent signal with dose of 3 keV electrons was measured to be 2±1 x 10 -17 cm -2 . 19 refs., 4 figs

  1. Deviation from the kinetic law of mass action for reactions induced by binary encounters in liquid solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B; Kipriyanov, Alexey A

    2007-01-01

    In considering the irreversible chemical reaction A+B→ C+B in liquid solutions two many-particle approaches to the derivation of binary non-Markovian kinetic equations are compared: simple superposition decoupling and a method of extracting 'pair' channels from three-particle correlation evolution. It is shown that both methods provide an almost identical description of this reaction. However, in studies of reversible reactions in liquid solutions only the channel extraction method gives a correct physically clear description of the reaction though it consists of a sequence of steps: the development of integral encounter theory (IET), effective pairs approximation (EPA), modified encounter theory (MET), and the final regular form (RF) of kinetic equations. It is shown that the rate equations often encountered in the literature correspond to the independence of transient channels of 'scattering' in the bimolecular reversible reaction (A+B -B), while the independent transient channel of 'decay' in the reversible reactionA+B -C is defined solely by time integral convolution. In the general case transient channels in non-Markovian theory are not independent, and their interference manifests itself as a non-Markovian inhomogeneous source in binary non-Markovian kinetic equations in regular form. Based on the derived equations new universal kinetics (independent of models) of chemical equilibrium attainment have been obtained. It is shown that these kinetics can differ essentially from the kinetics corresponding to the kinetic law of mass action of formal chemical kinetics

  2. K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca

    Science.gov (United States)

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2010-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  3. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  4. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  5. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations

    International Nuclear Information System (INIS)

    Bourdon, A; Pasko, V P; Liu, N Y; Celestin, S; Segur, P; Marode, E

    2007-01-01

    This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP 3 ) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Segur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1 O 2 O 2 is the partial pressure of molecular oxygen in air in units of Torr ( p O 2 = 150 Torr) at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP 3 and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of

  6. Double photoionization of helium near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Armen, G.B.; Sellin, I.A.

    1996-01-01

    There has been substantial recent experimental interest in the ratio of double-to-single photoionization of He near threshold following several theoretical observations that earlier measurements appear to overestimate the ratio, perhaps by as much as 25%, in the first several hundred eV above threshold. The authors recent measurements are 10%-15% below these earlier results and more recent results of Doerner et al. and Samson et al. are yet another 10% lower. The authors will compare these measurement with new data, not yet analyzed, and available theory

  7. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    Science.gov (United States)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  8. Attosecond Time Delay in Photoionization of Noble-Gas and Halogen Atoms

    Directory of Open Access Journals (Sweden)

    Liang-Wen Pi

    2018-02-01

    Full Text Available Ultrafast processes are now accessible on the attosecond time scale due to the availability of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section, asymmetry parameter and Wigner time delay using the time-dependent local-density approximation (TDLDA, which includes the electron correlation effects. Our results are consistent with experimental data and other theoretical calculations. The asymmetry parameter provides an extra layer of access to the phase information of the photoionization processes. We find that halogen atoms bear a strong resemblance on cross section, asymmetry parameter and time delay to their noble-gas neighbors. Our predicted time delay should provide a guidance for future experiments on those atoms and related molecules.

  9. Control of entanglement following the photoionization of trapped, hydrogen-like ions

    International Nuclear Information System (INIS)

    Radtke, Thomas; Fritzsche, Stephan; Surzhykov, Andrey

    2005-01-01

    Density matrix theory is applied to re-investigate the entanglement in the spin state of pairs of electrons following the photoionization of trapped, hydrogen-like ions. For the ionization of one out of two non-interacting atoms, in particular, we analyzed how the entanglement between the electrons is changed owing to their interaction with the radiation field. Detailed calculations on the concurrence of the final spin-state of the electrons have been performed for the photoionization of hydrogen as well as for hydrogen-like Xe 53+ and U 91+ ions. From these computations it is shown that the degree of entanglement, which is quite well preserved for neutral hydrogen, will be strongly affected by relativistic and non-dipole effects of the radiation field as the nuclear charge of the ions is increased

  10. Double photoionization of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Sokell, Emma; Grimm, Michael; Sheridan, Paul, E-mail: emma.sokell@ucd.i [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

    2010-02-01

    Resonant triple-differential cross-section (TDCS) measurements have been used to study the double photoionization process in strontium. Two sets of measurements were made at the photon energy of the 4p {yields} 4d resonance. The coplanar geometry was used and the fixed analyser, positioned at -90{sup 0} to the main axis of polarization of the photons, detected electrons with {approx}65% of the available excess energy. The mutual angle between the two electrons had a range just short of 90 {yields} 270{sup 0}. The TDCS exhibit unexpected lobes at a mutual angle of 180{sup 0}. Comparison with other measurements made with the same geometry but with different sharings of the available energy indicate that these TDCS all show the unexpected lobe. Some possible explanations for the lobe are considered.

  11. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  12. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  13. Apparatus for enrichment of uranium by double photoionization

    International Nuclear Information System (INIS)

    Laude, J.P.

    1983-11-01

    The present invention concerns enrichment of uranium by double photoionization. The use of a beam from a dye laser for excitation of gaseous uranium is known and the present invention concerns an apparatus of this type. The purpose of the invention is essentially to produce an apparatus having high energy efficiency. This is achieved according to the invention by using a continuous wave laser

  14. A simplified kinetic and mass transfer modelling of the thermal hydrolysis of vegetable oils

    DEFF Research Database (Denmark)

    Forero-Hernandez, Hector Alexander; Jones, Mark Nicholas; Sarup, Bent

    2017-01-01

    This work presents a combined modelling approach to investigate the kinetics and masstransfer effects on the hydrolysis of vegetable oils under subcritical conditions. The primary purpose of this simplified model is to interpret experimental data collected from typical batch tests and to estimate...... parameters for the proposed model. Due to its heterogeneous nature, the hydrolysis reaction is affected not only by the chemical kinetics but also by the rate of mass transfer between the oil and water as well as their specific contact area in this two phase emulsion. Considering these properties, a model...... and improvement accompanied by Monte Carlo uncertainty analysis. Since the lack of experimental data is a crucial issue in the hydrolysis of vegetable oils, this model-based analysis of data is of substantial value to provide necessary information for detailed modeling and characterization of the process....

