WorldWideScience

Sample records for kinetic energy functional

  1. Nonlocal kinetic energy functionals by functional integration

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  2. Nonlocal kinetic-energy-density functionals

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  3. Functional derivative of noninteracting kinetic energy density functional

    Liu Shubin; Ayers, Paul W.

    2004-01-01

    Proofs from different theoretical frameworks, namely, the Hohenbergh-Kohn theorems, the Kohn-Sham scheme, and the first-order density matrix representation, have been presented in this paper to show that the functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the negative of the Kohn-Sham effective potential, arbitrary only to an additive orbital-independent constant. Key points leading to the current result as well as confusion about the quantity in the literature are briefly discussed

  4. Kinetic-energy functionals studied by surface calculations

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  5. Kinetic-energy density functional: Atoms and shell structure

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  6. Trivial constraints on orbital-free kinetic energy density functionals

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  7. Comment on 'Kinetic energy as a density functional'

    Holas, A.; March, N.H.

    2002-01-01

    In a recent paper, Nesbet [Phys. Rev. A 65, 010502(R) (2001)] has proposed dropping ''the widespread but unjustified assumption that the existence of a ground-state density functional for the kinetic energy, T s [ρ], of an N-electron system implies the existence of a density-functional derivative, δT s [ρ]/δρ(r), equivalent to a local potential function,'' because, according to his arguments, this derivative 'has the mathematical character of a linear operator that acts on orbital wave functions'. Our Comment demonstrates that the statement called by Nesbet an 'unjustified assumption' happens, in fact, to be a rigorously proven theorem. Therefore, his previous conclusions stemming from his different view of this derivative, which undermined the foundations of density-functional theory, can be discounted

  8. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    Garcia-Aldea, David; Alvarellos, J. E.

    2008-01-01

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved

  9. Nonlocal exchange and kinetic-energy density functionals for electronic systems

    Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.

    1992-01-01

    The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal

  10. A method for ion distribution function evaluation using escaping neutral atom kinetic energy samples

    Goncharov, P.R.; Ozaki, T.; Veshchev, E.A.; Sudo, S.

    2008-01-01

    A reliable method to evaluate the probability density function for escaping atom kinetic energies is required for the analysis of neutral particle diagnostic data used to study the fast ion distribution function in fusion plasmas. Digital processing of solid state detector signals is proposed in this paper as an improvement of the simple histogram approach. Probability density function for kinetic energies of neutral particles escaping from the plasma has been derived in a general form taking into account the plasma ion energy distribution, electron capture and loss rates, superposition along the diagnostic sight line and the magnetic surface geometry. A pseudorandom number generator has been realized that enables a sample of escaping neutral particle energies to be simulated for given plasma parameters and experimental conditions. Empirical probability density estimation code has been developed and tested to reconstruct the probability density function from simulated samples assuming. Maxwellian and classical slowing down plasma ion energy distribution shapes for different temperatures and different slowing down times. The application of the developed probability density estimation code to the analysis of experimental data obtained by the novel Angular-Resolved Multi-Sightline Neutral Particle Analyzer has been studied to obtain the suprathermal particle distributions. The optimum bandwidth parameter selection algorithm has also been realized. (author)

  11. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  12. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: Quantum Monte Carlo simulations

    Neumann, Martin; Zoppi, Marco

    2002-01-01

    We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good

  13. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  14. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions

    Harris, Frank E., E-mail: harris@qtp.ufl.edu [Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, Florida 32611 (United States)

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  15. Kinetic energy budget details

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  16. On the divergence of gradient expansions for kinetic energy functionals in the potential functional theory

    Sergeev, Alexey; Jovanovic, Raka; Kais, Sabre; Alharbi, Fahhad H

    2016-01-01

    We consider the density of a fermionic system as a functional of the potential, in one-dimensional case, where it is approximated by the Thomas–Fermi term plus semiclassical corrections through the gradient expansion. We compare this asymptotic series with the exact answer for the case of the harmonic oscillator and the Morse potential. It is found that the leading (Thomas–Fermi) term is in agreement with the exact density, but the subdominant term does not agree in terms of the asymptotic behavior because of the presence of oscillations in the exact density, but their absence in the gradient expansion. However, after regularization of the density by convolution with a Gaussian, the agreement can be established even in the subdominant term. Moreover, it is found that the expansion is always divergent, and its terms grow proportionally to the factorial function of the order, similar to the well-known divergence of perturbation series in field theory and the quantum anharmonic oscillator. Padé–Hermite approximants allow summation of the series, and one of the branches of the approximants agrees with the density. (paper)

  17. Kinetic energy absorbing pad

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  18. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    Amovilli, C; March, N H

    2012-01-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)

  19. Concepts of radial and angular kinetic energies

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  20. Kinetic energy storage system

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  1. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  2. Yield of Prompt Gamma Radiation in Slow-Neutron Induced Fission of 235U as a Function of the Total Fragment Kinetic Energy

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-07-01

    Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy

  3. On the kinetic energy density

    Lombard, R.J.; Mas, D.; Moszkowski, S.A.

    1991-01-01

    We discuss two expressions for the density of kinetic energy which differ by an integration by parts. Using the Wigner transform we shown that the arithmetic mean of these two terms is closely analogous to the classical value. Harmonic oscillator wavefunctions are used to illustrate the radial dependence of these expressions. We study the differences they induce through effective mass terms when performing self-consistent calculations. (author)

  4. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Padé approximant

    Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.

    2016-04-01

    The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

  5. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  6. Kinetic k-essence ghost dark energy model

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  7. Nanostructured energy devices equilibrium concepts and kinetics

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  8. Point-by-point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    Tudora, A.

    2013-01-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252 Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dε slopes are also obtained by averaging the same PbP matrix ε(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for 3 fissioning systems benefiting of experimental data as a function of TKE: 252 Cf(SF), 235 U(n th ,f) and 239 Pu(n th ,f). In the case of 234 U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ε>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3- 5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments. (author)

  9. Kinetic Analysis of Isothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function—Estimation of Density Distribution Functions of the Apparent Activation Energies

    Janković, Bojan

    2009-10-01

    The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.

  10. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature

    Grela, Jacek; Majumdar, Satya N.; Schehr, Grégory

    2017-09-01

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1 d harmonic trap of frequency ω at finite temperature T . Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N , using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N , we identify (i) a quantum regime, for T ˜ℏω , where quantum fluctuations dominate and (ii) a thermal regime, for T ˜N ℏω , governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  11. Alternative kinetic energy metrics for Lagrangian systems

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  12. Temperatures of fragment kinetic energy spectra

    Bauer, W.

    1995-01-01

    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework

  13. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  14. Energy transfer and kinetics in mechanochemistry.

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  15. Chemical kinetic functional sensitivity analysis: Elementary sensitivities

    Demiralp, M.; Rabitz, H.

    1981-01-01

    Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research

  16. Imperfect dark energy from kinetic gravity braiding

    Deffayet, Cédric [AstroParticule and Cosmologie, UMR7164-CNRS, Université Denis Diderot-Paris 7, CEA, Observatoire de Paris, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Pujolàs, Oriol [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Sawicki, Ignacy; Vikman, Alexander, E-mail: deffayet@iap.fr, E-mail: oriol.pujolas@cern.ch, E-mail: ignacy.sawicki@nyu.edu, E-mail: alexander.vikman@nyu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  17. Imperfect dark energy from kinetic gravity braiding

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime

  18. Tandem mass spectrometry at low kinetic energy

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  19. Kinetic energy recovery systems in motor vehicles

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  20. Reduced kinetic equations: An influence functional approach

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  1. Redistribution of Kinetic Energy in Turbulent Flows

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  2. Imperfect Dark Energy from Kinetic Gravity Braiding

    Deffayet, Cedric; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energ...

  3. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  4. Split kinetic energy method for quantum systems with competing potentials

    Mineo, H.; Chao, Sheng D.

    2012-01-01

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  5. Kinetic energy factors in evaluation of athletes.

    Jones, Jason N; Priest, Joe W; Marble, Daniel K

    2008-11-01

    It is established that speed and agility are critical attributes of sports performance. Performance timing of runs during agility course testing can be used to estimate acceleration, speed, or quickness. The authors of this research effort also report the energy of motion, or kinetic energy of the athlete, which considers not only the speed but also the mass of the athlete. An electronic timer was used to determine total run times as well as split performance times during a new 60-yd "run-shuttle" test. This newly designed agility test takes advantage of the technological capabilities of a laser timing device. Separate times for each of four run segments were recorded and converted to average speeds (m x s(-1)) as well as a quantitative factor of merit defined as the "K-factor." The purpose of this study was to describe the effects of training and to compare athletes and teams using measures of time, speed, and kinetic energy. Results of the analysis of total time on the 60-yd run-shuttle provided evidence of the effectiveness of the training programs. Split times of segments within the 60-yd run-shuttle provided information not available from conventional agility tests. Average speeds and K-factors identified discriminating characteristics of otherwise similar athletes. Our findings support the conclusion that training programs and athletic performance may be evaluated using the 60-yd run-shuttle with laser timer system. Coaches and trainers may find practical application of this technology for American football, soccer, basketball, baseball/softball, track and field, and field hockey.

  6. Reaction wheels for kinetic energy storage

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  7. Turbulence generation through intense kinetic energy sources

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  8. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    March, N.H.

    2002-08-01

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  9. Kinetic energy dissipation in heavy-ion collisions

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  10. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 234U

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-01-01

    The standard deviation of the final kinetic energy distribution (σ e ) as a function of mass of final fragments (m) from low energy fission of 234 U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution (σ E ) as a function of primary fragment mass (A). The second peak is attributed to a real peak on σ E (A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on σ E (A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on σ e (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the σ E (A) curve, and the observed peaks on σ e (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  11. Fisher information, kinetic energy and uncertainty relation inequalities

    Luo Shunlong

    2002-01-01

    By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)

  12. The eddy kinetic energy budget in the Red Sea

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim

    2016-01-01

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum

  13. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    Park, Jong-Kyu

    2011-01-01

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  14. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  15. Computing the partition function for kinetically trapped RNA secondary structures.

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  16. Kinetic Storage as an Energy Management System

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  17. Mass yields in the reaction 235U(nsub(th),f) as a function of the kinetic energy and ion charge of the fission products

    Wohlfarth, H.

    1977-01-01

    In this paper measurements of mass- and ioncharge distributions of the lower mass 235 U(nsub(th),f)-fission products, performed with the 'Lohengrin' recoil spectrometer of the Institut Lane-Langevin at Grenoble, are reported. The uranium targets used led to an energy loss of the fission fragments of only 1 to 2 MeV, so their energy was well defined. The mass abundance have been measured for the following fragment energies: E = 83.6, 88.5, 93.4, 98.3, 103.1, 108.0, 112.0 MeV. The energy integrated mass distributions were compared with recent data collections of fission yields. For nearly all masses the abundancies agree well within the limits of error. So these maesurements can be used as an independent source of data. (orig./RW) [de

  18. Renormalizing the kinetic energy operator in elementary quantum mechanics

    Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br

    2009-09-15

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  19. Renormalizing the kinetic energy operator in elementary quantum mechanics

    Coutinho, F A B; Amaku, M

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form ψ(r) = u(r)/r, where u(0) ≠ 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  20. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  1. Pairing-induced kinetic energy lowering in doped antiferromagnets

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  2. Kinetic energy recovery and power management for hybrid electric vehicles

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  3. Thermoluminescence glow-curve deconvolution functions for mixed order of kinetics and continuous trap distribution

    Kitis, G.; Gomez-Ros, J.M.

    2000-01-01

    New glow-curve deconvolution functions are proposed for mixed order of kinetics and for continuous-trap distribution. The only free parameters of the presented glow-curve deconvolution functions are the maximum peak intensity (I m ) and the maximum peak temperature (T m ), which can be estimated experimentally together with the activation energy (E). The other free parameter is the activation energy range (ΔE) for the case of the continuous-trap distribution or a constant α for the case of mixed-order kinetics

  4. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The eddy kinetic energy budget in the Red Sea

    Zhan, Peng

    2016-06-09

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.

  6. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  7. Local kinetic-energy density of the Airy gas

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential approximation. The expression contains an explicit Laplacian term 2/5((h) over bar(2)/2m)del(mu)(2)(r) that, according to jellium surface calculations, must be a universal feature of any accura...

  8. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  9. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    Paul C Whitford

    Full Text Available Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  10. Kinetic chain contributions to elbow function and dysfunction in sports.

    Ben Kibler, W; Sciascia, Aaron

    2004-10-01

    The elbow functions in throwing and other athletic activities as a link in the kinetic chain of force development, regulation, and transfer. Efficient function, with maximal performance and minimal injury risk, requires optimum activation of all the link in the kinetic chain. Injury is often associated with alterations in force production or regulation capabilities in links that may be distant to the site of injury. Evaluation of injured athletes should include screening examinations for these areas, and treatment and conditioning should also include these areas.

  11. Kinetic-energy distribution for symmetric fission of 236U

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  12. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Maria, G; Marin, A; Wyss, C; Mueller, S; Newson, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  13. Kinetic test of pancreatic exocrine function

    Sawabu, Norio; Hirose, Shoichiro; Nakazima, Shin; Yoneda, Masao; Nishimura, Keigo

    1975-01-01

    In order to improve the diagnostic evaluation of pancreatic exocrine function, 75 Se-activity in the duodenal aspirate of twenty control subjects and 131 subjects with pancertic and/or gastrointestinal disease was measured following intravenous injection of 75 Se-selenomethionine. Radioactivity in the duodenal aspirate of the control subjects remained low until 80 min. It then rose rapidly and reached a plateau at 115 min. In contrast, radioactivity in the subjects with pancreatic diseases remained low, or rose only slowly throughout the period of collection. Radioactivity of the protein fraction (TCA-precipitable) in the 80 to 130 min. duodenal aspirates showed good separation between controls and subjects with pancreatic disease. The incidence of abnormalities of TCA-precipitable radioactivity in the 80 to 130 min. duodenal aspirates was significantly higher than that of the conventional PS-test parameters in groups with various pancreatic diseases. All of the subjects having an abnormal maximal ratio of TCA-precipitable radioactivity to protein (representing pancreatic enzyme synthesis) showed an abnormal distribution in output of TCA-precipitable radioactivity in 80 to 130 min. collection (representing both enzyme synthesis and excretion). On the other hand, subjects with an abnormal output of TCA-precipitable radioactivity in 80 to 130 min. could be separated into those with normal and abnormal ratios of TCA-precipitable radioactivity, suggesting the presence of two types of disturbance in pancreatic function. In the latter group both synthesis and secretion of enzyme were impaired. In the former group, secretion of enzyme was depressed, although enzyme synthesis was fairly well preserved. (author)

  14. Kinetic test of pancreatic exocrine function

    Sawabu, N; Hirose, S; Nakazima, S; Yoneda, M; Nishimura, K [Kanazawa Univ. (Japan). School of Medicine

    1975-01-01

    In order to improve the diagnostic evaluation of pancreatic exocrine function, /sup 75/Se-activity in the duodenal aspirate of twenty control subjects and 131 subjects with pancertic and/or gastrointestinal disease was measured following intravenous injection of /sup 75/Se-selenomethionine. Radioactivity in the duodenal aspirate of the control subjects remained low until 80 min. It then rose rapidly and reached a plateau at 115 min. In contrast, radioactivity in the subjects with pancreatic diseases remained low, or rose only slowly throughout the period of collection. Radioactivity of the protein fraction (TCA-precipitable) in the 80 to 130 min. duodenal aspirates showed good separation between controls and subjects with pancreatic disease. The incidence of abnormalities of TCA-precipitable radioactivity in the 80 to 130 min. duodenal aspirates was significantly higher than that of the conventional PS-test parameters in groups with various pancreatic diseases. All of the subjects having an abnormal maximal ratio of TCA-precipitable radioactivity to protein (representing pancreatic enzyme synthesis) showed an abnormal distribution in output of TCA-precipitable radioactivity in 80 to 130 min. collection (representing both enzyme synthesis and excretion). On the other hand, subjects with an abnormal output of TCA-precipitable radioactivity in 80 to 130 min. could be separated into those with normal and abnormal ratios of TCA-precipitable radioactivity, suggesting the presence of two types of disturbance in pancreatic function. In the latter group both synthesis and secretion of enzyme were impaired. In the former group, secretion of enzyme was depressed, although enzyme synthesis was fairly well preserved.

  15. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U

    Montoya, M.; Rojas, J.; Saettone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  16. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  17. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    V. Blažica

    2013-03-01

    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  18. Nonequilibrium electron energy-loss kinetics in metal clusters

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  19. Fragmentation and mean kinetic energy release of the nitrogen molecule

    Santos, A.C.F.; Melo, W.S.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2007-01-01

    Ionization and fragmentation of the N 2 molecule in coincidence with the final projectile charge state have been measured for the impact of 0.188-0.875 MeV/amu He + projectiles. The average kinetic energy release (KER) of the target ionic fragments is derived from the peak widths of their time-of-flight distributions. It is shown that the KER's for singly-charged products follow scaling laws irrespectively to the collision channel

  20. Casimir rack and pinion as a miniaturized kinetic energy harvester

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.

  1. Revisiting the density scaling of the non-interacting kinetic energy.

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2014-07-28

    Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.

  2. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy

    Pergamenshchik, V. M.; Vozniak, A. B.

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  3. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    R. Sorgente

    2011-08-01

    to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.

  4. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    Sharief Hendricks, David Karpul, Mike Lambert

    2014-09-01

    Full Text Available Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior and position (forwards vs. backs, and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact. Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60. Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29. Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards are tactically predetermined to carry the ball in contact.

  5. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    Shrivastava, G., E-mail: geetphy9@gmail.com; Ahirwar, G. [School of Studies in Physics, Vikram University, Ujjain India (India); Shrivastava, J., E-mail: jayashrivastava2007@gmail.com [Dronacharya Group of Institutions, Greater Noida-India (India)

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  6. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-01-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key Points First study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player. Physical components alone, of either ball-carrier or

  7. Momentum and kinetic energy before the tackle in rugby union.

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-09-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg(.)m(.)s(-1) n = 31 vs. backs 438 ± 135 Kg(.)m(.)s(-1), d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key PointsFirst study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player.Physical components alone, of either ball

  8. Extending Newton's law from nonlocal-in-time kinetic energy

    Suykens, J.A.K.

    2009-01-01

    We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics

  9. Discrete kinetic models from funneled energy landscape simulations.

    Nicholas P Schafer

    Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.

  10. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  11. Tunneling and reflection in unimolecular reaction kinetic energy release distributions

    Hansen, K.

    2018-02-01

    The kinetic energy release distributions in unimolecular reactions is calculated with detailed balance theory, taking into account the tunneling and the reflection coefficient in three different types of transition states; (i) a saddle point corresponding to a standard RRKM-type theory, (ii) an attachment Langevin cross section, and (iii) an absorbing sphere potential at short range, without long range interactions. Corrections are significant in the one dimensional saddle point states. Very light and lightly bound absorbing systems will show measurable effects in decays from the absorbing sphere, whereas the Langevin cross section is essentially unchanged.

  12. About total kinetic energy distribution between fragments of binary fission

    Khugaev, A.V.; Koblik, Yu.N.; Pikul, V.P.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures

  13. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-01-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that pro files of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs

  14. The Gaussian radial basis function method for plasma kinetic theory

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  15. Jet energy loss in quark-gluon plasma. Kinetic theory with a Bhatnagar-Gross-Krook collisional kernel

    Han, Cheng; Hou, De-fu; Li, Jia-rong [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan, Hubei (China); Jiang, Bing-feng [Hubei University for Nationalities, Center for Theoretical Physics and School of Sciences, Enshi, Hubei (China)

    2017-10-15

    The dielectric functions ε{sub L}, ε{sub T} of the quark-gluon plasma (QGP) are derived within the framework of the kinetic theory with BGK-type collisional kernel. The collision effect manifested by the collision rate is encoded in the dielectric functions. Based on the derived dielectric functions we study the collisional energy loss suffered by a fast parton traveling through the QGP. The numerical results show that the collision rate increases the energy loss. (orig.)

  16. Kinetic energy budget for electroconvective flows near ion selective membranes

    Wang, Karen; Mani, Ali

    2017-11-01

    Electroconvection occurs when ions are driven from a bulk fluid through an ion-selective surface. When the driving voltage is beyond a threshold, this process undergoes a hydrodynamic instability called electroconvection, which can become chaotic due to nonlinear coupling between ion-transport, fluid flow, and electrostatic forces. Electroconvection significantly enhances ion transport and plays an important role in a wide range of electrochemical applications. We investigate this phenomenon by considering a canonical geometry consisting of a symmetric binary electrolyte between an ion-selective membrane and a reservoir using 2D direct numerical simulation (DNS). Our simulations reveal that for most practical regimes, DNS of electroconvection is expensive. Thus, a plan towards development of reduced-order models is necessary to facilitate the adoption of analysis of this phenomenon in industry. Here we use DNS to analyze the kinetic energy budget to shed light into the mechanisms sustaining flow and mixing in electroconvective flows. Our analysis reveals the relative dominance of kinetic energy sources, dissipation, and transport mechanisms sustaining electroconvection at different distances from the interface and over a wide range of input parameters. Karen Wang was supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG). Ali Mani was supported by the National Science Foundation Award.

  17. Recommended Auger-electron kinetic energies for 42 elemental solids

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  18. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  19. Kinetic Energy of Tornadoes in the United States.

    Fricker, Tyler; Elsner, James B

    2015-01-01

    Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity.

  20. Kinetic Energy of Tornadoes in the United States.

    Tyler Fricker

    Full Text Available Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity.

