WorldWideScience

Sample records for kinematic wave models

  1. Assessment of multi class kinematic wave models

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Van Lint, J.W.C.; Vuik, C.; Hoogendoorn, S.P.

    2012-01-01

    In the last decade many multi class kinematic wave (MCKW) traffic ow models have been proposed. MCKW models introduce heterogeneity among vehicles and drivers. For example, they take into account differences in (maximum) velocities and driving style. Nevertheless, the models are macroscopic and the

  2. Modeling aspects of wave kinematics in offshore structures dynamics

    International Nuclear Information System (INIS)

    Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.

    1993-01-01

    Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower

  3. Influence of a relativistic kinematics on s-wave KN phase shifts in a quark model

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2001-01-01

    The I = 1 and I = 0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM) and a relativistic kinematics. The spinless Salpeter equation has been solved numerically using the Fourier grid Hamiltonian method. The results have been compared to the non-relativistic ones. For each isospin channel the phase shifts obtained are not so far from the non-relativistic results. (author)

  4. Impact of turbulence induced loads and wave kinematic models on fatigue reliability estimates of offshore wind turbine monopiles

    DEFF Research Database (Denmark)

    Colone, Lorenzo; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2018-01-01

    of fatigue loads. Subsequently, the research focuses on studying the effects of uncertain marine environments on the fatigue load distribution, showing that the latter is insensitive to the random variability of the hydrodynamic coefficients. With respect to the wave kinematic model, a comparison between...... nonlinear and linear waves clearly suggests that hydrodynamic forces depend significantly on the kinematic model adopted and the operational conditions of the turbine. Furthermore, a term is derived to correct the error introduced by Wheeler stretching at finite water depths. The respective model...

  5. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    Science.gov (United States)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  6. Modelling runoff on ceramic tile roofs using the kinematic wave equations

    Science.gov (United States)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln

    2016-04-01

    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  7. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  8. Distribution of stable isotopes in arid storms . II. A double-component model of kinematic wave flow and transport

    Science.gov (United States)

    Yakirevich, Alexander; Dody, Avraham; Adar, Eilon M.; Borisov, Viacheslav; Geyh, Mebus

    A new mathematical method based on a double-component model of kinematic wave flow and approach assesses the dynamic isotopic distribution in arid rain storms and runoff. This model describes the transport and δ18O evolution of rainfall to overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. The problem was solved numerically. The model was calibrated using a set of temporal discharge and δ18O distribution data for rainfall and runoff collected on a small rocky watershed at the Sede Boker Experimental Site, Israel. Simulation of a reliable result with respect to observation was obtained after parameter adjustment by trial and error. Sensitivity analysis and model application were performed. The model is sensitive to changes in parameters characterizing the depression storage zones. The model reflects the effect of the isotopic memory in the water within the depression storage between sequential rain spells. The use of the double-component model of kinematic wave flow and transport provides an appropriate qualitative and quantitative fitting between computed and observed δ18O distribution in runoff. RésuméUne nouvelle méthode mathématique basée sur un modèle à double composante d'écoulement et de transport par une onde cinématique a été développée pour évaluer la distribution dynamique en isotopes dans les précipitations et dans l'écoulement en région aride. Ce modèle décrit le transport et les variations des δ18O de la pluie vers le ruissellement et l'écoulement de surface dans un bassin aride rocheux où le stockage se fait dans des dépressions peu profondes uniformément réparties. Le problème a été résolu numériquement. Le modèle a été calibré au moyen d'une chronique de débits et d'une distribution des δ18O dans la pluie et dans l'écoulement de surface sur un petit bassin versant rocheux du site expérimental de Sede Boker (Israël). La simulation d'un résultat cr

  9. COMPARISON STUDY OF EXPERIMENTS AND PREDICTIONS OF WAVE KINEMATICS FOR ROGUE WAVE

    Directory of Open Access Journals (Sweden)

    Hae Jin Choi

    2018-01-01

    Full Text Available To investigate the wave kinematics under the rogue wave crest, a series of experiments were performed in 2-D wave tank with the application of PIV technique to measure the velocities under the free surface. Three different prediction methods of linear extrapolation, Wheeler stretching, and modified stretching were applied to estimate water wave kinematics and compared with PIV experimental results under the highest wave crest of irregular wave trains satisfying with rogue wave criteria. Also, the cut-off frequency dependence for three prediction methods was investigated with varying spectral peak frequencies to estimate wave kinematics including velocities and accelerations in horizontal and vertical directions. It was suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler stretching and modified stretching method.

  10. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  11. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  12. Kinematic Model of NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Miloš D. Jovanović

    2014-06-01

    Full Text Available This paper presents synthesis of kinematic model of NAO humanoid robot of Aldebaran Robotics. NAO humanoid robot has complex kinematic structure with 25 active degrees of freedom (DOF. Humanoid system is formed through 5 mutually depended kinematic chains. After that we applied standard aspects of kinematic chains synthesis and Denavit-Hartenberg parameters of each of 5 chains of robotic structure were introduced. Also, mutual relationships between chains were described, as well as their physical and structural dependence. Generated kinematic model will be the starting point for further dynamical modeling of NAO humanoid robot and motion synthesis on actual platform.

  13. Kinematic Modeling of Distant Galaxies

    Directory of Open Access Journals (Sweden)

    Kipper Rain

    2012-12-01

    Full Text Available Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.

  14. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  15. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.

    1990-01-01

    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  16. Computing broadband accelerograms using kinematic rupture modeling

    International Nuclear Information System (INIS)

    Ruiz Paredes, J.A.

    2007-05-01

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k -2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w 2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity C d . To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C d , as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M w 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  17. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  18. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  19. Wave kinematics and response of slender offshore structures. Vol 5: Wave forces and responses

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.M.; Riber, H.J.

    1999-08-01

    A load measuring system (LMS) and a wave measuring system (WMS) has been used on the North Sea platform Tyra. The LMS consists of an instrumented pipe placed vertically in the crest zone of high and steep waves. The WMS consists of an unique sonar system placed on the sea floor. Simultaneous measurements are carried out of the kinematics of waves and currents and the response of the instrumented pipe during a period of five month in the winter 1994/95. Numerical calculations with LIC22 are carried out of the response of the LMS applying the measured wave and current kinematics. The responses are compared to the measured responses of the LMS. The comparison is based on the statistical main properties of the calculated and measured response as the kinematic field is measured 150 metres away from the instrumented pipe. From the analyses the main parameters (reduced velocity V{sub R} and correlation length l{sub c}) for vortex induced vibrations (VIV) are calibrated and the main environmental conditions for VIV are determined. The hydrodynamic coefficients determining the wave and current forces on slender structures are studied (drag coefficient C{sub D} and added mass coefficient C{sub M}). Further, the effect on the drag coefficient due to air blending in the upper part of the wave is determined. (au)

  20. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...... damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping....

  1. Kinematic parameters of internal waves of the second mode in the South China Sea

    Directory of Open Access Journals (Sweden)

    O. Kurkina

    2017-10-01

    Full Text Available Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  2. Local galactic kinematics: an isothermal model

    International Nuclear Information System (INIS)

    Nunez, J.

    1983-01-01

    The kinematical parameters of galactic rotation in the solar neighborhood and the corrections to the precession have been calculated. For this purpose, an isothermal model for the solar neighborhood has been used together with the high order momenta of the local stellar velocity distribution and the Ogorodnikov-Milne model. Both have been calculated using some samples of the ''512 Distant FK4/FK4 Sup. Stars'' of Fricke (1977) and of Gliese's Gatalogue. (author)

  3. On phase, action and canonical conservation laws in kinematic-wave theory

    International Nuclear Information System (INIS)

    Maugin, G.A.

    2008-01-01

    Canonical equations of energy and momentum are constructed in the kinematic-wave theory of waves in a continuum. This is done in analogy with what is achieved in nonlinear continuum mechanics. The starting point is a generalized balance of wave action. The standard formulas are recovered when the system follows from the averaged-Lagrangian variational formulation of Whitham

  4. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.; NASA/Fermilab Astrophysics Center, Batavia, IL)

    1987-01-01

    Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations. 58 references

  5. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations

  6. Kinematic tests of exotic flat cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.

  7. Kinematical and dynamical models for barred spiral galaxies

    International Nuclear Information System (INIS)

    Davoust, E.

    1983-01-01

    This is a review of published works on the kinematics and dynamics of stellar bars and barred spiral galaxies. The periodic orbits of stars are elongated along the bar and enhance it out to a certain distance from the center. The important role of the interstellar gas is pointed out by the models of gas clouds and flows: the trajectories are also along the bar, but shock waves arise in front of the bar and transient spiral structures appear at its ends. These models reproduce the observed velocity fields fairly well. The investigations of the stability of axisymmetric galactic disks show that they are very unstable with respect to bar shaped perturbations and might explain why two thirds of the known spiral galaxies are barred [fr

  8. The Kinematic Learning Model using Video and Interfaces Analysis

    Science.gov (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  9. DENSITY WAVE KINEMATICS AND GIANT MOLECULAR ASSOCIATION FORMATION IN M51

    NARCIS (Netherlands)

    RAND, RJ

    1993-01-01

    New spectroscopic observations of the ionized gas (Halpha and [N II] lines) in M51 are combined with existing CO, H I, and Halpha data to look for kinematic evidence that the gas is responding to a spiral density wave. Possible mechanisms for the formation of the approximately 3 x 10(7) M. giant

  10. Propagation of multidimensional nonlinear waves and kinematical conservation laws

    CERN Document Server

    Prasad, Phoolan

    2017-01-01

    This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved sho...

  11. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  12. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  13. Observed Kinematics of Waves in the Surf Zone

    National Research Council Canada - National Science Library

    Constantian, Richard

    1999-01-01

    .... Observed pressure and velocity spectra are compared to transfer functions based on linear finite depth theory and a simple nonlinear model that accounts for harmonic generation in shallow water...

  14. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  15. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  16. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  17. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  18. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  19. Wave kinematics and response of slender offshore structures. Vol 3: Description of measuring systems

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The report presents the measuring systems used during the measurements in the North Sea at the Tyra field. The report consists of two parts: (1) Description of the wave measuring systems (WMS); (2) Description of the load mesuring system (LMS). The developed Wave Kinematics Measuring Systems (WMS) is an acoustic system based on the pulsed incoherent Doppler technique. Basically it consists of 4 sonar stations and a control and monitoring station. The sonar stations are positioned at the seabed north of the TCP-A platform in a star configuration with one station surrounded by the other three stations in a fixed distance of 37 m. From the central sonar stations an umbilical is routed to the TCP-A platform where the control and monitoring stations is positioned in the satellite communication room. The measurement periods have been concentrated to periods with storms. It was a special emphasis to measure the wave kinematics of extremely high waves. The LMS is described in terms of geometrical data, structural properties, instrumentation, and other characteristics. (LN)

  20. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  1. A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    Directory of Open Access Journals (Sweden)

    V. J. García-Garrido

    2017-06-01

    Full Text Available In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow.

  2. Instantaneous wave emission model

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1970-12-01

    A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag

  3. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  4. Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis

    Science.gov (United States)

    Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea

    2018-04-01

    The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water flows, the study compares the steady flow depth profiles predicted by approximated models with those of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the approximated models is assessed by computing the average, along the channel length, of the errors, for several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error equal to 5%, the applicability conditions of the two approximations have been individuated for several values of the power-law exponent, showing a crucial role of the rheology. The comparison with the clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not properly accounted for.

  5. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    OpenAIRE

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; T?rholm, S?ren; Al-Munajjed, Amir A.; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Background Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Methods ...

  6. Transmission characteristics of the kinematics of the laser-plasma shock wave in air in compton scattering

    International Nuclear Information System (INIS)

    Hao Dongshan; Xie Hongjun

    2006-01-01

    By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)

  7. A kinematic model for SS433

    International Nuclear Information System (INIS)

    Abell, G.O.; Margon, B.

    1979-01-01

    A model is suggested to explain the bizarre object SS433 which was first noted because of its H α emission and most recently because it is the optical counterpart of a variable radio and X-ray source and exhibits an extraordinary optical spectrum. It is considered that the radiation, with emission lines which show variable Doppler shift, is emitted by hot matter ejected by the central object at high but nearly constant velocity in oppositely directed narrow streams, possible along a magnetic axis. Rotation of the beam axis provides the observed radial velocity variations. The red and blue shifts of SS433 measured by a number of workers on 55 nights during 1978-79 and folded with a 164-d period are shown, from which it is predicted that on or about 1 July 1979 the two moving emission line systems in SS433 will briefly merge into one, similar to a previously reported episode, and that for the following 40 days the lines will separate again, but by an amount much less than previously observed. (author)

  8. Dispersion modeling by kinematic simulation: Cloud dispersion model

    International Nuclear Information System (INIS)

    Fung, J C H; Perkins, R J

    2008-01-01

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  9. Test of distorted wave kinematic coupling approximation calculations for knockout reactions

    International Nuclear Information System (INIS)

    Jain, A.K.

    1990-01-01

    A test has been devised to check the validity of conventional distorted-wave impulse approximation (DWIA) treatment of knockout reactions. The conventional DWIA formalism separates the three-body final state Schroedinger equation for a knockout reaction into two two-body Schroedinger equations by assuming an asymptotic constant value for the three-body coupling term commonly known as the kinematic coupling approximation (KCA). In the test case, which consists of an extreme asymmetric situation where one of the distorting optical potentials is assumed to vanish, the three-body final state Schroedinger equation can be solved exactly as a product of two two-body solutions using one particular set of relative coordinates. Large influence of the three-body coupling term is seen in the comparison of the exact and KCA results for (α,2α) and (p,pα) knockout reactions when the distorting optical potentials are weakly absorbing

  10. Classical kinematic model for direct reactions of oriented reagents

    International Nuclear Information System (INIS)

    Schechter, I.; Prisant, M.G.; Levine, R.D.

    1987-01-01

    A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out

  11. Models of wave memory

    CERN Document Server

    Kashchenko, Serguey

    2015-01-01

    This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.

  12. Model-based Kinematics Generation for Modular Mechatronic Toolkits

    DEFF Research Database (Denmark)

    Bordignon, Mirko; Schultz, Ulrik Pagh; Støy, Kasper

    2011-01-01

    Modular robots are mechatronic devices that enable the construction of highly versatile and flexible robotic systems whose mechanical structure can be dynamically modified. The key feature that enables this dynamic modification is the capability of the individual modules to connect to each other...... in multiple ways and thus generate a number of different mechanical systems, in contrast with the monolithic, fixed structure of conventional robots. The mechatronic flexibility, however, complicates the development of models and programming abstractions for modular robots, since manually describing...... the Modular Mechatronics Modelling Language (M3L). M3L is a domain-specific language, which can model the kinematic structure of individual robot modules and declaratively describe their possible interconnections, rather than requiring the user to enumerate them in their entirety. From this description, the M...

  13. Geometrical and kinematical characterization of parallax-free world models

    International Nuclear Information System (INIS)

    Hasse, W.; Perlick, V.

    1988-01-01

    An arbitrary general relativistic world model, i.e., a pseudo-Riemannian manifold along with a timelike vector field V, is considered. Such a kinematical world model is called ''parallax-free'' iff the angle under which any two observers (i.e., integral curves of V) are seen by any third observer remains constant in the course of time. It is shown that a model is parallax-free iff V is proportional to some conformal Killing field. In this case V, especially, has to be shear-free. Furthermore a relationship between parallaxes and red shift is presented and a reference is made to considerations concerning the visibility of cosmic rotation

  14. Efficient dynamic modeling of manipulators containing closed kinematic loops

    Science.gov (United States)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  15. Modeling neutrino-induced charged pion production on water at T2K kinematics

    Science.gov (United States)

    Nikolakopoulos, A.; González-Jiménez, R.; Niewczas, K.; Sobczyk, J.; Jachowicz, N.

    2018-05-01

    Pion production is a significant component of the signal in accelerator-based neutrino experiments. Over the last years, the MiniBooNE, T2K, and MINERvA collaborations have reported a substantial amount of data on (anti)neutrino-induced pion production on the nucleus. However, a comprehensive and consistent description of the whole data set is still missing. We aim at improving the current understanding of neutrino-induced pion production on the nucleus. To this end, the comparison of experimental data with theoretical predictions, preferably based on microscopic models, is essential to disentangle the different reaction mechanisms involved in the process. To describe single-pion production, we use a hybrid model that combines low- and a high-energy approaches. The low-energy model contains resonances and background terms. At high invariant masses, a high-energy model based on a Regge approach is employed. The model is implemented in the nucleus using the relativistic plane wave impulse approximation (RPWIA). We present a comparison of the hybrid-RPWIA and low-energy model with the recent neutrino-induced charged-current 1 π+ -production cross section on water reported by T2K. In order to judge the impact of final-state interactions (FSI), we confront our results with those of the nuwro Monte Carlo generator. The hybrid-RPWIA model and nuwro results compare favorably to the data, albeit that FSI are not included in the former. The need of a high-energy model at T2K kinematics is made clear. These results complement our previous work [Phys. Rev. D 97, 013004 (2018), 10.1103/PhysRevD.97.013004], in which we compared the models to the MINERvA and MiniBooNE 1 π+ data. The hybrid-RPWIA model tends to overpredict both the T2K and MINERvA data in kinematic regions where the largest suppression due to FSI is expected and agrees remarkably well with the data in other kinematic regions. On the contrary, the MiniBooNE data are underpredicted over the whole kinematic range.

  16. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    Science.gov (United States)

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  17. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Science.gov (United States)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  18. Determination of dopant atomic positions with kinematical X-ray standing waves

    International Nuclear Information System (INIS)

    Walz, Bente

    2011-11-01

    Recent advances in the kinematic X-ray standing wave technique (KXSW) for the determination of the atomic coordinates and displacement parameters in nonperfect crystalline materials are described in this thesis. The methodology has been improved by considering three significant aspects: - the inclusion of weak multiple beam contributions - the excitation of secondary fluorescence in multiple-element samples - the influence of the crystal mosaicity on the fluorescence yield. The improvements allowed to successfully apply the method to investigate complex oxide materials of current interest for potential device applications. The thermally-induced interdiffusion of cobalt and manganese thin films on zinc oxide single crystals has been studied to determine which lattice sites are occupied preferentially. The data analysis revealed that after thermal diffusion the adsorbed atoms occupied zinc sites in the host lattice. The mean deviation of the cobalt atomic position from the zinc lattice site was comparable to the thermal displacement parameter of the zinc atoms. In the case of manganese a secondary phase was found on the surface. Measurements performed on LaSrMnO 4 provided new insight concerning the rotation of the oxygen octahedron around the manganese atoms and the concomitant displacements of the strontium and lanthanum atoms. It was found that the oxygen octahedra are rotated around the [100]-direction by 4,5 . The measurements in transmission geometry performed on titanium dioxide (rutile) demonstrated that KXSW measurements in the Laue geometry is a viable technique. By performing KXSW under grazing-incidence conditions it is possible to achieve depth resolution. The results clearly show that the extended KXSW technique is a versatile method for characterizing complex material systems. (orig.)