  15. Photoionization in negative streamers : fast computations and two propagation modes

    NARCIS (Netherlands)

    Luque, A.; Ebert, U.M.; Montijn, C.; Hundsdorfer, W.

    2007-01-01

    Streamer discharges play a central role in electric breakdown of matter in pulsed electric fields, both in nature and in technology. Reliable and fast computations of the minimal model for negative streamers in simple gases such as nitrogen have recently been developed. However, photoionization was

  16. Relativistic quantum mechanic calculation of photoionization cross-section of hydrogenic and non-hydrogenic states using analytical potentials

    International Nuclear Information System (INIS)

    Rodriguez, R.; Gil, J.M.; Rubiano, J.G.; Florido, R.; Martel, P.; Minguez, E.

    2005-01-01

    Photoionization process is a subject of special importance in many areas of physics. Numerical methods must be used in order to obtain photoionization cross-sections for non-hydrogenic levels. The atomic data required to calculate them is huge so self-consistent calculations increase computing time considerably. Analytical potentials are a useful alternative because they avoid the iterative procedures typical in self-consistent models. In this work, we present a relativistic quantum calculation of photoionization cross-sections for isolated ions based on an analytical potential to obtain the required atomic data, which is valid both for hydrogenic and non-hydrogenic ions. Comparisons between our results and others obtained using either widely used analytical expressions for the cross-sections or more sophisticated calculations are done

  17. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  18. Mechanism of [m+h]+ formation in atmospheric pressure photoionization mass spectrometry: identification of propionitrile in acetonitrile with high mass accuracy measurement and tandem mass spectrometry and evidence for its involvement in the protonation phenomenon.

    Science.gov (United States)

    Kamel, Amin; Jeanville, Patrick; Colizza, Kevin; J-Rivera, Lauren Elizabeth

    2008-11-01

    The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.

  19. Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2008-01-01

    Full Text Available Abstract Background Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of Plasmodium falciparum infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure. Methods The relationship between the entomological inoculation rate (EIR for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya. Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR. Results The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro

  20. Photoionization of inner-shell electrons

    International Nuclear Information System (INIS)

    Cooper, J.W.

    1975-01-01

    The theory of photoionization is developed and key approximations are discussed. The formalism is fully relativistic and includes all multipoles of the radiation field, conditions that can be related at lower energies and for low Z materials. The theory can also be extended to include electron-electron correlation effects, and represents a zeroth-order approximation. Alternate ways of treating correlation effects are developed along these lines. A brief discussion is given of two methods that have been used to treat near-threshold absorption in solids and the relationship of these to the methods covered earlier is discussed. Examples are given of how well results calculated by various methods agree with experimental evidence. 5 figures, 76 references

  1. On the photo-ionization of impurity centres in semiconductors

    International Nuclear Information System (INIS)

    Tomak, M.

    1982-10-01

    The dependence of the photo-ionization cross-section on photon energy is calculated. The impurity potential is assumed to be of the Hulthen potential type and bound state wave function is calculated variationally. The results show that, at least in some cases, the Hulthen potential may describe the impurity better than the hydrogen or delta function potentials. (author)

  2. Photoionization in Ultraviolet Processing of Astrophysical Ice Analogs at Cryogenic Temperatures

    Science.gov (United States)

    Woon, David E.

    2004-01-01

    Two recent experimental studies have demonstrated that amino acids or amino acid precursors are generated when astrophysical ice analogs are subjected to ultraviolet (UV) irradiation at cryogenic temperatures. Understanding the complete phenomenology of photoprocessing is critical to elucidating chemical reaction mechanisms that can function within an ice matrix under very cold conditions. Pushing beyond the much better characterized study of photolytic dissociation of chemical bonds through electronic excitation, this work explored the ability of UV radiation present in the interstellar medium to ionize small molecules embedded in ices. Quantum chemical calculations, including bulk solvation effects, were used to study the ionization of hydrogen (H2), water, and methanol (CH3OH) bound in small clusters of water. Ionization potentials were found to be much smaller in the condensed phase than in the gas phase; even a small cluster can account for large changes in the ionization potentials in ice, as well as the known formation of an OH--H3O+ pair in the case of H2O photoionization. To gauge the impact of photoionization on subsequent grain chemistry, the reaction between OH and CO in the presence of H3O+ was studied and compared with the potential energy surface without hydronium present, which is relevant to chemistry following photolysis. The differences indicate that the reaction is somewhat more likely to proceed to products (H + CO2) in the case of photoionization.

  3. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    Science.gov (United States)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155

  4. Molecular photoionization using the complex Kohn variational method

    International Nuclear Information System (INIS)

    Lynch, D.L.; Schneider, B.I.

    1992-01-01

    We have applied the complex Kohn variational method to the study of molecular-photoionization processes. This requires electron-ion scattering calculations enforcing incoming boundary conditions. The sensitivity of these results to the choice of the cutoff function in the Kohn method has been studied and we have demonstrated that a simple matching of the irregular function to a linear combination of regular functions produces accurate scattering phase shifts

  5. Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Glarborg, Peter; Zhou, Xueyao

    2016-01-01

    The pyrolysis of nitroethane has been investigated over the temperature range of 682-1423 K in a plug flow reactor at a low pressure. The major species in the pyrolysis process have been identified and quantified using tunable synchrotron vacuum ultraviolet photoionization mass spectrometry...

  6. Lithium photoionization cross-section and dynamic polarizability using square integrable basis sets and correlated wave functions

    International Nuclear Information System (INIS)

    Hollauer, E.; Nascimento, M.A.C.

    1985-01-01

    The photoionization cross-section and dynamic polarizability for lithium atom are calculated using a discrete basis set to represent both the bound and the continuum-states of the atom, to construct an approximation to the dynamic polarizability. From the imaginary part of the complex dynamic polarizability one extracts the photoionization cross-section and from its real part the dynamic polarizability. The results are in good agreement with the experiments and other more elaborate calculations (Author) [pt

  7. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  8. Photoionization from metastable (1s2s) 1Se and 3Se states of the He atom for energies between the N=2 and 3 thresholds of He+

    International Nuclear Information System (INIS)

    Zhou, B.; Lin, C.D.