  1. Study of N-13 decay on time using continuous kinetic function method

    Tran Dai Nghiep; Vu Hoang Lam; Nguyen Ngoc Son; Nguyen Duc Thanh

    1993-01-01

    The decay function from radioisotope 13 N formed in the reaction 14 N(γ,n) 13 N was registered by high resolution gamma spectrometer in multiscanning mode with gamma energy 511 keV. The experimental data was processed by common and kinetic function method. The continuous comparison of the decay function on time permits to determinate possible deviation from purely exponential decay curve. The results were described by several decay theories. The degrees of corresponding between theories and experiment were evaluated by goodness factor. A complex type of decay was considered. (author). 9 refs, 2 tabs, 6 figs

  2. Local hybrid functionals: An assessment for thermochemical kinetics

    Kaupp, Martin; Bahmann, Hilke; Arbuznikov, Alexei V.

    2007-01-01

    Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(τ W (r)/τ(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers

  3. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  4. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  5. Microscopically Based Nuclear Energy Functionals

    Bogner, S. K.

    2009-01-01

    A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.

  6. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission

  7. Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory

    Unesaki, Hironobu

    1989-01-01

    Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)

  8. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  9. Utilization of rotor kinetic energy storage for hybrid vehicles

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  10. Mass independent kinetic energy reducing inlet system for vacuum environment

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  11. Kinetic energy distributions of ions after surface collisions

    Short, R.T.; Todd, P.J.; Grimm, C.C.

    1991-01-01

    As a part of the development of an organic ion microprobe, to be used for imaging of particular organic compounds in biological tissue, various methods of quadrupole-based tandem mass spectroscopy (MS/MS) have been investigated. High transmission efficiency is essential for the success of the organic ion microprobe, due to expected low analyte concentrations in biological tissue and the potential for sample damage from prolonged exposure to the primary ion beam. MS/MS is necessary for organic ion imaging because of the complex nature of the biological matrices. The goal of these studies of was to optimize the efficiency of daughter ion production and transmission by first determining daughter ion properties and then designing ion optics based on those properties. The properties of main interest are daughter ion kinetic energy and angular distribution. 1 fig

  12. Observations of near-inertial kinetic energy inside mesoscale eddies.

    Garcia Gomez, B. I.; Pallas Sanz, E.; Candela, J.

    2016-02-01

    The near-nertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoescale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 30 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical cross-sections of the KEi-composites show that the KEi is mainly located near the surface and at the edge of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center and near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. A relative maximum in the upper anticyclonic eddy is also observed. The cyclonic eddies present a maximum of KEi near to the surface at 70 m, while the maximum of KEi in the anticyclonic eddies occurs between 800 and 1000 m. It is also shown the dependence between the distribution and magnitude of the KEi and the eddy's characteristics such as radius, vorticity, and amplitude.

  13. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  14. Kinetics of interaction from low-energy-ion bombardment of surfaces

    Horton, C.C.

    1988-01-01

    The kinetics of interaction from low energy oxygen ion bombardment of carbon and Teflon surfaces have been investigated. The surfaces were bombarded with 4.5 to 93 eV oxygen ions and emitted species were observed with a mass spectrometer. To obtain the kinetic information, the ion beam was square pulse modulated and reaction products were observed as a function of time. The kinetic information is contained in the response of the emitted species to the pulsed ion beam. Oxygen bombardment of carbon produced CO in three parallel branches with each following an adsorption-desorption process. The fast branch, with a rate constants of 12,000/sec, appeared to be sputter induced an was absent below about 19 eV. The medium and slow branches, with rate constants of 850/sec and 45/sec respectively, has little energy dependence and appeared to be due to chemical sputtering from two sites. The ratio of the fraction of the medium branch to that of the slow was constant at 1:3. The bombardment of Teflon produced CF in two parallel branches, with one following a series process and the other an adsorb-desorb process. The rate constant of the other branch were 22,000/sec and 7,000/sec and the rate constant of the other branch was 90/sec. The total signal fell monotonically with decreasing ion energy with the fraction for each branch holding constant at 71% for the series and 29% for the adsorb-desorb

  15. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model

    Song, Huijuan; Liu, Guangrui; Wu, Jinhu

    2016-01-01

    Highlights: • Types of carbon in coal structure were investigated by curve-fitted "1"3C NMR spectra. • The work related pyrolysis characteristics and kinetics with coal structure. • Pyrolysis kinetics of low rank coals were studied by DAEM with Miura integral method. • DAEM could supply accurate extrapolations under relatively higher heating rates. - Abstract: The work was conducted to investigate pyrolysis characteristics and kinetics of low rank coals relating with coal structure by thermogravimetric analysis (TGA), the distributed activation energy model (DAEM) and solid-state "1"3C Nuclear Magnetic Resonance (NMR). Four low rank coals selected from different mines in China were studied in the paper. TGA was carried out with a non-isothermal temperature program in N_2 at the heating rate of 5, 10, 20 and 30 °C/min to estimate pyrolysis processes of coal samples. The results showed that corresponding characteristic temperatures and the maximum mass loss rates increased as heating rate increased. Pyrolysis kinetics parameters were investigated by the DAEM using Miura integral method. The DAEM was accurate verified by the good fit between the experimental and calculated curves of conversion degree x at the selected heating rates and relatively higher heating rates. The average activation energy was 331 kJ/mol (coal NM), 298 kJ/mol (coal NX), 302 kJ/mol (coal HLJ) and 196 kJ/mol (coal SD), respectively. The curve-fitting analysis of "1"3C NMR spectra was performed to characterize chemical structures of low rank coals. The results showed that various types of carbon functional groups with different relative contents existed in coal structure. The work indicated that pyrolysis characteristics and kinetics of low rank coals were closely associated with their chemical structures.

  16. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    distortions caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...... and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method...

  17. Jeans' criterion and nonextensive velocity distribution function in kinetic theory

    Du Jiulin

    2004-01-01

    The effect of nonextensivity of self-gravitating systems on the Jeans' criterion for gravitational instability is studied in the framework of Tsallis statistics. The nonextensivity is introduced in the Jeans problem by a generalized q-nonextensive velocity distribution function through the equation of state of ideal gas in nonextensive kinetic theory. A new Jeans' criterion is deduced with a factor √(2/(5-3q)) that, however, differs from that one in [Astron. Astrophys. 396 (2002) 309] and new results of gravitational instability are analyzed for the nonextensive parameter q. An understanding of physical meaning of q and a possible seismic observation to find astronomical evidence for a value of q different from unity are also discussed

  18. Delayed neutron kinetic functions for /sup 232/Th and /sup 238/U mixtures

    Ganich, P P; Goshovskij, M V; Lendel, A I; Lomonosov, V I; Sikora, D I; Sychev, S I

    1984-11-01

    In order to investigate the applicability of the method based on using kinetic functions, describing the emission of delayed neutrons by samples for determination of the content of fissionable nuclides in binary mixtures, the /sup 232/Th+/sup 238/U mixtures have been analyzed with the M-30 microtron. Fresh samples containing ThO/sub 2/, U/sub 3/O/sub 8/ and their mixtures are irradiated by bremstrahlung at the 15.5 MeV energy of accelerated electrons and 9 ..mu..A average current. The mass of samples is about 6 g. To determine the kinetic functions, temporal distributions of delayed neutron pulses are used, their maximum number for different samples being (1.7-3.0) x 10/sup 4/. In processing the data obtained two methods of normalization of the delayed neutron number in the kinetic functions are used: to the total yield of delayed neutrons and to the yield of /sup 133/I ..gamma..-quanta. The conclusion is drawn that the method investigated permits to determine relative /sup 238/U concentrations in the mixtures considered with 0.06-0.2 errors. Error reduction is achieved during the normalization of the number of delayed neutrons to the yield of /sup 130/I ..gamma..-quanta.

  19. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  20. Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2011-01-01

    A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen–hydrogen defect interactions in the cubic SrTiO3 perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV comp...

  1. Numeric kinetic energy operators for molecules in polyspherical coordinates

    Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David; Gatti, Fabien

    2012-01-01

    Generalized curvilinear coordinates, as, e.g., polyspherical coordinates, are in general better adapted to the resolution of the nuclear Schrödinger equation than rectilinear ones like the normal mode coordinates. However, analytical expressions of the kinetic energy operators (KEOs) for molecular systems in polyspherical coordinates may be prohibitively complicated for large systems. In this paper we propose a method to generate a KEO numerically and bring it to a form practicable for dynamical calculations. To examine the new method we calculated vibrational spectra and eigenenergies for nitrous acid (HONO) and compare it with results obtained with an exact analytical KEO derived previously [F. Richter, P. Rosmus, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 120, 6072 (2004)]. In a second example we calculated π→π* photoabsorption spectrum and eigenenergies of ethene (C 2 H 4 ) and compared it with previous work [M. R. Brill, F. Gatti, D. Lauvergnat, and H.-D. Meyer, Chem. Phys. 338, 186 (2007)]. In this ethene study the dimensionality was reduced from 12 to 6 by freezing six internal coordinates. Results for both molecules show that the proposed method for obtaining an approximate KEO is reliable for dynamical calculations. The error in eigenenergies was found to be below 1 cm −1 for most states calculated.

  2. Kinetic Energy Dissipation on Labyrinth Configuration Stepped Spillway

    Jaafar S. Maatooq

    2017-12-01

    Full Text Available In present work a labyrinth (zigzag, in shape has been used to configure the steps of stepped spillway by using the physical model. This configuration does not introduce previously by investigators or in construction techniques of dams or cascades. It would be expected to improve the flow over chute. A magnifying the width path of each step to become, LT, instead of, W, will induce the interlocking between the mainstream and that spread laterally due to labyrinth path. This phenomenon leads to reduce the jet velocities near the surfaces, thus minimizing the ability of cavitation and with increasing a circulation regions the ability of air entrainment be maximized. The results were encouraging, (e.g., the reverse performance has recorded for spillway slope. From the evaluation of outcome, the average recorded of percentage profits of kinetic energy dissipation with a labyrinth shape compared with the results of traditional shape were ranged between (13- 44%. Different predictive formulas have been proposed based on iteration analysis, can be recommended for evaluation and design.

  3. Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak

    Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team

    2018-05-01

    A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.

  4. Energy functions for regularization algorithms

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  5. Kinetic energy management in road traffic injury prevention: a call for action

    Davoud Khorasani-Zavareh

    2015-01-01

    Full Text Available Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy. The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety.

  6. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  7. Origins of Eddy Kinetic Energy in the Bay of Bengal

    Chen, Gengxin; Li, Yuanlong; Xie, Qiang; Wang, Dongxiao

    2018-03-01

    By analyzing satellite observational data and ocean general circulation model experiments, this study investigates the key processes that determine the spatial distribution and seasonality of intraseasonal eddy kinetic energy (EKE) within the Bay of Bengal (BOB). It is revealed that a complicated mechanism involving both local and remote wind forcing and ocean internal instability is responsible for the generation and modulation of EKE in this region. High-level EKE mainly resides in four regions: east of Sri Lanka (Region 1), the western BOB (Region 2), northwest of Sumatra (Region 3), and the coastal rim of the BOB (Region 4). The high EKE levels in Regions 1 and 2 are predominantly produced by ocean internal instability, which contributes 90% and 79%, respectively. Prominent seasonality is also observed in these two regions, with higher EKE levels in boreal spring and fall due to enhanced instability of the East Indian Coast Current and the Southwest Monsoon Current, respectively. In contrast, ocean internal instability contributes 49% and 52% of the total EKE in Regions 3 and 4, respectively, whereas the atmospheric forcing of intraseasonal oscillations (ISOs) also plays an important role. ISOs produce EKE mainly through wind stress, involving both the remote effect of equatorial winds and the local effect of monsoonal winds. Equatorial-origin wave signals significantly enhance the EKE levels in Regions 3 and 4, in the form of reflected Rossby waves and coastal Kelvin waves, respectively. The local wind forcing effect through Ekman pumping also has a significant contribution in Regions 3 and 4 (24% and 22%, respectively).

  8. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  9. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  10. Local functional derivative of the total energy and the shell structure in atoms and molecules

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    The full and local Thomas–Fermi–Dirac energy functional derivatives are evaluated at Hartree–Fock densities for several atoms and molecules. These functions are interpreted as local chemical potentials and related mainly to kinetic energy functional derivatives. They are able to reveal the shell

  11. Prediction of free turbulent mixing using a turbulent kinetic energy method

    Harsha, P. T.

    1973-01-01

    Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.

  12. Kinetic energy budgets near the turbulent/nonturbulent interface in jets

    Taveira, Rodrigo R.; da Silva, Carlos B.

    2013-01-01

    The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent

  13. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  14. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  15. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    Blais, N.; Podgorsak, E.B.

    1992-01-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author)

  16. Energy partitioning constraints at kinetic scales in low-β turbulence

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  17. Minimal nuclear energy density functional

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  18. Determination of kinetic coefficients for proton-nucleus collisions at high energy

    Rizzato, C.M.

    1987-01-01

    From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt

  19. On the equipartition of kinetic energy in an ideal gas mixture

    Peliti, L

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory

  20. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  1. Construction of energy loss function for low-energy electrons in helium

    Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1976-02-01

    The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.

  2. Non-additive non-interacting kinetic energy of rare gas dimers

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    2018-03-01

    Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.

  3. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  4. Raindrop Kinetic Energy Piezoelectric Harvesters and Relevant Interface Circuits: Review, Issues and Outlooks

    Kok Gnee CHUA

    2016-05-01

    Full Text Available As an ecological source of renewable energy, the available kinetic energy of rainfall is not trifling, especially in tropical countries at the equators. The research on the use of piezoelectric transducer to harvest raindrop kinetic energy is gaining more and more attention recently. This article reviews the state-of-the-art energy harvesting technology from the conversion of raindrop kinetic energy using piezoelectric transducers as well as its interface circuits for vibration-based energy harvesters. Performance of different types of piezoelectric harvesters in terms of power output, area power density and energy conversion efficiency are compared. Summaries of key problems and suggestions on the optimization of the performance of the piezoelectric harvesters are also provided for future works.

  5. Influence of the height of the vegetation cover in the variation of the kinetic energy of raindrops intercepted; Influencia de la altura de la cubierta vegetal en la variacion de la energia cinetica de las gotas de lluvia interceptadas

    Roldan Soriano, M.

    2009-07-01

    The erosive capacity of raindrops is function of mass (size) and terminal velocity. Drop mass and velocity govern the inherent erosivity of rainfall through kinetic energy. Kinetic energy is a very important property of the rainfall because it is one of the sources of energy in the process of water erosion. Vegetative canopy intercepts the raindrops and causes a variation on this rainfall kinetic energy due to modification of diameters and velocities distributions. If the height of canopy is enough, the bigger intercepted drops could achieve high velocities and their kinetic energies can increases. In this paper a quantitative evaluation of the increase of kinetic energy of intercepted drops is obtained and it is showed that this kinetic energy increases exponentially with vegetation height. (Author) 9 refs.

  6. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  7. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  8. Seasonal variability in the vertical current structure and kinetic energy in the Central Indian Ocean Basin

    Murty, V.S.N.; Savin, M.; RameshBabu, V.; Suryanarayana, A.

    apart, indicates the existence of anticyclonic gyral circulation. The depth variation of kinetic energy (KE) emphasises the bottom intensification of currents with minimum KE at deeper depths followed by relatively higher KE at abyssal depths...

  9. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    Jacobsen, Heiko

    2009-06-07

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.

  10. Bed turbulent kinetic energy boundary conditions for trapping efficiency and spatial distribution of sediments in basins.

    Isenmann, Gilles; Dufresne, Matthieu; Vazquez, José; Mose, Robert

    2017-10-01

    The purpose of this study is to develop and validate a numerical tool for evaluating the performance of a settling basin regarding the trapping of suspended matter. The Euler-Lagrange approach was chosen to model the flow and sediment transport. The numerical model developed relies on the open source library OpenFOAM ® , enhanced with new particle/wall interaction conditions to limit sediment deposition in zones with favourable hydrodynamic conditions (shear stress, turbulent kinetic energy). In particular, a new relation is proposed for calculating the turbulent kinetic energy threshold as a function of the properties of each particle (diameter and density). The numerical model is compared to three experimental datasets taken from the literature and collected for scale models of basins. The comparison of the numerical and experimental results permits concluding on the model's capacity to predict the trapping of particles in a settling basin with an absolute error in the region of 5% when the sediment depositions occur over the entire bed. In the case of sediment depositions localised in preferential zones, their distribution is reproduced well by the model and trapping efficiency is evaluated with an absolute error in the region of 10% (excluding cases of particles with very low density).

  11. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-01-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  12. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  13. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  14. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-01

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  15. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-28

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  16. The kinetic energy of the vortex and pinning force in high-temperature superconductors

    Boiko, J.; Khar'kovskij Gosudarstvennyj Univ.; Majewski, P.; Aldinger, F.

    1995-01-01

    It is known that the total magnetic energy of the vortex consists of two parts: the kinetic energy, E k , which is connected with the supercurrents which circulate around the vortex, and its own magnetic energy, E mo , which is connected with the real magnetic field. Therefore, the characteristic linear spacing which corresponds to the maximum change of the kinetic energy is not related with the magnetic penetration depth, λ, but with another characteristic spacing R. Considering this fact, the idea of the nature of F p of different defects which are greater than ξ, but smaller than λ, can be modified. (orig.)

  17. Work fluctuation theorems and free energy from kinetic theory

    Brey, J. Javier; Ruiz-Montero, M. J.; Domínguez, Álvaro

    2018-01-01

    The formulation of the first and second principles of thermodynamics for a particle in contact with a heat bath and submitted to an external force is analyzed, by means of the Boltzmann-Lorentz kinetic equation. The possible definitions of the thermodynamic quantities are discussed in the light of the H theorem verified by the distribution of the particle. The work fluctuation relations formulated by Bochkov and Kuzovlev, and by Jarzynski, respectively, are derived from the kinetic equation. In addition, particle simulations using both the direct simulation Monte Carlo method and molecular dynamics, are used to investigate the practical accuracy of the results. Work distributions are also measured, and they turn out to be rather complex. On the other hand, they seem to depend very little, if any, on the interaction potential between the intruder and the bath.

  18. Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach

    Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard

    2010-01-01

    Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.

  19. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms

    Cancio, Antonio C.; Redd, Jeremy J.

    2017-03-01

    The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.

  20. Energy Transfer Kinetics and Dynamics of Relevance to Iodine Lasers

    Heaven, Michael C

    2001-01-01

    ...). Energy transfer between I(2 P(1/2)) and 02(X) has been studied in detail. Rate constants for electronic energy transfer and nuclear spin relaxation were measured over the temperature range from 150-300K...

  1. Bounds on poloidal kinetic energy in plane layer convection

    Tilgner, A.

    2017-12-01

    A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.

  2. Kinetic-energy distributions of O- produced by dissociative electron attachment to physisorbed O2

    Huels, M.A.; Parenteau, L.; Michaud, M.; Sanche, L.

    1995-01-01

    We report measurements of the kinetic energy (E k ) distributions of O - produced by low-energy electron impact (5.5--19.5 eV) on disordered multilayers of O 2 physisorbed on a polycrystalline Pt substrate. The results confirm that dissociative electron attachment (DEA) proceeds via the formation of the 2 Π u , 2 Σ g + (I), and 2 Σ x + (II) (x=g and/or u) states of O 2 -* . We also find evidence for an additional resonance, namely the 2 Σ u + (I), positioned at about 10 eV above the neutral ground state in the Franck-Condon region, and dissociating into O - +O( 3 P). The measurements suggest that the autodetachment lifetimes of the 2 Σ u + (I) and 2 Σ g + (II) states may be longer than previously suggested. It is also observed that the effects of electron energy loss (EEL) in the solid prior to DEA, O - scattering in the solid after dissociation, and the charge-induced polarization energy of the solid, broaden the E k distributions, shift them to lower anion energies, and result in additional structure in them. The effects of EEL on the desorption dynamics of O - are estimated from high-resolution electron-energy-loss spectra and excitation functions for losses in the vicinity of the Schumann-Runge continuum of the physisorbed O 2 molecules. We find indications for an enhancement of the optically forbidden X 3 Σ g - →A 3 Σ u + transition, and observe that the gas-phase Rydberg bands, for energy losses above 7 eV, are not distinguishable in the condensed phase

  3. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)

  4. The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories

    Pfirsch, D.; Morrison, P.J.

    1990-02-01

    A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs

  5. Strict calculation of electron energy distribution functions in inhomogeneous plasmas

    Winkler, R.

    1996-01-01

    It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)

  6. On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind

    Dinesh Kumar

    2015-01-01

    Full Text Available We develop a new and further generalized form of the fractional kinetic equation involving generalized Bessel function of the first kind. The manifold generality of the generalized Bessel function of the first kind is discussed in terms of the solution of the fractional kinetic equation in the paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably new results.

  7. A static analysis method to determine the availability of kinetic energy from wind turbines

    Rawn, B.G.; Gibescu, M.; Kling, W.L.

    2010-01-01

    This paper introduces definitions and an analysis method for estimating how much kinetic energy can be made available for inertial response from a wind turbine over a year, and how much energy capture must be sacrificed to do so. The analysis is based on the static characteristics of wind turbines,

  8. A quantitative analysis of aerosols inside an armored vehicle perforated by a kinetic energy penetrator containing tungsten, nickel, and cobalt.

    Gold, Kenneth; Cheng, Yung Sung; Holmes, Thomas D

    2007-04-01

    These tests were conducted to develop a database that could be used to assess risks to soldiers from exposure to aerosolized metallic particulates when the crew compartment of an Abrams tank is perforated by a kinetic energy penetrator. Quantitative data are reported for aerosols produced by kinetic energy penetrators containing tungsten, nickel, and cobalt. The following are addressed: (1) concentrations and rates of particle settling inside the vehicle, (2) particle size distribution, (3) inhalable and respirable particulates, (4) distribution of aerosol particles by mass, and (5) particle shapes. The scenario described in this report simulates a rare occurrence. The lessons learned, however, highlight a requirement for developing protocols for analyses of metals in body fluids and urine as soon as practical, and also for implementing targeted postdeployment medical surveillance programs that monitor both body burden for respired metals and pulmonary function.