  19. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  20. A Category Based Threat Evaluation Model Using Platform Kinematics Data

    Directory of Open Access Journals (Sweden)

    Mustafa Çöçelli

    2017-08-01

    Full Text Available Command and control (C2 systems direct operators to make accurate decisions in the stressful atmosphere of the battlefield at the earliest. There are powerful tools that fuse various instant piece of information and brings summary of those in front of operators. Threat evaluation is one of the important fusion method that provides these assistance to military people. However, C2 systems could be deprived of valuable data source due to the absence of capable equipment. This situation has a bad unfavorable influence on the quality of tactical picture in front of C2 operators. In this paper, we study on the threat evaluation model that take into account these deficiencies. Our method extracts threat level of various targets mostly from their kinematics in two dimensional space. In the meantime, classification of entities around battlefield is unavailable. Only, category of targets are determined as a result of sensors process, which is the information of whether entities belong to air or surface environment. Hereby, threat evaluation model is consist of three fundamental steps that runs on entities belongs to different environment separately: the extraction of threat assessment cues, threat selection based on Bayesian Inference and the calculation of threat assessment rating. We have evaluated performance of proposed model by simulating a set of synthetic scenarios.

  1. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  2. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  3. Modeling ionization by helicon waves

    International Nuclear Information System (INIS)

    Degeling, A.W.; Boswell, R.W.

    1997-01-01

    The response of the electron distribution function in one dimension to a traveling wave electric field is modeled for parameters relevant to a low-pressure helicon wave plasma source, and the resulting change in the ionization rate calculated. This is done by calculating the trajectories of individual electrons in a given wave field and assuming no collisions to build up the distribution function as the distance from the antenna is increased. The ionization rate is calculated for argon by considering the ionization cross section and electron flux at a specified position and time relative to the left-hand boundary, where the distribution function is assumed to be Maxwellian and the wave travels to the right. The simulation shows pulses in the ionization rate that move away from the antenna at the phase velocity of the wave, demonstrating the effect of resonant electrons trapped in the wave close-quote s frame of reference. It is found that the ionization rate is highest when the phase velocity of the wave is between 2 and 3x10 6 m/s, where the electrons interacting strongly with the wave (i.e., electrons with velocities inside the wave close-quote s open-quotes trapping widthclose quotes) have initial energies just below the ionization threshold. Results from the model are compared with experimental data and show reasonable qualitative agreement. copyright 1997 American Institute of Physics

  4. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    International Nuclear Information System (INIS)

    El-Gazzar, H.M.; Ayad, N.M.A.

    2002-01-01

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done

  5. Fast robot kinematics modeling by using a parallel simulator (PSIM)

    Energy Technology Data Exchange (ETDEWEB)

    El-Gazzar, H M; Ayad, N M.A. [Atomic Energy Authority, Reactor Dept., Computer and Control Lab., P.O. Box no 13759 (Egypt)

    2002-09-15

    High-speed computers are strongly needed not only for solving scientific and engineering problems, but also for numerous industrial applications. Such applications include computer-aided design, oil exploration, weather predication, space applications and safety of nuclear reactors. The rapid development in VLSI technology makes it possible to implement time consuming algorithms in real-time situations. Parallel processing approaches can now be used to reduce the processing-time for models of very high mathematical structure such as the kinematics molding of robot manipulator. This system is used to construct and evaluate the performance and cost effectiveness of several proposed methods to solve the Jacobian algorithm. Parallelism is introduced to the algorithms by using different task-allocations and dividing the whole job into sub tasks. Detailed analysis is performed and results are obtained for the case of six DOF (degree of freedom) robot arms (Stanford Arm). Execution times comparisons between Von Neumann (uni processor) and parallel processor architectures by using parallel simulator package (PSIM) are presented. The gained results are much in favour for the parallel techniques by at least fifty-percent improvements. Of course, further studies are needed to achieve the convenient and optimum number of processors has to be done.

  6. A Model of Parallel Kinematics for Machine Calibration

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Bæk Nielsen, Morten; Kløve Christensen, Simon

    2016-01-01

    Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components for cons......Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components...

  7. On the kinematic criterion for the inception of breaking in surface gravity waves: Fully nonlinear numerical simulations and experimental verification

    Science.gov (United States)

    Khait, A.; Shemer, L.

    2018-05-01

    The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.

  8. A self-calibrating robot based upon a virtual machine model of parallel kinematics

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Eiríksson, Eyþór Rúnar; Hansen, Hans Nørgaard

    2016-01-01

    A delta-type parallel kinematics system for Additive Manufacturing has been created, which through a probing system can recognise its geometrical deviations from nominal and compensate for these in the driving inverse kinematic model of the machine. Novelty is that this model is derived from...... a virtual machine of the kinematics system, built on principles from geometrical metrology. Relevant mathematically non-trivial deviations to the ideal machine are identified and decomposed into elemental deviations. From these deviations, a routine is added to a physical machine tool, which allows...

  9. Variability of dynamic source parameters inferred from kinematic models of past earthquakes

    KAUST Repository

    Causse, M.; Dalguer, L. A.; Mai, Paul Martin

    2013-01-01

    We analyse the scaling and distribution of average dynamic source properties (fracture energy, static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal earthquakes. Shear-stress histories are computed by solving

  10. A real-time computational model for estimating kinematics of ankle ligaments.

    Science.gov (United States)

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  11. Modelling offshore sand wave evolution

    NARCIS (Netherlands)

    Nemeth, Attila; Hulscher, Suzanne J.M.H.; van Damme, Rudolf M.J.

    2007-01-01

    We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport

  12. New Methods for Kinematic Modelling and Calibration of Robots

    DEFF Research Database (Denmark)

    Søe-Knudsen, Rune

    2014-01-01

    the accuracy in an easy and accessible way. The required equipment is accessible, since the cost is held to a minimum and can be made with conventional processing equipment. Our first method calibrates the kinematics of a robot using known relative positions measured with the robot itself and a plate...... with holes matching the robot tool flange. The second method calibrates the kinematics using two robots. This method allows the robots to carry out the collection of measurements and the adjustment, by themselves, after the robots have been connected. Furthermore, we also propose a method for restoring......Improving a robot's accuracy increases its ability to solve certain tasks, and is therefore valuable. Practical ways of achieving this improved accuracy, even after robot repair, is also valuable. In this work, we introduce methods that improve the robot's accuracy and make it possible to maintain...

  13. Program realization of mathematical model of kinematic calculation of flat lever mechanisms

    Directory of Open Access Journals (Sweden)

    M. A. Vasechkin

    2016-01-01

    Full Text Available Calculation of kinematic mechanisms is very time-consuming work. Due to the content of a large number of similar operations can be automated using computers. Forthis purpose, it is necessary to implement a software implementation ofthe mathematical model of calculation of kinematic mechanisms of the second class. In the article on Turbo Pascal presents the text module to library procedures all kinematic studies of planar lever mechanisms of the second class. The determination of the kinematic characteristics of the mechanism and the construction of its provisions, plans, plans, speeds and accelerations carried out on the example of the six-link mechanism. The beginning of the motionless coordinate system coincides with the axis of rotation of the crank AB. It is assumed that the known length of all links, the positions of all additional points of links and the coordinates of all kinematic pairs rack mechanism, i.e. this stage of work to determine the kinematics of the mechanism must be preceded by a stage of synthesis of mechanism (determining missing dimensions of links. Denote the coordinates of point C and considering that the analogues of velocities and accelerations of this point is 0 (stationary point, appeal to the procedure that computes the kinematics group the Assyrians (GA third. Specify kinematic parameters of point D, taking the beginning of the guide slide E at point C, the angle, the analogue of the angular velocity and the analogue of the angular acceleration of the guide is zero, knowing the length of the connecting rod DE and the length of link 5, refer to the procedure for the GA of the second kind. The use of library routines module of the kinematic calculation, makes it relatively simple to organize a simulation of the mechanism motion, to calculate the projection analogues of velocities and accelerations of all links of the mechanism, to build plans of the velocities and accelerations at each position of the mechanism.

  14. Density-based global sensitivity analysis of sheet-flow travel time: Kinematic wave-based formulations

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-04-01

    Despite advancements in developing physics-based formulations to estimate the sheet-flow travel time (tSHF), the quantification of the relative impacts of influential parameters on tSHF has not previously been considered. In this study, a brief review of the physics-based formulations to estimate tSHF including kinematic wave (K-W) theory in combination with Manning's roughness (K-M) and with Darcy-Weisbach friction formula (K-D) over single and multiple planes is provided. Then, the relative significance of input parameters to the developed approaches is quantified by a density-based global sensitivity analysis (GSA). The performance of K-M considering zero-upstream and uniform flow depth (so-called K-M1 and K-M2), and K-D formulae to estimate the tSHF over single plane surface were assessed using several sets of experimental data collected from the previous studies. The compatibility of the developed models to estimate tSHF over multiple planes considering temporal rainfall distributions of Natural Resources Conservation Service, NRCS (I, Ia, II, and III) are scrutinized by several real-world examples. The results obtained demonstrated that the main controlling parameters of tSHF through K-D and K-M formulae are the length of surface plane (mean sensitivity index T̂i = 0.72) and flow resistance (mean T̂i = 0.52), respectively. Conversely, the flow temperature and initial abstraction ratio of rainfall have the lowest influence on tSHF (mean T̂i is 0.11 and 0.12, respectively). The significant role of the flow regime on the estimation of tSHF over a single and a cascade of planes are also demonstrated. Results reveal that the K-D formulation provides more precise tSHF over the single plane surface with an average percentage of error, APE equal to 9.23% (the APE for K-M1 and K-M2 formulae were 13.8%, and 36.33%, respectively). The superiority of Manning-jointed formulae in estimation of tSHF is due to the incorporation of effects from different flow regimes as

  15. Hierarchical Kinematic Modelling and Optimal Design of a Novel Hexapod Robot with Integrated Limb Mechanism

    Directory of Open Access Journals (Sweden)

    Guiyang Xin

    2015-09-01

    Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.

  16. The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics

    Science.gov (United States)

    Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo

    2018-06-01

    Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.

  17. Variability of dynamic source parameters inferred from kinematic models of past earthquakes

    KAUST Repository

    Causse, M.

    2013-12-24

    We analyse the scaling and distribution of average dynamic source properties (fracture energy, static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal earthquakes. Shear-stress histories are computed by solving the elastodynamic equations while imposing the slip velocity of a kinematic source model as a boundary condition on the fault plane. This is achieved using a 3-D finite difference method in which the rupture kinematics are modelled with the staggered-grid-split-node fault representation method of Dalguer & Day. Dynamic parameters are then estimated from the calculated stress-slip curves and averaged over the fault plane. Our results indicate that fracture energy, static, dynamic and apparent stress drops tend to increase with magnitude. The epistemic uncertainty due to uncertainties in kinematic inversions remains small (ϕ ∼ 0.1 in log10 units), showing that kinematic source models provide robust information to analyse the distribution of average dynamic source parameters. The proposed scaling relations may be useful to constrain friction law parameters in spontaneous dynamic rupture calculations for earthquake source studies, and physics-based near-source ground-motion prediction for seismic hazard and risk mitigation.

  18. Gait kinematics of subjects with ankle instability using a multisegmented foot model.

    Science.gov (United States)

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark; Pataky, Todd; Roosen, Philip

    2013-11-01

    Many patients who sustain an acute lateral ankle sprain develop chronic ankle instability (CAI). Altered ankle kinematics have been reported to play a role in the underlying mechanisms of CAI. In previous studies, however, the foot was modeled as one rigid segment, ignoring the complexity of the ankle and foot anatomy and kinematics. The purpose of this study was to evaluate stance phase kinematics of subjects with CAI, copers, and controls during walking and running using both a rigid and a multisegmented foot model. Foot and ankle kinematics of 77 subjects (29 subjects with self-reported CAI, 24 copers, and 24 controls) were measured during barefoot walking and running using a rigid foot model and a six-segment Ghent Foot Model. Data were collected on a 20-m-long instrumented runway embedded with a force plate and a six-camera optoelectronic system. Groups were compared using statistical parametric mapping. Both the CAI and the coper group showed similar differences during midstance and late stance compared with the control group (P foot segment showed a more everted position during walking compared with the control group. Based on the Ghent Foot Model, the rear foot also showed a more everted position during running. The medial forefoot showed a more inverted position for both running and walking compared with the control group. Our study revealed significant midstance and late stance differences in rigid foot, rear foot, and medial forefoot kinematics The multisegmented foot model demonstrated intricate behavior of the foot that is not detectable with rigid foot modeling. Further research using these models is necessary to expand knowledge of foot kinematics in subjects with CAI.

  19. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    Science.gov (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  20. Overview of Wave to Wire Models

    DEFF Research Database (Denmark)

    Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco

    A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...

  1. Simulation of detonation cell kinematics using two-dimensional reactive blast waves

    Science.gov (United States)

    Thomas, G. O.; Edwards, D. H.

    1983-10-01

    A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.

  2. Kinematic evolution of fold and thrust belts. Insights from experimental modeling

    International Nuclear Information System (INIS)

    Ueta, Keiichi

    2011-01-01

    Physical experiments were performed to gain a better understanding on the kinematic evolution of fold and thrust belts. The present study focuses on deformation of sedimentary cover caused by thrust and reverse movements along the basement fault. Our physical models comprise dry quartz sand representing brittle sedimentary rock and viscous silicone polymer representing overpressured mudstone. Computerized X-ray tomography was applied to the experiments to analyze the kinematic evolution of fold and thrust belts. In the sand models, the width of deformation zone above thrust was wider than that above reverse fault, because back thrust developed on the hanging wall of reverse fault. Within the physical models composed of dry sand and silicone polymer, minor folds and thrusts with minor displacement developed on the footwall of the major monoclinal flexure. These results compare well with the geometry and kinematic evolution of the fold and thrust belts in Japan. (author)

  3. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin

    2018-05-01

    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  5. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  6. A Comparison of Moment Rates for the Eastern Mediterranean Region from Competitive Kinematic Models

    Science.gov (United States)

    Klein, E. C.; Ozeren, M. S.; Shen-Tu, B.; Galgana, G. A.

    2017-12-01

    Relatively continuous, complex, and long-lived episodes of tectonic deformation gradually shaped the lithosphere of the eastern Mediterranean region into its present state. This large geodynamically interconnected and seismically active region absorbs, accumulates and transmits strains arising from stresses associated with: (1) steady northward convergence of the Arabian and African plates; (2) differences in lithospheric gravitational potential energy; and (3) basal tractions exerted by subduction along the Hellenic and Cyprus Arcs. Over the last twenty years, numerous kinematic models have been built using a variety of assumptions to take advantage of the extensive and dense GPS observations made across the entire region resulting in a far better characterization of the neotectonic deformation field than ever previously achieved. In this study, three separate horizontal strain rate field solutions obtained from three, region-wide, GPS only based kinematic models (i.e., a regional block model, a regional continuum model, and global continuum model) are utilized to estimate the distribution and uncertainty of geodetic moment rates within the eastern Mediterranean region. The geodetic moment rates from each model are also compared with seismic moment release rates gleaned from historic earthquake data. Moreover, kinematic styles of deformation derived from each of the modeled horizontal strain rate fields are examined for their degree of correlation with earthquake rupture styles defined by proximal centroid moment tensor solutions. This study suggests that significant differences in geodetically obtained moment rates from competitive kinematic models may introduce unforeseen bias into regularly updated, geodetically constrained, regional seismic hazard assessments.

  7. KINEMATICS AND DYNAMICS MODELS OF CYLINDRICAL ROLLER BEARING OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    A. V. Gaydamaka

    2014-05-01

    Full Text Available Purpose. Lack of kinematics models and imperfection of the known dynamics models of the roller bearings of railway rolling stock axle-boxes do not allow designing the optimal structure of bearing cages, providing the required service life and reliability of bearing units of wheel sets for cars and locomotives. The studies of kinematics and dynamics of roller bearings of axle boxes for cars and locomotives and modeling of their parts interaction to create the analytical method of bearing cages calculation are necessary. Methodology. This purpose has been achieved due to the modeling of kinematics of the ideal (without gaps and real (taking account the gaps, manufacturing and installation errors bearings, substantiation of the transfer mechanism of motion from the rollers to bearing cage, modeling the dynamics of rolling, research of interaction forces of the rollers with bearing cage. Findings. It is established that the kinematics of ideal bearing is determined by the contact deformations of the rollers and rings, when the kinematics of real bearing depends mainly on the side gaps in the windows of the bearing cage. On the basis of studies of the real bearing kinematics the dynamics models of the rollers and bearing cage interaction were constructed. The conducted studies of kinematics and dynamics of rolling bearings have changed our view of them as of the planetary mechanism, explained the reason of bearing cage loading, and confirmed the possibility of destruction during operation. Originality. It was first proposed a mechanism for motion transfer from the rollers to the bearing cage of roller bearings, consisting in that the side gap in the bearing cage window is reduced gradually multiple of the number of rollers of radial loading area according to the bearing cage motion. The models of roller bearing dynamics, which allow calculating the interaction forces of parts for all modes of operation, were improved. Practical value. Use of the

  8. Wave kinematics and response of slender offshore structures. Vol 2: Recommendation for design

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen Hansen, N.E.

    1999-08-01

    This memorandum comprises a design recommendation for slender structures exposed to wave and current loading in the sea. It is considered as an addendum to DS 499 or the DnV Classification Notes No. 30.5. Slender structures are structures as risers, well conductors, or structures with small diameter members which are dynamically amplified or liable to hydro-elastic vibrations such as vortex induced vibrations, self-excited vibrations and other dynamic phenomena. The newer type of steel platforms have a large number of these members attached to them. The present guideline is motivated by a number of failures of conductors. Some failures took place during drilling are were caused by fatigue which developed due to hydroelastic vibrations. Other failures have been caused by clamped conductors due to strong wave forces. The recommendations are based on full scale field measurements of waves and currents and of instrumented pipes in the North Sea both for high and for low Keulegan-Carpenter numbers. The measurements have been made under realistic storm conditions, which means that the recommendations are fully verified. (au)

  9. Numerical Modelling of Wave Run-Up

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  10. Macroscopic balance model for wave rotors

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  11. Symmetrical kinematics does not imply symmetrical kinetics in people with transtibial amputation using cycling model.