    1994-01-01

    Photoionization cross sections from the metastable state (1s2s) 1 Se of the He atom for photon energies between the He + (N=2) and (N=3) thresholds are calculated using the hyperspherical close-coupling method. The calculated spectra are convoluted with an energy resolution of 5.4 meV and are compared with the spectra for photoionization from the ground state. It is found that among the four possible outgoing channels, the 1sεp channel, which is the dominant channel for photoionization from the ground state, makes negligible contributions to the total cross sections for photoionization from the metastable state. As a result, the propensity rule derived from the ground-state photoionization no longer applies and more series of the doubly excited states are populated with significant spectral intensity in photoionization from the metastable state. Photoionization cross sections from the metastable (1s2s) 3 Se state are also calculated and analyzed

  9. Calculation of the characteristics of a photoionization TEA CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Aver' yanov, N E; Baloshin, Yu A

    1979-01-01

    Energy and time characteristics have been studied for molecular lasers with active mixture pressures up to atmospheric or high levels. According to the model employed, which was developed for lasers with low active mixture pressure, the basic kinetic equations describing the dynamics of populations of carbon dioxide molecules in a high pressure laser are not written for discrete levels, but for energies stored in each type of oscillation: rate constants of the primary processes of excitation and deexcitation of molecules, relaxation time of different channels of relaxation, and the distribution function of electrons will have a different relationship as a function of partial gas pressures. Earlier equations were used to compute characteristics of lasing pulses of TEA CO/sub 2/ lasers operating under conditions of a semi-self-maintained discharge with preionization of the main volume by uv emission. A new model had to be devised to handle high pressure lasers. Helium was found to be the main supplier of photoelectrons, in spite of the highest ionization potential: addition of nitrogen shapes a uv spectrum optimum for photoionization of helium. CO/sub 2/ is the lasing molecule and also absorbs uv emission. Consideration of CO/sub 2/ molecule dissociation makes the theoretical concept more reliable in comparison with experiment.

  10. Population of the 3P2,1,0 fine-structure states in the 3s and 3p photoionization of atomic chlorine

    International Nuclear Information System (INIS)

    Krause, M.O.; Caldwell, C.D.; Whitfield, S.B.; de Lange, C.A.; van der Meulen, P.

    1993-01-01

    In a high-resolution photoelectron-spectrometry study of the photoionization of chlorine atoms in both the 3s and 3p subshells, we were able to resolve contributions from ionic states with specific J values and measure the relative populations of these fine-structure components. Our photoelectron spectra, recorded at hν=29.2 eV, give ratios of 3 P 2 : 3 P 1 : 3 P 0 =100:40.59.5 for 3p photoionization and 3 P 2 : 3 P 1 =100:31 for 3s photoionization. While the results for 3p ionization are in accord with predictions based on a simple geometric analysis, the contribution of the 3 P 1 state in 3s photoionization is larger than that predicted by this simple model. The geometric predictions are also compared with results from a similar measurement of the population of the 4p -1 ( 3 P J ) states produced in the 4p ionization of Br and with earlier work on the production of 3 D 2,1,0 states in d-shell photoionization of Cu and Ag

  11. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    Science.gov (United States)

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  12. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2012-01-01

    A comprehensive and global sensitivity analysis was conducted under a range of operating conditions. The relative importance of mass transfer resistance versus kinetic parameters was studied and found to depend on the operating regime as follows: Operating under the optimal loading ratio of 1.90 ...

  13. Photoionization of image states around metallic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Segui, Silvina; Arista, Nestor R; Gervasoni, Juana L [Centro Atomico Bariloche (CNEA) 8400, Rio Negro (Argentina); Bocan, Gisela A, E-mail: segui@cab.cnea.gov.a, E-mail: gbocan@iafe.uba.a, E-mail: arista@cab.cnea.gov.a, E-mail: gervason@cab.cnea.gov.a [Institute de AstronomIa y Fisica del Espacio, CC 67, Sue 28, 1428, Ciudad Universitaria, Buenos Aires (Argentina)

    2009-11-01

    In this work we study a theoretical approach to the ionization of electrons bound in an image state around a metallic nanotube by the impact of photons. In a close analogy to the already studied case of ionization by electron impact [1], we calculate and analyze photoionization cross sections of tubular image states [2] within a first Born approximation. We consider various situations, including different energies and polarizations of the incident photon, ejection directions of the outgoing electron, and angular momenta of the image state.

  14. Near threshold double photoionization of rare gases

    International Nuclear Information System (INIS)

    Huetz, A.; Selles, P.; Waymel, D.; Mazeau, J.

    1992-01-01

    Double photoionization experiments using a helium discharge lamp have been performed for the outermost shells of krypton and xenon. For the first time both the energies and the angles of the two outgoing electrons have been selected, allowing measurements of the triple differential cross sections. These are expressed as products of two factors, the first factor accounts for symmetry and rotation and the second for angular correlation. The latter is then extracted from the experiments and compared with theoretical predictions deduced from the Wannier model. (Author)

  15. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique

    International Nuclear Information System (INIS)

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane

  16. Effect of core polarizability on photoionization cross-section calculations.

    Science.gov (United States)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  17. Soft x-ray photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Svensson, Svante

    2005-01-01

    A review of resonant and non-resonant electron spectroscopy on atoms and molecules at third generation synchrotron radiation facilities is given. The high brilliance of the soft x-ray radiation has made possible new types of experiments giving information on the fundamental behaviour of photoionization. The relevance of Einstein's photoelectric law, and notably the question of when electron energies disperse or do not disperse with the photon energy, is given special attention

  18. Empiricism or self-consistent theory in chemical kinetics?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2007-01-01

    To give theoretical background for mechanochemical kinetics, we need first of all to find a possibility to predict the kinetic parameters for real chemical processes by determining rate constants and reaction orders without developing strictly specialized and, to a great extent, artificial models, i.e. to derive the kinetic law of mass action from 'first principles'. However, the kinetic law of mass action has had only an empirical basis from the first experiments of Gulberg and Waage until now, in contrast to the classical law of mass action for chemical equilibrium rigorously derived in chemical thermodynamics from equilibrium condition. Nevertheless, in this paper, an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Gulberg and Waage's time

  19. Dissociative photoionization of IBr following I(4d) and Br(3d) inner-shell excitations in the range of 60 ∼ 133 eV: remarkable biased charge spread relevant to the core-hole states