  9. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.

    Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam

    2005-06-01

    Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.

  10. Holographic kinetic k-essence model

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  11. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Manasa Ranjan Behera

    2014-09-01

    Full Text Available An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s and suitable for Tidal Energy Converter (TEC array installation to generate sustainable energy, have been identified. Further, various operational factors for installation of Tidal Energy Converters are considered before computing the theoretical power output for a typical TEC array. An approximate estimation of the possible theoretical power extraction from a TEC array shows an energy potential of up to 4.36% of the total energy demand of Singapore in 2011. Thus, the study suggests a detailed investigation of potential sites to quantify the total tidal stream energy potential in the Singapore Strait.

  12. The role of the von Weizsaecker kinetic energy gradient term in independent harmonically confined fermions for arbitrary two-dimensional closed-shell occupancy

    Howard, I A; March, N H

    2010-01-01

    The search for the single-particle kinetic energy functional T S [n] continues to be of major interest for density functional theory. Since it is expected to be generally applicable, exactly solvable models are of obvious interest. Here we focus on one, which is also of interest experimentally in magnetic trapping of ultracold fermion vapours. This is the model of independent harmonically trapped fermions in two dimensions. Here, the role of the von Weizsaecker inhomogeneity kinetic energy is a focal point, prompted also by the work of Delle Site (2005 J. Phys. A: Math. Gen. 38 7893).

  13. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  14. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  15. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot.

    Jeong, Daniel; Anagnostopoulos, Petros V; Roldan-Alzate, Alejandro; Srinivasan, Shardha; Schiebler, Mark L; Wieben, Oliver; François, Christopher J

    2015-05-01

    Ventricular kinetic energy measurements may provide a novel imaging biomarker of declining ventricular efficiency in patients with repaired tetralogy of Fallot. Our purpose was to assess differences in ventricular kinetic energy with 4-dimensional flow magnetic resonance imaging between patients with repaired tetralogy of Fallot and healthy volunteers. Cardiac magnetic resonance, including 4-dimensional flow magnetic resonance imaging, was performed at rest in 10 subjects with repaired tetralogy of Fallot and 9 healthy volunteers using clinical 1.5T and 3T magnetic resonance imaging scanners. Right and left ventricular kinetic energy (KERV and KELV), main pulmonary artery flow (QMPA), and aortic flow (QAO) were quantified using 4-dimensional flow magnetic resonance imaging data. Right and left ventricular size and function were measured using standard cardiac magnetic resonance techniques. Differences in peak systolic KERV and KELV in addition to the QMPA/KERV and QAO/KELV ratios between groups were assessed. Kinetic energy indices were compared with conventional cardiac magnetic resonance parameters. Peak systolic KERV and KELV were higher in patients with repaired tetralogy of Fallot (6.06 ± 2.27 mJ and 3.55 ± 2.12 mJ, respectively) than in healthy volunteers (5.47 ± 2.52 mJ and 2.48 ± 0.75 mJ, respectively), but were not statistically significant (P = .65 and P = .47, respectively). The QMPA/KERV and QAO/KELV ratios were lower in patients with repaired tetralogy of Fallot (7.53 ± 5.37 mL/[cycle mJ] and 9.65 ± 6.61 mL/[cycle mJ], respectively) than in healthy volunteers (19.33 ± 18.52 mL/[cycle mJ] and 35.98 ± 7.66 mL/[cycle mJ], respectively; P tetralogy of Fallot. Quantification of ventricular kinetic energy in patients with repaired tetralogy of Fallot is a new observation. Future studies are needed to determine whether changes in ventricular kinetic energy can provide earlier evidence of ventricular dysfunction and guide future medical and

  16. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some

  17. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  18. Kinetic energy storage of off-peak electricity

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  19. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Manasa Ranjan Behera; Pavel Tkalich

    2014-01-01

    An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE) model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s) and suitable fo...

  20. Preliminary results of total kinetic energy modelling for neutron-induced fission

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  1. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  2. Bio-kinetic energy harvesting using electroactive polymers

    Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy

    2012-06-01

    In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.

  3. Electron energy distribution function control in gas discharge plasmas

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  4. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  5. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  6. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  7. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  8. An electrostatic storage ring for low kinetic energy electron collisions

    Reddish, T J; Tessier, D R; Sullivan, M R; Thorn, P A [Department of Physics, University of Windsor, Windsor, N9B 3P4 (Canada); Hammond, P; Alderman, A J [School of Physics, CAMSP, University of Western Australia, Perth WA 6009 (Australia); Read, F H [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2009-11-01

    The criteria are presented for stable multiple orbits of charged particles in a race-track shaped storage ring and applied to an electrostatic system consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses. The results of charged particle simulations and the formal matrix theory, including aberrations in the energy-dispersive electrostatic 'prisms', are in good agreement with the observed experimental operating conditions for this Electron Recycling Spectrometer (ERS).

  9. Kinetically modified non-minimal inflation with exponential frame function

    Pallis, C. [University of Cyprus, Department of Physics, Nicosia (Cyprus)

    2017-09-15

    We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the φ{sup n} potential with n = 2 or 4. We show that the coexistence of an exponential non-minimal coupling to gravity f{sub R} = e{sup c{sub R}φ{sup p}} with a kinetic mixing of the form f{sub K} = c{sub K}f{sub R}{sup m} can accommodate inflationary observables favored by the Planck and Bicep2/Keck Array results for p = 1 and 2, 1 ≤ m ≤ 15 and 2.6 x 10{sup -3} ≤ r{sub RK} = c{sub R}/c{sub K}{sup p/2} ≤ 1, where the upper limit is not imposed for p = 1. Inflation is of hilltop type and it can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale. The supergravity embedding of these models is achieved employing two chiral gauge singlet supefields, a monomial superpotential and several (semi)logarithmic or semi-polynomial Kaehler potentials. (orig.)

  10. On the equivalence of convergent kinetic equations for hot dilute plasmas: Generating functions for collision brackets

    Cohen, J.S.; Suttorp, L.G.

    1982-01-01

    The generating functions for the collision brackets associated with two alternative convergent kinetic equations are derived for small values of the plasma parameter. It is shown that the first few terms in the asymptotic expansions of these generating functions are identical. Consequently, both

  11. Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid

    Kok, Jacobus B.W.

    1988-01-01

    By averaging the basic equations on microscale, expressions are derived for the effective added mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to hydrodynamic interaction between the bubbles there appears to be a difference between the effective added mass

  12. Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.

    Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P

    2007-11-28

    Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.

  13. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  14. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  15. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  16. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  17. [Upper extremity kinetics and energy expenditure during walker-assisted gait in children with cerebral palsy].

    Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey; Altiok, Haluk; Schwab, Jeffrey; Harris, Gerald F

    2009-01-01

    We evaluated the relationships between upper extremity (UE) kinetics and the energy expenditure index during anterior and posterior walker-assisted gait in children with spastic diplegic cerebral palsy (CP). Ten children (3 boys, 7 girls; mean age 12.1 years; range 8 to 18 years) with spastic diplegic CP, who ambulated with a walker underwent gait analyses that included UE kinematics and kinetics. Upper extremity kinetics were obtained using instrumented walker handles. Energy expenditure index was obtained using the heart rate method (EEIHR) by subtracting resting heart rate from walking heart rate, and dividing by the walking speed. Correlations were sought between the kinetic variables and the EEIHR and temporal and stride parameters. In general, anterior walker use was associated with a higher EEIHR. Several kinetic variables correlated well with temporal and stride parameters, as well as the EEIHR. All of the significant correlations (r>0.80; pwalker use and involved joint reaction forces (JRF) rather than moments. Some variables showed multiple strong correlations during anterior walker use, including the medial JRF in the wrist, the posterior JRF in the elbow, and the inferior and superior JRFs in the shoulder. The observed correlations may indicate a relationship between the force used to advance the body forward within the walker frame and an increased EEIHR. More work is needed to refine the correlations, and to explore relationships with other variables, including the joint kinematics.

  18. Potential energy function of CN-

    Špirko, Vladimír; Polák, Rudolf

    2008-01-01

    Roč. 248, č. 1 (2008), s. 77-80 ISSN 0022-2852 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550511; GA AV ČR IAA400400504 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : potential energy curve * fundamental transition * spectroscopic constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.636, year: 2008

  19. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  20. Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity

    Chakravarty, S.; Kee, H.; Abrahams, E.

    1999-01-01

    The basis of the interlayer tunneling theory of high-temperature superconductivity is that the electronic kinetic energy in a direction perpendicular to the copper-oxygen planes is a substantial fraction of the condensation energy. This issue is critically examined, and it is argued from a rigorous conductivity sum rule that the consequences of this theory are consistent with recent optical and penetration depth measurements. copyright 1999 The American Physical Society

  1. The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System

    Yang, Mao; Tian, Yantao; Yin, Xianghua

    In this paper, reference trajectory is designed according to minimum energy consumed for multi-robot system, which nonlinear programming and cubic spline interpolation are adopted. The control strategy is composed of two levels, which lower-level is simple PD control and the upper-level is based on the internal average kinetic energy for multi-robot system in the complex environment with velocity damping. Simulation tests verify the effectiveness of this control strategy.

  2. Turbulent kinetic energy spectrum in very anisothermal flows

    Serra, Sylvain; Toutant, Adrien; Bataille, Françoise; Zhou, Ye

    2012-01-01

    In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.

  3. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Q Joyce Han

    Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  4. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi

    2015-01-01

    Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  5. Lifetime and kinetic energy release of metastable dications dissociation

    Alagia, M.; Candori, P.; Falcinelli, S.; Mundim, K.C.; Mundim, M.S.P.; Pirani, F.; Richter, R.; Stranges, S.; Vecchiocattivi, F.

    2012-01-01

    Graphical abstract: A statistical method is proposed for extracting dynamics information from coincidence data in double photoionization of molecules. Highlights: ► When a photon, with sufficient energy, hits a molecule, a doubly charged ion can be formed. This dication has often a large probability of dissociate in two positive singly charged ions. ► Experiments of photoelectron–photoion–photoion coincidence can provide valuable information about the dynamics of such dissociation processes. ► A statistical method is proposed for extracting such information from the coincidence data. - Abstract: A new method for the determination of dynamical features of the molecular dication dissociation processes, following the single photon double ionization, investigated by time-of-flight mass spectrometry technique has been developed. The method is based on an extension of the generalized simulated annealing statistical methodology, previously applied in other fields. Here it is described and applied, as an example, to the case of the dissociation of the CO 2 2+ dication giving CO + + O + ion fragments. The results are consistent with previous determination of the metastable lifetime of the dication, but the analysis also provides additional information about the dynamics of the reaction.

  6. A Dual Function Energy Store

    Ron Tolmie

    2014-11-01

    Full Text Available Heat can be collected from local energy sources and concentrated into a relatively small volume, and at a useful working temperature, by using a heat pump as the concentrator. That heat can be stored and utilized at a later date for applications like space heating. The process is doing two things at the same time: storing heat and shifting the power demand. The concentration step can be done at night when there is normally a surplus of power and its timing can be directly controlled by the power grid operator to ensure that the power consumption occurs only when adequate power is available. The sources of heat can be the summer air, the heat extracted from buildings by their cooling systems, natural heat from the ground or solar heat, all of which are free, abundant and readily accessible. Such systems can meet the thermal needs of buildings while at the same time stabilizing the grid power demand, thus reducing the need for using fossil-fuelled peaking power generators. The heat pump maintains the temperature of the periphery at the ambient ground temperature so very little energy is lost during storage.

  7. Universal Nuclear Energy Density Functional

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  8. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  9. R. O. Kinetic, energy saver for desalination plants by reverse osmosis; R. O: Kinetic, sistema de ahorro de energia en las plantas de osmosis inversa

    Plasencia Rodriguez, J. P.

    2003-07-01

    The R. O. Kinetic is a novel system of energy saving, for desalination plants by reverse osmosis, based on the isobaric chambers. With this system it is able to obtain values of specific consumption of energy during the process, around 2, 1-2,2 kWh/m''3, reducing the operation cost of these facilities. (Author)

  10. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  11. Distributed activation energy model for kinetic analysis of multi-stage hydropyrolysis of coal

    Liu, X.; Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    2003-07-01

    Based on the new analysis of distributed activation energy model, a bicentral distribution model was introduced to the analysis of multi-stage hydropyrolysis of coal. The hydropyrolysis for linear temperature programming with and without holding stage were mathematically described and the corresponding kinetic expressions were achieved. Based on the kinetics, the hydropyrolysis (HyPr) and multi-stage hydropyrolysis (MHyPr) of Xundian brown coal was simulated. The results shows that both Mo catalyst and 2-stage holding can lower the apparent activation energy of hydropyrolysis and make activation energy distribution become narrow. Besides, there exists an optimum Mo loading of 0.2% for HyPy of Xundian lignite. 10 refs.

  12. Building a universal nuclear energy density functional

    Bertsch, G F

    2007-01-01

    This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes

  13. Photodissociation dynamics of propene at 157.6 nm: Kinetic energy distributions and branching ratios

    Lee, S.-H.; Lee, Y.-Y.; Lee, Yuan T.; Yang Xueming

    2003-01-01

    Photodissociation dynamics of propene at 157.6 nm has been investigated in a molecular beam apparatus using the photofragment translational spectroscopic technique combined with the vacuum ultraviolet ionization method. Eleven photofragments have been successfully detected and ascribed to eight (five binary and three triple) dissociation channels: namely, C 3 H 5 +H, C 3 H 4 +H+H, C 3 H 4 +H 2 , C 3 H 3 +H 2 +H, C 2 H 4 +CH 2 , C 2 H 3 +CH 3 , C 2 H 2 +CH 4 , and C 2 H 2 +CH 3 +H. Their branching ratios have been determined to be 1%, 7%, 2 H 2 +CH 3 +H channel. In addition, the averaged kinetic energy releases and the fractions in translational energy have also been determined from the measured kinetic energy distributions. For the binary dissociation channels, the fractions in translational energy are less than 18% except the C 3 H 5 +H channel, whereas they are more than 42% for the triple dissociation channels. An intriguing finding indicates that the C 2 H 4 +CH 2 channel has a nearly identical kinetic energy distribution and a similar branching ratio to the C 2 H 3 +CH 3 channel, although the former undergoes a three-center elimination process different from the C-C bond rupture occurring in the latter

  14. Statistical properties of kinetic and total energy densities in reverberant spaces

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  15. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    Finkelstein, Y. [Nuclear Research Center–Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Shang, S. L.; Wang, Y.; Liu, Z. K. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shchur, Ya. [Institute for Condensed Matter Physics, 1 Svientsitskii str., L’viv 79011 (Ukraine)

    2016-02-07

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH{sub 2}PO{sub 4}, X = K, Cs, Rb, Tl), the DKDP (XD{sub 2}PO{sub 4}, X = K, Cs, Rb) type, and the X{sub 3}H(SO{sub 4}){sub 2} superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M{sub 3}H(SO{sub 4}){sub 2} compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R{sub OO}, being a measure of the HB strength.

  16. Kinetic energy of He atoms in liquid 4He-3He mixtures

    Senesi, R.; Andreani, C.; Fielding, A.L.; Mayers, J.; Stirling, W.G.

    2003-01-01

    Deep inelastic neutron scattering measurements on liquid 3 He- 4 He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≅120.0 A -1 . The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96 K isotherm for 3 He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies of 3 He and 4 He atoms as a function of x, (x), were extracted from the second moment of J(y). The present determinations of (x) confirm previous experimental findings for both isotopes and, in the case of 3 He, a substantial disagreement with theory is found. In particular (x) for the 3 He atoms is found to be independent of concentration yielding a value 3 (x=0.1)≅12 K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K

  17. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Shchur, Ya.

    2016-01-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH 2 PO 4 , X = K, Cs, Rb, Tl), the DKDP (XD 2 PO 4 , X = K, Cs, Rb) type, and the X 3 H(SO 4 ) 2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M 3 H(SO 4 ) 2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R OO , being a measure of the HB strength

  18. Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm

    Fruh, Wolf-Gerrit; Creech, Angus

    2017-04-01

    The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.

  19. Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films

    Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping

    2012-02-01

    Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.

  20. Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films

    Fei Fei; Liu Zhongwei; Chen Qiang; Liu Fuping

    2012-01-01

    Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiO x coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiO x coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O 2 : HMDSO, and ca.100 nm thickness of SiO x , 71.2% of the DEHP was effectively blocked.

  1. Kinetic energy recovery turbine technology: resource assessment and site development strategy

    Briand, Marie-Helene; Ng, Karen

    2010-09-15

    New technologies to extract readily available energy from waves, tides and river flow are being developed and are promising but are still at the demonstration stage. Harnessing kinetic energy from currents (hydrokinetic power) is considered an attractive and cost-effective renewable energy solution to replace thermal generation without requiring construction of a dam or large civil works. The nature of this innovative hydrokinetic technology requires an adaptation of conventional approach to project engineering and environmental impact studies. This paper presents the approach developed by RSW to design a hydrokinetic site in the riverine environment, from resource assessment to detailed engineering design.

  2. Fermi-Dirac function and energy gap

    Bondarev, Boris

    2013-01-01

    Medium field method is applied for studying valence electron behavior in metals. When different wave-vector electrons are attracted at low temperatures, distribution function gets discontinued. As a result, a specific energy gap occurs.

  3. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  4. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  5. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  6. Ion kinetic energy distribution in a pulsed vacuum arc with a straight magnetic filter

    Giuliani, L; Grondona, D; Kelly, H; Minotti, F

    2008-01-01

    In vacuum arcs of interest for film deposition the ion kinetic energy is of importance because it influences the coating properties. In this kind of discharge, the ions come out from the cathode spots with a high kinetic energy (20-150 eV). In the present work, we present measurements of vacuum arc ion energy distributions in a pulsed vacuum arc with a straight magnetic filter. A retarding field analyser (RFA) was used to perform the measurements that were carried out with a variable magnetic field strength (of the order of 10 mT). Since the interpretation of the results obtained from the RFA lies in the knowledge of the plasma and floating potential values, we have employed also Langmuir probes for determining those quantities. The obtained results for the ion kinetic energy are similar to those reported by other authors, but they were also found to be independent of the magnetic field strength. The electron temperature was also found to be independent of the magnetic field strength and of the axial position along the filter, indicating the absence of collisions.

  7. Translational kinetic energy induced oxidation on Ti(0001) surfaces using a supersonic O2 beam

    Ogawa, Shuichi; Takakuwa, Yuji; Ishidzuka, Shinji; Yoshigoe, Akitaka; Teraoka, Yuden; Moritani, Kousuke; Mizuno, Yoshiyuki

    2007-01-01

    The initial sticking probability S 0 of O 2 molecules on a Ti(0001)1x1 surface at room temperature was measured as a function of translational kinetic energy E t by real-time photoelectron spectroscopy. The O 1s photoelectron spectra can be fitted well with three components A, B and C, where the chemical shift of component B and C are +0.7 and +1.6 eV relative to the binding energy of component A (528.8 eV). Upon exposing to the O 2 beam, component A and C appear dominantly and component B grows with an incubation time, indicating that two kinds of chemical adsorption states are concerned with dissociative adsorption of O 2 molecules at the initial stage. The E t dependences of S 0 show quite different behaviors between component A and C: S 0 of component C decreases monotonously with E t and is almost constant above 0.6 eV, while S 0 of component A shows a rapid decrease followed by a gradual increase with a minimum at ∼0.5 eV and then decreases two small maxima at ∼0.9 and ∼1.8 eV. The observed E t dependences of S 0 for component A and C are discussed in terms of a trapping-mediated adsorption and an activated adsorption process and the chemical adsorption state corresponding to component A and C is also considered. (author)

  8. Economic modelling of energy services: Rectifying misspecified energy demand functions

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    estimation of an aggregate energy demand function for the UK with data over the period 1960–2011. - Highlights: • Introduces explicit modelling of demands for energy services • Derives estimable energy demand equations from energy service demands • Demonstrates the implicit misspecification with typical energy demand equations • Empirical implementation using aggregate and individual energy source data • Illustrative empirical example using UK data and energy efficiency modelling

  9. Continuum kinetic methods for analyzing wave physics and distribution function dynamics in the turbulence dissipation challenge

    Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.

    2015-12-01

    We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.

  10. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  11. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  12. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  13. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects.

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    2018-02-07

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the

  14. From the Orbital Implementation of the Kinetic Theory to the Polarization Propagator Method in the Study of Energy Deposition Problems

    Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.

    The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.

  15. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  16. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  17. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rydberg energies using excited state density functional theory

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  19. A new formulation for the importance function in the kinetics of subcritical reactors

    Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando

    2012-01-01

    Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.

  20. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  1. Recruiting at the Edge: Kinetic Energy Inhibits Anchovy Populations in the Western Mediterranean

    Ruiz, Javier; Macías, Diego; Rincón, Margarita M.; Pascual, Ananda; Catalán, Ignacio A.; Navarro, Gabriel

    2013-01-01

    The Strait of Gibraltar replenishes the Mediterranean with Atlantic waters through an intense eastward current known as the Atlantic Jet (AJ). The AJ fertilizes the southwestern Mediterranean and is considered to be the ultimate factor responsible for the comparatively high fish production of this region. Here, we perform an analysis of the available historical catches and catch per unit effort (CPUE), together with a long series of surface currents, kinetic energy and chlorophyll concentration. We show that the high kinetic energy of the AJ increases primary production but also negatively impacts the recruitment of anchovy. We contend that anchovy recruitment in the region is inhibited by the advection and dispersion of larvae and post-larvae during periods of strong advection by the AJ. The inhibitory impact of kinetic energy on anchovy landings is not a transient but rather a persistent state of the system. An exceptional combination of events creates an outbreak of this species in the Alboran Sea. These events depend on the Mediterranean-Atlantic exchange of water masses and, therefore, are highly sensitive to climate changes that are projected, though not always negatively, for fish landings. PMID:23451027

  2. Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies

    Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.; Engstrom, James R., E-mail: jre7@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (United States); Woll, Arthur R. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853 (United States)

    2015-05-15

    The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

  3. Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution.