    Science.gov (United States)

    Childers, W Lee; Kogler, Géza F

    2014-01-01

    People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p Pedaling asymmetries did not differ and were 23.0% +/= 9.8% and 23.2% +/= 12% for the control and CRANK conditions, respectively. Our results suggest that minimizing kinematic asymmetries does not relate to kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.

  12. Model for shock wave chaos.

    Science.gov (United States)

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  13. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Sillas

    2015-05-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  14. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  15. Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model.

    Science.gov (United States)

    Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Repeatability of the Oxford Foot Model for Kinematic Gait Analysis of the Foot and Ankle

    NARCIS (Netherlands)

    van Hoeve, S.; Vos, J.; Weijers, P.; Verbruggen, J.; Willems, P.; Poeze, M.; Meijer, K.

    2015-01-01

    INTRODUCTION: Kinematic gait analysis via the multi-segmental Oxford foot model (OFM) may be a valuable addition to the biomechanical examination of the foot and ankle. The aim of this study is to assess the repeatability of the OFM in healthy subjects. METHODS: Nine healthy subjects, without a

  17. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, J.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 412-429 ISSN 0273-1177 R&D Projects: GA MŠk LH13071; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : gravity field models * kinematic orbits * generalized least squares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.358, year: 2014

  18. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    Science.gov (United States)

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  19. Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.

    Science.gov (United States)

    Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish

    2018-01-01

    The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.

  20. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993

  1. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  2. Model wave functions for the deuteron

    International Nuclear Information System (INIS)

    Certov, A.; Mathelitsch, L.; Moravcsik, M.J.

    1987-01-01

    Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions

  3. Mathematical model for studying cyclist kinematics in vehicle-bicycle frontal collisions

    Science.gov (United States)

    Condrea, OA; Chiru, A.; Chiriac, RL; Vlase, S.

    2017-10-01

    For the development of effective vehicle related safety solutions to improve cyclist protection, kinematic predictions are essential. The objective of the paper was the elaboration of a simple mathematical model for predicting cyclist kinematics, with the advantage of yielding simple results for relatively complicated impact situations. Thus, the use of elaborated math software is not required and the calculation time is shortened. The paper presents a modelling framework to determine cyclist kinematic behaviour for the situations in which a M1 category vehicle frontally hits the rear part of a bicycle. After the primary impact between the vehicle front bumper and the bicycle, the cyclist hits the vehicle’s bonnet, the windscreen or both the vehicle’s bonnet and the windscreen in short succession. The head-windshield impact is often the most severe impact, causing serious and potentially lethal injuries. The cyclist is represented by a rigid segment and the equations of motion for the cyclist after the primary impact are obtained by applying Newton’s second law of motion. The impact time for the contact between the vehicle and the cyclist is yielded afterwards by formulating and intersecting the trajectories for two points positioned on the cyclist’s head/body and the vehicle’s windscreen/bonnet while assuming that the cyclist’s equations of motion after the primary impact remain the same. Postimpact kinematics for the secondary impact are yielded by applying linear and angular momentum conservation laws.

  4. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  5. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  6. Wave model downscaling for coastal applications

    Science.gov (United States)

    Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya

    2010-05-01

    Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a

  7. Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation

    Science.gov (United States)

    Wegener, Mogens

    2006-03-01

    Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.

  8. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  9. Kinematics Modelling of Tendon-Driven Continuum Manipulator with Crossed Notches

    Science.gov (United States)

    Yang, Z. X.; Yang, W. L.; Du, Z. J.

    2018-03-01

    Single port surgical robot (SPSR) is a giant leap in the development of minimally invasive surgical robot. An innovative manipulator with high control accuracy and good kinematic dexterity can reduce wound, expedite recovery, and improve the success rate. This paper presents a tendon-driven continuum manipulator with crossed notches. This manipulator has two degrees of freedom (DOF), which possesses good flexibility and high capacity. Then based on cantilever beam theory, a mechanics model is proposed, which connects external force and deformation of a single flexible ring (SFR). By calculating the deformation of each SFR, the manipulator is considered as a series robot whose joint numbers is equal to SFR numbers, and the kinematics model is established through Denavit-Hartenberg (D-H) procedure. In this paper, the total manipulator is described as a curve tube whose curvature is increased from tip to base. Experiments were conducted and the comparison between theoretical and actual results proved the rationality of the models.

  10. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.

  11. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  12. Kinematics of a Head-Neck Model Simulating Whiplash

    Science.gov (United States)

    Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan

    2008-01-01

    A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that…

  13. Modelling clavicular and scapular kinematics: from measurement to simulation

    NARCIS (Netherlands)

    bolsterlee, B.; Veeger, H.E.J.; van der Helm, F.C.T.

    2014-01-01

    Musculoskeletal models are intended to be used to assist in prevention and treatments of musculoskeletal disorders. To capture important aspects of shoulder dysfunction, realistic simulation of clavicular and scapular movements is crucial. The range of motion of these bones is dependent on thoracic,

  14. Extreme Wave Analysis by Integrating Model and Wave Buoy Data

    Directory of Open Access Journals (Sweden)

    Fabio Dentale

    2018-03-01

    Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.

  15. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  16. Opdriftsbaserede modeller for Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten

    Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...

  17. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  18. Porous models for wave-seabed interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Dong-Sheng [Shanghai Jiaotong Univ., SH (China)

    2013-02-01

    Detailed discussion about the phenomenon of wave-seabed interactions. Novel models for wave-induced seabed response. Intensive theoretical derivations for wave-seabed interactions. Practical examples for engineering applications. ''Porous Models for Wave-seabed Interactions'' discusses the Phenomenon of wave-seabed interactions, which is a vital issue for coastal and geotechnical engineers involved in the design of foundations for marine structures such as pipelines, breakwaters, platforms, etc. The most important sections of this book will be the fully detailed theoretical models of wave-seabed interaction problem, which are particularly useful for postgraduate students and junior researchers entering the discipline of marine geotechnics and offshore engineering. This book also converts the research outcomes of theoretical studies to engineering applications that will provide front-line engineers with practical and effective tools in the assessment of seabed instability in engineering design.

  19. Kinematic and dynamic modeling and approximate analysis of a roller chain drive

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    for analytical studies of the coupled motion of the chain spans and driven sprocket. Parametric excitation of the spans come from sprocket angular displacements, and the driven sprocket acts as a boundary which can be compliant in the axial direction. External transverse excitation of the spans comes from...... polygonal action, and is treated through kinematic forcing at the moving string boundaries. Perturbation analysis of the model is carried out using the method of multiple scales. Results show a multitude of internal and external resonance conditions, and some examples are presented of both decoupled...... and coupled motion. Together, the kinematic and dynamic model are aimed toward providing a framework for conducting and understanding both numerical, and experimental investigations of roller chain drive dynamics....

  20. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling.

    Science.gov (United States)

    Skipper Andersen, Michael; de Zee, Mark; Damsgaard, Michael; Nolte, Daniel; Rasmussen, John

    2017-09-01

    Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.

  1. Stochastic Models for the Kinematics of Moisture Transport and Condensation in Homogeneous Turbulent Flows

    OpenAIRE

    O'Gorman, Paul A.; Schneider, Tapio

    2006-01-01

    The transport of a condensing passive scalar is studied as a prototype model for the kinematics of moisture transport on isentropic surfaces. Condensation occurs whenever the scalar concentration exceeds a specified local saturation value. Since condensation rates are strongly nonlinear functions of moisture content, the mean moisture flux is generally not diffusive. To relate the mean moisture content, mean condensation rate, and mean moisture flux to statistics of the advecting velocity fie...

  2. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  3. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    OpenAIRE

    Ho Pham Huy Anh; Nguyen Thanh Nam

    2012-01-01

    In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3‐DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model‐based identification process using experimental input‐output training data. This paper proposes a novel use of a back propagation (BP) algorithm to generate the forward neural M...

  4. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.

    Science.gov (United States)

    Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe

    2017-12-01

    Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

  5. Directional wave measurements and modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.

    Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...

  6. Analysis and Development of Walking Algorithm Kinematic Model for 5-Degree of Freedom Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Gerald Wahyudi Setiono

    2012-12-01

    Full Text Available A design of walking diagram and the calculation of a bipedal robot have been developed. The bipedal robot was designed and constructed with several kinds of servo bracket for the legs, two feet and a hip. Each of the bipedal robot leg was 5-degrees of freedom, three pitches (hip joint, knee joint and ankle joint and two rolls (hip joint and ankle joint. The walking algorithm of this bipedal robot was based on the triangle formulation of cosine law to get the angle value at each joint. The hip height, height of the swinging leg and the step distance are derived based on linear equation. This paper discussed the kinematic model analysis and the development of the walking diagram of the bipedal robot. Kinematics equations were derived, the joint angles were simulated and coded into Arduino board to be executed to the robot.

  7. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  8. Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport

    National Research Council Canada - National Science Library

    Winterwerp, Johan C

    2007-01-01

    .... Also a new rheological model has been proposed to describe liquefaction of soft mud by waves, and the subsequent strength recovery after the passage of the waves. A scheme is presented on how to implement these formulations in Delft3D.

  9. Study on individual stochastic model of GNSS observations for precise kinematic applications

    Science.gov (United States)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  10. Kinematic modelling of a five-DOFs spatial manipulator used in robot-assisted surgery

    Directory of Open Access Journals (Sweden)

    Shakti Singh

    2016-09-01

    Full Text Available Since last three decades, research in the field of robot kinematics is boosted-up among different researchers worldwide. This is mainly due to their increased use in various challenging fields of engineering and science. One such challenging application is the use of master–slave concept in a robot-assisted surgery. The authors have already performed the kinematic study and gravity balancing of seven degrees-of-freedom (DOFs surgeon-side manipulator (Singh et al., 2015a, 2015b. To meet these challenging demands, the most important aspect of a robotic manipulator is to develop an accurate kinematic model. In this direction, different researchers in the literature have made significant contributions. Out of these, the most prominent one is D–H parameters method, which was proposed by Denavit and Hartenberg in 1955. In the present work, this method is applied to a five-DOFs spatial manipulator, named as patient-side manipulator, which tracks the motion of surgeon-side manipulator during a robot-assisted surgery. The prototype considered in this work is a spatial serial manipulator, being developed at CSIR-CSIO Chandigarh. Experimental validations are performed and results are found to be in close agreement.

  11. Kinematic modeling of the Milky Way using the RAVE and GCS stellar surveys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Binney, J. [Rudolf Peierls Center for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Freeman, K. C. [RSAA Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, Canberra, ACT 72611 (Australia); Steinmetz, M.; Williams, M. E. K. [Leibniz Institut für Astrophysik Potsdam (AIP), An der Sterwarte 16, D-14482 Potsdam (Germany); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, D-69120 Heidelberg (Germany); Bienaymé, O.; Siebert, A. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Gibson, B. K. [Jeremiah Horrocks Institute for Astrophysics and Super-computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. F.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Munari, U. [INAF-Astronomical Observatory of Padova, I-36012 Asiago (VI) (Italy); Navarro, J. F. [University of Victoria, P.O. Box 3055, Station CSC, Victoria, BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. A. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT (United Kingdom); Watson, F. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); and others

    2014-09-20

    We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE) and Geneva-Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (ℓ, b, v {sub los}). Using the Markov Chain Monte Carlo technique, we investigate the full posterior distributions of the parameters given the data. We investigate the age-velocity dispersion relation for the three kinematic components (σ {sub R}, σ{sub φ}, σ {sub z}), the radial dependence of the velocity dispersions, the solar peculiar motion (U {sub ☉}, V {sub ☉}, W {sub ☉}), the circular speed Θ{sub 0} at the Sun, and the fall of mean azimuthal motion with height above the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in V {sub ☉} and Θ{sub 0}. We find that, for an extended sample of stars, Θ{sub 0} is underestimated by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without

  12. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  13. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  14. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin

    2013-12-18

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.

  15. TE Wave Measurement and Modeling

    CERN Document Server

    Sikora, John P; Sonnad, Kiran G; Alesini, David; De Santis, Stefano

    2013-01-01

    In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.

  16. Hydraulic Model Tests on Modified Wave Dragon

    DEFF Research Database (Denmark)

    Hald, Tue; Lynggaard, Jakob

    A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...

  17. A Blast Wave Model With Viscous Corrections

    Science.gov (United States)

    Yang, Z.; Fries, R. J.

    2017-04-01

    Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.

  18. A Blast Wave Model With Viscous Corrections

    International Nuclear Information System (INIS)

    Yang, Z; Fries, R J

    2017-01-01

    Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small. (paper)

  19. A wave model for dwarf novae

    International Nuclear Information System (INIS)

    Sparks, W.M.; Kutter, G.S.

    1980-01-01

    The rapid coherent oscillation during a dwarf nova outburst is attributed to an accretion-driven wave going around the white dwarf component of the binary system. The increase and decrease in the period of this oscillation is due to the change in the velocity of the wave as it is first being driven and then damped. Qualitatively, a large number of observations can be explained with such a model. The beginnings of a mathematical representation of this model are developed. (orig.)

  20. Cyclic loading of thick vessels based on the Prager and Armstrong-Frederick kinematic hardening models

    International Nuclear Information System (INIS)

    Mahbadi, H.; Eslami, M.R.

    2006-01-01

    The aim of this paper is to relate the type of stress category in cyclic loading to ratcheting or shakedown behaviour of the structure. The kinematic hardening theory of plasticity based on the Prager and Armstrong-Frederick models is used to evaluate the cyclic loading behaviour of thick spherical and cylindrical vessels under load and deformation controlled stresses. It is concluded that kinematic hardening based on the Prager model under load and deformation controlled conditions, excluding creep, results in shakedown or reversed plasticity for spherical and cylindrical vessels with the isotropy assumption of the tension/compression curve. Under an anisotropy assumption of the tension/compression curve, this model predicts ratcheting. On the other hand, the Armstrong-Frederick model predicts ratcheting under load controlled cyclic loading and reversed plasticity for deformation controlled stress. The interesting conclusion is that the Armstrong-Frederick model is well capable to predict the experimental data under the assumed type of stresses, wherever experimental data are available

  1. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.

    Science.gov (United States)

    Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C

    2011-01-01

    This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE

  2. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  3. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  4. Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    Science.gov (United States)

    Maiti, Raman

    2016-06-01

    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.

  5. Adjusting kinematics and kinetics in a feedback-controlled toe walking model

    Directory of Open Access Journals (Sweden)

    Olenšek Andrej

    2012-08-01

    Full Text Available Abstract Background In clinical gait assessment, the correct interpretation of gait kinematics and kinetics has a decisive impact on the success of the therapeutic programme. Due to the vast amount of information from which primary anomalies should be identified and separated from secondary compensatory changes, as well as the biomechanical complexity and redundancy of the human locomotion system, this task is considerably challenging and requires the attention of an experienced interdisciplinary team of experts. The ongoing research in the field of biomechanics suggests that mathematical modeling may facilitate this task. This paper explores the possibility of generating a family of toe walking gait patterns by systematically changing selected parameters of a feedback-controlled model. Methods From the selected clinical case of toe walking we identified typical toe walking characteristics and encoded them as a set of gait-oriented control objectives to be achieved in a feedback-controlled walking model. They were defined as fourth order polynomials and imposed via feedback control at the within-step control level. At the between-step control level, stance leg lengthening velocity at the end of the single support phase was adaptively adjusted after each step so as to facilitate gait velocity control. Each time the gait velocity settled at the desired value, selected intra-step gait characteristics were modified by adjusting the polynomials so as to mimic the effect of a typical therapeutical intervention - inhibitory casting. Results By systematically adjusting the set of control parameters we were able to generate a family of gait kinematic and kinetic patterns that exhibit similar principal toe walking characteristics, as they were recorded by means of an instrumented gait analysis system in the selected clinical case of toe walking. We further acknowledge that they to some extent follow similar improvement tendencies as those which one can

  6. Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Natarajan, Anand

    2014-01-01

    . The second-order nonlinear water kinematics is developed based on a Gram Charlier series expansion using the first four stochasticmoments of thewave process. Thewave surface velocities and accelerations are expressed using a Taylor series expansion about themean sea level, which satisfies to the second...

  7. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    Directory of Open Access Journals (Sweden)

    Ho Pham Huy Anh

    2012-10-01

    Full Text Available In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3-DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model-based identification process using experimental input-output training data. This paper proposes a novel use of a back propagation (BP algorithm to generate the forward neural MIMO NARX (FNMN model for the forward kinematics of the industrial 3-DOF robot arm. The results show that the proposed adaptive neural NARX model trained by a Back Propagation learning algorithm yields outstanding performance and perfect accuracy.

  8. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    Science.gov (United States)

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  9. User's Manual for the Simulating Waves Nearshore Model (SWAN)

    National Research Council Canada - National Science Library

    Allard, Richard

    2002-01-01

    The Simulating WAves Nearshore (SWAN) model is a numerical wave model used to obtain realistic estimates of wave parameters in coastal areas, lakes, and estuaries from given wind, bottom, and current conditions...

  10. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  11. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336

  12. Kinematic repeatability of a multi-segment foot model for dance.

    Science.gov (United States)

    Carter, Sarah L; Sato, Nahoko; Hopper, Luke S

    2018-03-01

    The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.

  13. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  14. Comparison of M33 and NGC7793: stochastic models of spiral galaxies modulated by density waves

    International Nuclear Information System (INIS)

    Smith, G.; Elmegreen, B.G.; Elmegreen, D.M.

    1984-01-01

    Two late-type spiral galaxies with similar kinematic and photometric properties but different spiral arm structures, M33 and NGC7793, are compared to model galaxies with stochastic self-propagating star formation. The spontaneous probability, Psub(sp), representing the rate of primary star formation, is modulated by a smooth, density wave-like spiral pattern in the models of M33. When propagating star formation is included, these models show no age gradients in the underlying spiral arms. Models which have no imposed spiral modulation to Psub(sp) resemble the observed structure of NGC7793. (author)

  15. Modeling and Simulation of Wave Gait of a Hexapod Walking Robot: A CAD/CAE Approach

    Directory of Open Access Journals (Sweden)

    Abhijit Mahapatra

    2013-03-01

    Full Text Available In the present paper, an attempt has been made to carry out dynamic analysis of a hexapod robot using the concept of multibody dynamics. A CAD (Computer Aided Design model of a realistic hexapod robot has been made for dynamic simulation of its locomotion using ADAMS (Automatic Dynamic Analysis of Mechanical Systems multibody dynamics solver. The kinematic model of each leg of three degrees of freedom has been designed using CATIA (Computer Aided Three Dimensional Interactive Application and SimDesigner package in order to develop an overall kinematic model of the robot, when it follows a straight path. Joint Torque variation as well as the variation of the aggregate center of mass of the robot was analyzed for the wave tetrapod gait. The simulation results provide the basis for developing the control algorithm as well as an intelligent decision making for the robot while in motion.