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Koyano, Inosuke

    2002-01-01

    Dissociative photoionization of an interhalogen molecule, iodine monobromide (IBr), spanning the I(4d) and the Br(3d) inner-shell excitation/ionization regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the range of 60 ∼ 133 eV. The total and the individual photoion yields have been recorded as functions of the photon energy. Here, a giant shape resonance has been observed owing to the I(4d 10 ) →I(4d 9 εf) transition, the transition probability for which outweighs that for the Br(3d 10 ) →Br(3d 9 εf) excitation. In addition to the huge resonance, discrete resonances owing to the Br(3d) -1 IBr(4pσ + ) and the Br(3d -1 )Br(5p) transitions, with very weak intensities, are observed at 70.5 and 73.6 eV and have spin-orbit splittings of = 1.0 and = 0.9 eV, respectively. The dissociation processes of singly and doubly charged parent ions have also been evaluated from the variations of the individual ion and photoion-photoion coincidence (PIPICO) yields with the photon energy. Below the Br(3d) threshold, including the Br(3d) discrete excitation region, 60 + and I 2+ ions are exclusively formed with a trace number of Br + ions. Slightly above the Br(3d) threshold, more specifically at 77.5 eV, however, photoionization events leading to the formations of Br + and Br 2- prevail. At higher energies beyond the Br(3d) threshold, 78 + and I 2+ turn out to exceed again those for Br + and Br 2+ , respectively. Over the entire energy range examined, a remarkable biased charge spread in dissociative photoionization events is observed, presumably reflecting the fact that charge localized mostly in the excited atoms relevant to the specific inner-shell excitation, which can be accounted for mainly by a two-step decay process via a fast dissociation followed by autoionization upon vuv absorption

  20. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    Science.gov (United States)

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for nphotoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  1. Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand.

    Science.gov (United States)

    Iino, Yoichi; Kojima, Takeji

    2016-01-01

    The purpose of this study was to investigate the effect of the racket mass and the rate of strokes on the kinematics and kinetics of the trunk and the racket arm in the table tennis topspin backhand. Eight male Division I collegiate table tennis players hit topspin backhands against topspin balls projected at 75 balls · min(-1) and 35 balls · min(-1) using three rackets varying in mass of 153.5, 176 and 201.5 g. A motion capture system was used to obtain trunk and racket arm motion data. The joint torques of the racket arm were determined using inverse dynamics. The racket mass did not significantly affect all the trunk and racket arm kinematics and kinetics examined except for the wrist dorsiflexion torque, which was significantly larger for the large mass racket than for the small mass racket. The racket speed at impact was significantly lower for the high ball frequency than for the low ball frequency. This was probably because pelvis and upper trunk axial rotations tended to be more restricted for the high ball frequency. The result highlights one of the advantages of playing close to the table and making the rally speed fast.

  2. Mass and kinetic-energy distributions of fragments formed in the heavy-ion-induced fission of 208Po

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Goodall, J.A.B.

    1980-01-01

    Fission fragments following the decay of a 208 Po compound nucleus have been observed by using radiochemical and particle-counting techniques. The (α+ 204 Pb), ( 12 C+ 196 Pt) and ( 16 O+ 192 Os) reactions were studied at two or three bombarding energies, covering overlapping ranges of excitation energies. - Radiochemical separations of As, Br, Y, Nb, Tc, Ag, Sb and I isotopes were made from catcher foils sandwiching isotopic targets, and their isotopic yield distributions determined. The distributions are used to estimate the average number of neutrons associated with each fission event, including neutrons emitted before and after fission. - Prompt coincidence measurements of fragments are used to derive the overall mass and kinetic-energy distributions of primary fragments, taking into account the effects of pre- and post-fission neutron emission. The mass distributions are well fitted by the statistical theory, at a temperature corresponding to an excitation about 10 MeV above that at the saddle point. No evidence is found for an increase of kinetic-energy with increasing angular momentum of the compound nucleus. (author)

  3. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms

    Science.gov (United States)

    Saha, Soumyajit; Mandal, Ankur; Jose, Jobin; Varma, Hari R.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2014-11-01

    Time delay of photoemission from valence n s , n p3 /2 , and n p1 /2 subshells of noble-gas atoms is theoretically scrutinized within the framework of the dipole relativistic random phase approximation. The focus is on the variation of time delay in the vicinity of the Cooper minima in photoionization of the outer subshells of neon, argon, krypton, and xenon, where the corresponding dipole matrix element changes its sign while passing through a node. It is revealed that the presence of the Cooper minimum in one photoionization channel has a strong effect on time delay in other channels. This is shown to be due to interchannel coupling.

  4. The formation of [M-H]+ ions in N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Sioud, Salim

    2014-10-09

    RESULTS [M-H]+ ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M-H]+ and [M + H]+ ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H]+ ions is the most favourable condition under which to form [M-H]+ ions.CONCLUSIONS [M-H]+ ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M-H]+ ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H]+ ions is proposed to be necessary.RATIONALE The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M-H]+ ion peaks were observed. In this work we investigate the formation of [M-H]+ ions observed under APPI conditions.METHODS Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M-H]+ ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H]+ vs [M-H]+ ions and computational approaches were used.

  5. High-resolution soft x-ray photoionization studies of selected molecules

    International Nuclear Information System (INIS)

    Hudson, E.A.

    1993-08-01

    Near-edge soft x-ray photoionization spectra were measured for CO, SF 6 , H 2 S, and D 2 S in the gas phase, using the Free University of Berlin plane-grating SX-700-II monochromator at the synchrotron radiation source BESSY. Photoionization spectra of carbon monoxide were measured near the carbon and oxygen K edges. Vibrational spacings and bond lengths are derived for several resonances. Results are consistent with equivalent-core model and indicate the different influences of the carbon and oxygen Is core holes. Corresponding spectra of H 2 CO and D 2 CO were also measured. Assignment of complex vibrational structure in valence-shell and Rydberg resonances is facilitated by comparison of spectra for the two isotopic species. Geometric and vibrational parameters are derived for several carbon 1s core-excited states. Isotopic shifts are observed in the energies and linewidths of some core-excited states. Sulfur hexafluoride photoionization spectra, measured near the sulfur L 2,3 edges, show several series of weak, narrow Rydberg resonances. High resolution and good counting statistics allow a complete assignment of these states. Lineshapes of the broad inner-well resonances are analyzed to establish the magnitudes of vibrational and lifetime broadening in these states. Spectra of the H 2 S and D 2 S molecules were also measured near the sulfur L 2,3 edges. Besides lower-energy transitions to inner-well states, a complex manifold of overlapping Rydberg resonances is observed. The rich fine structure of these states arises mainly from removal of orbital degeneracies in molecular field. Additional structure due to vibrational excitations in the final state is identified by comparison of the spectra for the two isotopic species

  6. Theoretical and expert system approach to photoionization theories

    Directory of Open Access Journals (Sweden)

    Petrović Ivan D.