    Chen, Chuihan; Miao, Wei; Zhou, Cheng; Wu, Hongjuan

    2017-02-01

    Thermogravimetric kinetic of bamboo waste (BW) pyrolysis has been studied using Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Through deconvolution, BW pyrolytic profiles could be separated into three reactions well, each of which corresponded to pseudo hemicelluloses (P-HC), pseudo cellulose (P-CL), and pseudo lignin (P-LG) decomposition. Based on Friedman method, apparent activation energy of P-HC, P-CL, P-LG was found to be 175.6kJ/mol, 199.7kJ/mol, and 158.4kJ/mol, respectively. Energy compensation effects (lnk 0, z vs. E z ) of pseudo components were in well linearity, from which pre-exponential factors (k 0 ) were determined as 6.22E+11s -1 (P-HC), 4.50E+14s -1 (P-CL) and 1.3E+10s -1 (P-LG). Integral master-plots results showed pyrolytic mechanism of P-HC, P-CL, and P-LG was reaction order of f(α)=(1-α) 2 , f(α)=1-α and f(α)=(1-α) n (n=6-8), respectively. Mechanism of P-HC and P-CL could be further reconstructed to n-th order Avrami-Erofeyev model of f(α)=0.62(1-α)[-ln(1-α)] -0.61 (n=0.62) and f(α)=1.08(1-α)[-ln(1-α)] 0.074 (n=1.08). Two-steps reaction was more suitable for P-LG pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Functional materials for energy-efficient buildings

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  5. Functional materials for energy-efficient buildings

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  6. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  7. Prediction of point-defect migration energy barriers in alloys using artificial intelligence for atomistic kinetic Monte Carlo applications

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Universite Libre de Bruxelles (ULB), Physique des Solides Irradies et Nanostructures (PSIN), CP234 Boulevard du triomphe, Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be

    2009-09-15

    We significantly improved a previously proposed method to take into account chemical and also relaxation effects on point-defect migration energy barriers, as predicted by an interatomic potential, in a rigid lattice atomistic kinetic Monte Carlo simulation. Examples of energy barriers are rigorously calculated, including chemical and relaxation effects, as functions of the local atomic configuration, using a nudged elastic bands technique. These examples are then used to train an artificial neural network that provides the barriers on-demand during the simulation for each configuration encountered by the migrating defect. Thanks to a newly developed training method, the configuration can include a large number of neighbour shells, thereby properly including also strain effects. Satisfactory results have been obtained when the configuration includes different chemical species only. The problems encountered in the extension of the method to configurations including any number of point-defects are stated and solutions to tackle them are sketched.

  8. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  9. Development of imploding liners with kinetic energies > 100 MJ and their applications

    Reinovsky, R.E.; Ekdahl, C.A.

    1996-01-01

    The Los Alamos program in High Energy Density Physics is developing high performance imploding liners as sources of high energy density environments for experimental physics applications. High performance liners are, for these purposes, liners with high velocity, 100 MJ or more kinetic energy at 20-50 MJ/cm of height. They must have sufficient azimuthal symmetry, axial uniformity and density to perform as high quality impactors on central, cylindrical targets. Scientific applications of such liners are numerous and varied. For example, the properties of materials at extreme energy densities can be assessed in such an experimental environment. The physics of plasmas near solid density can be studied and hydrodynamics experiments at high Mach number (above 5?) in materials that are near solid density and significantly ionized can be conducted. In addition, liners with substantial kinetic energy and good integrity at velocities of one to a few cm/microsec make good implosion drivers for fusion plasmas in the context of magnetized target fusion and MAGO

  10. Fundamental kinetics and innovative applications of nonequilibrium atomic vibration in thermal energy transport and conversion

    Shin, Seungha

    All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals

  11. Energy harvesting with functional materials and microsystems

    Bhaskaran, Madhu; Iniewski, Krzysztof

    2013-01-01

    For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growi

  12. Damage energy functions for compounds and alloys

    Parkin, D.M.; Coulter, C.A.

    1977-01-01

    The concept of the damage energy of an energetic primary knock-on atom in a material is a central component in the procedure used to calculate dpa for metals exposed to neutron and charged particle radiation. Coefficients for analytic fits to the calculated damage energy functions are given for Al 2 O 3 , Si 3 N 4 , Y 2 O 3 , and NbTi. Damage efficiencies are given for Al 2 O 3

  13. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  14. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al6

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al 6 were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E -3 to E -4.5 . Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed

  15. Neuroenergetics: How energy constraints shape brain function

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  16. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  17. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  18. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    Juristyarini, Pramitha

    2011-07-29

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  19. Exploring the Invisible Renormalon Renormalization of the Heavy-Quark Kinetic Energy

    Neubert, M

    1997-01-01

    Using the virial theorem of the heavy-quark effective theory, we show that the mixing of the operator for the heavy-quark kinetic energy with the identity operator is forbidden at the one-loop order by Lorentz invariance. This explains why such a mixing was not observed in several one-loop calculations using regularization schemes with a Lorentz-invariant UV regulator, and why no UV renormalon singularity was found in the matrix elements of the kinetic operator in the bubble approximation (the ``invisible renormalon''). On the other hand, we show that the mixing is not protected in general by any symmetry, and it indeed occurs at the two-loop order. This implies that the parameter $\\lambda_1^H$ of the heavy-quark effective theory is not directly a physical quantity, but requires a non-perturbative subtraction.

  20. Positronium spin conversion during collisions with Xe and its application for measuring the kinetic energy

    Shibuya, Kengo; Kawamura, Yoshihiro; Saito, Haruo

    2015-01-01

    Positronium(Ps) can undergo ortho-para spin conversion reaction during Ps-Xecollisions due to spin-orbit interaction. We have investigated energy dependence of this reaction rate and found it is nearly proportional to T 2.1 , where T is the temperature (300-623 K), while the pick-off annihilation rate is proportional to T. The strong temperature dependence of the former annihilation rate is attributed to a nature of p-wave scattering because this reaction is forbidden in s-wave scattering. In addition, a new method for measuring Ps kinetic energy has been developed with a high resolution and a high sensitivity by utilizing the strong temperature dependence as a 'thermometer.' Analyzingthe obtained time evolution of Ps kinetic energy, we have determined the momentum transfer cross section during Ps-Xecollisions at a very low energy (40-60 meV) to be 12(2)×10 −16 cm 2 . (paper)

  1. Understanding interface properties from high kinetic energy photoelectron spectroscopy and first principles theory

    Granroth, Sari; Olovsson, Weine; Holmstroem, Erik; Knut, Ronny; Gorgoi, Mihaela; Svensson, Svante; Karis, Olof

    2011-01-01

    Advances in instrumentation regarding 3rd generation synchrotron light sources and electron spectrometers has enabled the field of high kinetic energy photoelectron spectroscopy (HIKE) (also often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES)). Over the last years, the amount of investigations that relies on the HIKE method has increased dramatically and can arguably be said to have given a rebirth of the interest in photoelectron spectroscopy in many areas. It is in particular the much increased mean free path at higher kinetic energies in combination with the elemental selectivity of the core level spectroscopies in general that has lead to this fact, as it makes it possible to investigate the electronic structure of materials with a substantially reduced surface sensitivity. In this review we demonstrate how HIKE can be used to investigate the interface properties in multilayer systems. Relative intensities of the core level photoelectron peaks and their chemical shifts derived from binding energy changes are found to give precise information on physico-chemical properties and quality of the buried layers. Interface roughening, including kinetic properties such as the rate of alloying, and temperature effects on the processes can be analyzed quantitatively. We will also provide an outline of the theoretical framework that is used to support the interpretation of data. We provide examples from our own investigations of multilayer systems which comprises both systems of more model character and a multilayer system very close to real applications in devices that are considered to be viable alternative to the present read head technology. The experimental data presented in this review is exclusively recorded at the BESSY-II synchrotron at the Helmholtz-Zentrum Berlin fuer Materialien und Energie. This HIKE facility is placed at the bending magnet beamline KMC-1, which makes it different from several other facilities which relies on undulators as

  2. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  3. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  4. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  5. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  6. Functional data analysis of sleeping energy expenditure

    Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of ...

  7. Analysis of the Bogoliubov free energy functional

    Reuvers, Robin

    In this thesis, we analyse a variational reformulation of the Bogoliubov approximation that is used to describe weakly-interacting translationally-invariant Bose gases. For the resulting model, the `Bogoliubov free energy functional', we demonstrate existence of minimizers as well as the presence...

  8. Electron energy-distribution functions in gases

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected

  9. Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas

    Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana

    2017-10-01

    MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.

  10. Theoretical characterization of electron energy distribution function in RF plasmas

    Capitelli, M.; Capriati, G.; Dilonardo, M.; Gorse, C.; Longo, S.

    1993-01-01

    Different methods for the modeling of low-temperature plasmas of both technological and fundamental interest are discussed. The main concept of all these models is the electron energy distribution function (eedf) which is necessary to calculate the rate coefficients for any chemical reaction involving electrons. Results of eedf calculations in homogeneous SF 6 and SiH 4 plasmas are discussed based on solution of the time-dependent Boltzmann equation. The space-dependent eedf in an RF discharge in He is calculated taking into account the sheath oscillations by a Monte Carlo model assuming the plasma heating mechanism and the electric field determined by using a fluid model. The need to take into account the ambipolar diffusion of electrons in RF discharge modeling is stressed. A self-consistent model based on coupling the equations of the fluid model and the chemical kinetics ones is presented. (orig.)

  11. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    Ali Farshchiansadegh

    2016-04-01

    Full Text Available The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum. In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  12. Gravitational attraction until relativistic equipartition of internal and translational kinetic energies

    Bulyzhenkov, I. E.

    2018-02-01

    Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.

  13. Photodissociation dynamics of formyl fluoride (HFCO) at 193 nm: Branching ratios and distributions of kinetic energy

    Lee, H.; Wu, C.-Y.; Yang, S.K.; Lee, Y.-P.

    2005-01-01

    Following photodissociation of formyl fluoride (HFCO) at 193 nm, we detected products with fragmentation translational spectroscopy utilizing a tunable vacuum ultraviolet beam from a synchrotron for ionization. Among three primary dissociation channels observed in this work, the F-elimination channel HFCO→HCO+F dominates, with a branching ratio ∼0.66 and an average release of kinetic energy ∼55 kJ mol -1 ; about 17% of HCO further decomposes to H+CO. The H-elimination channel HFCO→FCO+H has a branching ratio ∼0.28 and an average release of kinetic energy ∼99 kJ mol -1 ; about 21% of FCO further decomposes to F+CO. The F-elimination channel likely proceeds via the S 1 surface whereas the H-elimination channel proceeds via the T 1 surface; both channels exhibit moderate barriers for dissociation. The molecular HF-elimination channel HFCO→HF+CO, correlating with the ground electronic surface, has a branching ratio of only ∼0.06; the average translational release of 93 kJ mol -1 , ∼15% of available energy, implies that the fragments are highly internally excited. Detailed mechanisms of photodissociation are discussed

  14. First lattice calculation of the B-meson binding and kinetic energies

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  15. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  16. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application

    Veluswamy, Hari Prakash; Kumar, Asheesh; Kumar, Rajnish; Linga, Praveen

    2017-01-01

    Highlights: • Innovative combinatorial hybrid approach to reduce nucleation stochasticity and enhance hydrate growth. • Methane hydrate growth curves are similar in UTR and STR configurations in presence of leucine. • Amalgamation of stirred (STR) and unstirred (UTR) configuration is demonstrated. • Reliable method for scale up and commercial production of Solidified Natural Gas (SNG). - Abstract: Natural gas storage in clathrate hydrates or solidified natural gas (SNG) offers the safest, cleanest and the most compact mode of storage aided by the relative ease in natural gas (NG) recovery with minimal cost compared to known conventional methods of NG storage. The stochastic nature of hydrate nucleation and the slow kinetics of hydrate growth are major challenges that needs to be addressed on the SNG production side. A deterministic and fast nucleation coupled with rapid crystallization kinetics would empower this beneficial technology for commercial application. We propose a hybrid combinatorial approach of methane hydrate formation utilizing the beneficial aspect of environmentally benign amino acid (leucine) as a kinetic promoter by combining stirred and unstirred reactor operation. This hybrid approach is simple, can easily be implemented and scaled-up to develop an economical SNG technology for efficient storage of natural gas on a large scale. Added benefits include the minimal energy requirement during hydrate growth resulting in overall cost reduction for SNG technology.

  17. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  18. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...

  19. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile.

  20. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  1. A KINETIC ALFVEN WAVE AND THE PROTON DISTRIBUTION FUNCTION IN THE FAST SOLAR WIND

    Li Xing; Lu Quanming; Chen Yao; Li Bo; Xia Lidong

    2010-01-01

    Using one-dimensional test particle simulations, the effect of a kinetic Alfven wave on the velocity distribution function (VDF) of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to numerically obtain the property of a kinetic Alfven wave (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton VDF. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton VDF: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2-1.3 Alfven speed.

  2. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  3. Functional Carbon Materials for Electrochemical Energy Storage

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  4. Kinetic energy of shakeoff atomic electrons from 37K β+ decay

    Behr, J. A.; Gorelov, A.; Farfan, C.; Smale, S.; Olchanski, K.; Kurchananov, L.; Anholm, M.; Behling, R. S.; Fenker, B.; Shidling, P. D.; Mehlman, M.; Melconian, D.; Ashery, D.; Gwinner, G.; Trinat Collaboration

    2013-10-01

    We have measured the kinetic energies from 0 to 30 eV of atomic shakeoff electrons from the β+ decay of 37K. Despite much experimental and theoretical work on the distribution of final ion charge states, shakeoff electrons from β- decay have only been measured with energies above 150 eV [Mitrokhovich, Nucl. Phys. Atom. Energy, 11, 125 (2010)]. We use our magneto-optical trap's time-varying magnetic quadrupole field combined with a uniform electric field as a spectrometer. Our result has more 15 eV electrons than a model using the sudden approximation and hydrogenic wavefunctions [Levinger, Phys. Rev. 90, 11 (1958)]. The total energy carried away by electrons is, as expected, a negligible correction to superallowed Ft values. Understanding the energy of these low-energy electrons is important for their use in precision β decay to select events coming from trapped atoms and start time-of-flight for the recoil ions. Our results could provide a benchmark for shakeoff electron calculations used for biological radiation damage [Lee, Comp. Math. Meth in Medicine doi:10.1155/2012/651475]. Support: NSERC, NRC through TRIUMF, DOE ER41747 ER40773, State of Texas, Israel Science Foundation.

  5. Precise control of Si(001) initial oxidation by translational kinetic energy of O2 molecules

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    The influence of translation kinetic energy of incident O 2 molecules on the passive oxidation of the clean Si(001) surface and the partially oxidized-Si(001) surface has been studied by high-resolution photoemission spectroscopy using synchrotron radiation. The incident energy of O 2 molecules was controlled up to 3 eV by a supersonic seeded molecular beam technique. Although two incident energy thresholds (1.0 eV and 2.6 eV) have been determined for the partially oxidized-surface oxidation in accordance with the first-principle calculation, the monotonic increase of oxygen saturation coverage was observed for the clean surface oxidation. The difference is caused by the initial dangling bond termination (Si-H and Si-OH) on the partially oxidized surface. Si-2p and O-1s photoemission spectra measured at representative incident energies showed the incident-energy-induced oxidation at the back bonds of Si dimers and the second-layer (subsurface) Si atoms. Moreover, the low-and high-binding-energy components in the O-1s photoemission spectra were assigned to bridge site oxygen and dangling bond site oxygen for the partially oxidized-surface oxidation. (author)

  6. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency

    Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu

    2017-09-01

    Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.

  7. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect

    Haranger, F.

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  8. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.

    Nganou, Collins; Lackner, Gerhard; Teschome, Bezu; Deen, M Jamal; Adir, Noam; Pouhe, David; Lupascu, Doru C; Mkandawire, Martin

    2017-06-07

    Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.

  9. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-01

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.

  10. Study on the kinetics of high-energy phosphates in myocardium by phosphorous nuclear magnetic resonance

    Kusuoka, Hideo; Tsuneoka, Yutaka; Inoue, Michitoshi; Abe, Hiroshi [Osaka Univ. (Japan). Faculty of Medicine; Watari, Hiroshi

    1982-12-01

    Effect of artificial blood, FC 43 (Perfluorochemicals) on the kinetics of high-energy phosphate in the myocardium was evaluated by /sup 31/P-NMR which permits a continuous and non-invasive assessment of in vivo phosphorus compounds. Cardiac perfusion was carried out on a excised rat heart with a Krebs-Henseleit modified solution and FC 43 alternately. Under the normal condition, ischemic condition, and at second perfusion amounts of intramyocardial creatine phosphoric acid, ATP, and inorganic phosphorus were determined by /sup 31/P-NMR. Coronary flow was simultaneously estimated. The ischemic state due to interruption of perfusion resulted in a decrease in creatine phosphoric acid, which was associated with an increase in inorganic phosphorus and intracellular acidosis. No change of ATP amount was observed under ischemic state. With resumption of perfusion, the levels of creatine phosphoric acid and inorganic phosphorus rapidly returned to the normal. In the group of FC 43, coronary flow was 2.68 ml/min/g of the heart weight, about 1/2 of that of the Krebs-Henseleit group (5.68 ml/min/g of the heart weight). In controls, there was no difference between the two groups concerning creatine phosphoric acid level and recovery of creatine phospohric acid level after ischemia. These results showed that FC 43 supplies sufficient oxygen, and has no effect on the kinetics of energy in the myocardium.

  11. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  13. Data on kinetic, energy and emission performance of biodiesel from waste frying oil

    Silverio Catureba da Silva Filho

    2018-06-01

    Full Text Available The data presented in this article are related to the research article “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city” (Silva Filho et al., 2018 [1]. This article presents the variation of the concentration of waste frying oil (WFO with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO2 and SO2 have been measured to verify their greenhouse effect and energy efficiency. Keywords: Biodiesel, Kinetic curves, Greenhouse gas emission, Energy efficiency

  14. On the use of kinetic energy preserving DG-schemes for large eddy simulation

    Flad, David; Gassner, Gregor

    2017-12-01

    -grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.

  15. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows

    Minier, Jean-Pierre; Profeta, Christophe

    2015-11-01

    This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems

  16. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  17. Spontaneous transfer of magnetically stored energy to Kinetic energy by electric double layers

    Lindberg, L.; Torven, S.

    1983-05-01

    Current disruptions are investigated in a magnetized plasma column with an inductive external electric circuit. It is found that they persist in spite of the fact that each disruption gives rise to a large inductive over-voltage. This drops off at an electric double layer formed in the plasma where most of the magnetic energy, initially stored in the circuit inductance, is released as particle energy. Simultanously as the current disrupts, the potential level at a local potential minimum in the plasma decreases. This is expected to cause the disruption by reflection of electrons. (authors)

  18. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  19. Point kinetics equations for subcritical systems based on the importance function associated to an external neutron source

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2015-01-01

    Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality

  20. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function

    Toulemonde, V.

    1995-01-01

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.)

  1. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  2. The interaction of C60 on Si(111 7x7 studied by Supersonic Molecular Beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes.

    Lucrezia eAversa

    2015-06-01

    Full Text Available Buckminsterfullerene (C60 is a molecule fully formed of carbon that can be used, owing to its electronic and mechanical properties, as clean precursor for the growth of carbon-based materials, ranging from -conjugated systems (graphenes to synthesized species, e.g. carbides such as silicon carbide (SiC. To this goal, C60 cage rupture is the main physical process that triggers material growth. Cage breaking can be obtained either thermally by heating up the substrate to high temperatures (630°C, after C60 physisorption, or kinetically by using Supersonic Molecular Beam Epitaxy (SuMBE techniques. In this work, aiming at demonstrating the growth of SiC thin films by C60 supersonic beams, we present the experimental investigation of C60 impacts on Si(111 7x7 kept at 500°C for translational kinetic energies ranging from 18 to 30 eV. The attained kinetically activated synthesis of SiC submonolayer films is probed by in-situ surface electron spectroscopies (XPS and UPS. Furthermore, in these experimental conditions the C60-Si(111 7×7 collision has been studied by computer simulations based on a tight-binding approximation to Density Functional Theory, DFT. Our theoretical and experimental findings point towards a kinetically driven growth of SiC on Si, where C60 precursor kinetic energy plays a crucial role, while temperature is relevant only after cage rupture to enhance Si and carbon reactivity. In particular, we observe a counterintuitive effect in which for low kinetic energy (below 22 eV, C60 bounces back without breaking more effectively at high temperature due to energy transfer from excited phonons. At higher kinetic energy (22 < K < 30 eV, for which cage rupture occurs, temperature enhances reactivity without playing a major role in the cage break. These results are in good agreement with ab-initio molecular dynamics simulations. SuMBE is thus a technique able to drive materials growth at low temperature regime.

  3. Functional materials discovery using energy-structure-function maps.

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M

    2017-03-30

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  4. Distribution of nuclear charge and angular momentum in chains 132-137, 99, and 102 of thermal neutron fission of 235U at various kinetic energies and charge states of the fragments

    Denschlag, H.O.; Braun, H.; Wolfsberg, K.