  16. Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

    Directory of Open Access Journals (Sweden)

    Gong Haixia

    2017-01-01

    Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.

  17. Research on Robot Pose Control Technology Based on Kinematics Analysis Model

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.

  18. Access to the kinematic information for the velocity model determination by 3-D reflexion tomography; Acces a l'information cinematique pour la determination du modele de vitesse par tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Broto, K.

    1999-04-01

    The access to a reliable image of the subsurface requires a kinematically correct velocity depth model.Reflection tomography allows to meet this requirement if a complete and coherent pre-stack kinematic database can be provided. However, in case of complex sub-surfaces, wave propagation may lead to hardly interpretable seismic events in the time data. The SMART method is a sequential method that relies on reflection tomography for updating the velocity model and on the pre-stack depth migrated domain for extracting kinematic information that is not readily accessible in the time domain. For determining 3-D subsurface velocity models in case of complex structures, we propose the seriated SMART 2-D method as an alternative to the currently inconceivable SMART 3-D method. In order to extract kinematic information from a 3-D pre-stack data set, we combine detours through the 2-D pre-stack depth domain for a number of selected lines of the studied 3-D survey and 3-D reflection tomography for updating the velocity model. The travel-times from the SMART method being independent of the velocity model used for passing through the pre-stack depth migrated domain, the access to 3-D travel-times is ensured, even if they have been obtained via a 2-D domain. Besides, we propose to build a kinematical guide for ensuring the coherency of the seriated 2-D pre-stack depth interpretations and the access to a complete 3-D pre-stack kinematic database when dealing with structures associated with 3-D wave propagation. We opt for a blocky representation of the velocity model in order to be able to cope with complex structures. This representation leads us to define specific methodological rules for carrying out the different steps of the seriated SMART 2-D method. We also define strategies, built from the analysis of first inversion results, for an efficient application of reflection tomography. Besides, we discuss the problem of uncertainties to be assigned to travel-times obtained

  19. Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1988-01-01

    Nonrelativistic model quantum cosmologies are studied in which the basic time variable is the position of a clock indicator and the time parameter of the Schroedinger equation is an unobservable label. Familiar Schroedinger-Heisenberg quantum mechanics emerges if the clock is ideal: arbitrarily accurate for arbitrarily long times. More realistically, however, the usual formulation emerges only as an approximation appropriate to states of this model universe in which part of the system functions approximately as an ideal clock. It is suggested that the quantum kinematics of spacetime theories such as general relativity may be analogous to those of this model. In particular it is suggested that our familiar notion of time in quantum mechanics is not an inevitable property of a general quantum framework but an approximate feature of specific initial conditions

  20. Simple opdriftsbaserede modeller for Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten

    Wave Star modellen er udarbejdet i programmeringssproget Delphi. Modellerne er en videre udarbejdelse af tidligere anvendte Excel-modeller. I forhold til Excelmodellerne udmærker de nye Dephi-modeller sig ved at beregningerne udføres mange gange hurtigere og modellerne kan håndtere lange tidsserier...

  1. Wave and Wind Model Performance Metrics Tools

    Science.gov (United States)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base

  2. Rotational Kinematics Model Based Adaptive Particle Filter for Robust Human Tracking in Thermal Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Yazhe Tang

    2015-01-01

    Full Text Available This paper presents a novel surveillance system named thermal omnidirectional vision (TOV system which can work in total darkness with a wild field of view. Different to the conventional thermal vision sensor, the proposed vision system exhibits serious nonlinear distortion due to the effect of the quadratic mirror. To effectively model the inherent distortion of omnidirectional vision, an equivalent sphere projection is employed to adaptively calculate parameterized distorted neighborhood of an object in the image plane. With the equivalent projection based adaptive neighborhood calculation, a distortion-invariant gradient coding feature is proposed for thermal catadioptric vision. For robust tracking purpose, a rotational kinematic modeled adaptive particle filter is proposed based on the characteristic of omnidirectional vision, which can handle multiple movements effectively, including the rapid motions. Finally, the experiments are given to verify the performance of the proposed algorithm for human tracking in TOV system.

  3. A kinematical model for the plastic deformation of face-centred cubic polycrystals

    International Nuclear Information System (INIS)

    Leffers, T.

    1975-01-01

    During the plastic deformation of a polycrystalline material the deformation of the individual grain must be adjusted to the deformation of the surrounding grains so that material continuity is maintained. This continuity condition is the essential feature distinguishing polycrystal deformation from single-crystal deformation. In the present work it is attempted to explain how the continuity condition is fulfilled in face-centred cubic polycrystals. The early treatments of the plastic deformation of polycrystalline materials were aimed directly at the formulation of a ''dynamical'' theory, i.e. it was the intention to cover the magnitude of the stresses involved as well as the slip processes producing the deformation. It is argued that rolling texture is a good tool for a necessary intermediate stage of establishing a ''kinematical'' model describing the slip processes, but not the magnitude of the necessary stresses. Three aspects of rolling texture are considered: (a) the development of the rolling textures found experimentally in face-centred cubic materials can be computer-simulated on the basis of models for the plastic deformation that only involve (111) slip; (b) experimentally that the widely accepted twinning theory for the transition in f.c.c. rolling texture does not reflect the behaviour of real materials; and (c) it is shown that the texture transition is thermally activated with an activation energy corresponding to that of cross slip. An electron-microscopical investigation of the slip process operating during rolling of f.c.c. polycrystals is also included. On the basis of the computer simulation of the texture formation supplemented by the experimental results a kinematical model is developed for the plastic deformation of f.c.c. polycrystals by rolling. In the proposed model the material continuity is maintained by inhomogeneous slip processes, combined with homogeneous multiple glide when the cross-slip frequency is high. (author)

  4. Wave propagation in the Lorenz-96 model

    Science.gov (United States)

    van Kekem, Dirk L.; Sterk, Alef E.

    2018-04-01

    In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  5. Wave propagation in the Lorenz-96 model

    Directory of Open Access Journals (Sweden)

    D. L. van Kekem

    2018-04-01

    Full Text Available In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F < 0 and odd n, the first bifurcation is again a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  6. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  7. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  8. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    Science.gov (United States)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may

  9. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral densit...

  10. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.

    Science.gov (United States)

    Slavens, Brooke A; Harris, Gerald F

    2008-01-01

    Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.

  11. Modeling of Rayleigh wave dispersion in Iberia

    Directory of Open Access Journals (Sweden)

    José Badal

    2011-01-01

    Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.

  12. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    Science.gov (United States)

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  13. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes

    2015-01-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  14. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco

    2015-03-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  15. H I versus H α - comparing the kinematic tracers in modelling the initial conditions of the Mice

    Science.gov (United States)

    Mortazavi, S. Alireza; Lotz, Jennifer M.; Barnes, Joshua E.; Privon, George C.; Snyder, Gregory F.

    2018-03-01

    We explore the effect of using different kinematic tracers (H I and H α) on reconstructing the encounter parameters of the Mice major galaxy merger (NGC 4676A/B). We observed the Mice using the SparsePak Integral Field Unit (IFU) on the WIYN telescope, and compared the H α velocity map with VLA H I observations. The relatively high spectral resolution of our data (R ≈ 5000) allows us to resolve more than one kinematic component in the emission lines of some fibres. We separate the H α-[N II] emission of the star-forming regions from shocks using their [N II]/H α line ratio and velocity dispersion. We show that the velocity of star-forming regions agree with that of the cold gas (H I), particularly, in the tidal tails of the system. We reconstruct the morphology and kinematics of these tidal tails utilizing an automated modelling method based on the IDENTIKIT software package. We quantify the goodness of fit and the uncertainties of the derived encounter parameters. Most of the initial conditions reconstructed using H α and H I are consistent with each other, and qualitatively agree with the results of previous works. For example, we find 210± ^{50}_{40} Myr, and 180± ^{50}_{40} Myr for the time since pericentre, when modelling H α and H I kinematics, respectively. This confirms that in some cases, H α kinematics can be used instead of H I kinematics for reconstructing the initial conditions of galaxy mergers, and our automated modelling method is applicable to some merging systems.

  16. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation.

    Science.gov (United States)

    Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A fast and robust kinematic model for a 12 DoF hyper-redundant robot positioning: An optimization proposal

    Science.gov (United States)

    Lima, José; Pereira, Ana I.; Costa, Paulo; Pinto, Andry; Costa, Pedro

    2017-07-01

    This paper describes an optimization procedure for a robot with 12 degrees of freedom avoiding the inverse kinematics problem, which is a hard task for this type of robot manipulator. This robot can be used to pick and place tasks in complex designs. Combining an accurate and fast direct kinematics model with optimization strategies, it is possible to achieve the joints angles for a desired end-effector position and orientation. The optimization methods stretched simulated annealing algorithm and genetic algorithm were used. The solutions found were validated using data originated by a real and by a simulated robot formed by 12 servomotors with a gripper.

  18. Analytical Modeling of Transient Process In Terms of One-Dimensional Problem of Dynamics With Kinematic Action

    Directory of Open Access Journals (Sweden)

    Kravets Victor V.

    2016-05-01

    Full Text Available One-dimensional dynamic design of a component characterized by inertia coefficient, elastic coefficient, and coefficient of energy dispersion. The component is affected by external action in the form of time-independent initial kinematic disturbances and varying ones. Mathematical model of component dynamics as well as a new form of analytical representation of transient in terms of one-dimensional problem of kinematic effect is provided. Dynamic design of a component is being carried out according to a theory of modal control.

  19. ELASTO-KINEMATIC COMPUTATIONAL MODEL OF SUSPENSION WITH FLEXIBLE SUPPORTING ELEMENTS

    Directory of Open Access Journals (Sweden)

    Tomáš Vrána

    2016-04-01

    Full Text Available This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elasto-kinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies, the computational multibody system (MBS model of axle suspension in the system HyperWorks is created. There are implemented Finite-Element-Method (FEM models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the anti-roll bar. Rubber-metal bushings are modeled flexibly, using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.

  20. Analysis of foot kinematics wearing high heels using the Oxford foot model.

    Science.gov (United States)

    Wang, Meizi; Gu, Yaodong; Baker, Julien Steven

    2018-04-29

    Wearing high heels is thought to lead to various foot disorders and injuries such as metatarsal pain, Achilles tendon tension, plantar fasciitis and Haglund malformation. However, there is little available information explaining the specific mechanisms and reasons why wearing high heels causes foot deformity. Therefore, the purpose of this study was to investigate the foot kinematics of high heel wearers and compare any differences with barefoot individuals using the Oxford Foot Model (OFM). Fifteen healthy women aged 20-25 years were measured while walking barefoot and when wearing high heels. The peak value of angular motion for the hallux with respect to the forefoot, the forefoot with respect to the hind foot, and the hind foot with respect to the tibia were all analyzed. Compared to the barefoot, participants wearing high heels demonstrated larger hallux dorsiflexion (22.55∘± 1.62∘ VS 26.6∘± 2.33∘ for the barefoot; P= 0.001), and less hallux plantarflexion during the initial stance phase (-4.86∘± 2.32∘ VS -8.68∘± 1.13∘; Pfoot demonstrated a larger dorsiflexion in the horizontal plane (16.59∘± 1.69∘ VS 12.08∘± 0.9∘; Pfoot extension rotation (-5.49∘± 0.69∘ VS -10.73∘± 0.42∘; P= 0.001). These findings complement existing kinematic evidence that wearing high heels can lead to foot deformities and injuries.

  1. The reliability, accuracy and minimal detectable difference of a multi-segment kinematic model of the foot-shoe complex.

    Science.gov (United States)

    Bishop, Chris; Paul, Gunther; Thewlis, Dominic

    2013-04-01

    Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Doorway-resonance model for pion-nucleon D- and F-wave scattering

    International Nuclear Information System (INIS)

    Ernst, D.J.; Parnell, G.E.; Assad, C.; Texas A and M Univ., College Station, TX

    1990-01-01

    A model for the resonant pion-nucleon D- and F-waves is developed which assumes that the pion-plus-nucleon couples to a resonance and that the resonance can serve as a doorway to the inelastic channels. With the use of simple form factors, the model is capable of reproducing the pion-nucleon phase shifts up to an energy of T π =1.4 GeV if the coupling of the elastic channel to the inelastic channels is taken from data as input into the model. A value for the mass of the resonance that would result in the absence of the coupling to decay channels is extracted from the data utilizing the model. This is the mass that is most easily modeled by bag models. For the non-resonant D- and F-wave channels a separable potential model is used. This model, like the resonance model, is developed utilizing the invariant amplitude which is free of kinematic singularities and uses invariant norms and phase spaces. The model is also applied to the S-wave channels. A relation between the resonance model and the Chew-Low model is discovered and used to derive an extended Chew-Low model which is applied to the P 13 , P 31 and P 33 channels. Implications of the model for understanding the range of the pion-nucleon interaction and the dynamic structure of the interaction are presented. (orig.)

  3. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  4. MODELING OF KINEMATICS OF A PLASTIC SHAPING AT CALIBRATION OF A THIN-WALLED PRECISION PIPE SINKING

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2014-01-01

    Full Text Available Summary. The mathematical model of kinematics of a plastic shaping at the sinking of a thin-walled precision pipe applied to calibration of the ends of the unified elements of the pipeline of aircraft from titanic alloys and corrosion-resistant steel before assembly to the route by means of automatic argon-arc welding of ring joints is developed. For modeling, the power criterion of stability with use of kinematic possible fields of speeds is applied to receiving the top assessment of effort of deformation. The developed model of kinematics of a plastic current allows to receive power parameters of the main condition of process of calibration by sinking and can be used for the solution of a task on stability of process of deformation by results of comparison of power (power parameters for the main (steady and indignant states. Modeling is made in cylindrical system of coordinates by comparison of options of kinematic possible fields of the speeds of a current meeting a condition of incompressibility and kinematic regional conditions. The result of the modeling was selected discontinuous field of high-speed, in which the decrease outer radius (R occurs only by increasing the thickness of the pipe wall (t. For this option the size of pressure of sinking had the smallest value, therefore the chosen field of speeds closely to the valid. It is established that with increase in a step of giving 1 at calibration by the multisector tool the demanded pressure of sinking of q decreases. At an identical step of giving 1 pipe with the smaller relative thickness of (t/r needs to be calibrated the smaller pressure of sinking. With increase of a limit of fluidity at shift of material of pipe preparation pressure of sinking of (q increases.

  5. A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies.

    Science.gov (United States)

    Ren, Lei; Howard, David; Ren, Luquan; Nester, Chris; Tian, Limei

    2010-01-19

    The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    Science.gov (United States)

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  7. Understanding "Human" Waves: Exploiting the Physics in a Viral Video

    Science.gov (United States)

    Ferrer-Roca, Chantal

    2018-01-01

    Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…

  8. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  9. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  10. Astrophysical Model Selection in Gravitational Wave Astronomy

    Science.gov (United States)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  11. Detailed modeling of mountain wave PSCs

    Directory of Open Access Journals (Sweden)

    S. Fueglistaler

    2003-01-01

    Full Text Available Polar stratospheric clouds (PSCs play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles. We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.

  12. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  13. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  14. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    Science.gov (United States)

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  15. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  16. Solar energetic particles in the Earth magnetosphere: kinematic modeling of the 'non-shock' penetration

    International Nuclear Information System (INIS)

    Pavlov, N N

    2013-01-01

    Penetration of solar energetic particles into the Earth's magnetosphere is quantitatively studied with a simple kinematic model. The goal is to assess, for the first time, how does effectiveness of the penetration depend on such geometry factors as: distance of the magneto-pause (MP) from the Earth; shape of MP; angle at which solar energetic particle crosses MP; location of the crossing point; type of the particle motion in the magnetosphere. To get off excessive details, the model deliberately operates with just equatorial section of the static dipolar magnetic field confined with asymmetric boundary – MP. Several rather obvious facts are illustrated: finite orbits of longitudinal drift reside only inside the circle of the Störmer-unit-length radius; deepest penetration of a particle occurs if the particle crosses MP at the point closest to the Earth and with velocity-vector oriented along the particle's longitudinal drift inside MP (westward for protons); etc. The model's software allows the inquirer to vary geometry of MP, the type, energy and direction of flight of the energetic particle(s), the location(s), aperture and orientation(s) of a virtual sensor, then to run the model and obtain the reference particle distributions either global (for entire magnetosphere) or for specified locations, all along the time, energy and flux-orientation axes. Static and animated plots can be easily produced. The model provides a toolkit allowing one to evaluate and illustrate the process of particle penetration into the magnetosphere under various conditions in space. It may be used for the configuring of the satellite particle sensors; its results may be compared with the observations for to assess how strongly the real magnetosphere differs from its simplified form; it may be used in education.

  17. Inflationary gravitational waves in collapse scheme models

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)

    2016-01-10

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  18. GrowYourIC: an open access Python code to facilitate comparison between kinematic models of inner core evolution and seismic observations

    Science.gov (United States)

    Lasbleis, M.; Day, E. A.; Waszek, L.

    2017-12-01

    The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow

  19. A test-bed modeling study for wave resource assessment

    Science.gov (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  20. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    Science.gov (United States)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid

  1. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2017-07-01

    The timing and magnitude of a Pacific plate motion change within the past 10 Ma remains enigmatic, due to the noise associated with finite-rotation data. Nonetheless, it has been hypothesized that this change was driven by the arrival of the Ontong Java Plateau (OJP) at the Melanesian arc and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle/lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key drivers of this kinematic change.

  2. Observations of secular changes in the kinematic model of SS433

    International Nuclear Information System (INIS)

    Collins, G.W. II; Newsom, G.H.