    2016-01-01

    Full Text Available The influence of the ponderomotive and the Stark shifts on the tunneling transition rate was observed, for non-relativistic linearly polarized laser field for alkali atoms, with three different theoretical models, the Keldysh theory, the Perelomov, Popov, Terent'ev (PPT theory, and the Ammosov, Delone, Krainov (ADK theory. We showed that aforementioned shifts affect the transition rate differently for different approaches. Finally, we presented a simple expert system for analysis of photoionization theories.

  7. Probing photo-ionization: experiments on positive streamers in pure gases and mixtures

    International Nuclear Information System (INIS)

    Nijdam, S; Van de Wetering, F M J H; Blanc, R; Van Veldhuizen, E M; Ebert, U

    2010-01-01

    Positive streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the nitrogen : oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gases. Streamers in pure nitrogen and in all nitrogen-oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10 2 hair tips cm -3 in the feathers at 200 mbar; this density can be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen-oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.

  8. Probing photo-ionization: experiments on positive streamers in pure gases and mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, S; Van de Wetering, F M J H; Blanc, R; Van Veldhuizen, E M; Ebert, U, E-mail: s.nijdam@tue.n [Eindhoven University of Technology, Department Applied Physics, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2010-04-14

    Positive streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the nitrogen : oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gases. Streamers in pure nitrogen and in all nitrogen-oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10{sup 2} hair tips cm{sup -3} in the feathers at 200 mbar; this density can be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen-oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.

  9. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  10. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  11. Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra

    Science.gov (United States)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.

    2018-04-01

    The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.

  12. Photoionization in the Precursor of Laser Supported Detonation by Ultraviolet Radiation

    International Nuclear Information System (INIS)

    Shimamura, Kohei; Michigami, Keisuke; Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-01-01

    The propagation mechanism of laser-supported detonation (LSD) is important for designing laser propulsion for a detonation type thruster. The purpose of this work to was to confirm that photo-ionization in precursor is the predominant LSD sustainment mechanism. First of all, we tried to investigate the dependency of LSD duration on ambient gas species, air and argon. We took a series of high-speed images using the laser shadow-graphy. Besides, to estimate the UV photons emitted from the plasma, we used plasma emission spectroscopy and determined the electron temperature and density. As a result, the LSD duration of argon plasma and air plasma are 0.7 μs and 0.3 μs, resp. Besides, argon plasma emitted 10 10 to 10 14 photons/seconds, which was higher than air plasma. These results reveal that LSD propagation depends on the photon-contributing photoionization. The threshold photon-emission rate of LSD termination gives the elucidation of the LSD termination condition.

  13. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  14. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  15. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  16. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    NARCIS (Netherlands)

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of

  17. Photoionization sensor CES for non-invasive medical diagnostics

    Science.gov (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-10-01

    Method CES (collisional electron spectroscopy), patented in Russia, the USA, Japan, China, Germany and Britain, allows to analyze the gaseous mixtures using electron spectroscopy under high pressures up to atmospheric without using vacuum. The design of VUV photoionization detector was developed based on this method. Such detector is used as a portable gas analyzer for continuous personal bio-medical monitoring. This detector measures energy of electrons produced in ionization with resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). Nowadays, micro plasma source of such photons on resonant line of Kr with energy of 10,6 eV is developed. Only impurities are ionized and detected by the VUV-emission, meanwhile the main components of air stay neutral that reduces background signal and increases the sensibility along with accuracy. The experimental facilities with VUV photoionization sensors CES are constructed with the overall sizes about 10*10*1 mm. The watt consumption may comprise less than 1W. Increase of electrometer amplifier's sensibility and more high-aperture construction are used today to increase the sensibility of CES-detectors. The wide range of detectable molecules and high sensitivity allow the development of portable device, which can become the base of the future preventive medicine. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  18. Attosecond delays in photoionization: time and quantum mechanics

    International Nuclear Information System (INIS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-01-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10 −18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter–operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics. (tutorial)

  19. Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA

    International Nuclear Information System (INIS)

    Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)

  20. Sodium-doping as a reference to study the influence of intracluster chemistry on the fragmentation of weakly-bound clusters upon vacuum ultraviolet photoionization

    OpenAIRE

    Litman Jessica H; Yoder Bruce L; Schläppi Bernhard; Signorell Ruth

    2012-01-01

    The fragmentation of methanol water dimethyl ether and acetic acid clusters upon photoionization with a single vacuum ultraviolet (VUV) photon of 10.1 eV 13.3 eV or 17.5 eV energy is studied with mass spectrometry. The sodium doping method is used as an independent approximate measure of the original cluster size distribution providing information on the degree of fragmentation upon VUV ionization. The experimental results show strong fragmentation for (CH3)2O and CH3CO2H clusters but minor f...

  1. The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization Orbitrap mass spectrometry.

    Science.gov (United States)

    Rejšek, Jan; Vrkoslav, Vladimír; Hanus, Robert; Vaikkinen, Anu; Haapala, Markus; Kauppila, Tiina J; Kostiainen, Risto; Cvačka, Josef

    2015-07-30

    Many insects use chemicals synthesized in exocrine glands and stored in reservoirs to protect themselves. Two chemically defended insects were used as models for the development of a new rapid analytical method based on desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The distribution of defensive chemicals on the insect body surface was studied. Since these chemicals are predominantly nonpolar, DAPPI was a suitable analytical method. Repeatability of DAPPI-MS signals and effects related to non-planarity and roughness of samples were investigated using acrylic sheets uniformly covered with an analyte. After that, analytical figures of merit of the technique were determined. The spatial distribution of (E)-1-nitropentadec-1-ene, a toxic nitro compound synthesized by soldiers of the termite Prorhinotermes simplex, was investigated. Then, the spatial distribution of the unsaturated aldehydes (E)-hex-2-enal, (E)-4-oxohex-2-enal, (E)-oct-2-enal, (E,E)-deca-2,4-dienal and (E)-dec-2-enal was monitored in the stink bug Graphosoma lineatum. Chemicals present on the body surface were scanned along the median line of the insect from the head to the abdomen and vice versa, employing either the MS or MS(2) mode. In this fast and simple way, the opening of the frontal gland on the frons of termite soldiers and the position of the frontal gland reservoir, extending deep into the abdominal cavity, were localized. In the stink bug, the opening of the metathoracic scent glands (ostiole) on the ventral side of the thorax as well as the gland reservoir in the median position under the ventral surface of the anterior abdomen were detected and localized. The developed method has future prospects in routine laboratory use in life sciences. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Inner-shell photoionization and core-hole decay of Xe and XeF2.