    1979-01-01

    The fission product yields of the members of the decay chains 132 to 137, 99, and 102 in 235 U(n/sub th/,f) were measured at various kinetic energies and ionic charge states of the fragments using the mass separator for unslowed fission products LOHENGRIN. The results are discussed with respect to four aspects: A preferential formation of neutron rich chain members found at high kinetic energy of the fragments is predominantly due to decreasing prompt neutron evaporation. A particularly large effect in chain 132 is attributed to the double shell closure in Sn-132. The persistence of an even-odd pairing effect in the yields throughout the range of kinetic energies studied leads to the conclusion that the high internal excitation energy of the fragments is tied up mainly in the form of collective energy (e.g., deformation energy) rather than single particle excitation. Generally, the yield distribution at constant kinetic energy is invariant with respect to the ionic charge state of the isotopes separated. Deviations from this behavior found in chains 99, 102, 133, and 136 are interpreted as being due to Auger events following a converted transition in the decay of ns-isomers taking place in the vacuum of the separator. A pronounced variation of the independent formation ratio of single isomeric states with the kinetic energy of the fragments is providing direct information on the controversial topic of the change of angular momentum of fission fragments as a function of deformation (scission distance). 34 references

  5. Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional

    Seshaditya A.

    2017-06-01

    Full Text Available We consider a gas of interacting electrons in the limit of nearly uniform density and treat the one dimensional (1D, two dimensional (2D and three dimensional (3D cases. We focus on the determination of the correlation part of the kinetic functional by employing a Monte Carlo sampling technique of electrons in space based on an analytic derivation via the Levy-Lieb constrained search principle. Of particular interest is the question of the behaviour of the functional as one passes from 1D to 3D; according to the basic principles of Density Functional Theory (DFT the form of the universal functional should be independent of the dimensionality. However, in practice the straightforward use of current approximate functionals in different dimensions is problematic. Here, we show that going from the 3D to the 2D case the functional form is consistent (concave function but in 1D becomes convex; such a drastic difference is peculiar of 1D electron systems as it is for other quantities. Given the interesting behaviour of the functional, this study represents a basic first-principle approach to the problem and suggests further investigations using highly accurate (though expensive many-electron computational techniques, such as Quantum Monte Carlo.

  6. Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer

    Ali Motevali

    2016-06-01

    Full Text Available Drying characteristics and energy aspects as well as mathematical modeling of thin layer drying kinetics of chamomile in a microwave-convective dryer are reported in this article. Drying experiments were carried out at 8 microwave power levels (200–900 W, air temperature of 50 °C, and air velocity of 0.5 m/s. Increasing the microwave output power from 200 to 900 W, decreased the drying time from 40 to 10 min. The drying process took place in the falling rate period. The Midilli et al. model showed the best fit to the experimental drying data. Moisture diffusivity values increase with decreasing moisture content down to 1.70 (kg water kg−1 dry matter but decrease with a further decrease in moisture content from 1.72 to 0.96 (kg water kg−1 dry matter. The average values of Deff increased with microwave power from 5.46 to 39.63 × 10−8 (m2 s−1. Energy consumption increased and energy efficiency decreased with moisture content of chamomile samples. Average specific energy consumption, energy efficiency and energy loss varied in the range 18.93–28.15 MJ kg−1 water, 8.25–13.07% and 16.79–26.01 MJ kg−1 water, respectively, while the best energy results were obtained at 400 W, 50 °C and 0.5 m s−1.

  7. The Bogoliubov free energy functional II

    Napiórkowski, Marcin; Reuvers, Robin; Solovej, Jan Philip

    2018-01-01

    We analyse the canonical Bogoliubov free energy functional at low temperatures in the dilute limit. We prove existence of a first order phase transition and, in the limit $a_0\\to a$, we determine the critical temperature to be $T_{\\rm{c}}=T_{\\rm{fc}}(1+1.49(\\rho^{1/3}a))$ to leading order. Here, $T......_{\\rm{fc}}$ is the critical temperature of the free Bose gas, $\\rho$ is the density of the gas, $a$ is the scattering length of the pair-interaction potential $V$, and $a_0=(8\\pi)^{-1}\\widehat{V}(0)$ its first order approximation. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee...

  8. Functional data analysis of sleeping energy expenditure.

    Lee, Jong Soo; Zakeri, Issa F; Butte, Nancy F

    2017-01-01

    Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of SEE and to discriminate SEE between obese and non-obese children. Minute-by-minute SEE in 109 children, ages 5-18, was measured in room respiration calorimeters. A smoothing spline method was applied to the calorimetric data to extract the true smoothing function for each subject. Functional principal component analysis was used to capture the important modes of variation of the functional data and to identify differences in SEE patterns. Combinations of functional principal component analysis and classifier algorithm were used to classify SEE. Smoothing effectively removed instrumentation noise inherent in the room calorimeter data, providing more accurate data for analysis of the dynamics of SEE. SEE exhibited declining but subtly undulating patterns throughout the night. Mean SEE was markedly higher in obese than non-obese children, as expected due to their greater body mass. SEE was higher among the obese than non-obese children (p0.1, after post hoc testing). Functional principal component scores for the first two components explained 77.8% of the variance in SEE and also differed between groups (p = 0.037). Logistic regression, support vector machine or random forest classification methods were able to distinguish weight-adjusted SEE between obese and non-obese participants with good classification rates (62-64%). Our results implicate other factors, yet to be uncovered, that affect the weight-adjusted SEE of obese and non-obese children. Functional data analysis revealed differences in the structure of SEE between obese and non-obese children that may contribute to disruption of metabolic homeostasis.

  9. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the

  10. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  11. Report of the panel on the use of depleted uranium alloys for large caliber long rod kinetic energy penetrators

    Sandstrom, D.J.; Jessen, N.; Loewenstein, P.; Weirick, L.

    1980-01-01

    In early 1977 the National Materials Advisory Board, an operating unit in the Commission on Sociotechnical Systems of the National Research Council, NAS/NAE, formed a study committee on High Density Materials for Kinetic Energy Penetrators. The Specific objectives of the Committee were defined as follows. Assess the potential of two materials for use in kinetic energy penetrators, including such factors as: (a) properties (as applied to this application: strength, toughness, and dynamic behavior); (b) uniformity, reliability and reproducibility; (c) deterioration in storage; (d) production capability; (e) ecological impact; (f) quality assurance; (g) availability, and (h) cost. The Committee was divided into two Panels; one panel devoted to the study of tungsten alloys and the other devoted to the study of depleted uranium alloys for use in Kinetic energy penetrators. This report represents the findings and recommendation of the Panel on Uranium

  12. Kinetic energy of solid and liquid para-hydrogen: a path integral Monte Carlo simulation

    Zoppi, M.; Neumann, M.

    1992-01-01

    The translational (center of mass) kinetic energy of solid and liquid para-hydrogen have been recently measured by means of Deep Inelastic Neutron Scattering. We have evaluated the same quantity, in similar thermodynamic conditions, by means of Path Integral Monte Carlo computer simulation, modelling the system as composed of a set of spherical molecules interacting through a pairwise additive Lennard-Jones potential. In spite of the crude approximations on the interaction potential, the agreement is excellent. The pressure was also computed by means of the same simulations. This quantity, compared with the equation of state for solid para-hydrogen given by Driessen and Silvera, gives an agreement of a lesser quality and a negative value for the liquid state. We attribute this discrepancy to the limitations of the Lennard-Jones potential. (orig.)

  13. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2016-01-01

    We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a ''dust'' fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R -αR 2 generalized gravity. Upon deriving the corresponding ''Einstein-frame'' effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic ''k-essence'' gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic ''k-essence'' gravity-matter model is also briefly discussed. (orig.)

  14. Kinetic mean field theories: Results of energy constraint in maximizing entropy

    Stell, G.; Karkheck, J.; Beijeren, H. van

    1983-01-01

    Structure of liquids and solids; crystallography Classical, semiclassical, and quantum theories of liquid structure Statistical theories of liquid structure - Kinetic and transport theory of fluids; physical properties of gases Kinetic and transport theory

  15. Balance Function in High-Energy Collisions

    Tawfik, A.; Shalaby, Asmaa G.

    2015-01-01

    Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties

  16. Cascade of kinetic energy and scalar variance in DC electrokinetic turbulence

    Zhao, Wei; Wang, Guiren

    2017-11-01

    Turbulent flow can be generated by DC electrokinetic (EK) force based on the electric conductivity and permittivity variations in fluids, as have been demonstrated by Varshney et al (2016), where a -1.4 slope of velocity power spectrum is observed. Here, we theoretically found the scaling exponents of velocity and scalar structures in the electric-body-force (EBF) dominant subregion of DC EK turbulence were 2/5 (equivalent to the -7/5 slope of velocity power spectrum) and 4/5 respectively. The theory perfectly explains the experimental results of Varshney et al. (2016). Based on Kármán-Howarth equation with forcing terms, the energy cascade process of DC EK turbulence was also investigated. Depending on the electric Rayleigh number (Rae) , two different energy cascade processes may happen. When Rae is small, the kinetic energy cascades along inertial subregion and EBF dominant subregion in sequence, before it is dissipated by fluid viscosity. When Rae is sufficiently large, the inertial subregion may be absent with EBF dominant subregion left. This investigation is very important on understand EK turbulence, which could be widely existed in nature and applied in engineerings. The work was supported by NSFC (11672229), and NSF (CAREER CBET-0954977 and MRI CBET-1040227).

  17. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    Karwan, Khamphee

    2011-01-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum

  18. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model.

    Ma, Fuying; Zeng, Yelin; Wang, Jinjin; Yang, Yang; Yang, Xuewei; Zhang, Xiaoyu

    2013-01-01

    Non-isothermal thermogravimetry/derivative thermogravimetry (TG/DTG) measurements are used to determine pyrolytic characteristics and kinetics of lignocellulose. TG/DTG experiments at different heating rates with corn stover pretreated with monocultures of Irpex lacteus CD2 and Auricularia polytricha AP and their cocultures were conducted. Heating rates had little effect on the pyrolysis process, but the peak of weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The maximum weight loss of biopretreated samples was 1.25-fold higher than that of the control at the three heating rates, and the maximum weight loss rate of the co-culture pretreated samples was intermediate between that of the two mono-cultures. The activation energies of the co-culture pretreated samples were 16-72 kJ mol(-1) lower than that of the mono-culture at the conversion rate range from 10% to 60%. This suggests that co-culture pretreatment can decrease activation energy and accelerate pyrolysis reaction thus reducing energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  20. Energy functionals for Calabi-Yau metrics

    Headrick, M; Nassar, A

    2013-01-01

    We identify a set of ''energy'' functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the ''algebraic'' metrics (metrics for which the Kähler potential is given in terms of a polynomial in the projective coordinates), to the Fermat quartic and to a one-parameter family of quintics that includes the Fermat and conifold quintics. We show that this method yields approximations to the Ricci-flat metric that are exponentially accurate in the degree of the polynomial (except at the conifold point, where the convergence is polynomial), and therefore orders of magnitude more accurate than the balanced metrics, previously studied as approximations to the Ricci-flat metric. The method is relatively fast and easy to implement. On the theoretical side, we also show that the functionals can be used to give a heuristic proof of Yau's theorem

  1. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  2. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  3. Four-body wave function of π3He-system at the threshold energy

    Pupyshev, V.V.; Rakityanskij, S.A.

    1985-01-01

    On the basis of approximate four-body equations the wave function of π 3 He-system is calculated at zero kinetic energy of the pion. In the case when distances between all four particles are comparable with the nucleus size a strong distortion of the wave function of (3N)-subsystem caused by the presence of the pion is found. The calculated four-body function is represented in a semianalytical form, which makes it possible to apply it in different calculations

  4. Long-time tails of the heat-conductivity time correlation functions for a magnetized plasma - a kinetic theory approach

    Schoolderman, A.J.; Suttorp, L.G.

    1989-01-01

    The long-time behaviour of the longitudinal and the transverse heat conductivity time correlation functions for a magnetized one-component plasma is studied by means of kinetic theory. To that end these correlation functions, which are defined as the inverse Laplace transforms of the dynamic heat

  5. Maximizing kinetic energy transfer in one-dimensional many-body collisions

    Ricardo, Bernard; Lee, Paul

    2015-01-01

    The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions. (paper)

  6. Accurate core ionization potentials and photoelectron kinetic energies for light elements

    Thomas, T D [Oregon State Univ., Corvallis; Shaw, Jr, R W

    1974-01-01

    By electron spectroscopy accurate values have been determined for the neon 1s ionization potential (870.312 +- .017 eV) and the neon Auger (/sup 1/D/sub 2/) kinetic energy (804.557 +- .017 eV). Using these together with the neon 2s ionization potential for calibration, 1s ionization potentials have been determined for CF/sub 4/ (C = 301.96, F = 695.57), CO/sub 2/ (C = 297.71, O = 541.32), N/sub 2/ (N = 409.93) and ionization potentials for Ar (2s = 326.37, 2p/sub /sup 3///sub 2// = 248.60, 2p/sub /sup 1///sub 2// = 250.70). These are known with an accuracy of 0.05 eV. The results are in good agreement with those of other measurements but have significantly smaller uncertainties. Comparison is made between experimental and theoretical ionization potentials. The value for neon is quite close to a recently reported theoretical value of 870.0 eV. The relativistic corrections for a cylindrical mirror analyzer, which are much smaller at low energies than would be expected from an approximate formula, are discussed.

  7. Maximizing kinetic energy transfer in one-dimensional many-body collisions

    Ricardo, Bernard; Lee, Paul

    2015-03-01

    The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.

  8. INVESTIGATION OF THE KINETICS OF BLACK CURRANT BERRIES DRYING INSIDE THE VACUUM APPARATUS WITH MICROWAVE ENERGY SUPPLY

    S. T. Antipov

    2013-01-01

    Full Text Available Results of the conducted pilot researches of drying of fruits of black currant in the vacuum apparatus with microwave energy supply are presented. The new way of drying and installation for its implementation is offered. The influence of major factors on kinetics of drying and temperature of heating of black currant is studied.

  9. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  10. Building a Universal Nuclear Energy Density Functional

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  11. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations

    Calzetta, E.; Habib, S.; Hu, B.L.

    1988-01-01

    We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe

  12. Test of the nonexponential deviations from decay curve of 52V using continuous kinetic function method

    Tran Dai Nghiep; Vu Hoang Lam; Vo Tuong Hanh; Do Nguyet Minh; Nguyen Ngoc Son

    1995-01-01

    Present work is aimed at a formulation of an experimental approach to search the proposed nonexponential deviations from decay curve and at description of an attempt to test them in case of 52 V. Some theoretical description of decay processes are formulated in clarified forms. A continuous kinetic function (CKF) method is described for analysis of experimental data and CKF for purely exponential case is considered as a standard for comparison between theoretical and experimental data. The degree of agreement is defined by the factor of goodness. Typical deviations of oscillation behaviour of 52 V decay were observed in a wide range of time. The proposed deviation related to interaction between decay products and environment is researched. A complex type of decay is discussed. (authors). 10 refs., 4 figs., 2 tabs

  13. Test of nonexponential deviations from decay curve of 52V using continuous kinetic function method

    Tran Dai Nghiep; Vu Hoang Lam; Vo Tuong Hanh; Do Nguyet Minh; Nguyen Ngoc Son

    1993-01-01

    The present work is aimed at a formulation of an experimental approach to search the proposed description of an attempt to test them in case of 52 V. Some theoretical description of decay processes are formulated in clarified forms. The continuous kinetic function (CKF) method is used for analysis of experimental data and CKF for purely exponential case is considered as a standard for comparison between theoretical and experimental data. The degree of agreement is defined by the factor of goodness. Typical deviations of oscillation behavior of 52 V decay were observed in a wide range of time. The proposed deviation related to interaction between decay products and environment is research. A complex type of decay is discussed. (author). 10 refs, 2 tabs, 5 figs

  14. Electroweak splitting functions and high energy showering

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  15. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape.

    Bernstein, Rachel; Schmidt, Kierstin L; Harbury, Pehr B; Marqusee, Susan

    2011-06-28

    Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated.

  16. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking

    Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.

    2017-09-01

    Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  17. Turbulent kinetic energy of the ocean winds over the Kuroshio Extension from QuikSCAT winds (1999-2009)

    Yu, Kai; Dong, Changming; King, Gregory P.

    2017-06-01

    We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve

  18. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  19. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Yoon, Hong Min; Kondaraju, Sasidhar; Lee, Jung Shin; Suh, Youngho; Lee, Joonho H.; Lee, Joon Sang

    2017-01-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  1. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  2. Effect of bioceramic functional groups on drug binding and release kinetics

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  3. New angles on energy correlation functions

    Moult, Ian; Necib, Lina; Thaler, Jesse

    2016-12-01

    Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.

  4. New angles on energy correlation functions

    Moult, Ian [Berkeley Center for Theoretical Physics, University of California,Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94720 (United States); Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Necib, Lina; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-29

    Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M{sub i}, N{sub i}, and U{sub i}. The M{sub i} series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N{sub i} series behave parametrically like the N-subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U{sub i} series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.

  5. A method for measurements of neutral fragments kinetic energies released to a specific dissociation threshold: optical translational spectroscopy

    Roney, A.; Frigon, C.; Larzilliere, M.

    1999-01-01

    The optical translational spectroscopy technique, based on the principles of fast ion beam laser spectroscopy (FIBLAS) and translational spectroscopy, allows the kinetic energies study of neutral fragments released through free dissociation of a neutral molecule. This method presents interesting features such as near-threshold energy measurements and selection of a specific dissociation limit. The fragments resulting from free dissociation (not induced) of neutral molecules, produced by charge exchange processes with a fast ion beam, are probed by laser radiation. Monitoring of the laser-induced fluorescence allows high-resolution spectra due to the kinematic compression of the velocity spread. Measurements of kinetic energies released to the second limit of dissociation H(1s) + H(2l) of H 2 are put forth and compared with those obtained by means of off-axis translational spectroscopy

  6. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  7. Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory.

    Shirazi, Mahdi; Elliott, Simon D

    2014-01-30

    To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD. Copyright © 2013 Wiley Periodicals, Inc.

  8. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  9. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  10. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea

    Liang, Chang-Rong; Chen, Gui-Ying; Shang, Xiao-Dong

    2017-05-01

    Measurements of the turbulent kinetic energy dissipation rate ( ɛ), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced ( ɛ ˜ 10-7 W kg-1) at night due to the convective mixing and was weakened ( ɛ ˜ 10-9 W kg-1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ˜8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ɛ in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ɛ ˜ 10-10 W kg-1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.

  11. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  12. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Djenidi, L.; Antonia, R. A.

    2012-10-01

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of < \\varepsilon rangle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.

  13. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  14. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-01-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm 2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm 2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ E  = 154 ± 7 eV and an (18 ± 2)% efficiency

  15. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  16. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean

    Wang, Minyang; Du, Yan; Qiu, Bo; Cheng, Xuhua; Luo, Yiyong; Chen, Xiao; Feng, Ming

    2017-04-01

    Enhanced mesoscale eddy activities or tropical instability waves (TIWs) exist along the northern front of the cold tongue in the eastern equatorial Pacific Ocean. In this study, we investigate seasonal variability of eddy kinetic energy (EKE) over this region and its associated dynamic mechanism using a global, eddy-resolving ocean general circulation model (OGCM) simulation, the equatorial mooring data, and satellite altimeter observations. The seasonal-varying enhanced EKE signals are found to expand westward from 100°W in June to 180°W in December between 0°N and 6°N. This westward expansion in EKE is closely connected to the barotropically-baroclinically unstable zonal flows that are in thermal-wind balance with the seasonal-varying thermocline trough along 4°N. By adopting an 1½-layer reduced-gravity model, we confirm that the seasonal perturbation of the thermocline trough is dominated by the anticyclonic wind stress curl forcing, which develops due to southerly winds along 4°N from June to December.

  17. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  18. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  19. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  20. Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis

    Wood, Suzannah Rebecca

    Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part. The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+delta(TiSe2) n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (Bix Sn1-xSe)1+deltaTiSe2, where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+delta]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3. The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis

  1. An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas

    Del-Sorbo, Dario

    2015-01-01

    Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion require a detailed description of energy fluxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolai and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model

  2. Effects of walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia.

    Hwang, Jongseok; Shin, Yongil; Park, Ji-Ho; Cha, Young Joo; You, Joshua Sung H

    2018-04-07

    The robotic-assisted gait training (RAGT) system has gained recognition as an innovative, effective paradigm to improve functional ambulation and activities of daily living in spinal cord injury and stroke. However, the effects of the Walkbot robotic-assisted gait training system with a specialized hip-knee-ankle actuator have never been examined in the paraplegia and quadriplegia population. The aim of this study was to determine the long-term effects of Walkbot training on clinical for hips and knee stiffness in individuals with paraplegia or quadriplegia. Nine adults with subacute or chronic paraplegia resulting from spinal cord injury or quadriplegia resulting from cerebral vascular accident (CVA) and/or hypoxia underwent progressive conventional gait retraining combined with the Walkbot RAGT for 5 days/week over an average of 43 sessions for 8 weeks. Clinical outcomes were measured with the Functional Ambulation Category (FAC), Modified Rankin Scale (MRS), Korean version of the Modified Barthel Index (K-MBI), Modified Ashworth Scale (MAS). Kinetic and kinematic data were collected via a built-in Walkbot program. Wilcoxon signed-rank tests showed significant positive intervention effects on K-MBI, maximal hip flexion and extension, maximal knee flexion, active torque in the knee joint, resistive torque, and stiffness in the hip joint (P quadriplegia who had reached a plateau in motor recovery after conventional therapy.