    1982-01-01

    In this paper the authors present evidence that several of the defining parameters of the Kinematic Model for SS433 are not constant but rather exhibit long term systematic changes. Recent data confirm the existence of the previously reported decrease in the precessional period. The value for this period change, when combined with the observed change in the period of the synodic spectral variations, implies that the orbital period is not significantly changing on a time scale less than 1000 years. In addition they find mounting evidence for a statistically significant (4sigma) secular change in the cone angle theta at a rate of about -1.5 x 10 -3 deg/day. However, the surprisingly short time scales implied by the observed values of dP/dt and dtheta/dt when combined with estimates of the system age suggest the possible existence of detectable higher time derivatives. This view is supported by the most recent data which suggest a value for d 2 P/dt 2 approximately 10 -5 (days) -1 . It is possible to understand these secular changes in terms of the motions to be expected from an object exhibiting classical precession in response to an external torque. (Auth.)

  3. Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures

    NARCIS (Netherlands)

    Zou, T.; Kaminski, M.L.

    2016-01-01

    In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated

  4. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models.

    Science.gov (United States)

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2015-11-05

    Soft tissue artifact (STA) distort marker-based knee kinematics measures and make them difficult to use in clinical practice. None of the current methods designed to compensate for STA is suitable, but multi-body optimization (MBO) has demonstrated encouraging results and can be improved. The goal of this study was to develop and validate the performance of knee joint models, with anatomical and subject-specific kinematic constraints, used in MBO to reduce STA errors. Twenty subjects were recruited: 10 healthy and 10 osteoarthritis (OA) subjects. Subject-specific knee joint models were evaluated by comparing dynamic knee kinematics recorded by a motion capture system (KneeKG™) and optimized with MBO to quasi-static knee kinematics measured by a low-dose, upright, biplanar radiographic imaging system (EOS(®)). Errors due to STA ranged from 1.6° to 22.4° for knee rotations and from 0.8 mm to 14.9 mm for knee displacements in healthy and OA subjects. Subject-specific knee joint models were most effective in compensating for STA in terms of abduction-adduction, inter-external rotation and antero-posterior displacement. Root mean square errors with subject-specific knee joint models ranged from 2.2±1.2° to 6.0±3.9° for knee rotations and from 2.4±1.1 mm to 4.3±2.4 mm for knee displacements in healthy and OA subjects, respectively. Our study shows that MBO can be improved with subject-specific knee joint models, and that the quality of the motion capture calibration is critical. Future investigations should focus on more refined knee joint models to reproduce specific OA knee geometry and physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    Science.gov (United States)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  6. Waves, currents and sediment transport modelling at the Wave Hub site

    OpenAIRE

    Gonzalez-Santamaria, Raul

    2013-01-01

    Primary supervisory team: Qingping Zou and Shunqi Pan This research project uses an integrated modelling system to investigate the effects of a wave farm on nearshore sediment transport at the Wave Hub site. The Wave Hub project is a large scale demonstration site for the development of the operation of arrays of wave energy generation devices located at the southwest coast of the UK where multiple field measurements took place. Particular attention of this study was paid to th...

  7. Computing broadband accelerograms using kinematic rupture modeling; Generation d'accelerogrammes synthetiques large-bande par modelisation cinematique de la rupture sismique

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Paredes, J.A

    2007-05-15

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k{sup -2} source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w{sup 2} model with spectral amplitudes at high frequency scaled to the coefficient of directivity C{sub d}. To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C{sub d}, as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M{sub w} 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  8. Horizontal circulation and jumps in Hamiltonian wave models

    NARCIS (Netherlands)

    Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno

    2013-01-01

    We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian

  9. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.

    Science.gov (United States)

    Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-06-01

    Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using finite-difference waveform modeling to better understand rupture kinematics and path effects in ground motion modeling: an induced seismicity case study at the Groningen Gas field

    Science.gov (United States)

    Zurek, B.; Burnett, W. A.; deMartin, B.

    2017-12-01

    Ground motion models (GMMs) have historically been used as input in the development of probabilistic seismic hazard analysis (PSHA) and as an engineering tool to assess risk in building design. Generally these equations are developed from empirical analysis of observations that come from fairly complete catalogs of seismic events. One of the challenges when doing a PSHA analysis in a region where earthquakes are anthropogenically induced is that the catalog of observations is not complete enough to come up with a set of equations to cover all expected outcomes. For example, PSHA analysis at the Groningen gas field, an area of known induced seismicity, requires estimates of ground motions from tremors up to a maximum magnitude of 6.5 ML. Of the roughly 1300 recordable earthquakes the maximum observed magnitude to date has been 3.6ML. This paper is part of a broader study where we use a deterministic finite-difference wave-form modeling tool to compliment the traditional development of GMMs. Of particular interest is the sensitivity of the GMM's to uncertainty in the rupture process and how this scales to larger magnitude events that have not been observed. A kinematic fault rupture model is introduced to our waveform simulations to test the sensitivity of the GMMs to variability in the fault rupture process that is physically consistent with observations. These tests will aid in constraining the degree of variability in modeled ground motions due to a realistic range of fault parameters and properties. From this study it is our conclusion that in order to properly capture the uncertainty of the GMMs with magnitude up-scaling one needs to address the impact of uncertainty in the near field (risk. Further, by investigating and constraining the range of fault rupture scenarios and earthquake magnitudes on ground motion models, hazard and risk analysis in regions with incomplete earthquake catalogs, such as the Groningen gas field, can be better understood.

  11. Determining SUSY model parameters and masses at the LHC using cross sections, kinematic edges and other observables

    CERN Document Server

    White, M J; Parker, M A

    2005-01-01

    We address the problem of mass measurements of supersymmetric particles at the Large Hadron Collider, using the ATLAS detector as an example. By using Markov Chain sampling techniques to combine standard measurements of kinematic edges in the invariant mass distributions of decay products with a measurement of a missing $p_T$ cross-section, we show that the precision of mass measurements at the LHC can be dramatically improved, even when we do not assume that we have measured the kinematic endpoints precisely, or that we have identified exactly which particles are involved in the decay chain causing the endpoints. The generality of the technique is demonstrated in a preliminary investigation of a non-universal SUGRA model, in which we relax the requirements of mSUGRA by breaking the degeneracy of the GUT scale gaugino masses. The model studied is compatible with the WMAP limits on dark matter relic density.

  12. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  13. Wave Modelling - The State of the Art

    Science.gov (United States)

    2007-09-27

    8217) - -16 C-Ax( M) (I - 2y) -N +1CgAx’(1 -y)(6y’ - 6y + 1) + O(At4), (8.2) 24OX where p is the Courant- Friedrichs -Lewy (CFL) number, j = CgxAt/Ax. Thus...attainable time step is at the best of the order of min- utes . For early third generation wave models, this was unacceptable, and methods were developed to be... Barbara Channel. In: Beal, R. (Ed.), 5th California Islands Symposium, March 29-31. Mineral Management Service, Santa Barbara , CA. Onorato, M., Osborne

  14. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.

    Science.gov (United States)

    Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin

    2017-11-07

    Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P method by 24.2%BW/LL (P stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya

    Science.gov (United States)

    Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.

    2018-05-01

    In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.

  16. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  17. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  18. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements.

    Science.gov (United States)

    Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian

    2018-01-01

    In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion

  19. Geometric technique for the kinematic modeling of a 5 DOF redundant manipulator

    CSIR Research Space (South Africa)

    Makondo, N

    2012-11-01

    Full Text Available ,? Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Universit a di Bologna [Online]; Available at: http://www- lar.deis.unibo.it/people/cmelchiorri/Files Robotica/FIR 04 Kinem.pdf[31 October 2012] [18] Manocha, D.; Canny, J.F.; , ?Efficient... to the inverse kinematics of the Pioneer 2 robotic arm ?, Robotica, 2005, vol.23, pp.123, DOI: 10.1017/S0263574704000529 [20] De Xu, Carlos A. Acosta Calderon, John Q. Gan etc .An Analysis of the Inverse Kinematics for a 5-DOF Manipulator, International...

  20. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  1. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean

    2011-01-01

    Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  2. A methodology for spectral wave model evaluation

    Science.gov (United States)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave

  3. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  4. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  5. A three-dimensional kinematic model for the dissolution of crystals

    Science.gov (United States)

    Tellier, C. R.

    1989-06-01

    The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.

  6. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    Science.gov (United States)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  7. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.

    Science.gov (United States)

    El Habachi, Aimad; Moissenet, Florent; Duprey, Sonia; Cheze, Laurence; Dumas, Raphaël

    2015-07-01

    Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.

  8. Numerical modelling of nearshore wave transformation

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; SanilKumar, V.

    A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...

  9. Impact of surface waves in a Regional Climate Model

    DEFF Research Database (Denmark)

    Rutgersson, Anna; Sætra, Oyvind; Semedo, Alvaro

    2010-01-01

    A coupled regional atmosphere-wave model system is developed with the purpose of investigating the impact of climate changes on the wave field, as well as feed-back effects of the wave field on the atmospheric parameters. This study focuses on the effects of introducing a two-way atmosphere...

  10. Improved Wave-vessel Transfer Functions by Uncertainty Modelling

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio

    2016-01-01

    This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in inp...

  11. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  12. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G

    2007-01-01

    ..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...

  13. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wu

    2018-03-01

    Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.

  14. Kinematic Modelling and Simulation of a 2-R Robot Using SolidWorks and Verification by MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Mahmoud Gouasmi

    2012-12-01

    Full Text Available The simulation of robot systems is becoming very popular, especially with the lowering of the cost of computers, and it can be used for layout evaluation, feasibility studies, presentations with animation and off-line programming. The trajectory planning of redundant manipulators is a very active area since many tasks require special characteristics to be satisfied. The importance of redundant manipulators has increased over the last two decades because of the possibility of avoiding singularities as well as obstacles within the course of motion. The angle that the last link of a 2 DOF manipulator makes with the x-axis is required in order to find the solution for the inverse kinematics problem. This angle could be optimized with respect to a given specified key factor (time, velocity, torques while the end-effector performs a chosen trajectory (i.e., avoiding an obstacle in the task space. Modeling and simulation of robots could be achieved using either of the following models: the geometrical model (positions, postures, the kinematic model and the dynamic model. To do so, the modelization of a 2-R robot type is implemented. Our main tasks are comparing two robot postures with the same trajectory (path and for the same length of time, and establishing a computing code to obtain the kinematic and dynamic parameters. SolidWorks and MATLAB/Simulink softwares are used to check the theory and the robot motion simulation. This could be easily generalized to a 3-R robot and possibly therefore to any serial robot (Scara, Puma, etc.. The verification of the obtained results by both softwares allows us to qualitatively evaluate and underline the validityof the chosen model and obtain the right conclusions. The results of the simulations are discussed and an agreement between the two softwares is certainly obtained.

  15. CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuti, L.; Sartoris, B.; Borgani, S.; Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it [Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); and others

    2017-07-01

    We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain a constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDM model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.

  16. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  17. Rational kinematics

    CERN Document Server

    Angeles, Jorge

    1988-01-01

    A rational study of kinematics is a treatment of the subject based on invariants, i.e., quantities that remain essentially unchanged under a change of observer. An observer is understood to be a reference frame supplied with a clock (Truesdell 1966). This study will therefore include an introduction to invariants. The language of these is tensor analysis and multilinear algebra, both of which share many isomorphic relations, These subjects are treated in full detail in Ericksen (1960) and Bowen and Wang (1976), and hence will not be included here. Only a short account of notation and definitions will be presented. Moreover, definitions and basic concepts pertaining to the kinematics of rigid bodies will be also included. Although the kinematics of rigid bodies can be regarded as a particular case of the kinematics of continua, the former deserves attention on its own merits for several reasons. One of these is that it describes locally the motions undergone by continua. Another reason is that a whole area of ...

  18. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    Science.gov (United States)

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stochastic volatility models and Kelvin waves

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com

    2008-08-29

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  20. Stochastic volatility models and Kelvin waves

    Science.gov (United States)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  1. Stochastic volatility models and Kelvin waves

    International Nuclear Information System (INIS)

    Lipton, Alex; Sepp, Artur

    2008-01-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics

  2. Model Predictive Control of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

  3. Determination of dopant atomic positions with kinematical X-ray standing waves; Untersuchung von Fremdatomen in kristallinen Materialien mit kinematischen stehenden Roentgenwellen

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Bente

    2011-11-15

    Recent advances in the kinematic X-ray standing wave technique (KXSW) for the determination of the atomic coordinates and displacement parameters in nonperfect crystalline materials are described in this thesis. The methodology has been improved by considering three significant aspects: - the inclusion of weak multiple beam contributions - the excitation of secondary fluorescence in multiple-element samples - the influence of the crystal mosaicity on the fluorescence yield. The improvements allowed to successfully apply the method to investigate complex oxide materials of current interest for potential device applications. The thermally-induced interdiffusion of cobalt and manganese thin films on zinc oxide single crystals has been studied to determine which lattice sites are occupied preferentially. The data analysis revealed that after thermal diffusion the adsorbed atoms occupied zinc sites in the host lattice. The mean deviation of the cobalt atomic position from the zinc lattice site was comparable to the thermal displacement parameter of the zinc atoms. In the case of manganese a secondary phase was found on the surface. Measurements performed on LaSrMnO{sub 4} provided new insight concerning the rotation of the oxygen octahedron around the manganese atoms and the concomitant displacements of the strontium and lanthanum atoms. It was found that the oxygen octahedra are rotated around the [100]-direction by 4,5 . The measurements in transmission geometry performed on titanium dioxide (rutile) demonstrated that KXSW measurements in the Laue geometry is a viable technique. By performing KXSW under grazing-incidence conditions it is possible to achieve depth resolution. The results clearly show that the extended KXSW technique is a versatile method for characterizing complex material systems. (orig.)

  4. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    Science.gov (United States)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed

  5. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].

    Science.gov (United States)

    Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping

    2015-12-01

    The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.

  6. A hydrodynamic model of nearshore waves and wave-induced currents

    Directory of Open Access Journals (Sweden)

    Ahmed Khaled Seif

    2011-09-01

    Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

  7. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...

  8. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  9. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    Science.gov (United States)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  10. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2013-01-01

    An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...

  11. Inverse Kinematics

    Directory of Open Access Journals (Sweden)

    Joel Sereno

    2010-01-01

    Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.

  12. Improving wave forecasting by integrating ensemble modelling and machine learning

    Science.gov (United States)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  13. Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

    Directory of Open Access Journals (Sweden)

    Oh Soo Kwon

    2014-01-01

    Full Text Available A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.

  14. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  15. Model-based dispersive wave processing: A recursive Bayesian solution

    International Nuclear Information System (INIS)

    Candy, J.V.; Chambers, D.H.

    1999-01-01

    Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.

  16. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  17. Properties of kinematic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)

    2009-11-07

    The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.

  18. Modelling of Performance of Caisson Type Breakwaters under Extreme Waves

    Science.gov (United States)

    Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt

    2016-04-01

    Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate

  19. Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    M. H. Dao

    2011-02-01

    Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.

  20. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-08-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  1. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters.

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-01-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  2. Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: methods and reliability results.

    Science.gov (United States)

    Cerveri, P; Lopomo, N; Pedotti, A; Ferrigno, G

    2005-03-01

    In the field of 3D reconstruction of human motion from video, model-based techniques have been proposed to increase the estimation accuracy and the degree of automation. The feasibility of this approach is strictly connected with the adopted biomechanical model. Particularly, the representation of the kinematic chain and the assessment of the corresponding parameters play a relevant role for the success of the motion assessment. In this paper, the focus is on the determination of the kinematic parameters of a general hand skeleton model using surface measurements. A novel method that integrates nonrigid sphere fitting and evolutionary optimization is proposed to estimate the centers and the functional axes of rotation of the skeletal joints. The reliability of the technique is tested using real movement data and simulated motions with known ground truth 3D measurement noise and different ranges of motion (RoM). With respect to standard nonrigid sphere fitting techniques, the proposed method performs 10-50% better in the best condition (very low noise and wide RoM) and over 100% better with physiological artifacts and RoM. Repeatability in the range of a couple of millimeters, on the localization of the centers of rotation, and in the range of one degree, on the axis directions is obtained from real data experiments.

  3. Distance-based kinematics of the five-oblique-axis thumb model with intersecting axes at the metacarpophalangeal joint.

    Science.gov (United States)

    Rojas, Nicolas; Dollar, Aaron M

    2017-07-01

    This paper proposes a novel and simple method to compute all possible solutions of the inverse kinematics problem of the five-oblique-axis thumb model with intersecting axes at the metacarpophalangeal joint. This thumb model is one of the suggested results by a magnetic-resonance-imaging-based study that, in contrast to those based on cadaver fingers or on the tracking of the surface of the fingers, takes into account muscle and ligament behaviors and avoids inaccuracies resulting from the movement of the skin with respect to the bones. The proposed distance-based inverse kinematics method eliminates the use of arbitrary reference frames as is usually required by standard approaches; this is relevant because the numerical conditioning of the resulting system of equations with such traditional approaches depends on the selected reference frames. Moreover, contrary to other parametrizations (e.g., Denavit-Hartenberg parameters), the suggested distance-based parameters for the thumb have a natural, human-understandable geometric meaning that makes them easier to be determined from any posture. These characteristics make the proposed approach of interest for those working in, for instance, measuring and modeling the movement of the human hand, developing rehabilitation devices such as orthoses and prostheses, or designing anthropomorphic robotic hands.

  4. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, DR

    2017-01-01

    and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution....../lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key...... drivers of this kinematic change....

  5. The Numerical FEM Model of the Kinematics of the Vibratory Shot Peening Process

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2017-12-01

    Full Text Available The paper presents the results of numerical calculations, with the finite element method in the ABAQUS program environment, of the vibratory shot peening process with loose peening elements. The behaviour of shot peening elements was analysed in the kinematic aspect. The impact of the initial deployment of vibratory shot peening elements on their behaviour during processing was investigated, including the displacement, velocity, acceleration and the number of collisions. The way of determining the effectiveness of the processing with the vibratory shot peening was illustrated.

  6. A model for consecutive spallation and fragmentation reactions in inverse kinematics at relativistic energies

    International Nuclear Information System (INIS)

    Napolitani, P.; Tassan-Got, L.; Bernas, M.; Armbruster, P.

    2003-04-01

    Secondary reactions induced by relativistic beams in inverse kinematics in a thick target are relevant in several fields of experimental physics and technology, like secondary radioactive beams, production of exotic nuclei close to the proton drip line, and cross-section measurements for applications of spallation reactions for energy production and incineration of nuclear wastes. A general mathematical formulation is presented and successively applied as a tool to disentangle the primary reaction yields from the secondary production in the measurement of fission of a 238 U projectile impinging on a proton target at the energy of 1 A GeV. (orig.)

  7. Kinematic model of some types of motion of matter in active regions

    International Nuclear Information System (INIS)

    Platov, Yu.V.