    Science.gov (United States)

    Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  3. Injection and laser acceleration of ions based on the resonant surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1993-01-01

    The collective effects have been investigated of the injection and acceleration of the ion beams due to the resonant surface photoionization. The considered scheme of the laser accelerator allows to obtain positive ions with relativistic velocities. 11 refs., 2 figs

  4. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  5. Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide

    Science.gov (United States)

    Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.

    1976-01-01

    The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.

  6. Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry

    Directory of Open Access Journals (Sweden)

    JUN WANG

    2010-01-01

    Full Text Available As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems.

  7. The 1s-2p resonance photoionization measurement of O+ ions in comparison with an isoelectronic species Ne3+

    International Nuclear Information System (INIS)

    Kawatsura, K.; Yamaoka, H.; Oura, M.; Hayaishi, T.; Sekioka, T.; Agui, A.; Yoshigoe, A.; Koike, F.

    2002-01-01

    The photoion yields from O + to O 2+ were measured in the 1s-2p autoionizing resonance region of the 525-540 eV photon energy range. A multiconfiguration Dirac-Fock calculation was performed to interpret the experimental data and the results show fairly good agreement with the experimental ones. Photoionization of the N-like isoelectronic sequences of O + and Ne 3+ are discussed. (author)

  8. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    Science.gov (United States)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The

  9. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  10. Coherent correlation enhancement of outer shell photoionization cross sections of alkali-like ions

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Avdonina, B.; Pratt, R.H.

    1995-01-01

    An alkali-like ion interaction with inner electrons of an alkali-like ion leads to a significant increase in the photoionization cross section of the outer s electron. This occurs not only for ground-state ions with one s electron in the outer shell, but also when the outer s electron is in an excited state. The reason for this amplification, in addition to coherent enhancement in summing of the correlation amplitudes, is that the zero in the direct amplitude occurs below threshold. This leads to a constructive interference with the correlation amplitude above the photoionization threshold, in contrast to a destructive interference in the case of a neutral atom with the same electronic configuration, for which the zero occurs above threshold. Results of this research were published

  11. Geochemical thermodynamic and kinetic modeling that take into account the mass transfer phenomena in saturated porous medium

    International Nuclear Information System (INIS)

    Gerard, Frederic

    1996-01-01

    The mass transport mechanisms (advection. mechanical dispersion and molecular diffusion) have been introduced into the thermodynamic and kinetic geochemical code KINDIS. This innovative approach to couple chemical and transport mass transfers has allowed us to develop a reactive transport or hydrochemical code named KIRMAT, which naturally preserve the comprehensive geochemical functions of KINDIS. Mass transport phenomena through the total connected porosity of a water-saturated porous medium are solved over one spatial dimension (ID). The finite difference method is used. An explicit or forward time scheme is computed. The advective finite difference expression may be either centered or upstream weighted. Thus, ail of the hydrodynamic conditions may be modeled (from the pure advection to pure diffusion). The mass transport and geochemical flux are solved simultaneously (one-step algorithm). Moreover. the code KIRMAT is designed to quantify reactive mass transport through a double or dual porosity medium, in which the flow porosity (filled by free water) and the diffusion porosity (containing stagnant water) are viewed as two distinct sub mediums or Systems. Under some given conditions, the need to solve one or the other mass transport equation is a function of the water-rock System size. The accuracy of the kinetic constraint has been improved in KIRMAT. Two new kinetic rate laws have been introduced for the dissolution of the most abundant silicates (alkali feldspars, silica. etc.). These rate laws integrate the quantitatively important inhibitor and catalytic effects involved with some dissolved chemical elements that are ubiquitous in natural aqueous solutions. The basic step. the numerical verification of the code, has been tackled with two complementary approaches. The numerical results from KIRMAT have been compared to those calculated from an exact solution and a new method has been developed and used. We have compared the numerical results of KIRMAT in

  12. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Photoionization of atmospheric gases studied by time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Mics, Zoltan; Kužel, Petr; Jungwirth, Pavel; Bradforth, S. E.

    2008-01-01

    Roč. 465, 1-3 (2008), s. 20-24 ISSN 0009-2614 R&D Projects: GA MŠk LC512; GA ČR(CZ) GA202/06/0286 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40550506 Keywords : terahertz * pump -probe * atmospheric gases * photoionization * plasma Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.169, year: 2008

  14. An experimental and kinetic modeling study of premixed NH3/CH4/O-2/Ar flames at low pressure

    DEFF Research Database (Denmark)

    Tian, Z.Y.; Li, Y. Y.; Zhang, L. D.

    2009-01-01

    An experimental and modeling study of 11 premixed NH3/CH4/O-2/Ar flames at low pressure (4.0 kPa) with the same equivalence ratio of 1.0 is reported. Combustion intermediates and products are identified using tunable synchrotron vacuum Ultraviolet (VUV) photoionization and molecular-beam mass...

  15. Lifetime and kinetic energy release of metastable dications dissociation

    International Nuclear Information System (INIS)

    Alagia, M.; Candori, P.; Falcinelli, S.; Mundim, K.C.; Mundim, M.S.P.; Pirani, F.; Richter, R.; Stranges, S.; Vecchiocattivi, F.