  3. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  4. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  5. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics

    Christensen, Peter Møller; Jacobs, Robert A; Bonne, Thomas Christian

    2016-01-01

    The aim of the present study was to examine whether improvements in pulmonary V̇O2 kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age: 26 ± 2; mean ± SD) performed six HIT...

  6. Binding energy and momentum distribution of nuclear matter using Green's function methods

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1991-01-01

    The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v 2 central interaction which is derived from Reid's soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei

  7. Binding energy and momentum distribution of nuclear matter using Green's function methods

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1990-07-01

    The influence of hole-hole (hh) propagation in addition to the conventional particle-particle (pp) propagation on the energy per particle and the momentum distribution is investigated for two central interactions (v 2 and v 2 l=0 ) which are derived from Reid's soft core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (sp) spectrum. Calculation of the energy from a self-consistently determined sp spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution based on a Goldstone diagram expansion is introduced which allows the inclusion of hh contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing pp and hh propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including pp and hh terms on the same footing) to the kinetic and potential energy in which the sp energy is given by the quasi-article energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the pp and hh ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a non-relativistic level which is consistent with the observed depletion of sp orbitals in finite nuclei. (Author) (51 refs., 3 tabs., 15 figs)

  8. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  9. Energy density functional analysis of shape coexistence in 44S

    Li, Z. P.; Yao, J. M.; Vretenar, D.; Nikšić, T.; Meng, J.

    2012-01-01

    The structure of low-energy collective states in the neutron-rich nucleus 44 S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

  10. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  11. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    Magistretti, Pierre J.; Allaman, Igor

    2015-01-01

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization

  12. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  13. Pyrolysis Characteristics and Kinetics of Phoenix Tree Residues as a Potential Energy

    H. Li

    2015-09-01

    Full Text Available By using a thermogravimetric analyser under argon atmosphere, the pyrolysis process and the kinetic model of phoenix tree residues (the little stem, middle stem, and leaf at a 30 °C min−1 heating rate and the phoenix tree mix at three different heating rates (10 °C min−1, 30 °C min−1, and 50 °C min−1 were examined. The catalyst and the co-pyrolysis samples were at a 30 °C min−1 heating rate. The catalysts were Na2CO3, ZnCl2 and CaO in a mass fraction of 5 %. The experimental results revealed that the phoenix tree residues pyrolysis process consisted of three stages: dehydration stage, main pyrolysis stage, and the slow decomposition of residues. As the heating rate increased, the pyrolysis characteristic temperature of the phoenix tree grew, there was a backward-shift of the pyrolysis rate curve, and the mass loss rate gradually increased. The phoenix tree residues’ activation energy changed throughout the whole pyrolysis process, and the pyrolysis temperature ranges of the three main components (cellulose, hemicellulose, and lignin existed in overlapping phenomenon. As compared to the little stem, middle stem, and leaf, the phoenix tree mix was more likely to be pyrolysed under the same heating rate. Different catalysts had a different impact on the pyrolysis: ZnCl2 moved the start point of the reaction to the lower temperatures, but did not speed up the reaction; Na2CO3 speeded up the reaction without changing the start point of the reaction; CaO speeded up the reaction, moved the start point of the reaction to higher temperatures.

  14. SNG from coal: thermodynamic and kinetic constraints; use of nuclear energy

    Shapira, D.

    1983-01-01

    Part I contains an analysis of the thermodynamic constraints of converting coal to SNG. It is shown that the thermodynamic constraints that limit the thermal efficiency are not inherent, but are the result of design decisions, based on available technology, as well as on the kinetic properties of available catalysts. The latter, limits the yield of methane to that obtainable at global equilibrium over carbon in the presence of CO, H 2 , CO 2 and H 2 O. The equilibrium composition is shown to be independent of the thermodynamic properties of the char or coal fed. These limitations give the nonisothermal two-stage processes significant thermodynamic advantages. The analysis in part I results in suggesting directions for modifying present processes in order to obtain higher thermal efficiences. It also presents two-stage process schemes which may have significant advantages over present technology. As the methodology used for the thermodynamic analysis contains some novel elements, it should be of interest to the reaction engineer in general, and should be applicable to a wide range of catalytic and noncatalytic processes. Part II focuses on the use of nuclear energy in the production of synthetic fuel. Two processes for the production of hydrogen (which is used in coal-to-SNG processes) are analyzed and compared. The two processes are: 1) hydrogen from electrolysis of water using nuclear heat. 2) Hydrogen from steam reforming of methane using nuclear heat. The method used is differential economic analysis which focuses on evaluating the inherent advantages and disadvantages of the proposed technologies. Part II shows that the use of high temperature heat in production of hydrogen from coal is less attractive than the use of the same heat to generate electricity and split water into H 2 and O 2

  15. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)

    2012-10-15

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)

  16. Observed near-inertial kinetic energy in the northwestern South China Sea

    Chen, Gengxin; Xue, Huijie; Wang, Dongxiao; Xie, Qiang

    2013-10-01

    Based on more than 3 years of moored current-meter records, this study examined seasonal variability of near-inertial kinetic energy (NIKE) as well as all large (greater than one standard deviation from the mean) NIKE events related to storms and eddies in the northwestern South China Sea. The NIKE in the subsurface layer (30-450 m) exhibited obvious seasonal variability with larger values in autumn (herein defined as August, September, and October). All large NIKE events during the observation period were generated by passing storms. Most of the NIKE events had an e-folding timescale longer than 7 d. The phase velocity, vertical wavelength, and frequency shift of these events were examined. The maximum NIKE, induced by typhoon "Neoguri," was observed in April 2008. Normal mode analysis suggested that the combined effects of the first four modes determined the vertical distribution of NIKE with higher NIKE below 70 m but lower NIKE from 30 to 70 m. Another near-inertial oscillation event observed in August 2007 had the longest e-folding timescale of 13.5 d. Moreover, the NIKE propagated both upward and downward during this event. A ray-tracing model indicated that the smaller Brunt-Väisälä frequency and the stronger vertical shear of horizontal currents in an anticyclonic eddy and the near-inertial wave with larger horizontal scale facilitated the unusual propagation of the NIKE and the long decay timescale. Although the NIKE originated from wind, the water column structure affected by diverse oceanographic processes contributed substantially to its complex propagation and distribution.

  17. Kinetic energies of charged fragments resulting from multifragmentation and asymmetric fission of the C60 molecule in collisions with monocharged ions (2-130 keV)

    Rentenier, A; Bordenave-Montesquieu, D; Moretto-Capelle, P; Bordenave-Montesquieu, A

    2003-01-01

    Multifragmentation and asymmetric fission (AF) of the C 60 molecule induced by H + , H 2 + , H 3 + and He + ions at medium collision energies (2-130 keV) are considered. Momenta and kinetic energies of C n + fragment ions (n = 1- 12) are deduced from an analysis of time-of-flight spectra. In multifragmentation processes, momenta are found to be approximately constant when n > 2, a behaviour which explains that the most probable kinetic energy, as well as the width of the kinetic energy distributions, is found to be inversely proportional to the fragment size n; both momenta and kinetic energies are independent of the velocity and nature of the projectile, and hence of the energy deposit. A specific study of the AF shows that the kinetic energies of C 2 + , C 4 + and C 6 + fragments are also independent of the collision velocity and projectile species; a quantitative agreement is found with values deduced from kinetic energy release measurements by another group in electron impact experiments, and the observed decrease when the mass of the light fragment increases is also reproduced. A quantitative comparison of AF and multifragmentation for the n = 2, 4 and 6 fragment ions shows that kinetic energies in AF exceed that in multifragmentation, a result which explains the oscillations observed when momenta or kinetic energies of fragments are plotted against the n-value. The AF yield is also found to scale with the energy deposit in the collision velocity range extending below the velocity at the maximum of the electronic stopping power; except for protons, it remains negligible with respect to multifragmentation as soon as the total energy deposit exceeds about 100 eV

  18. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces.

    Buranda, Tione; Swanson, Scarlett; Bondu, Virginie; Schaefer, Leah; Maclean, James; Mo, Zhenzhen; Wycoff, Keith; Belle, Archana; Hjelle, Brian

    2014-03-10

    Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)₂-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 10⁵ M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)₂-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.

  19. Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging.

    Managò, Stefano; Migliaccio, Nunzia; Terracciano, Monica; Napolitano, Michela; Martucci, Nicola M; De Stefano, Luca; Rendina, Ivo; De Luca, Anna Chiara; Lamberti, Annalisa; Rea, Ilaria

    2018-04-01

    Porous biosilica nanoparticles obtained from diatomites (DNPs) have been recently demonstrated to be non-toxic nanovectors of therapeutic agents in cancer cells. In this work, the internalization kinetics and intracellular spatial distribution of functionalized DNPs incubated with human lung epidermoid carcinoma cell line (H1355) up to 72 hours are investigated by Raman imaging. The label-free Raman results are compared with confocal fluorescence microscopy and photoluminescence (PL) data. Raman bands specifically assigned to DNPs and cellular components provide evidence that the nanovectors are internalized and co-localize with lipid environments. A considerable DNPs uptake in cells is observed within 6 hours, with equilibrium being achieved after 18 hours. The obtained data show the presence of DNPs up to 72 hours, without damage to cell viability or morphology. The PL measurements performed on DNPs not penetrating the cells at different incubation times are strongly correlated with the results obtained by Raman imaging and confocal microscopy analyses. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhancement of biodiversity in energy farming: towards a functional approach

    Londo, M.; Dekker, J.

    1997-01-01

    When biomass is a substantial sustainable energy source, and special energy crops are grown on a large scale, land use and the environment of agriculture will be affected. Of these effects, biodiversity deserves special attention. The enhancement of biodiversity in energy farming via standard setting is the overall purpose of this project. In this study, the potential functionality of biodiversity in energy farming is proposed as a way of operationalising the rather abstract and broad concept of biodiversity. Functions of biodiversity are reviewed, and examples of functions are worked out, based on the current literature of nature in energy farming systems. (author)

  1. Experimental study of the efficiency of transformation of the dense plasma hypersonic flow kinetic energy into a radiation

    Kamrukov, A.S.; Kozlov, N.P.; Myshelov, E.P.; Protasov, Yu.S.

    1981-01-01

    Analysis of physical specific features of radiator where plasma heating is performed with tbermalization of directed kinetic energy of dense plasma flows accelerated electrodynamically up to hypersonic velocities during its shock deceleration, is given. It is shown that the plasma heating method considered has a number of principle advantages as compared with methods most disseminated now for generation of dense intensively radiating plasma (current heating exploding method) and suggests new possibilities for construction of selective high brightness radiat.ion sources of ultraviolet and far vacuum ultraviolet ranges of spectrum. Radiation gas dynamic processes of hypersonic plasma flow deceleration formed with magnetoplasma compressors have been experimentally investigated on their interaction with condenced matters in vacuum and basic thermodynamic parameters of shock compressed plasma have been determined. It is shown that the conversion process of kinetic energy of high-velocity plasma flows to radiation is accomplished at very high efficiency-integral luminescence of shock compressed plasma can reach approximately 90% of initial kinetic energy of flow [ru

  2. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  3. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    Al-Hawat, Sh; Naddaf, M

    2005-01-01

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density j d = 4.45 mA cm -2 and normalized electric field strength E/p = 1.88 V cm -1 Torr -1

  4. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    Al-Hawat, Sh; Naddaf, M.

    2005-04-01

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density jd = 4.45 mA cm-2 and normalized electric field strength E/p = 1.88 V cm-1 Torr-1.

  5. Functionally graded biomimetic energy absorption concept development for transportation systems.

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  6. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  7. Virial theorem in the Kohn-Sham density-functional theory formalism: Accurate calculation of the atomic quantum theory of atoms in molecules energies

    Rodriguez, A.; Ayers, P.W.; Gotz, A.W.; Castillo-Alvarado, F.L.

    2009-01-01

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic

  8. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  9. Kramers-Kronig transform for the surface energy loss function

    Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.

    2005-01-01

    A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function

  10. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  11. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-01-01

    Near thermal energy reactive collisions of small mixed metal cluster cations Ag m Au n + (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu 3 + and Ag 2 Au 2 + are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu 2 CO + . In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a ''head-on'' fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag 2 Au 2 + suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed

  12. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-09-01

    Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  13. Liver Function Status in some Nigerian Children with Protein Energy ...

    Objective: To ascertain functional status of the liver in Nigeria Children with Protein energy malnutrition. Materials and Methods: Liver function tests were performed on a total of 88 children with protein energy malnutrition (PEM). These were compared with 22 apparently well-nourished children who served as controls.

  14. Energy expressions in density-functional theory using line integrals.

    van Leeuwen, R.; Baerends, E.J.

    1995-01-01

    In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along

  15. Kinetic Energy Losses and Efficiency of an Axial Turbine Stage in Numerical Modeling of Unsteady Flows

    A. S. Laskin

    2015-01-01

    Full Text Available The article presents the results of numerical investigation of kinetic energy (KE loss and blading efficiency of the single-stage axial turbine under different operating conditions, characterized by the ratio u/C0. The calculations are performed by stationary (Stage method and nonstationary (Transient method methods using ANSYS CFX. The novelty of this work lies in the fact that the numerical simulation of steady and unsteady flows in a turbine stage is conducted, and the results are obtained to determine the loss of KE, both separately by the elements of the flow range and their total values, in the stage efficiency as well. The results obtained are compared with the calculated efficiency according to one-dimensional theory.To solve these problems was selected model of axial turbine stage with D/l = 13, blade profiles of rotor and stator of constant cross-section, similar to tested ones in inverted turbine when = 0.3. The degree of reactivity ρ = 0.27, the rotor speed was varied within the range 1000 ÷ 1800 rev/min.Results obtained allow us to draw the following conclusions:1. The level of averaged coefficients of total KE losses in the range of from 0.48 to 0.75 is from 18% to 21% when calculating by the Stage method and from 21% to 25% by the Transient one.2. The level of averaged coefficients of KE losses with the output speed of in the specified range is from 9% to 13%, and almost the same when in calculating by Stage and Transient methods.3. Levels of averaged coefficients of KE loss in blade tips (relative to the differential enthalpies per stage are changed in the range: from 4% to 3% (Stage and are stored to be equal to 5% (Transient; from 5% to 6% (Stage and from 6% to 8% (Transient.4. Coefficients of KE losses in blade tips GV and RB are higher in calculations of the model stage using the Transient method than the Stage one, respectively, by = 1.5 ÷ 2.5% and = 4 ÷ 5% of the absolute values. These are values to characterize the KE

  16. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  17. Deviation from an inverse cosine dependence of kinetic secondary electron emission for angle of incidence at keV energy

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1989-01-01

    Incident angle dependence of kinetic secondary electron emission from metals resulting from incidence of keV ions is investigated by computer simulation with the TRIM Monte Carlo program of ion scattering in matter. The results show large deviations from the inverse cosine dependence, which derives from high-energy approximation, because of a series of elastic collisions of incident ions with metal atoms. In the keV energy region, the elastic collisions have two different effects on the angular dependence for relatively high-energy light ions and for low-energy heavy ions: they result in over- and under-inverse-cosine dependences, respectively. The properties are observed even with an experiment of the keV-neutral incidence on a contaminated surface. In addition, the effects of the thin oxide layer and roughness on the surface are examined with simplified models. (author)

  18. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  19. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  20. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  1. Relationship between knee kinetic outcome measures in vertical counter movement jumps and self-reported function in ACL reconstructed subjects

    Brekke, Anders Falk

    2014-01-01

    Relationship between knee kinetic outcome measures in counter movement jumps and self-reported function in ACL reconstructed subjects Brekke AF1,2, Nielsen DB2, Holsgaard-Larsen A2 1School of physiotherapy, University College Zealand, Denmark 2Orthopaedic Research Unit, Department of Orthopaedics...... and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark Introduction: Altered loading pattern of the medial aspect of the knee has been associated with the development of knee osteoarthritis (OA). Anterior cruciate ligament (ACL) injuries are associated...... with early-onset OA with associated pain, functional limitations, and decreased quality of life. However, specific knee loading pattern of the medial aspect has not been investigated during different jump-tasks in ACL-reconstructed patients. The purpose was to investigate potential kinetic differences...

  2. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018

  3. Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials.

    Wang, Jun; Qiao, Zhiqiang; Yang, Yuntao; Shen, Jinpeng; Long, Zhang; Li, Zhaoqian; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    The energy performance of solid energetic materials (Al, Mg, etc.) is typically restricted by a natural passivation layer and the diffusion-limited kinetics between the oxidizer and the metal. In this work, we use polytetrafluoroethylene (PTFE) as the fluorine carrier and the shielding layer to construct a new type of nano-Al based fuels. The PTFE shell not only prevents nano-Al layers from oxidation, but also assists in enhancing the reaction kinetics, greatly improving the stability and reactivity of fuels. An in situ chemical vapor deposition combined with the electrical explosion of wires (EEW) method is used to fabricate core-shell nanostructures. Studies show that by controlling the stoichiometric ratio of the precursors, the morphology of the PTFE shell and the energy performance can be easily tuned. The resultant composites exhibit superior energy output characters than that of their physically mixed Al/PTFE counterparts. This synthetic strategy might provide a general approach to prepare other high-energy fuels (Mg, Si). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mass and kinetic-energy distributions of fragments formed in the heavy-ion-induced fission of 208Po

    Cuninghame, J.G.; Goodall, J.A.B.

    1980-01-01

    Fission fragments following the decay of a 208 Po compound nucleus have been observed by using radiochemical and particle-counting techniques. The (α+ 204 Pb), ( 12 C+ 196 Pt) and ( 16 O+ 192 Os) reactions were studied at two or three bombarding energies, covering overlapping ranges of excitation energies. - Radiochemical separations of As, Br, Y, Nb, Tc, Ag, Sb and I isotopes were made from catcher foils sandwiching isotopic targets, and their isotopic yield distributions determined. The distributions are used to estimate the average number of neutrons associated with each fission event, including neutrons emitted before and after fission. - Prompt coincidence measurements of fragments are used to derive the overall mass and kinetic-energy distributions of primary fragments, taking into account the effects of pre- and post-fission neutron emission. The mass distributions are well fitted by the statistical theory, at a temperature corresponding to an excitation about 10 MeV above that at the saddle point. No evidence is found for an increase of kinetic-energy with increasing angular momentum of the compound nucleus. (author)

  5. Thermodynamic and kinetic properties of intrinsic defects and Mg transmutants in 3C–SiC determined by density functional theory

    Hu, Shenyang; Setyawan, Wahyu; Van Ginhoven, Renee M.; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

    2014-01-01

    Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C–SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C–SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state nudged elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg 2 Si formation demonstrates that the formation of Mg 2 Si needs to overcome a critical nucleus size and nucleation barrier. It is found that C vacancies promote the formation of the Mg 2 Si nucleus, and formation of which results in a compressive stress field around the nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures

  6. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  7. Loss of Functional Photosystem II Reaction Centres in Zooxanthellae of Corals Exposed to Bleaching Conditions: Using Fluorescence Rise Kinetics.

    Hill, R; Larkum, A W D; Frankart, C; Kühl, M; Ralph, P J

    2004-01-01

    Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may

  8. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  9. Analytical potential energy function for the Br + H2 system

    Kurosaki, Yuzuru

    2001-01-01

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H 2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  10. Structure and potential energy function for Pu22+ ion

    Li Quan; Huang Hui; Li Daohua

    2003-01-01

    The theoretical study on Pu 2 2+ using density functional method shows that the molecular ion is metastable. Ground electronic state is 13 Σ g for Pu 2 2+ , the analytic potential energy function is in well agreement with the Z-W function, and the force constants and spectroscopic data have been worked out for the first time

  11. Computed functional analysis of 99mTc EHIDA kinetics in patients

    Blaha, V.; Cihak, I; Nicek, F; Horak, J.

    1987-01-01

    It is presented a method of EHIDA (dietyl-imino-acetanilido-diacetic acid) kinetic analysing in patients, particularly the kinetic in the hepatic parenchima. A group of 367 patients with different hepatobiliary or other gastrointestinal deseases, was examined and each studied was quantified either in whole extent or at least partially. The scintigraphy is made with several small modifications of the commonly known methods. The hepatic curve is analysed by a computer programme. The results obtained in the whole group of patients were submitted to a statistical evaluation to obtain general conclusions. (M.E.L.) [es

  12. Reaction dynamics of the four-centered elimination CH2OH + --> CHO + +H2: Measurement of kinetic energy release distribution and classical trajectory calculation

    Lee, Tae Geol; Park, Seung C.; Kim, Myung Soo

    1996-03-01

    Mass-analyzed ion kinetic energy (MIKE) spectrum of CHO+ generated in the unimolecular dissociation of CH2OH+ was measured. Kinetic energy release distribution (KERD) was evaluated by analyzing the spectrum according to the algorithm developed previously. The average kinetic energy release evaluated from the distribution was extraordinarily large, 1.63 eV, corresponding to 75% of the reverse barrier of the reaction. A global analytical potential energy surface was constructed such that the experimental energetics was represented and that various features in the ab initio potential energy surface were closely reproduced. Classical trajectory calculation was carried out with the global analytical potential energy surface to investigate the causes for the extraordinarily large kinetic energy release. Based on the detailed dynamical calculations, it was found that the strained bending forces at the transition state and strengthening of the CO bond from double to triple bond character were mainly responsible for such a significant kinetic energy release. In addition, the dissociation products H2 and CHO+ ion were found to be rotationally excited in the trajectory calculations. This was attributed to the asymmetry of the transition state and the release of asymmetric bending forces. Also, the bending vibrational modes of CHO+ and the H2 stretching mode, which are coupled with the bending coordinates, were found to be moderately excited.

  13. Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.

    2018-06-01

    Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.