    1983-01-01

    The kinematics of matter motion in variable magnetic fields of active regions on the Sun in the MHD approximation of a strong field and cold plasma is investigated. It is shown that the variation of sunspot magnetic moments lead to the development of different active phenomena in the solar atmosphere. The development of such phenomena at first can occur at the phase of active region growth, when new sunspots together with developed sunspots emerge in an active region or relative motions take place in a sunspot group

  8. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.

    Science.gov (United States)

    Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro

    2014-08-14

    Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control

  9. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea

    Science.gov (United States)

    Akpınar, Adem; van Vledder, Gerbrant Ph.; Kömürcü, Murat İhsan; Özger, Mehmet

    2012-12-01

    This study summaries the implementation of the SWAN model forced by the ECMWF ERA Interim dataset reanalyzed 10 m winds over the Black Sea which will be used to study the wind-wave climate and wave energy potential in the region, and its verification. The SWAN model results were compared with directional buoy measurements at three locations along the north and south coasts of the Black Sea, parametric model results based on the JONSWAP growth relations, and the results of previous studies. The SWAN model has been applied in a third generation and non-stationary mode with spherical coordinates. The linear and exponential growth from wind input, depth-induced wave breaking, bottom friction, whitecapping, four-wave (for deep water) and triad-wave (for shallow water) nonlinear interactions have been activated in the simulations. The results of this study indicate that agreement between simulated and observed wave parameters is satisfactory and it is slightly more accurate than the results of the previous studies. However, it still has lower estimates for the maximum values of both wave parameters. These lower estimates are probably due to too low wind speeds in the applied ECMWF wind fields, which is probably caused by orographic effects, and due to the relatively course resolution in time and space of the ECMWF (ERA-Interim) wind fields for the Black Sea.

  10. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  11. Wind-wave modelling aspects within complicate topography

    Directory of Open Access Journals (Sweden)

    S. Christopoulos

    Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.

  12. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    OpenAIRE

    Lorand Catalin STOENESCU

    2011-01-01

    The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D) of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishi...

  13. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.

    1997-07-01

    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  14. Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing.

    Science.gov (United States)

    Zhang, Yong-de; Jiang, Jin-gang; Liang, Ting; Hu, Wei-ping

    2011-12-01

    Artificial teeth are very complicated in shape, and not easy to be grasped and manipulated accurately by a single robot. The method of tooth-arrangement by multi-manipulator for complete denture manufacturing proposed in this paper. A novel complete denture manufacturing mechanism is designed based on multi-manipulator and dental arch generator. Kinematics model of the multi-manipulator tooth-arrangement robot is built by analytical method based on tooth-arrangement principle for full denture. Preliminary experiments on tooth-arrangement are performed using the multi-manipulator tooth-arrangement robot prototype system. The multi-manipulator tooth-arrangement robot prototype system can automatically design and manufacture a set of complete denture that is suitable for a patient according to the jaw arch parameters. The experimental results verified the validity of kinematics model of the multi-manipulator tooth-arrangement robot and the feasibility of the manufacture strategy of complete denture fulfilled by multi-manipulator tooth-arrangement robot.

  15. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  16. Modeling stress wave propagation in rocks by distinct lattice spring model

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhao

    2014-08-01

    Full Text Available In this paper, the ability of the distinct lattice spring model (DLSM for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D P-wave, 1D S-wave and two-dimensional (2D cylindrical wave was studied through comparing results predicted by the DLSM with different mesh ratios (lr and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.

  17. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Erik Friis-Madsen

    2013-04-01

    Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.

  18. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...

  19. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  20. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  1. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  2. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  3. Development of a real-time prediction model of driver behavior at intersections using kinematic time series data.

    Science.gov (United States)

    Tan, Yaoyuan V; Elliott, Michael R; Flannagan, Carol A C

    2017-09-01

    As connected autonomous vehicles (CAVs) enter the fleet, there will be a long period when these vehicles will have to interact with human drivers. One of the challenges for CAVs is that human drivers do not communicate their decisions well. Fortunately, the kinematic behavior of a human-driven vehicle may be a good predictor of driver intent within a short time frame. We analyzed the kinematic time series data (e.g., speed) for a set of drivers making left turns at intersections to predict whether the driver would stop before executing the turn. We used principal components analysis (PCA) to generate independent dimensions that explain the variation in vehicle speed before a turn. These dimensions remained relatively consistent throughout the maneuver, allowing us to compute independent scores on these dimensions for different time windows throughout the approach to the intersection. We then linked these PCA scores to whether a driver would stop before executing a left turn using the random intercept Bayesian additive regression trees. Five more road and observable vehicle characteristics were included to enhance prediction. Our model achieved an area under the receiver operating characteristic curve (AUC) of 0.84 at 94m away from the center of an intersection and steadily increased to 0.90 by 46m away from the center of an intersection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  5. Solvable model of spiral wave chimeras.

    Science.gov (United States)

    Martens, Erik A; Laing, Carlo R; Strogatz, Steven H

    2010-01-29

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.

  6. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  7. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    Science.gov (United States)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  8. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion

    International Nuclear Information System (INIS)

    Matda, Y.; Crawford, F.W.

    1974-12-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)

  9. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  10. Modelization of highly nonlinear waves in coastal regions

    Science.gov (United States)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  11. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to

  12. New Gravity Wave Treatments for GISS Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  13. Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2016-03-01

    A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

  14. Identification and modeling of internal waves

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.

    Analyses of Internal Wave (IW) signatures by insitu observations off Visakhapatnam have been presented to study the impact of IWs on acoustic field. Temperature data were collected for 44 hours off Visakhapatnam (17° 26.46’N and 83° 31.20’E...

  15. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  16. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  17. Can plane wave modes be physical modes in soliton models?

    International Nuclear Information System (INIS)

    Aldabe, F.

    1995-08-01

    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs

  18. Computer modeling of inelastic wave propagation in porous rock

    International Nuclear Information System (INIS)

    Cheney, J.A.; Schatz, J.F.; Snell, C.

    1979-01-01

    Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table

  19. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  20. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    Science.gov (United States)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  1. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2015-09-30

    discussed by DRI participants may aid our understanding as well, e.g. those conducted in the Hamburg Ship Model Basin. Our theoretical advances benefit...the project are – continued modifications to the Arctic wide WIM code in association with advances relating to a new ice/ocean model known as... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of

  2. Modeling Stop-and-Go Waves in Pedestrian Dynamics

    OpenAIRE

    Portz, Andrea; Seyfried, Armin

    2010-01-01

    Several spatially continuous pedestrian dynamics models have been validated against empirical data. We try to reproduce the experimental fundamental diagram (velocity versus density) with simulations. In addition to this quantitative criterion, we tried to reproduce stop-and-go waves as a qualitative criterion. Stop-and-go waves are a characteristic phenomenon for the single file movement. Only one of three investigated models satisfies both criteria.

  3. A Generic Approach to Self-localization and Mapping of Mobile Robots Without Using a Kinematic Model

    DEFF Research Database (Denmark)

    Kesper, Patrick; Berscheid, Lars; Wörgötter, Florentin

    2015-01-01

    and environment of a robot. Scan-matching is applied to compensate for noisy IMU measurements. This approach does not require any robot-specific characteristics, e.g. wheel encoders or kinematic models. In principle, this minimal sensory setup can be mounted on different robot systems without major modifications...... to the underlying algorithms. The sensory setup with the probabilistic algorithm is tested in real-world experiments on two different kinds of robots: a simple two-wheeled robot and the six-legged hexapod AMOSII. The obtained results indicate a successful implementation of the approach and confirm its generic...... nature. On both robots, the SLAM problem can be solved with reasonable accuracy....

  4. anisotropic crack modelling of reinforced concrete structures with an enhanced kinematics: application to bidimensional elements under cyclic loading

    International Nuclear Information System (INIS)

    Kishta, Ejona

    2016-01-01

    Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting model as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading. (author) [fr

  5. Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models

    Science.gov (United States)

    Lin, Shangfei; Sheng, Jinyu

    2017-12-01

    Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.

  6. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    Science.gov (United States)

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  7. Geometric models of nested field wave forms

    International Nuclear Information System (INIS)

    Winters, D.

    1984-01-01

    The authors start with two dimensions. ''Maybe there's this thing we ought to call a 'compressible medium' that seems to be around here''. Maybe it's air or ether. There seems to be this compressible medium which has this quality which is that it conveys inertia momentum. And it is compressible. So, given that, and given not much else, they ought to be able to build things like atomic tables and fundamental concepts of physics. The idea is that the principles of creation are principles of superposition of wave shapes. The suggestion is that wave shape archetypally, naturally builds geometry, and that is the clue to the information structure of atoms and molecules and people

  8. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  9. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.

    Science.gov (United States)

    Rose, Michael; Curtze, Carolin; O'Sullivan, Joseph; El-Gohary, Mahmoud; Crawford, Dennis; Friess, Darin; Brady, Jacqueline M

    2017-12-01

    To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents. Copyright © 2017

  10. A Kinematic Conservation Law in Free Surface Flow

    OpenAIRE

    Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra

    2015-01-01

    The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...

  11. Holographic p-wave superconductor models with Weyl corrections

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-04-01

    Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.

  12. Wave Model Development in Multi-Ion Plasmas

    Directory of Open Access Journals (Sweden)

    Sung-Hee Song

    1999-06-01

    Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.

  13. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  14. Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids : Interacting fronts and rarefaction waves

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2011-01-01

    A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves the Hami...... is proposed. The dynamics of the rarefaction wave is approximated by a collective coordinate approach in the energy balance equation. © 2010 Springer Science+Business Media B.V.......A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...... the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...

  15. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  16. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  17. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  18. Hybrid Modelling of a Traveling Wave Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.

    a theoretical model is derived. Since the dynamic characteristics of the real motor are difficult to capture in an analytical model, and the parameters of the motor are time varying and highly nonlinear, then some assumptions are required in order to simplify the modeling task and thus provide a suitable model......This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high....... Despite many attempts a lumped motor model of the PEM is unavailable so far. The dynamical characteristics of the PEM are complicated, highly nonlinear, and the motor parameters are time varying due to temperature rise and changes in motor drive operating conditions. Therefore it is difficult to predict...

  19. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  20. Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.

    Science.gov (United States)

    Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S

    2015-06-01

    Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.

  1. Modelling of wave propagation over a submerged sand bar using SWASH

    Digital Repository Service at National Institute of Oceanography (India)

    Jishad, M.; Vu, T.T.T.; JayaKumar, S.

    cases The wave heights and wave induced velocities obtained from the model and the laboratory experimental resultsare compared The model without the morphology feedback provided good correlation with the measurements for case of low wave energy, whereas...

  2. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  3. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  4. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  5. Test particle modeling of wave-induced energetic electron precipitation

    International Nuclear Information System (INIS)

    Chang, H.C.; Inan, U.S.

    1985-01-01

    A test particle computer model of the precipitation of radiation belt electrons is extended to compute the dynamic energy spectrum of transient electron fluxes induced by short-duration VLF wave packets traveling along the geomagnetic field lines. The model is adapted to estimate the count rate and associated spectrum of precipitated electrons that would be observed by satellite-based particle detectors with given geometric factor and orientation with respect to the magnetic field. A constant-frequency wave pulse and a lightning-induced whistler wave packet are used as examples of the stimulating wave signals. The effects of asymmetry of particle mirror heights in the two hemispheres and the atmospheric backscatter of loss cone particles on the computed precipitated fluxes are discussed

  6. Suppression of Spiral Wave in Modified Orengonator Model

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Jin Wuyin; Yi Ming

    2008-01-01

    In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh-Nagumo model. It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence

  7. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  8. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  9. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    Science.gov (United States)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  10. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  11. Modeling storm waves; Modeliser les houles de tempete

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, M.; Marcos, F.; Teisson, Ch

    1999-07-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  12. Altered vocal fold kinematics in synthetic self-oscillating models that employ adipose tissue as a lateral boundary condition.

    Science.gov (United States)

    Saidi, Hiba; Erath, Byron D.

    2015-11-01

    The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.

  13. Modeling Waves and Coastal Flooding along the Connecticut Coast

    Science.gov (United States)

    Cifuentes-Lorenzen, A.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.; O'Donnell, J.; Asthita, M.

    2015-12-01

    We have used a hydrodynamic- wave coupled numerical model (FVCOM-SWAVE) to simulate flooding at the Connecticut coastline during severe storms. The model employed a one-way nesting scheme and an unstructured grid. The parent domain spanned most of the southern New England shelf and the fine resolution grid covered Long Island Sound (LIS) and extended across the Connecticut coast to the 10m elevation contour. The model results for sea level, current and wave statistics from the parent grid have been tested with data from several field campaigns at different locations spanning the western, central and eastern portions of LIS. Waves are fetch limited and improvements to the model-data comparison required modifications to spectral coefficients in the wave model. Finally, the nested results were validated with two field campaigns in shallow water environments (i.e. New Haven and Old Saybrook). To assess the spatial variability of storm wave characteristics the domain was forced with the hindcast winds obtained from meteorological models (NAM and WRF) for 13 severe weather events that affected LIS in the past 15 years. We have also forced the system with a simulation of Superstorm Sandy in a warmer climate to assess the impact a climate change on the character of flooding. The nested grid is currently being used to map flooding risks under severe weather events including the effects of precipitation on river flow and discharge.

  14. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  15. A DETAILED MORPHO-KINEMATIC MODEL OF THE ESKIMO, NGC 2392: A UNIFYING VIEW WITH THE CAT'S EYE AND SATURN PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; López, J. A.; Steffen, W.; Richer, M. G.

    2012-01-01

    The three-dimensional and kinematic structure of the Eskimo nebula, NGC 2392, has been notoriously difficult to interpret in detail given its complex morphology, multiple kinematic components and its nearly pole-on orientation along the line of sight. We present a comprehensive, spatially resolved, high-resolution, long-slit spectroscopic mapping of the Eskimo planetary nebula. The data consist of 21 spatially resolved, long-slit echelle spectra tightly spaced over the Eskimo and along its bipolar jets. This data set allows us to construct a velocity-resolved [N II] channel map of the nebula with a resolution of 10 km s –1 that disentangles its different kinematic components. The spectroscopic information is combined with Hubble Space Telescope images to construct a detailed three-dimensional morpho-kinematic model of the Eskimo using the code SHAPE. With this model we demonstrate that the Eskimo is a close analog to the Saturn and the Cat's Eye nebulae, but rotated 90° to the line of sight. Furthermore, we show that the main characteristics of our model apply to the general properties of the group of elliptical planetary nebulae with ansae or FLIERS, once the orientation is considered. We conclude that this kind of nebula belongs to a class with a complex common evolutionary sequence of events.

  16. On the calculation of the water particle kinematics arising in a directionally spread wavefield

    CERN Document Server

    Bateman, W J D; Taylor, P H

    2003-01-01

    This paper concerns the calculation of the water particle kinematics generated by the propagation of surface gravity waves. The motivation for this work lies in recent advances in the description of the water surface elevation associated with extreme waves that are highly nonlinear and involve a spread of wave energy in both frequency and direction. To provide these exact numerical descriptions the nonlinear free-surface boundary conditions are time-marched, with the most efficient solutions simply based upon the water surface elevation, eta, and the velocity potential, phi, on that surface. In many broad-banded problems, computational efficiency is not merely desirable but absolutely essential to resolve the complex interactions between wave components with widely varying length-scales and different directions of propagation. Although such models have recently been developed, the calculation of the underlying water particle kinematics, based on the surface properties alone, remains a significant obstacle to ...

  17. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...

  18. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  19. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  20. Simulating Freak Waves in the Ocean with CFD Modeling

    Science.gov (United States)

    Manolidis, M.; Orzech, M.; Simeonov, J.

    2017-12-01

    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  1. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  2. Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    Science.gov (United States)

    Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio

    2016-10-01

    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.

  3. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  4. Identification of wind fields for wave modeling near Qatar

    Science.gov (United States)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was

  5. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin; Xue, Chuan; Painter, Kevin J.; Erban, Radek

    2013-01-01

    . Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death

  6. Wave attenuation model for dephasing and measurement of ...

    Indian Academy of Sciences (India)

    An analysis of previous models to simulate inelastic scattering in such systems is presented and a relatively new model based on wave attenuation is introduced. The problem of Aharonov–Bohm (AB) oscillations in conductance of a mesoscopic ring is studied. We show that the conductance is symmetric under flux reversal ...

  7. A water wave model with horizontal circulation and accurate dispersion

    NARCIS (Netherlands)

    Cotter, C.; Bokhove, Onno

    We describe a new water wave model which is variational, and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite element

  8. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  9. Non-homogeneous polymer model for wave propagation and its ...

    African Journals Online (AJOL)

    This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...

  10. Numerical modeling of shoreline undulations part 1: Constant wave climate

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described...

  11. Wave-particle duality in a quark model

    International Nuclear Information System (INIS)

    Gudder, S.P.

    1984-01-01

    A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)

  12. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    Directory of Open Access Journals (Sweden)

    Lorand Catalin STOENESCU

    2011-05-01

    Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.

  13. Models for short-wave instability in inviscid shear flows

    Science.gov (United States)

    Grimshaw, Roger

    1999-11-01

    The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.

  14. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Lactobacillus rhamnosus PB01 (DSM 14870 supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model.

    Directory of Open Access Journals (Sweden)

    Fereshteh Dardmeh

    Full Text Available Probiotics have been proposed as alternatives to pharmacological products in several medical conditions including the modulation of obesity, which is frequently associated with poor semen quality. However, effects of probiotics on male fertility have been less investigated. This study assessed the effect of Lactobacillus rhamnosus PB01 (DSM-14870 on sperm kinematic parameters in Normal-weight (NW and diet-induced obese (DIO models. NW and DIO C57BL/6NTac mice were divided into two subgroups with or without a single daily dose (1x109CFU of L. rhamnosus for four weeks. Sperm motility and kinematics together with blood lipid profiles and reproductive hormone levels were assessed using the sperm class analyzer system. Probiotic supplementation increased serum testosterone, LH and FSH levels in both NW and DIO groups resulting in significantly (P<0.05 higher velocity (VSL, VCL and VAP and percentages of progressively motile sperm and significantly lower percentages of immotile sperm. Other kinematic parameters (Lin, STR, ALH and BCF were also increased in both probiotic supplemented DIO and NW groups at the 10% level of significance. Probiotic supplemented DIO mice demonstrated significantly higher percentages of progressively motile sperm versus DIO controls. This study demonstrated the potential of L. rhamnosus PB01 as a regulatory agent with positive effects on weight loss and reproductive-hormones, significantly improving sperm motility and kinematic parameters in male DIO models.