    2012-01-01

    Graphical abstract: A statistical method is proposed for extracting dynamics information from coincidence data in double photoionization of molecules. Highlights: ► When a photon, with sufficient energy, hits a molecule, a doubly charged ion can be formed. This dication has often a large probability of dissociate in two positive singly charged ions. ► Experiments of photoelectron–photoion–photoion coincidence can provide valuable information about the dynamics of such dissociation processes. ► A statistical method is proposed for extracting such information from the coincidence data. - Abstract: A new method for the determination of dynamical features of the molecular dication dissociation processes, following the single photon double ionization, investigated by time-of-flight mass spectrometry technique has been developed. The method is based on an extension of the generalized simulated annealing statistical methodology, previously applied in other fields. Here it is described and applied, as an example, to the case of the dissociation of the CO 2 2+ dication giving CO + + O + ion fragments. The results are consistent with previous determination of the metastable lifetime of the dication, but the analysis also provides additional information about the dynamics of the reaction.

  16. Analytical capabilities of high performance liquid chromatography - Atmospheric pressure photoionization - Orbitrap mass spectrometry (HPLC-APPI-Orbitrap-MS) for the trace determination of novel and emerging flame retardants in fish.

    Science.gov (United States)

    Zacs, D; Bartkevics, V

    2015-10-22

    A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called "emerging" and "novel" BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72-119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography-high-resolution mass spectrometry (GC-HRMS) method were found to be in a good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation.

    Science.gov (United States)

    Shen, Ching-Chi; Tsai, Tsung-Ting; Wu, Jun-Yi; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan

    2017-10-28

    In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH 3 ) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH 3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S 1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH 3 ] + cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.

  18. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  19. PHOTOIONIZATION OF HIGH-ALTITUDE GAS IN A SUPERNOVA-DRIVEN TURBULENT INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wood, Kenneth; Hill, Alex S.; Haffner, L. Matthew; Reynolds, R. J.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Madsen, G. J.

    2010-01-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  20. Attosecond time delay in the valence photoionization of C240 versus C60

    International Nuclear Information System (INIS)

    Shi, Kele; Magrakvelidze, Maia; Anstine, Dylan; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We investigate effects of electron correlations on the attosecond time delay of the photoionization from HOMO and HOMO-1 electrons in C 240 . A comparison with earlier C 60 results assesses the molecular size effect. (paper)

  1. Effective temperature of an ultracold electron source based on near-threshold photoionization

    NARCIS (Netherlands)

    Engelen, W.J.; Smakman, E.P.; Bakker, D.J.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an

  2. Inner-shell/subshell photoionization cross section measurements using a gamma excited variable energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Arora, S K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-02-15

    The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 <= Z <= 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of Lsub(III) subshell photoionization cross section in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the Lsub(III) subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.

  3. Dissociative multiple photoionization of SiBr4 and GeBr4 in the VUV and X-ray regions: a comparative study of inner-shell processes involving Si(2p, 2s), Ge(3d, 3p, 3s), and Br(3d, 3p, 3s)

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Saito, Norio

    2003-01-01

    Dissociative multiple photoionization of MBr 4 (M=Si, Ge) in the Si(2p, 2s), Ge(3d, 3s, 3p), and Br(3d, 3p, 3s) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 50∼944 eV for SiBr 4 and 50∼467 eV for GeBr 4 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been measured as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the 3d shells owing to the Br(3d 10 )→Br(3d 9 -f) excitation, showing the similar patterns for both of the systems. The ranges and the intensities of the shape resonances are found to be tremendously broad and enhanced, respectively, by the tetrahedral arrangement of the bromine ligands. In addition to the giant resonances, we have observed discrete features corresponding to the Br(3d), Si(2p), and Si(2s) in SiBr 4 and to the Br(3d), Ge(3p), and Ge(3s) in GeBr 4 . The dissociation processes of multiply charged parent ions have also been evaluated from the variations of photoelectron-photoion coincidence (PEPICO) and PIPICO yields with the photon energy. Over the entire energies examined, most efficient PIPICO channels involve Br + -Br + , Br + -MBr + , and M + -Br + (M=Si, Ge), the formation of which indicates that the total destruction of the molecules is a dominant process in the dissociative photoionization of the molecules

  4. Determination of trace concentrations in indium in ultrapure materials by the method of stepped laser photoionization from the metastable 5p2P 3/2 state

    International Nuclear Information System (INIS)

    Beterov, I.M.; Kurochkin, V.L.; Yudelevich, I.G.

    1985-01-01

    Experiments have been carried out on the photoionization detection of impurity sodium and aluminum atoms by means of stepped photoionization of the atoms in a gaseous medium with laser evaporation of the sample or with an atomic beam with thermal evaporation of the material in a vacuum. Photoionization and detection of impurity atoms in a vacuum permit eliminating the background signal due to the presence of traces of impurities in the gas and quenching collisions and obtaining maximum selectivity. The use of the photoionization method for recording the intensity and elemental composition of atomic beams in molecular epitaxy processes will make it possible to perform more accurately than with other methods a continuous technological monitoring of the conditions of deposition of semiconducting devices. In this paper the authors examine the characteristic features of the photoionization detection of indium atoms in an atomic beam and they present the results of experiments of trace impurities in very pure germanium

  5. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    Science.gov (United States)

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  6. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    Science.gov (United States)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  7. Dissociative multiple photoionization of Br2, IBr, and I2 in the VUV and X-ray regions: a comparative study of the inner-shell processes involving Br(3d,3p,3s) and I(4d,4p,4s,3d,3p)

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Saito, Norio

    2002-01-01

    Dissociative multiple photoionization of the bromine, the iodine monobromide, and the iodine molecules in the Br(3d,3p,3s) and I(4d,4p,4s,3d,3p) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 90∼978 eV for Br 2 , 60∼133 eV for IBr, and 86∼998 eV for I 2 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been recorded as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the inner-shells owing to the Br(3d 10 )→Br(3d 9 -f), I(4d 10 )→I(4d 9 -f), and I(3d 10 )→I(3d 9 -f) transitions. The dissociation processes of the multiply charged parent ions have also been evaluated from variations of photoelectron-photoion coincidence (PEPICO) and PIPICO spectra with the photon energy. From each Br(3p 3/2 ) (189.9 eV) and I(4p 3/2 ) threshold (129.9 eV), quintuple ionization of the molecules begins to play important roles in the photoionization, subsequently yielding ion pairs of X 3+ -X 2+ (X=Br, I). From the I(3d 5/2 ) threshold (627.3 eV), loss of six electrons from iodine molecule additionally begins to play a minor role in the multiple photoionization, giving rise to the formation of ion pairs of either I 3+ -I 3+ or I 4+ -I 2+ . A direct comparison of the strengths and the ranges of the I(4d) and Br(3d) giant resonances was successfully made from dissociative photoionization of IBr. Over the entire energy range examined, 60< E<133 eV, biased charge spread relevant to the specific core-hole states of IBr is observed, presumably reflecting the fact that charge localizes mostly in the excited atoms, which can be accounted for mainly by a two step decay via a fast dissociation followed by autoionization upon the VUV absorption

  8. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  9. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    Science.gov (United States)

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  10. Donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-09-15

    The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.