  14. Dynamical and many-body correlation effects in the kinetic energy spectra of isotopes produced in nuclear multifragmentation

    Souza, S. R.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.

    2018-03-01

    The properties of the kinetic energy spectra of light isotopes produced in the breakup of a nuclear source and during the de-excitation of its products are examined. The initial stage, at which the hot fragments are created, is modeled by the statistical multifragmentation model, whereas the Weisskopf-Ewing evaporation treatment is adopted to describe the subsequent fragment de-excitation, as they follow their classical trajectories dictated by the Coulomb repulsion among them. The energy spectra obtained are compared to available experimental data. The influence of the fusion cross section entering into the evaporation treatment is investigated and its influence on the qualitative aspects of the energy spectra turns out to be small. Although these aspects can be fairly well described by the model, the underlying physics associated with the quantitative discrepancies remains to be understood.

  15. Dynamic energy landscapes of riboswitches help interpret conformational rearrangements and function.

    Giulio Quarta

    Full Text Available Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant "downhill" pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the "new view" of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design.

  16. Green close-quote s function method with energy-independent vertex functions

    Tsay Tzeng, S.Y.; Kuo, T.T.; Tzeng, Y.; Geyer, H.B.; Navratil, P.

    1996-01-01

    In conventional Green close-quote s function methods the vertex function Γ is generally energy dependent. However, a model-space Green close-quote s function method where the vertex function is manifestly energy independent can be formulated using energy-independent effective interaction theories based on folded diagrams and/or similarity transformations. This is discussed in general and then illustrated for a 1p1h model-space Green close-quote s function applied to a solvable Lipkin many-fermion model. The poles of the conventional Green close-quote s function are obtained by solving a self-consistent Dyson equation and model space calculations may lead to unphysical poles. For the energy-independent model-space Green close-quote s function only the physical poles of the model problem are reproduced and are in satisfactory agreement with the exact excitation energies. copyright 1996 The American Physical Society

  17. A balance principle approach for modeling phase transformation kinetics

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  18. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  19. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  20. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    Zhang, S. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Providence High School, Charlotte, NC 28270 (United States); Su, L.Q.; Kon, J. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Gfroerer, T. [Davidson College, Davidson, NC 28035 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Zhang, Y., E-mail: yong.zhang@uncc.edu [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2017-05-15

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in a spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.

  1. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  2. Role of aromaticity in humic substances degradation kinetics using non-arrhenius temperature functions

    Kislinger, J.; Novák, František; Kučerík, J.

    2008-01-01

    Roč. 102, č. 15 (2008), s1086-s1088 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z60660521 Keywords : aromaticity * humic substances degradation kinetics * non-arrhenius temperature Subject RIV: EH - Ecology, Behaviour Impact factor: 0.593, year: 2008

  3. Investigations on the influence of ion kinetic energy on mass discrimination in isotope ratio measurements using MC-ICPMS

    Fontaine, G.H.; Hattendorf, B.; Oberli, F.; Bourdon, B.; Guenther, D.

    2009-01-01

    Full text: Systematic dependence of mass discrimination on ICP operating parameters was investigated for two MCICPMS instruments, a Nu Plasma HR and a Nu Plasma 1700, which differ both in acceleration voltage and spectrometer geometry. Gas temperature variations were determined by absolute pressure measurements at the vacuum interface. Their influence on ion kinetic energy as monitored by means of a retardation filter fitted in front of an ion counting detector will be discussed and compared to effects resulting from variations in acceleration voltage. (author)

  4. Frequency Activated Fast Power Reserve for Wind Power Plant Delivered from Stored Kinetic Energy in the Wind Turbine Inertia

    Knüppel, Thyge; Thuring, P.; Kumar, S

    2011-01-01

    is proposed that delivers a short-term power reserve from the kinetic energy in the wind turbine (WT) inertia, while considering the inherent characteristics of a wind power plant. The aim is to contribute with a fast power reserve to stabilize the frequency drop during large and sudden production deficits......With increased penetration of converter interfaced generation, synchronous generators may start to be displaced to keep the overall power balance. As a consequence the resulting inertia in the system may decrease and make the power system more exposed to frequency excursions. Here, a control...

  5. Exact correlated kinetic energy related to the electron density for two-electron model atoms with harmonic confinement

    March, Norman H.; Akbari, Ali; Rubio, Angel

    2007-01-01

    For arbitrary interparticle interaction u(r 12 ), the model two-electron atom in the title is shown to be such that the ground-state electron density ρ(r) is determined uniquely by the correlated kinetic energy density t R (r) of the relative motion. Explicit results for t R (r) are presented for the Hookean atom with force constant k=1/4, and also for u(r 12 )=(λ)/(r 12 2 ) . Possible relevance of the Hookean atom treatment to the ground state of the helium atom itself is briefly discussed

  6. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  7. Power generation using kinetics energy of rivers; Prototipo de um cata-agua como gerador de eletricidade

    Harwood, John Harry [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil)

    1997-12-31

    The work talks about the possibility of make use of kinetic energy of Amazonian rivers for power generation using an equipment similar to wind conversion systems. One of this equipment was constructed and tested in Solimoes river (Amazonas State, Brazil) and utilized for supply an isolated property. Besides the problems with waste in the river and problems to fix the equipment, the result was very interesting and the cost was competitive with others options. The work presents also a scheme of equipment 3 refs., 4 figs., 1 tab.

  8. Measuring structure functions at SSC energies

    Morfin, J.G.; Owens, J.F.

    1985-01-01

    Topics discussed include measuring Λ, tests of QCD using hard scattering processes, and measuring parton distributions. In each case, any opportunities and advantages afforded by the unique features of the SSC are emphasized. The working group on structure functions was charged with investigating two specific questions: (1) How well are the various parton distributions known in the kinematic region relevant to calculations for the SSC. (2) What new information can be learned about parton distributions at the SSC. Especially for this working group, the advantages of having a fixed-target facility at the SSC for the measurement of the parton distributions with multi-TeV leptons, were to be examined. 15 references

  9. Implosion anisotropy of neutron kinetic energy distributions as measured with the neutron time-of-flight diagnostics at the National Ignition Facility

    Hartouni, Edward; Eckart, Mark; Field, John; Grim, Gary; Hatarik, Robert; Moore, Alastair; Munro, David; Sayer, Daniel; Schlossberg, David

    2017-10-01

    Neutron kinetic energy distributions from fusion reactions are characterized predominantly by the excess energy, Q, of the fusion reaction and the variance of kinetic energy which is related to the thermal temperature of the plasma as shown by e.g. Brysk. High statistics, high quality neutron time-of-flight spectra obtained at the National Ignition Facility provide a means of measuring small changes to the neutron kinetic energy due to the spatial and temporal distribution of plasma temperature, density and velocity. The modifications to the neutron kinetic energy distribution as described by Munro include plasma velocity terms with spatial orientation, suggesting that the neutron kinetic energy distributions could be anisotropic when viewed by multiple lines-of-sight. These anisotropies provide a diagnostic of burn averaged plasma velocity distributions. We present the results of measurements made for a variety of DT implosions and discuss their possible physical interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  10. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.

  11. Zeta-function approach to Casimir energy with singular potentials

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  12. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  13. Participation to the development of a kinetic model for the energy transport and deposition by using a fast electron beam in solid targets

    Hadj-Bachir, Mokrane

    2012-06-01

    Whereas existing codes (PIC, hybrid or kinetic) used to model electron transport by describing experimentally observed physical phenomena at different time scales and space scales are notably time and memory consuming (from several hours to several days of computing time), this academic work aimed at developing, from an existing code, a simple and quasi analytical model of transport of fast electron in intense current. This model allows the calculation of energy losses of beam electrons, as well as the heating a materials crossed within a relatively short time (about a minute), with ranges of about 100 microns and a resolution of about 1 micron. After a recall on the theory of fast electron transport, the author presents the structure of the code as it existed before this improvement work, and then the introduced modifications which addressed electronic conductivity, the collisional stopping power, and the distribution function. Obtained results are finally discussed

  14. Part 1: Kinetic energy dependencies of selected ion-molecule reactions; Part 2: Photochemistry of (FSO3)2, FSO3, and FNO

    Burley, J.D.

    1991-07-01

    In Part 1, guided ion beam mass spectroscopy is used to study the ion-molecule reactions O + ( 4 S) + H 2 (D 2 , HD), (O +4 S) + N 2 , C + ( 2 P) + O 2 and C + (P) + N 2 . Integral reaction cross sections are measured as a function of kinetic energy in the center-of-mass frame. Reaction mechanisms and dynamics are examined, and the results are compared to the predictions of phase space theory. In some cases, thermochemistry for neutral and ionic species is derived. In Part 2, photoabsorption cross sections are measured for peroxydisulfuryl difluoride, (FSO 3 ) 2 , and the fluorosulfate radical, FSO 3 . Photoabsorption cross sections of nitrosyl fluoride, FNO, are also measured, and the FNO absorption spectrum is analyzed and assigned. Spectral results for FNO are compared to the predictions and ab initio calculations and to those obtained for the isoelectronic compound HONO. 259 refs., 34 figs., 9 tabs

  15. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  16. An enviro-economic function for assessing energy resources for district energy systems

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  17. Kinetic Alfven wave with density variation and loss-cone distribution function of multi-ions in PSBL region

    Tamrakar, Radha; Varma, P.; Tiwari, M. S.

    2018-05-01

    Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.

  18. Energy and Protein Supplementation Does Not Affect Protein and Amino Acid Kinetics or Pregnancy Outcomes in Underweight Indian Women.

    Dwarkanath, Pratibha; Hsu, Jean W; Tang, Grace J; Anand, Pauline; Thomas, Tinku; Thomas, Annamma; Sheela, C N; Kurpad, Anura V; Jahoor, Farook

    2016-02-01

    In India, the prevalence of low birth weight is high in women with a low body mass index (BMI), suggesting that underweight women are not capable of providing adequate energy and protein for fetal growth. Furthermore, as pregnancy progresses, there is increased need to provide methyl groups for methylation reactions associated with the synthesis of new proteins and, unlike normal-BMI American women, low-BMI Indian women are unable to increase methionine transmethylation and remethylation rates as pregnancy progresses from trimester 1 to 3. This also negatively influences birth weight. The aim was to determine the effect of dietary supplementation with energy and protein from 12 ± 1 wk of gestation to time of delivery compared with no supplement on pregnancy outcomes, protein kinetics, and the fluxes of the methyl group donors serine and glycine. Protein kinetics and serine and glycine fluxes were measured by using standard stable isotope tracer methods in the fasting and postprandial states in 24 pregnant women aged 22.9 ± 0.7 y with low BMIs [BMI (in kg/m(2)) ≤18.5] at 12 ± 1 wk (trimester 1) and 30 ± 1 wk (trimester 3) of gestation. After the first measurement, subjects were randomly assigned to either receive the supplement (300 kcal/d, 15 g protein/d) or no supplement. Supplementation had no significant effect on any variable of pregnancy outcome, and except for fasting state decreases in leucine flux (125 ± 7.14 compared with 113 ± 5.06 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.04) and nonoxidative disposal (110 ± 6.97 compared with 101 ± 3.69 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.02) from trimesters 1 to 3, it had no effect on any other leucine kinetic variable or urea, glycine, and serine fluxes. We conclude that in Indian women with a low BMI, supplementation with energy and protein from week 12 of pregnancy to time of delivery does not improve pregnancy outcome, whole-body protein kinetics, or serine and glycine fluxes. © 2016 American Society for Nutrition.

  19. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  20. Surface energy and work function of elemental metals

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  1. Kinetic Isotope Effects (KIE) and Density Functional Theory (DFT): A Match Made in Heaven?

    Christensen, Niels Johan; Fristrup, Peter

    2015-01-01

    Determination of experimental kinetic isotope effects (KIE) is one of the most useful tools for the exploration of reaction mechanisms in organometallic chemistry. The approach has been further strengthened during the last decade with advances in modern computational chemistry. This allows for th...... reaction). The approach is highlighted by using recent examples from both stoichiometric and catalytic reactions, homogeneous and heterogeneous catalysis, and enzyme catalysis to illustrate the expected accuracy and utility of this approach....

  2. Validation of a Numerical Program for Analyzing Kinetic Energy Potential in the Bangka Strait, North Sulawesi, Indonesia

    Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.

    2018-02-01

    The paper presents validation of the numerical program that computes the distribution of marine current velocities in the Bangka strait and the kinetic energy potential in the form the distributions of available power per area in the Bangka strait. The numerical program used the RANS model where the pressure distribution in the vertical assumed to be hydrostatic. The 2D and 3D numerical program results compared with the measurement results that are observation results to the moment conditions of low and high tide currents. It found no different significant between the numerical results and the measurement results. There are 0.97-2.2 kW/m2 the kinetic energy potential in the form the distributions of available power per area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1 kW/m2. The results show that to be enabling the installation of marine current turbines for construction of power plant in the Bangka strait, North Sulawesi, Indonesia.

  3. The effect of vortex merging and non-merging on the transfer of modal turbulent kinetic energy content

    Ground, Cody; Vergine, Fabrizio; Maddalena, Luca

    2016-08-01

    A defining feature of the turbulent free shear layer is that its growth is hindered by compressibility effects, thus limiting its potential to sufficiently mix the injected fuel and surrounding airstream at the supersonic Mach numbers intrinsic to the combustor of air-breathing hypersonic vehicles. The introduction of streamwise vorticity is often proposed in an attempt to counteract these undesired effects. This fact makes the strategy of introducing multiple streamwise vortices and imposing upon them certain modes of mutual interaction in order to potentially enhance mixing an intriguing concept. However, many underlying fundamental characteristics of the flowfields in the presence such interactions are not yet well understood; therefore, the fundamental physics of these flowfields should be independently investigated before the explicit mixing performance is characterized. In this work, experimental measurements are taken with the stereoscopic particle image velocimetry technique on two specifically targeted modes of vortex interaction—the merging and non-merging of two corotating vortices. The fluctuating velocity fields are analyzed utilizing the proper orthogonal decomposition (POD) in order to identify the content, organization, and distribution of the modal turbulent kinetic energy content of the fluctuating velocity eigenmodes. The effects of the two modes of vortex interaction are revealed by the POD analysis which shows distinct differences in the modal features of the two cases. When comparing the low-order eigenmodes of the two cases, the size of the structures contained within the first ten modes is seen to increase as the flow progresses downstream for the merging case, whereas the opposite is true for the non-merging case. Additionally, the relative modal energy contribution of the first ten eigenmodes increases as the vortices evolve downstream for the merging case, whereas in the non-merging case the relative modal energy contribution decreases

  4. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    M. Wacławczyk

    2017-11-01

    Full Text Available In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983. The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  5. A study on the kinetics of high-energy phosphates in myocardium by phosphorous nuclear magnetic resonance

    Kusuoka, Hideo; Tsuneoka, Yutaka; Inoue, Michitoshi; Abe, Hiroshi; Watari, Hiroshi.

    1982-01-01

    Effect of artificial blood, FC 43 (Perfluorochemicals) on the kinetics of high-energy phosphate in the myocardium was evaluated by 31 P-NMR which permits a continuous and non-invasive assessment of in vivo phosphorus compounds. Cardiac perfusion was carried out on a excised rat heart with a Krebs-Henseleit modified solution and FC 43 alternately. Under the normal condition, ischemic condition, and at second perfusion amounts of intramyocardial creatine phosphoric acid, ATP, and inorganic phosphorus were determined by 31 P-NMR. Coronary flow was simultaneously estimated. The ischemic state due to interruption of perfusion resulted in a decrease in creatine phosphoric acid, which was associated with an increase in inorganic phosphorus and intracellular acidosis. No change of ATP amount was observed under ischemic state. With resumption of perfusion, the levels of creatine phosphoric acid and inorganic phosphorus rapidly returned to the normal. In the group of FC 43, coronary flow was 2.68 ml/min/g of the heart weight, about 1/2 of that of the Krebs-Henseleit group (5.68 ml/min/g of the heart weight). In controls, there was no difference between the two groups concerning creatine phosphoric acid level and recovery of creatine phospohric acid level after ischemia. These results showed that FC 43 supplies sufficient oxygen, and has no effect on the kinetics of energy in the myocardium. (Ueda, J.)

  6. Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene)

    Arias-Pardilla, J.; Otero, T.F.; Blanco, R.; Segura, J.L.

    2010-01-01

    The chemical synthesis of an EDOT derivative endowed with an electron acceptor anthraquinone moiety (AQ-EDOT) is described. The electrochemical polymerization of the monomer has been studied by cyclic voltammetry, chronoamperometry and chronopotentiometry. The monomer oxidation-polymerization takes places on platinum at potentials more positive than 1.3 V vs. Ag/AgCl. The polymer film presents a stable redox process with E 0 = 0.22 V, that can be assigned to the characteristic exchange process of the parent unsubstituted PEDOT polymer. An unstable redox process at E 0 = -1.00 V, present decreasing charges on the consecutive cycles despite that the lost reduction charge is recovered by two irreversible oxidation processes taking place at high anodic potentials 0.00 and 0.16 V. A structural charge trapping effects occurring by reduction at -1.1 V and re-oxidation at 0.16 V of the anthraquinone moiety is suggested. The stable redox process is not affected by cycling allowing the obtention of the oxidation empirical kinetics, kinetic coefficients and reaction orders. Different initial states attained by reduction at different cathodic potentials for a constant time were explored for the kinetic study.

  7. Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene)

    Arias-Pardilla, J. [Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politecnica de Cartagena, ETSII, E-30203 Cartagena (Spain); Otero, T.F., E-mail: toribio.fotero@uptc.e [Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politecnica de Cartagena, ETSII, E-30203 Cartagena (Spain); Blanco, R.; Segura, J.L. [Departamento de Quimica Organica, Facultad de Quimica, Universidad Complutense, E-28040 Madrid (Spain)

    2010-02-01

    The chemical synthesis of an EDOT derivative endowed with an electron acceptor anthraquinone moiety (AQ-EDOT) is described. The electrochemical polymerization of the monomer has been studied by cyclic voltammetry, chronoamperometry and chronopotentiometry. The monomer oxidation-polymerization takes places on platinum at potentials more positive than 1.3 V vs. Ag/AgCl. The polymer film presents a stable redox process with E{sup 0} = 0.22 V, that can be assigned to the characteristic exchange process of the parent unsubstituted PEDOT polymer. An unstable redox process at E{sup 0} = -1.00 V, present decreasing charges on the consecutive cycles despite that the lost reduction charge is recovered by two irreversible oxidation processes taking place at high anodic potentials 0.00 and 0.16 V. A structural charge trapping effects occurring by reduction at -1.1 V and re-oxidation at 0.16 V of the anthraquinone moiety is suggested. The stable redox process is not affected by cycling allowing the obtention of the oxidation empirical kinetics, kinetic coefficients and reaction orders. Different initial states attained by reduction at different cathodic potentials for a constant time were explored for the kinetic study.

  8. Coupling the photon kinetics of soft photons with high energy photons

    Silva, L. O.; Bingham, R.

    2017-10-01

    The description of electromagnetic fields based on the generalized photon kinetic theory, which takes advantage of the Wigner-Moyal description for the corresponding classical field theory, is capable of capturing collective plasma dynamics in the relativistic regime driven by broadband incoherent or partially coherent sources. We explore the possibility to extend this description to include the dynamics of hard photons in the plasma, whose interaction is dominated by single scattering processes. Examples of the modification of classical plasma instabilities due to the presence of hard photons is discussed. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  9. Squeeze-out of nuclear matter as a function of projectile energy and mass

    Gutbrod, H.H.; Kampert, K.H.; Kolb, B.; Poskanzer, A.M.; Ritter, H.G.; Schicker, R.; Schmidt, H.R.

    1990-01-01

    Squeeze-out, a component of the collective flow of nuclear matter, is the preferential emission of particles out of the reaction plane. Using the sphericity method the out-of-plane/in-plane ratio of the kinetic energy flow has been analyzed as a function of multiplicity and beam energy for Ca+Ca, Nb+Nb, and Au+Au collisions measured with the Plastic Ball detector at the Bevalac. Also, azimuthal distribution of the particles around the flow axis are presented together with the extracted out-of-plane/in-plane ratios. Finally, the rapidity dependence of the out-of-plane/in-plane ratio has been investigated with a new method using the transverse momentum components of the particles

  10. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  11. Dependence of the giant dipole strength function on excitation energy

    Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.

    1982-01-01

    Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy

  12. Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation

    Puentes-Camacho, Daniel; Velázquez, Enrique F.; Rodríguez-Félix, Dora E.; Castillo-Ortega, Mónica; Sotelo-Mundo, Rogerio R.; del Castillo-Castro, Teresa

    2017-12-01

    Proteins suffer changes in their tertiary structure when they are immobilized, and enzymatic activity is affected due to the low biocompatibility of some supporting materials. In this work immobilization of lysozyme on carbon nanotubes previously functionalized by microwave irradiation was studied. The effectiveness of the microwave-assisted acid treatment of carbon nanotubes was evaluated by XPS, TEM, Raman and FTIR spectroscopy. The carboxylic modification of nanotube surfaces by this fast, simple and feasible method allowed the physical adsorption and covalent linking of active lysozyme onto the carbonaceous material. Thermal inactivation kinetics, thermodynamic parameters and storage stability were studied for adsorbed and covalent enzyme complexes. A major stability was found for lysozyme immobilized by the covalent method, the activation energy for inactivation of the enzyme was higher for the covalent method and it was stable after 50 d of storage at 4 °C. The current study highlights the effect of protein immobilization method on the biotechnological potential of nanostructured biocatalysts.

  13. On the low-energy behavior of the Adler function

    Nesterenko, A.V.