  16. Prediction of the Individual Wave Overtopping Volumes of a Wave Energy Converter using Experimental Testing and First Numerical Model Results

    DEFF Research Database (Denmark)

    Victor, L.; Troch, P.; Kofoed, Jens Peter

    2009-01-01

    For overtopping wave energy converters (WECs) a more efficient energy conversion can be achieved when the volumes of water, wave by wave, that enter their reservoir are known and can be predicted. A numerical tool is being developed using a commercial CFD-solver to study and optimize...... nearshore 2Dstructure. First numerical model results are given for a specific test with regular waves, and are compared with the corresponding experimental results in this paper....

  17. 'Oscillator-wave' model: properties and heuristic instances

    International Nuclear Information System (INIS)

    Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin

    2003-01-01

    The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes

  18. Updated thermal model using simplified short-wave radiosity calculations

    International Nuclear Information System (INIS)

    Smith, J.A.; Goltz, S.M.

    1994-01-01

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  19. Updated thermal model using simplified short-wave radiosity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. A.; Goltz, S. M.

    1994-02-15

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  20. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  1. Improvements on Semi-Classical Distorted-Wave model

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.

    1998-03-01

    A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)

  2. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  3. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    Science.gov (United States)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  4. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten

    2006-01-01

    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  5. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  6. Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro

    2009-01-01

    Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...

  7. Optimal parametric modelling of measured short waves

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...

  8. Frontiers in Anisotropic Shock-Wave Modeling

    Science.gov (United States)

    2012-02-01

    Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar / Epoxy materials recovered after...model development for the Nextel and Kevlar / Epoxy materials subject to hypervelocity impact. They also performed the experimental inverse flyer test...IFPT) for Nextel and Kevlar / Epoxy . Their models were to be macro-mechanically based and suitable for implementation into a hydrocode coupled with EOS

  9. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...

  10. Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures

    Science.gov (United States)

    Marshall, T.; Challis, R. E.; Tebbutt, J. S.

    2002-05-01

    The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.

  11. Kinematics, Exhumation, and Sedimentation of the North Central Andes (Bolivia): An Integrated Thermochronometer and Thermokinematic Modeling Approach

    Science.gov (United States)

    Rak, Adam J.; McQuarrie, Nadine; Ehlers, Todd A.

    2017-11-01

    Quantifying mountain building processes in convergent orogens requires determination of the timing and rate of deformation in the overriding plate. In the central Andes, large discrepancies in both timing and rate of deformation prevent evaluating the shortening history in light of internal or external forcing factors. Geologic map patterns, age and location of reset thermochronometer systems, and synorogenic sediment distribution are all a function of the geometry, kinematics, and rate of deformation in a fold-thrust-belt-foreland basin (FTB-FB) system. To determine the timing and rate of deformation in the northern Bolivian Andes, we link thermokinematic modeling to a sequentially forward modeled, balanced cross section isostatically accounting for thrust loads and erosion. Displacement vectors, in 10 km increments, are assigned variable ages to create velocity fields in a thermokinematic model for predicting thermochronometer ages. We match both the pattern of predicted cooling ages with the across strike pattern of measured zircon fission track, apatite fission track, and apatite (U-Th)/He cooling ages as well as the modeled age of FB formations to published sedimentary sections. Results indicate that northern Bolivian FTB deformation started at 50 Ma and may have begun as early as 55 Ma. Acceptable rates of shortening permit either a constant rate of shortening ( 4-5 mm/yr) or varying shortening rates with faster rates (7-10 mm/yr) at 45-50 Ma and 12-8 Ma, significantly slower rates (2-4 mm/yr) from 35 to 15 Ma and indicate the northern Bolivian Subandes started deforming between 19 and 14 Ma.

  12. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  13. A delay differential equation model of follicle waves in women.

    Science.gov (United States)

    Panza, Nicole M; Wright, Andrew A; Selgrade, James F

    2016-01-01

    This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.

  14. A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models.

    Science.gov (United States)

    Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F

    2004-08-01

    In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).

  15. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.

    Science.gov (United States)

    Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning

    2018-03-16

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  16. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    2018-03-01

    Full Text Available A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS Inertial-Measurement-Unit (IMU. First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD. In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  17. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Science.gov (United States)

    Dou, Lihua; Su, Zhong; Liu, Ning

    2018-01-01

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515

  18. Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model

    Science.gov (United States)

    Herman, Agnieszka

    2017-11-01

    In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.

  19. The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction

    Science.gov (United States)

    Menzel, Andreas; Kuhl, Ellen

    2014-01-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion. PMID:25221354

  20. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results

    Energy Technology Data Exchange (ETDEWEB)

    Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Ghoneim, Z.A. [Ain Shams Univ., Abassia (Egypt)

    1996-09-01

    Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.

  1. On observational foundations of models with a wave spiral structure

    International Nuclear Information System (INIS)

    Suchkov, A.A.

    1978-01-01

    The validity of the density wave models of the spiral structure is considered. It is shown that the density wave in the Galaxy is doverned by its flat subsystem only, whereas the disk and the halo do not contribute significantly into the wave. It is found that the density wave model of the spiral structure of the Galaxy is confirmed by the value of the pattern speed derived from observational data (Ω = 20-25 km s -1 kpc -1 ). The position and the properties of the outer Lindblad resonance are confirmed by the existence and position of gas ring features in outer regions of our Galaxy and external galaxies. The corotation region in the Galaxy is situated at R=10/12 kpc. Near the corotation region the galactic shock wave is not expected to develop. The observed rapid decrease in the number of H2 regions while moving from R=5 kpc to R=10 kpc confirms this conclusion. The similar consistency between the positions of corotation region and outer resonance and the observed properties of H2 and H1 distribution has also been found for a number of extermal galaxies

  2. A multi-modal geological investigation framework for subsurface modeling and kinematic monitoring of a slow-moving landslide complex in Colorado, United States

    Science.gov (United States)

    Lowry, B. W.; Zhou, W.; Smartgeo

    2010-12-01

    The Muddy Creek landslide complex is a large area of active and reactivating landslides that impact the operation of both a state highway and Paonia Reservoir in Gunnison County, Colorado, United States. Historically, the monitoring of this slide has been investigated using disparate techniques leading to protracted analysis and project knowledge attrition. We present an integrated, data-driven investigation framework that supports continued kinematic monitoring, document cataloging, and subsurface modeling of the landslide complex. A geospatial information system (GIS) was integrated with a visual programming based subsurface model to facilitate modular integration of monitoring data with borehole information. Subsurface modeling was organized by material type and activity state based on multiple sources of kinematic measurement. The framework is constructed to modularly integrate remotely sensed imagery and other spatial datasets such as ASTER, InSAR, and LiDAR derived elevation products as more precise datasets become available. The framework allows for terrestrial LiDAR survey error estimation, borehole siting, and placement of wireless sensor (GPS, accelerometers, geophysical ) networks for optimized spatial relevance and utility. Coordinated spatial referencing within the GIS facilitates geotechnical and hydrogeological modeling input generation and common display of modeling outputs. Kinematic data fusion techniques are accomplished with integration of instrumentation, surficial feature tracking, subsurface classification, and 3D interpolation. The framework includes dynamic decision support including landslide dam failure estimates, back-flooding scenario planning that can be accessed by multiple agencies and stakeholders.

  3. A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    Directory of Open Access Journals (Sweden)

    Hadi Kalani

    2016-04-01

    Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.

  4. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way

    NARCIS (Netherlands)

    Battaglia, Giuseppina; Helmi, Amina; Breddels, Maarten

    We review our current understanding of the internal dynamical properties of the dwarf spheroidal galaxies surrounding the Milky Way. These are the most dark matter dominated galaxies, and as such may be considered ideal laboratories to test the current concordance cosmological model, and in

  5. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  6. Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement

    NARCIS (Netherlands)

    Marra, M.A.; Andersen, M.S.; Damsgaard, M.; Koopman, B.; Janssen, D.W.; Verdonschot, N.J.

    2017-01-01

    Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal

  7. Evaluation of a surrogate contact model in force-dependent kinematic simulations of total knee replacement

    NARCIS (Netherlands)

    Marra, Marco Antonio; Andersen, Michael S.; Damsgaard, Michael; Koopman, Bart F.J.M.; Janssen, Dennis; Verdonschot, Nico

    2017-01-01

    Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal

  8. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  9. Constraining drivers of basin exhumation in the Molasse Basin by combining low-temperature thermochronology, thermal history and kinematic modeling

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2017-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. The northern foreland basin of the Alps has been exhumed since the Miocene. The timing, rate and cause of this phase of exhumation are still enigmatic. We compile all available thermochronology and organic maturity data and use a new thermal history model, PyBasin, to quantify the rate and timing of exhumation that can explain these data. In addition we quantify the amount of tectonic exhumation using a new kinematic model for the part of the basin that is passively moved above the detachment of the Jura Mountains. Our results show that the vitrinite reflectance, apatite fission track data and cooling rates show no clear difference between the thrusted and folded part of the foreland basin and the undeformed part of the foreland basin. The undeformed plateau Molasse shows a high rate of cooling during the Neogene of 40 to 100 °C, which is equal to >1.0 km of exhumation. Calculated rates of exhumation suggest that drainage reorganization can only explain a small part of the observed exhumation and cooling. Similarly, tectonic transport over a detachment ramp cannot explain the magnitude, timing and wavelength of the observed cooling signal. We conclude that the observed cooling rates suggest large wavelength exhumation that is probably caused by lithospheric-scale processes. In contrast to previous studies we find that the timing of exhumation is poorly constrained. Uncertainty analysis shows that models with timing starting as early as 12 Ma or as late as 2 Ma can all explain the observed data.

  10. Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2013-06-01

    Confidence in 3D multi-segment foot models has been limited by a lack of repeatability data, particularly in older populations that may display unique functional foot characteristics. This study aimed to determine the intra and inter-observer repeatability of stance phase kinematic data from a multi-segment foot model described by Leardini et al. [2] in people aged 50 years or older. Twenty healthy adults participated (mean age 65.4 years SD 8.4). A repeated measures study design was used with data collected from four testing sessions on two days from two observers. Intra (within-day and between-day) and inter-observer coefficient of multiple correlations revealed moderate to excellent similarity of stance phase joint range of motion (0.621-0.975). Relative to the joint range of motion (ROM), mean differences (MD) between sessions were highest for the within-day comparison for all planar ROM at the metatarsus-midfoot articulation (sagittal plane ROM 5.2° vs. 3.9°, MD 3.1°; coronal plane ROM 3.9 vs. 3.1°, MD 2.3°; transverse plane ROM 6.8° vs. 5.16°, MD 3.5°). Consequently, data from the metatarsus-midfoot articulation in the Istituto Ortopedico Rizzoli (IOR) foot model in adults aged over 50 years needs to be considered with respect to the findings of this study. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2015-09-30

    measured by R/V Lance ( black solid line) and predicted by SWAN ( black dashed line) and the ship velocity (grey solid line). (c) BFI ( black solid line) and...and potential future trends; and WAVEWATCH-III® and SWAN wave models with new physics, adapted and validated for the Beaufort and Chukchi Seas...nondimensional spectral width ν ( black dashed line). (d–i) Selected photographs from the ship show local sea ice state. Fig. 6 illustrates a

  12. Variational Boussinesq model for simulation of coastal waves and tsunamis

    NARCIS (Netherlands)

    Adytia, D.; Adytia, Didit; van Groesen, Embrecht W.C.; Tan, Soon Keat; Huang, Zhenhua

    2009-01-01

    In this paper we describe the basic ideas of a so-called Variational Boussinesq Model which is based on the Hamiltonian structure of gravity surface waves. By using a rather simple approach to prescribe the profile of vertical fluid potential in the expression for the kinetic energy, we obtain a set

  13. Non-homogeneous polymer model for wave propagation and its ...

    African Journals Online (AJOL)

    user

    density are functions of space i.e. non-homogeneous engineering material. .... The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase ..... Viscoelastic Model Applied to a Particular Case .... p m i exp m α α σ σ σ. = −. +. −. (35). The progressive harmonic wave which starts from the end. 0 x =.

  14. The second-order decomposition model of nonlinear irregular waves

    DEFF Research Database (Denmark)

    Yang, Zhi Wen; Bingham, Harry B.; Li, Jin Xuan

    2013-01-01

    into the first- and the second-order super-harmonic as well as the second-order sub-harmonic components by transferring them into an identical Fourier frequency-space and using a Newton-Raphson iteration method. In order to evaluate the present model, a variety of monochromatic waves and the second...

  15. FDTD Modelling of Electromagnetic waves in Stratified Medium ...

    African Journals Online (AJOL)

    The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...

  16. Gravitational Jaynes–Cummings model beyond the rotating wave

    Indian Academy of Sciences (India)

    In this paper, the quantum properties of a two-level atom and the cavity-field in the Jaynes–Cummings model with the gravity beyond the rotating wave approximation are investigated. For this purpose, by solving the Schrödinger equation in the interaction picture, the evolving state of the system is found by which the ...

  17. Lake St. Clair: Storm Wave and Water Level Modeling

    Science.gov (United States)

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  18. Innovative technologies to accurately model waves and moored ship motions

    CSIR Research Space (South Africa)

    van der Molen, W

    2010-09-01

    Full Text Available Late in 2009 CSIR Built Environment in Stellenbosch was awarded a contract to carry out extensive physical and numerical modelling to study the wave conditions and associated moored ship motions, for the design of a new iron ore export jetty for BHP...

  19. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    Science.gov (United States)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  20. Millimeter Wave Radio Frequency Propagation Model Development

    Science.gov (United States)

    2014-08-28

    be not be exceeded due to rain could be 95%. However, if the location were in a tropical rain forest , then then threshold might not be exceeded for...molecules grows. Approved for Public Release; Distribution is Unlimited. 14 Figure 3. Specific Attenuation Due to Water Vapor and Dry Air 3.1.1.2 Rain ... rain being the most detrimental and uncertain. Predictive models of rain attenuation claim some degree of accuracy up to 55 GHz, although they are

  1. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    International Nuclear Information System (INIS)

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  2. Spatio-kinematic modelling: Testing the link between planetary nebulae and close binaries

    OpenAIRE

    Jones, David; Tyndall, Amy A.; Huckvale, Leo; Prouse, Barnabas; Lloyd, Myfanwy

    2011-01-01

    It is widely believed that central star binarity plays an important role in the formation and evolution of aspherical planetary nebulae, however observational support for this hypothesis is lacking. Here, we present the most recent results of a continuing programme to model the morphologies of all planetary nebulae known to host a close binary central star. Initially, this programme allows us to compare the inclination of the nebular symmetry axis to that of the binary plane, testing the theo...

  3. Wave propagation model of heat conduction and group speed

    Science.gov (United States)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  4. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  5. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model.

    Science.gov (United States)

    Levinger, Pazit; Murley, George S; Barton, Christian J; Cotchett, Matthew P; McSweeney, Simone R; Menz, Hylton B

    2010-10-01

    Foot posture is thought to influence predisposition to overuse injuries of the lower limb. Although the mechanisms underlying this proposed relationship are unclear, it is thought that altered foot kinematics may play a role. Therefore, this study was designed to investigate differences in foot motion between people with normal- and flat-arched feet using the Oxford Foot Model (OFM). Foot posture in 19 participants was documented as normal-arched (n=10) or flat-arched (n=9) using a foot screening protocol incorporating measurements from weightbearing antero-posterior and lateral foot radiographs. Differences between the groups in triplanar motion of the tibia, rearfoot and forefoot during walking were evaluated using a three-dimensional motion analysis system incorporating a multi-segment foot model (OFM). Participants with flat-arched feet demonstrated greater peak forefoot plantar-flexion (-13.7° ± 5.6° vs -6.5° ± 3.7°; p=0.004), forefoot abduction (-12.9° ± 6.9° vs -1.8° ± 6.3°; p=0.002), and rearfoot internal rotation (10.6° ± 7.5° vs -0.2°± 9.9°; p=0.018) compared to those with normal-arched feet. Additionally, participants with flat-arched feet demonstrated decreased peak forefoot adduction (-7.0° ± 9.2° vs 5.6° ± 7.3°; p=0.004) and a trend towards increased rearfoot eversion (-5.8° ± 4.4° vs -2.5° ± 2.6°; p=0.06). These findings support the notion that flat-arched feet have altered motion associated with greater pronation during gait; factors that may increase the risk of overuse injury. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  7. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  8. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    Science.gov (United States)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  9. Kinematic sensitivity of robot manipulators

    Science.gov (United States)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  10. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  11. Comparison of Models for GPS Kinematic Data Processing%GPS动态定位数据处理模型的比较研究

    Institute of Scientific and Technical Information of China (English)

    刘立龙; 文鸿雁; 刘斌

    2008-01-01

    The characteristics of three GPS kinematic data processing models, Least Squares (LS), Kalman filtering and H ∞ filtering are discussed and their advantages and disadvantages are compared. With observational data and pertinent data processing software, the applicable condition, context and effect of the three models are experimented. Results show that when the mobile platform is in uniform motion, the accuracy of the three models are almost equal; when the mobile platform is in stochastic acceleration, the accuracy of H∞ filtering model is superior to that of LS, while that of Kalman filtering is the worst.

  12. Constraining the kinematics of metropolitan Los Angeles faults with a slip-partitioning model.

    Science.gov (United States)

    Daout, S; Barbot, S; Peltzer, G; Doin, M-P; Liu, Z; Jolivet, R

    2016-11-16

    Due to the limited resolution at depth of geodetic and other geophysical data, the geometry and the loading rate of the ramp-décollement faults below the metropolitan Los Angeles are poorly understood. Here we complement these data by assuming conservation of motion across the Big Bend of the San Andreas Fault. Using a Bayesian approach, we constrain the geometry of the ramp-décollement system from the Mojave block to Los Angeles and propose a partitioning of the convergence with 25.5 ± 0.5 mm/yr and 3.1 ± 0.6 mm/yr of strike-slip motion along the San Andreas Fault and the Whittier Fault, with 2.7 ± 0.9 mm/yr and 2.5 ± 1.0 mm/yr of updip movement along the Sierra Madre and the Puente Hills thrusts. Incorporating conservation of motion in geodetic models of strain accumulation reduces the number of free parameters and constitutes a useful methodology to estimate the tectonic loading and seismic potential of buried fault networks.

  13. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.

    Science.gov (United States)

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean

    2015-02-01

    Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices 20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that

  14. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  15. A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics.