  11. Absolute high-resolution Se+ photoionization cross-section measurements with Rydberg-series analysis

    International Nuclear Information System (INIS)

    Esteves, D. A.; Bilodeau, R. C.; Sterling, N. C.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Red, E. C.; Aguilar, A.

    2011-01-01

    Absolute single photoionization cross-section measurements for Se + ions were performed at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the photo-ion merged-beams technique. Measurements were made at a photon energy resolution of 5.5 meV from 17.75 to 21.85 eV spanning the 4s 2 4p 3 4 S 3/2 o ground-state ionization threshold and the 2 P 3/2 o , 2 P 1/2 o , 2 D 5/2 o , and 2 D 3/2 o metastable state thresholds. Extensive analysis of the complex resonant structure in this region identified numerous Rydberg series of resonances and obtained the Se 2+ 4s 2 4p 23 P 2 and 4s 2 4p 21 S 0 state energies. In addition, particular attention was given to removing significant effects in the measurements due to a small percentage of higher-order undulator radiation.

  12. Molecular photoionization studies of nucleobases and correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  13. Photoionization of lanthanum and its ions in the region of the 'giant' resonance

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1989-01-01

    The photoionization cross sections of outer and intermediate shells including 4d of La and its ions are calculated in the region of the 'giant' resonance. The prominent effects of both intershell correlational effects and rearrangement are demonstrated. (orig.)

  14. Alignment following Au L$_{3}$ photoionization by synchrotron radiation

    CERN Document Server

    Yamaoka, H; Takahiro, K; Morikawa, T; Ito, S; Mizumaki, M; Semenov, S; Cherepkov, N; Kabachnik, N M; Mukoyama, T; 10.1088/0953-4075/36/19/001

    2003-01-01

    The alignment of Au/sup +/ ions following L/sub 3/ photoionization has been studied using a high-resolution X-ray spectrometer. We observed a small anisotropy for the angular dependence of Au L/sub l/ and L alpha emissions. The alignment parameter A/sub 20/ derived from the experimental results is compared with theoretical calculations by Hartree-Fock approximation and random phase approximation with exchange. The contribution to the alignment of quadruple interaction is discussed. (40 refs).

  15. Kinetic rates and mass balance of COD, TKN, and TP using SBR treating domestic and industrial wastewater.

    Science.gov (United States)

    Warodomrungsimun, Chaowalit; Fongsatitkul, Prayoon

    2009-12-01

    To assess the performance of SBR to treat three different types of wastewater from domestic, hospital, slaughterhouse and investigate the kinetic rates of active biomass. Mass balance calculation of COD, TKN and TP was further performed to explain the mechanisms of the biological nutrient removals processed in the SBR system. The measured kinetic rates were in turn used to evaluate the process performances under different types of wastewater. Experimental research involving 3 similar SBR lab-scales were installed and operated at the Sanitary Engineering Laboratory. The reactors were seeded with sludge biomass obtained from the Sri-Phraya Domestic Wastewater Treatment Plant in Bangkok. The slaughterhouse, hospital and domestic wastewaters were treated by SBR system for biological organic carbon (COD), nitrogen (TKN) and phosphorus removals. Biological methods for kinetic rates evaluation were conducted in five replicated batch tests. The removal efficiencies of COD and TKN were greater than 90% for all three types of wastewater while the biological phosphorus removal for domestic and hospital wastewaters were less than 60% and phosphorus removal for slaughterhouse exceeded 95%. The kinetic rates of nitrification and denitrification of hospital wastewater was lower than those the domestic and slaughterhouse wastewaters. Phosphorus release and uptake rates of slaughterhouse wastewater were high but domestic and hospital wastewaters were very low. The result of system removal efficiency and batch test for kinetic rates confirmed that the domestic and hospital wastewaters were in deficiency of organic carbon with respect to its ability to support successful biological phosphorus removal.

  16. The manifestation of intershell interactions in the process of atomic photoionization

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1979-01-01

    It is demonstrated that intershell and intertransition correlations considerably modify the partial photoionization cross sections, leading in some cases to total collectivization of the few-electron subshells. Correlations also play a significant role in the angular distributions of photoelectrons and Augerelectrons and in the polarization of photoelectrons. The joint manifestations of correlational and relativistic effects are discussed. (author)

  17. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  18. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    Science.gov (United States)

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  19. Kinetics of heterogeneous nucleation of gas-atomized Sn-5 mass%Pb droplets

    International Nuclear Information System (INIS)

    Li Shu; Wu Ping; Zhou Wei; Ando, Teiichi

    2008-01-01

    A method for predicting the nucleation kinetics of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the droplet motion and cooling in gas atomization. Application to a Sn-5 mass%Pb alloy has yielded continuous-cooling transformation (CCT) diagrams for the heterogeneous droplet nucleation in helium gas atomization. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The developed method enables improved screening of atomized powders for critical applications where stringent control of powder microstructure is required

  20. Anomalous Photoionization in Xe

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2012-10-01

    Photoionization (PI) cross sections are important components of the opacities that are necessary for the simulation of astrophysical and ICF plasmas. Most of PI cross sections (i) start abruptly at threshold and (ii) decrease as an inverse power (e.g.3^rd) of the photon energy. In the framework of the CRASH project [1] we computed Xe opacities with the STA code [2]. We observed that the PI cross section for the 4d shell has neither of these 2 characteristics. We explain this result as interference between the bound 4d wavefunction (wf), the photon, and the free electron wf. Similar, but less pronounced effects are seen for the 5d and 5p shells. Simplified models of PI not involving the actual wf would not show this effect and would probably be inaccurate.[4pt] [1] Doss, F. W., Drake, R. P., and Kuranz, C. C., High Ener. Dens. Phys. 6, 157-61.[0pt] [2] Busquet, M., Klapisch, M., Bar-Shalom, A., et al., Bull. Am. Phys. Soc. 55, 225 (2010).