    2009-01-01

    The infrared behavior of the Adler function is examined by making use of a recently derived integral representation for the latter. The obtained result for the Adler function agrees with its experimental prediction in the entire energy range. The inclusive τ lepton decay is studied in the framework of the developed approach

  14. On approximation and energy estimates for delta 6-convex functions.

    Saleem, Muhammad Shoaib; Pečarić, Josip; Rehman, Nasir; Khan, Muhammad Wahab; Zahoor, Muhammad Sajid

    2018-01-01

    The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted [Formula: see text]-norm.

  15. On approximation and energy estimates for delta 6-convex functions

    Muhammad Shoaib Saleem

    2018-02-01

    Full Text Available Abstract The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted L2 $L^{2}$-norm.

  16. COULN, a program for evaluating negative energy Coulomb functions

    Noble, C.J.; Thompson, I.J.

    1984-01-01

    Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)

  17. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  18. Free energy distribution function of a random Ising ferromagnet

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  19. Interfacial mixing in high-energy-density matter with a multiphysics kinetic model

    Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.

    2017-12-01

    We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.

  20. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  1. Inferring Parametric Energy Consumption Functions at Different Software Levels

    Liqat, Umer; Georgiou, Kyriakos; Kerrison, Steve

    2016-01-01

    The static estimation of the energy consumed by program executions is an important challenge, which has applications in program optimization and verification, and is instrumental in energy-aware software development. Our objective is to estimate such energy consumption in the form of functions...... on the input data sizes of programs. We have developed a tool for experimentation with static analysis which infers such energy functions at two levels, the instruction set architecture (ISA) and the intermediate code (LLVM IR) levels, and reflects it upwards to the higher source code level. This required...... the development of a translation from LLVM IR to an intermediate representation and its integration with existing components, a translation from ISA to the same representation, a resource analyzer, an ISA-level energy model, and a mapping from this model to LLVM IR. The approach has been applied to programs...

  2. Kinetic energy spectrum and polarization of neutrons from the reaction 12C(p,n)X at 590 MeV

    Arnold, J.

    1998-01-01

    The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12 C(p,n)X at 0 with 590 MeV polarized protons were investigated. A strong energy dependence of the neutron beam polarization is observed which was not expected at the time the neutron beam was built. (orig.)

  3. Kinetics and

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  4. Theoretical comparison of performance using transfer functions for reactivity meters based on inverse kinetic method and simple feedback method

    Shimazu, Yoichiro; Tashiro, Shoichi; Tojo, Masayuki

    2017-01-01

    The performance of two digital reactivity meters, one based on the conventional inverse kinetic method and the other one based on simple feedback theory, are compared analytically using their respective transfer functions. The latter one is proposed by one of the authors. It has been shown that the performance of the two reactivity meters become almost identical when proper system parameters are selected for each reactivity meter. A new correlation between the system parameters of the two reactivity meters is found. With this correlation, filter designers can easily determine the system parameters for the respective reactivity meters to obtain identical performance. (author)

  5. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  6. Complementary role of helical CT cholangiography to MR cholangiography in the evaluation of biliary function and kinetics

    Eracleous, Eleni; Genagritis, Marios; Kontou, Allayioti Maria; Papanikolaou, Nicos; Prassopoullos, P.; Chrysikopoulos, Haris; Gourtsoyiannis, Nicholas; Allan, Paul

    2005-01-01

    To explore the potential role of computed tomographic cholangiography (CTC) in relation to magnetic resonance cholangiography (MRC) in cases in which knowledge of biliary kinetics and functional information are important for therapeutic decisions, 31 patients (14 men and 17 women) underwent MRC followed by CTC. We examined nine post-cholecystectomy cases with right upper quadrant abdominal pain, six cases with a previous biliary-enteric anastomosis and clinical evidence of cholangitis, eight biliary strictures with pain or symptoms of cholangitis, four cases with strong clinical evidence of sclerosing cholangitis, three cases with suspected post-laparoscopic cholecystectomy bile leakage, and one case with chronic pancreatitis and a common bile duct stent associated with cholangitis. In relation to MRC, CTC provided additional biliary functional information as follows: abnormal biliary drainage through the ampulla in 7/9 cholecystectomy cases, impaired drainage in 3/6 biliary-enteric anastomoses, and complete obstruction in 2/8 biliary strictures. CTC diagnosed early sclerosing cholangitis in 4/4 cases and confirmed suspected bile leakage in 1/3 post-laparoscopic cholecystectomy patients, and the patency of the biliary stent in the patient with chronic pancreatitis. Thus, CTC provides clinically important information about the function and kinetics of bile and complements findings obtained by MRC. (orig.)

  7. Complementary role of helical CT cholangiography to MR cholangiography in the evaluation of biliary function and kinetics

    Eracleous, Eleni; Genagritis, Marios; Kontou, Allayioti Maria [Diagnostic Center of Ayios Therissos, Department of Radiology, Nicosia (Cyprus); Papanikolaou, Nicos; Prassopoullos, P.; Chrysikopoulos, Haris; Gourtsoyiannis, Nicholas [University of Crete, Department of Radiology, Heraklion (Greece); Allan, Paul [Royal Infirmary of Edinburgh, Department of Radiology, Edinburgh (United Kingdom)

    2005-10-01

    To explore the potential role of computed tomographic cholangiography (CTC) in relation to magnetic resonance cholangiography (MRC) in cases in which knowledge of biliary kinetics and functional information are important for therapeutic decisions, 31 patients (14 men and 17 women) underwent MRC followed by CTC. We examined nine post-cholecystectomy cases with right upper quadrant abdominal pain, six cases with a previous biliary-enteric anastomosis and clinical evidence of cholangitis, eight biliary strictures with pain or symptoms of cholangitis, four cases with strong clinical evidence of sclerosing cholangitis, three cases with suspected post-laparoscopic cholecystectomy bile leakage, and one case with chronic pancreatitis and a common bile duct stent associated with cholangitis. In relation to MRC, CTC provided additional biliary functional information as follows: abnormal biliary drainage through the ampulla in 7/9 cholecystectomy cases, impaired drainage in 3/6 biliary-enteric anastomoses, and complete obstruction in 2/8 biliary strictures. CTC diagnosed early sclerosing cholangitis in 4/4 cases and confirmed suspected bile leakage in 1/3 post-laparoscopic cholecystectomy patients, and the patency of the biliary stent in the patient with chronic pancreatitis. Thus, CTC provides clinically important information about the function and kinetics of bile and complements findings obtained by MRC. (orig.)

  8. Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector

    Jain, R.K.; Kumar, Ashok; Singh, B.K.

    2012-01-01

    Highlights: ► We calibrate CR-39 detector with very low energy protons. ► We establish linear relationship between track diameter and time/energy up to 200 keV. ► We determine activation energy of annealing using different models. ► We justify concept of single annealing activation energy in CR-39. - Abstract: In this paper threshold of the registration sensitivity of very low energy proton in CR-39 is investigated. Irradiation of CR-39 (poly-allyl-diglycol carbonate) was carried out with very low energy mono energetic protons of 20–60 keV from a mini proton accelerator. Nearly 10 4 /cm 2 fluence of protons was used. The variation of track diameter with etching time as well as proton energy response curve was carefully calibrated. The bulk and track etch rates were measured by using proton track diameters. Bulk etch rate was also measured by the thickness of removed surface layer. The thermal annealing of proton track at temperatures ranging from 100 to 200 °C in CR-39 was studied by several models. Activation energy of annealed CR-39 detectors was calculated by slope of track etch rate and temperature plot. The data of proton tracks of 200, 250 and 300 keV from 400 kV Van-de-Graaff accelerator was also used and compared with the track diameters of different energies of proton.

  9. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  10. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses

    Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.

    2012-04-01

    We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these

  11. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American

  12. Distribution of the near-inertial kinetic energy inside mesoscale eddies: Observations in the Gulf of Mexico

    Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio

    2017-04-01

    The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.

  13. Cars and Kinetic Energy--Some Simple Physics with Real-World Relevance

    Parthasarathy, Raghuveer

    2012-01-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in "The Physics Teacher" in the past few decades (e.g., Refs. 1-5, noted further below).…

  14. High solids emulsions produced by ultrasound as a function of energy density.

    Consoli, Larissa; de Figueiredo Furtado, Guilherme; da Cunha, Rosiane Lopes; Hubinger, Míriam Dupas

    2017-09-01

    The use of emulsifying methods is frequently required before spray drying food ingredients, where using high concentration of solids increases the drying process yield. In this work, we used ultrasound to obtain kinetically stable palm oil-in-water emulsions with 30g solids/100g of emulsion. Sodium caseinate, maltodextrin and dried glucose syrup were used as stabilizing agents. Sonication time of 3, 7 and 11min were evaluated at power of 72, 105 and 148W (which represents 50%, 75% and 100% of power amplitude in relation to the nominal power of the equipment). Energy density required for each assay was calculated. Emulsions were characterized for droplets mean diameter and size distribution, optical microscopy, confocal microscopy, ζ-potential, creaming index (CI) and rheological behavior. Emulsions presented bimodal size distribution, with D [3,2] ranging from 0.7 to 1.4μm and CI between 5% and 12%, being these parameters inversely proportional to sonication time and power, but with a visual kinetically stabilization after the treatment at 148W at 7min sonication. D [3,2] showed to depend of energy density as a power function. Sonication presented as an effective method to be integrated to spray drying when emulsification is needed before the drying process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Energy

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  16. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  17. Energy storage: feasibility study to collect, store and release energy from solar origin, using a kinetic battery stockage

    Tatry, B

    1976-02-01

    The feasibility of using solar energy to feed an autonomous station providing electric current continuously was studied. As an energy storage device a 'superflywheel' (rotor with composite fibers - magnetic bearings) would be used. Results show that such an experiment can be reasonably envisaged only in highly sunny countries and that it becomes non profitable at our latitudes, despite the very good performance of the flywheel storage device.

  18. Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization.

    Silva, Michele Bezerra; Perez, Victor Haber; Pereira, Nádia Rosa; Silveira, Thays da Costa; da Silva, Nathalia Ribeiro Ferreira; de Andrade, Cristilane Macharete; Sampaio, Romildo Martins

    2018-05-01

    The aim of the present study was to assess the drying kinetic of tucum fruits (epicarp and mesocarp) Astrocaryum aculeatum Meyer at three different temperatures (50, 60, and 70 °C). The physicochemical characterization, water activity, moisture content, including β-carotene and vitamin C content in - natura and dried fruits were analyzed. The fruit fractions presented high β-carotene, protein and lipid levels. Fatty acid profile showed oleic acid as the major fatty acid. Different mathematical models were computed to assess the drying process. The Page model was observed to be the best to describe the drying kinetic with the highest correlation coefficient ( R 2 ) 0.99 and the least Chi squared ( χ 2 ) close to 10 5 at the studied temperatures. The drying process reduced water activity to desirable levels in all trials and β-carotene retentions after drying remained at satisfactory levels, fact that resulted in minimum value of 63% and approximately 94% in some cases. Vitamin C retention was comparatively more around 20-40% compared to control.

  19. Functionalization of graphene for efficient energy conversion and storage.

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  20. Evaluation of NEB energy markets and supply monitoring function

    2003-09-01

    Canada's National Energy Board regulates the exports of oil, natural gas, natural gas liquids and electricity. It also regulates the construction, operation and tolls of international and interprovincial pipelines and power lines. It also monitors energy supply and market developments in Canada. The Board commissioned an evaluation of the monitoring function to ensure the effectiveness and efficiency of the monitoring activities, to identify gaps in these activities and to propose recommendations. The objectives of the monitoring mandate are to provide Canadians with information regarding Canadian energy markets, energy supply and demand, and to ensure that exports of natural gas, oil, natural gas liquids and electricity do not occur at the detriment of Canadian energy users. The Board ensures that Canadians have access to domestically produced energy on terms that are as favourable as those available to export buyers. The following recommendations were proposed to improve the monitoring of energy markets and supply: (1) increase focus and analysis on the functioning of gas (first priority) and other commodity markets, (2) increase emphasis on forward-looking market analysis and issue identification, (3) demonstrate continued leadership by encouraging public dialogue on a wide range of energy market issues, (4) improve communication and increase visibility of the NEB within the stakeholder community, (5) build on knowledge management and organizational learning capabilities, (6) improve communication and sharing of information between the Applications and Commodities Business Units, and (7) enhance organizational effectiveness of the Commodities Business Unit. figs

  1. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  2. Measurement of cardiovascular function using a novel view-sharing PET reconstruction method and tracer kinetic analysis

    Paul R. Territo

    2016-10-01

    Full Text Available Abstract Recent advancements in PET instrumentation have made the non-invasive assessment of cardiovascular function in small animals a reality. The majority of small animal PET systems use stationary detector gantries, thus affording high temporal resolution imaging of cardiac function. Systems designed to maximize spatial resolution and detection sensitivity employing rotating gantry designs are suboptimal when high temporal resolution imaging is needed. To overcome this limitation, the current work developed a novel view-sharing data analysis scheme suitable for dynamic cardiac PET imaging using 18F-NaF as the tracer and tracer kinetic model analysis. This scheme was tested in a rat model of cardiovascular function where the relationship between direct transonic flow measures of cardiac output were highly correlated (f(x = 1.0216x − 24.233, R = 0.9158, p < 0.001 with the new model. Similarly, derived measures of stroke volume were also highly correlated (f(x = 0.9655x − 0.0428, R = 0.9453, p < 0.001 with the current approach. Administration of xylazine caused a statistically significant increase in stroke volume (0.32 ± 0.07 ml, p = 0.003, n = 4 and a significant decrease in both heart rate (−155 ± 7.1 beats/min, p < 0.001, n = 4 and cardiac output (−75.9 ± 23.0 ml/kg min, p = 0.01, n = 4. These findings suggest that the new sinogram binning and kinetic modeling methods produce reliable cardiac function measures suitable for longitudinal monitoring of cardiovascular function.

  3. Energy functionals for medical image segmentation: choices and consequences

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  4. Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids

    Kim, Tae Wan

    2011-01-01

    For many decades, people have been actively investigating high-performance energy absorption materials, so as to develop lightweight and small-sized protective and damping devices, such as blast mitigation helmets, vehicle armors, etc. Recently, the high energy absorption efficiency of nanoporous materials functionalized (NMF) liquids has drawn considerable attention. A NMF liquid is usually a liquid suspension of nanoporous particles with large nanopore surface areas (100 - 2,000 m²/g). The ...

  5. Simple Examples of the Interpretation of Changes in Kinetic and Potential Energy Under Galilean Transformations

    Ginsberg, Edw. S.

    2018-02-01

    The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to students at that level, are used. Emphasis is on pedagogy and concepts related to the transformation properties of potential energy.

  6. Modeling the isochronal crystallization kinetics

    Sahay, S.S.; Krishnan, Karthik

    2004-01-01

    The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, originally formulated for the isothermal condition, is often used in conjunction with additivity principle for modeling the non-isothermal crystallization kinetics. This approach at times results in significant differences between the model prediction and experimental data. In this article, a modification to this approach has been imposed via an additional functional relationship between the activation energy and heating rate. The methodology has been validated with experimental isochronal crystallization kinetic data in Se 71 Te 20 Sb 9 glass and Ge 20 Te 80 systems. It has been shown that the functional relationship between heating rate and activation energy, ascribed to the reduction in apparent activation energy due to increasing non-isothermality, provides better phenomenological description and therefore improves the prediction capability of the JMAK model under isochronal condition

  7. Range and energy functions of interest in neutron dosimetry

    Bhatia, D.P.; Nagarajan, P.S.

    1978-01-01

    This report documents the energy and range functions generated and used in fast neutron interface dosimetry studies. The basic data of stopping power employed are the most recent. The present report covers a number of media mainly air, oxygen, nitrogen, polythene, graphite, bone and tissue, and a number of charged particles, namely protons, alphas, 9 Be, 11 B, 12 C, 13 C, 14 N and 16 O. These functions would be useful for generation of energy and range values for any of the above particles in any of the above media within +- 1% in any dosimetric calculations. (author)

  8. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process

    Wang, Huijiao; Bakheet, Belal; Yuan, Shi; Li, Xiang; Yu, Gang [School of Environment, Tsinghua University, Beijing 100084 (China); Murayama, Seiichi [Power and Industrial Systems R& D Center, Toshiba Corporation, Fuchu-shi, Tokyo (Japan); Wang, Yujue, E-mail: wangyujue@tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-08-30

    Highlights: • E-peroxone couples electrolysis with ozonation to driven peroxone reaction for pollutant degradation. • Significant amounts of ·OH can be efficiently produced in the E-peroxone process. • E-peroxone greatly enhances 1,4-dioxane degradation kinetics compared with ozonation and electrolysis. • E-peroxone consumes less energy for 1,4-dioxane mineralization than ozonation and electrolysis. • E-peroxone offers a cost-effective and energy-efficient alternative to degrade 1,4-dioxane. - Abstract: Degradation of 1,4-dioxane by ozonation, electrolysis, and their combined electro-peroxone (E-peroxone) process was investigated. The E-peroxone process used a carbon-polytetrafluorethylene cathode to electrocatalytically convert O{sub 2} in the sparged ozone generator effluent (O{sub 2} and O{sub 3} gas mixture) to H{sub 2}O{sub 2}. The electro-generated H{sub 2}O{sub 2} then react with sparged O{sub 3} to yield aqueous ·OH, which can in turn oxidize pollutants rapidly in the bulk solution. Using p-chlorobenzoic acid as ·OH probe, the pseudo-steady concentration of ·OH was determined to be ∼0.744 × 10{sup −9} mM in the E-peroxone process, which is approximately 10 and 186 times of that in ozonation and electrolysis using a Pt anode. Thanks to its higher ·OH concentration, the E-peroxone process eliminated 96.6% total organic carbon (TOC) from a 1,4-dioxane solution after 2 h treatment with a specific energy consumption (SEC) of 0.376 kWh g{sup −1} TOC{sub removed}. In comparison, ozonation and electrolysis using a boron-doped diamond anode removed only ∼6.1% and 26.9% TOC with SEC of 2.43 and 0.558 kWh g{sup −1} TOC{sub removed}, respectively. The results indicate that the E-peroxone process can significantly improve the kinetics and energy efficiency for 1,4-dioxane mineralization as compared to the two individual processes. The E-peroxone process may thus offer a highly effective and energy-efficient alternative to treat 1,4-dioxane

  9. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  10. Classical kinetic equations for orientational effects with account for the two-particle correlation function of a crystal

    Ol'khovskij, I.I.; Sadykov, N.M.

    1980-01-01

    The paper deals with the development of classical-statistical approach to the orientational effect theory with account of the influence of the two-particle correlation function of a crystal on diffusion processes. Peculiarities of fast particle movement in the crystal moving at small angles to crystallographic axes and planes are caused by a great number of correlated collisions of the beam particle with the crystal atoms during which the particle slightly deviates in each collision from the direction of its movement before the collision. Obtained is the kinetic equation for the distribution function over coordinates and velocities describing the movement of these particles in the crystal. Lacking the particle deceleration the equation describing movement of the beam particles in the averaged potential and their diffusion by velocities is also obtained. The main peculiarity of these equations is the fact that they take into account strong spatial non-uniformity in the crystal atom distribution [ru

  11. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  12. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply.

    Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas

    2018-03-01

    As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.

  13. Idempotent Dirac density matrix for ten-electron central field inhomogeneous electron liquids in terms of electron- and kinetic energy-densities

    March, N.H.

    2006-08-01

    A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)

  14. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  15. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  16. ION KINETIC ENERGY CONSERVATION AND MAGNETIC FIELD STRENGTH CONSTANCY IN MULTI-FLUID SOLAR WIND ALFVÉNIC TURBULENCE

    Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)

    2015-03-20

    We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.

  17. Energy vs. density on paths toward more exact density functionals.

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  18. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  19. Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcus on dry lands

    Nallathambi Gunaseelan, V. [Department of Zoology, PSG College of Arts and Science, Coimbatore 641 014 (India)

    2009-04-15

    In this study, we examined the production of Jatropha curcus plants on 1 ha of rain fed dry lands. All of the plant components that would result from plantation tending, fruit harvesting and processing were sampled for their yield and chemical composition, and then subjected to the biochemical methane potential (BMP) assay. The component parts exhibited significant variation in BMP which was reflected in their ultimate methane yield which ranged from 0.08 to 0.97 L g{sup -1} VS added, and their first order kinetics which ranged from 0.07 to 0.14 d{sup -1}. We examined two integrated utilization schemes: the first which converted plant prunings, fruit hulls and de-oiled seed cake to methane, and the oil to fatty acid methyl-ester (FAME); the second was to convert the seeds, plant prunings and fruit hulls entirely to methane. The basis for the plantation was, a density of 4444 plant ha{sup -1} (1.5 m x 1.5 m spacing), with a seed yield of 0.911 kg TS plant{sup -1} (1 kg total weight) with an oil content of 35% providing an annual oil yield of 1.42 t y{sup -1}. The corresponding yields of pruned leaves, fruit hulls and de-oiled cake are 0.97, 1.0, and 2.35 t VS ha y{sup -1}, respectively. An integrated scheme of producing biogas by means of anaerobic digestion of the latter components and oil for biodiesel would produce 90 GJ ha{sup -1} y{sup -1} in total with the oil being 54 GJ. The alternative biogas only option which would convert the seed oil into methane instead of biodiesel would produce 97 GJ ha{sup -1} y{sup -1}. (author)

  20. AN ENERGY FUNCTION APPROACH FOR FINDING ROOTS OF CHARACTERISTIC EQUATION

    Deepak Mishra; Prem K. Kalra

    2011-01-01

    In this paper, an energy function approach for finding roots of a characteristic equation has been proposed. Finding the roots of a characteristics equation is considered as an optimization problem. We demonstrated that this problem can be solved with the application of feedback type neural network. The proposed approach is fast and robust against variation of parameter.