    Science.gov (United States)

    Kenaley, Christopher P; Lauder, George V

    2016-07-01

    The vast majority of ray-finned fishes capture prey through suction feeding. The basis of this behavior is the generation of subambient pressure through rapid expansion of a highly kinetic skull. Over the last four decades, results from in vivo experiments have elucidated the general relationships between morphological parameters and subambient pressure generation. Until now, however, researchers have been unable to tease apart the discrete contributions of, and complex relationships among, the musculoskeletal elements that support buccal expansion. Fortunately, over the last decade, biorobotic models have gained a foothold in comparative research and show great promise in addressing long-standing questions in vertebrate biomechanics. In this paper, we present BassBot, a biorobotic model of the head of the largemouth bass (Micropterus salmoides). BassBot incorporates a 3D acrylic plastic armature of the neurocranium, maxillary apparatus, lower jaw, hyoid, suspensorium and opercular apparatus. Programming of linear motors permits precise reproduction of live kinematic behaviors including hyoid depression and rotation, premaxillary protrusion, and lateral expansion of the suspensoria. BassBot reproduced faithful kinematic and pressure dynamics relative to live bass. We show that motor program speed has a direct relationship to subambient pressure generation. Like vertebrate muscle, the linear motors that powered kinematics were able to produce larger magnitudes of force at slower velocities and, thus, were able to accelerate linkages more quickly and generate larger magnitudes of subambient pressure. In addition, we demonstrate that disrupting the kinematic behavior of the hyoid interferes with the anterior-to-posterior expansion gradient. This resulted in a significant reduction in subambient pressure generation and pressure impulse of 51% and 64%, respectively. These results reveal the promise biorobotic models have for isolating individual parameters and assessing

  16. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  17. Traveling waves in a continuum model of 1D schools

    Science.gov (United States)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  18. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    Science.gov (United States)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we

  19. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    International Nuclear Information System (INIS)

    Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia

    2012-01-01

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  20. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  1. Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models.

    Science.gov (United States)

    Osth, Jonas; Olafsdóttir, Jóna Marín; Davidsson, Johan; Brolin, Karin

    2013-11-01

    The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.

  2. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  3. Evaluation of wave runup predictions from numerical and parametric models

    Science.gov (United States)

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  4. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  5. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  6. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  7. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Helbo, Jan; Andersen, Brian; Blanke, Mogens

    2002-01-01

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  8. A particle model of rolling grain ripples under waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste

    2001-01-01

    A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...

  9. Improved bag models of P-wave baryons

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1988-01-01

    Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)

  10. Modeling internal wave generation by seamounts in oceans

    Science.gov (United States)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  11. Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models

    International Nuclear Information System (INIS)

    Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne

    2016-01-01

    This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts.

  12. Simulations of short-crested harbour waves with variational Boussinesq modelling

    NARCIS (Netherlands)

    Adytia, D.

    2014-01-01

    Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,

  13. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  14. Cnoidal waves as solutions of the nonlinear liquid drop model

    International Nuclear Information System (INIS)

    Ludu, Andrei; Sandulescu, Aureliu; Greiner Walter

    1997-01-01

    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equation and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equations (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by ratio of the square amplitudes in the two minima. (authors)

  15. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  16. Modeling North Atlantic Nor'easters With Modern Wave Forecast Models

    Science.gov (United States)

    Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui

    2018-01-01

    Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.

  17. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    Science.gov (United States)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  18. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  19. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  20. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  1. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  2. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  3. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  4. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Long, M. S. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences; Keene, William C. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; Zhang, J. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Reichl, B. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Shi, Y. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Hara, T. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Reid, J. S. [Naval Research Lab. (NRL), Monterey, CA (United States); Fox-Kemper, B. [Brown Univ., Providence, RI (United States). Earth, Environmental and Planetary Sciences; Craig, A. P. [National Center for Atmospheric Research, Boulder, CO (United States); Erickson, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Ginis, I. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Webb, A. [Univ. of Tokyo (Japan). Dept. of Ocean Technology, Policy, and Environment

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na+, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.

  5. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    Science.gov (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  6. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  7. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  8. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Directory of Open Access Journals (Sweden)

    G. Emmanouil

    2007-03-01

    Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.

  9. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  10. Modelling guided waves in the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  11. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G

    2007-01-01

    This report describes evaluation of a two-dimensional Boussinesq-type wave model, BOUSS-2D, with data obtained from two laboratory experiments and two field studies at the islands of Guam and Hawaii...

  12. A staggered-grid convolutional differentiator for elastic wave modelling

    Science.gov (United States)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  13. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models

    Science.gov (United States)

    Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui

    2010-01-01

    Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.

  14. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...... generator is capable of of reducing the problem of rereflection in multidirectional, irregular wave fields significantly....

  15. Kinematic space and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-dong [TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519082, Guangdong (China); Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, 5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China)

    2017-01-23

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,ℝ) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  16. Failure Waves in Shock-Compressed Glasses

    International Nuclear Information System (INIS)

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  17. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...

  18. Entanglement entropy in a holographic p-wave superconductor model

    Directory of Open Access Journals (Sweden)

    Li-Fang Li

    2015-05-01

    Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  19. Optimization of arterial age prediction models based in pulse wave

    Energy Technology Data Exchange (ETDEWEB)

    Scandurra, A G [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Meschino, G J [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Passoni, L I [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Dai Pra, A L [Engineering Aplied Artificial Intelligence Group, Mathematics Department, Mar del Plata University (Argentina); Introzzi, A R [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Clara, F M [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina)

    2007-11-15

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff.

  20. Entanglement entropy in a holographic p-wave superconductor model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-05-15

    In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  1. Optimization of arterial age prediction models based in pulse wave

    International Nuclear Information System (INIS)

    Scandurra, A G; Meschino, G J; Passoni, L I; Dai Pra, A L; Introzzi, A R; Clara, F M

    2007-01-01

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff

  2. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  3. Falsification of Leggett's model using neutron matter waves

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Sponar, Stephan; Durstberger-Rennhofer, Katharina; Badurek, Gerald; Schmitzer, Claus; Bartosik, Hannes; Klepp, Jürgen

    2012-01-01

    According to Bell's theorem, no theory based on the joint assumption of realism and locality can reproduce certain predictions of quantum mechanics. Another class of realistic models, proposed by Leggett, that demands realism but abandons reliance on locality, is predicted to be in conflict with quantum mechanics. In this paper, we report on an experimental test of a contextual realistic model analogous to the model of Leggett performed with matter waves, more precisely with neutrons. Correlation measurements of the spin-energy entangled single-particle system show violation of a Leggett-type inequality by more than 7.6 standard deviations. Our experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics. (paper)

  4. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  5. Microstrip natural wave spectrum mathematical model using partial inversion method

    International Nuclear Information System (INIS)

    Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.

    1995-01-01

    It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types

  6. A two dimension model of the uterine electrical wave propagation.

    Science.gov (United States)

    Rihana, S; Lefrançois, E; Marque, C

    2007-01-01

    The uterus, usually quiescent during pregnancy, exhibits forceful contractions at term leading to delivery. These contractions are caused by the synchronized propagation of electrical waves from the pacemaker cells to its neighbors inducing the whole coordinated contraction of the uterus wall leading to labor. In a previous work, we simulate the electrical activity of a single uterine cell by a set of ordinary differential equations. Then, this model has been used to simulate the electrical activity propagation. In the present work, the uterine cell tissue is assumed to have uniform and isotropic propagation, and constant electrical membrane properties. The stability of the numerical solution imposes the choice of a critical temporal step. A wave starts at a pacemaker cell; this electrical activity is initiated by the injection of an external stimulation current to the cell membrane. We observe synchronous wave propagation for axial resistance values around 0.5 GOmega or less and propoagation blocking for values greater than 0.7 GOmega. We compute the conduction velocity of the excitation, for different axial resistance values, and obtain a velocity about 10 cm/sec, approaching the one described by the literature for the rat at end of term.

  7. Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches

    Science.gov (United States)

    Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.

    2016-12-01

    We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.

  8. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  9. Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model

    DEFF Research Database (Denmark)

    Dardmeh, Fereshteh; Alipour, Hiva; Gazerani, Parisa

    2017-01-01

    Probiotics have been proposed as alternatives to pharmacological products in several medical conditions including the modulation of obesity, which is frequently associated with poor semen quality. However, effects of probiotics on male fertility have been less investigated. This study assessed...... the effect of Lactobacillus rhamnosus PB01 (DSM-14870) on sperm kinematic parameters in Normal-weight (NW) and diet-induced obese (DIO) models. NW and DIO C57BL/6NTac mice were divided into two subgroups with or without a single daily dose (1x109CFU) of L. rhamnosus for four weeks. Sperm motility...

  10. Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser

    Science.gov (United States)

    Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.

    Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.

  11. New exact travelling wave solutions of nonlinear physical models

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Cevikel, Adem C.

    2009-01-01

    In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.

  12. Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model.

    Science.gov (United States)

    Żuk, Magdalena; Pezowicz, Celina

    2015-01-01

    Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.

  13. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  14. Model of the electromagnetic waves processing in ultrasound

    International Nuclear Information System (INIS)

    Abrego L, J.; Azorin N, J.; Siles A, S.; Cruz O, A.

    2004-01-01

    In this work, a model to process the electromagnetic waves in ultrasonic equipment is proposed and it is experimentally demonstrated that, the origin of the ultrasound is electronic and non mechanic. The above mentioned, it has been demonstrated when making in an electronic equipment a spectral analysis the one that indicated an unfolding of the original ultrasonic pulses of 17 K Hz., to 88 K Hz., and of 5 MHz., to 23 GHz. Also, it was obtained the degradation with ultrasound of particles of Hematite and of Galena, as well as the fading of the methylene blue and the generation of an electric current exciting with ultrasound. (Author)

  15. Kinematics of the quasi-p wave in anisotropic media. Application to tomography; Cinematique de l'onde quasi p en milieux anisotropes. Application a la tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Mensch, Th.

    2000-01-12

    The seismic anisotropy causes in the Earth are known. The anisotropy characterization can provide valuable informations on the structure, lithology or eventual deformation processes in geological media. The orthorhombic symmetry allows a more complete description and representation of the anisotropy than the transversely isotropy symmetry usually assumed. Moreover this symmetry is potentially common in sedimentary basins, and particularly in fractured reservoir. In anisotropic media of arbitrary symmetry (triclinic), there is no simple analytic expressions on the phase slowness surface. The weak anisotropy assumption, often reasonable in geological media, makes perturbation techniques relevant. An approximate first order analytical expression of the qP-wave slowness surface is obtained. Using an adequate parameterization, the forward problem is solved by the ray theory. The Hamiltonian formulation introduces by a simple way ray equations in anisotropic media. The rays, travel time and its Fruchet derivatives expressions, valid to first order, are given for orthorhombic inhomogeneous media. Perturbation method applied to the ray theory allows the development of fast ray tracing in these media. Synthetic examples illustrate the accuracy and efficiency of the proposed approach. A tomographic method is developed. The travel time are inverted by minimizing, in term of least-square, the misfit between the observed and calculated travel times. The solution is approached iteratively by using a singular value decomposition algorithm. The inversion stability is assured by introducing a priori constraints. Synthetics examples show the need of an acquisition geometry well conceived to take account of anisotropy. (author)

  16. Modeling stretched solitary waves along magnetic field lines

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    2002-01-01

    Full Text Available A model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed.

  17. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  18. Modelling the effect of acoustic waves on nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.

  19. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  20. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  1. Hydro-morphological modelling of small, wave-dominated estuaries

    Science.gov (United States)

    Slinger, Jill H.

    2017-11-01

    Small, intermittently open or closed estuaries are characteristic of the coasts of South Africa, Australia, California, Mexico and many other areas of the world. However, modelling attention has tended to focus on big estuaries that drain large catchments and serve a wide diversity of interests e.g. agriculture, urban settlement, recreation, commercial fishing. In this study, the development of a simple, parametric, system dynamics model to simulate the opening and closure of the mouths of small, wave-dominated estuaries is reported. In the model, the estuary is conceived as a basin with a specific water volume to water level relationship, connected to the sea by a channel of fixed width, but variable sill height. Changes in the form of the basin are not treated in the model, while the dynamics of the mouth channel are central to the model. The magnitude and direction of the flow through the mouth determines whether erosion or deposition of sediment occurs in the mouth channel, influencing the sill height. The model is implemented on the Great Brak Estuary in South Africa and simulations reveal that the raised low water levels in the estuary during spring tide relative to neap tide, are occasioned by the constriction of the tidal flow through the shallow mouth. Freshwater inflows to the estuary are shown to be significant in determining the behaviour of the inlet mouth, a factor often ignored in studies on tidal inlets. Further it is the balance between freshwater inflows and wave events that determines the opening or closure of the mouth of a particular estuary.

  2. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2017-01-01

    Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.

  3. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  5. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  6. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    Science.gov (United States)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution

  7. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf

    Science.gov (United States)

    Traykovski, P.; Wiberg, P. L.; Geyer, W. R.

    2007-02-01

    A mooring and tripod array was deployed from the fall of 2002 through the spring of 2003 on the Po prodelta to measure sediment transport processes associated with sediment delivered from the Po River. Observations on the prodelta revealed wave-supported gravity flows of high concentration mud suspensions that are dynamically and kinematically similar to those observed on the Eel shelf [Traykovski, P., Geyer, W.R., Irish, J.D., Lynch, J.F., 2000. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Research 20, 2113-2140]. Due to the dynamic similarity between the two sites, a simple one-dimensional (1D) across-shelf model with the appropriate bottom boundary condition was used to examine fluxes associated with this transport mechanism at both locations. To calculate the sediment concentrations associated with the wave-dominated and wave-current resuspension, a bottom boundary condition using a reference concentration was combined with an "active layer" formulation to limit the amount of sediment in suspension. Whereas the wave-supported gravity flow mechanism dominated the transport on the Eel shelf, on the Po prodelta flux due to this mechanism is equal in magnitude to transport due to wave resuspension and wind-forced mean currents in the cross-shore direction. Southward transport due to wave resuspension and wind forced mean currents move an order of magnitude more sediment along-shore than the down-slope flux associated wave-supported gravity flows.

  8. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  9. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.

    It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.

    On the basis of the results obtained, the model for explanation of

  10. On wave breaking for Boussinesq-type models

    Science.gov (United States)

    Kazolea, M.; Ricchiuto, M.

    2018-03-01

    We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90's, and some more recent developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball range and which agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities

  11. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    Science.gov (United States)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  12. Modeling the SAR Signature of Nonlinear Internal Waves

    National Research Council Canada - National Science Library

    Lettvin, Ellen E

    2008-01-01

    Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...

  13. Modeling of the 35-mm Rarefaction Wave Gun

    National Research Council Canada - National Science Library

    Coffee, Terence P

    2006-01-01

    .... The opening of the breech creates a rarefaction wave that travels down the bore of the gun. If the timing is done correctly, the rarefaction wave will not reach the projectile until at or after muzzle exit...

  14. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  15. Compound waves in a higher order nonlinear model of thermoviscous fluids

    DEFF Research Database (Denmark)

    Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.

    2016-01-01

    A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...

  16. Modelling of Wave Attenuation Induced by Multi-Purpose Floating Structures

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    , polychromatic, long- and short-crested irregular waves), WEC response and modification of the wave field have been measured to provide data for the understanding of WEC farm interactions and for the evaluation of farm interaction numerical models. A first extensive wave farm database is established...

  17. Wind waves modelling on the water body with coupled WRF and WAVEWATCH III models

    Science.gov (United States)

    Kuznetsova, Alexandra; Troitskaya, Yuliya; Kandaurov, Alexander; Baydakov, Georgy; Vdovin, Maxim; Papko, Vladislav; Sergeev, Daniil

    2015-04-01

    Simulation of ocean and sea waves is an accepted instrument for the improvement of the weather forecasts. Wave modelling, coupled models modelling is applied to open seas [1] and is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. Our goal is to tune the WAVEWATCH III model to the conditions of the inland reservoir and to carry out the simulations of surface wind waves with coupled WRF (Weather Research and Forecasting) and WAVEWATCH III models. Gorky Reservoir, an artificial lake in the central part of the Volga River formed by a hydroelectric dam, was considered as an example of inland reservoir. Comparing to [2] where moderate constant winds (u10 is up to 9 m/s) of different directions blowing steadily all over the surface of the reservoir were considered, here we apply atmospheric model WRF to get wind input to WAVEWATCH III. WRF computations were held on the Yellowstone supercomputer for 4 nested domains with minimum scale of 1 km. WAVEWATCH III model was tuned for the conditions of the Gorky Reservoir. Satellite topographic data on altitudes ranged from 56,6° N to 57,5° N and from 42.9° E to 43.5° E with increments 0,00833 ° in both directions was used. 31 frequencies ranged from 0,2 Hz to 4 Hz and 30 directions were considered. The minimal significant wave height was changed to the lower one. The waves in the model were developing from some initial seeding spectral distribution (Gaussian in frequency and space, cosine in direction). The range of the observed significant wave height in the numerical experiment was from less than 1 cm up to 30 cm. The field experiments were carried out in the south part of the Gorky reservoir from the boat [2, 3]. 1-D spectra of the field experiment were compared with those obtained in the numerical experiments with different parameterizations of flux provided in WAVEWATCH III both with constant wind input and WRF wind input. For all the

  18. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  19. Empirical Guidelines for Use of Irregular Wave Model to Estimate Nearshore Wave Height.

    Science.gov (United States)

    1982-07-01

    height, the easier to use tech- nique presented by McClenan (1975) was employed. The McClenan technique uti- lizes a monogram which was constructed from...the SPM equations and gives the same results. The inputs to the monogram technique are the period, the deep- water wave height, the deepwater wave

  20. Negative frequencies in wave propagation: A microscopic model

    Science.gov (United States)

    Horsley, S. A. R.; Bugler-Lamb, S.

    2016-06-01

    A change in the sign of the frequency of a wave between two inertial reference frames corresponds to a reversal of the phase velocity. Yet from the point of view of the relation E =ℏ ω , a positive quantum of energy apparently becomes a negative-energy one. This is physically distinct from a change in the sign of the wave vector and can be associated with various effects such as Cherenkov radiation, quantum friction, and the Hawking effect. In this work we provide a more detailed understanding of these negative-frequency modes based on a simple microscopic model of a dielectric medium as a lattice of scatterers. We calculate the classical and quantum mechanical radiation damping of an oscillator moving through such a lattice and find that the modes where the frequency has changed sign contribute negatively. In terms of the lattice of scatterers we find that this negative radiation damping arises due to the phase of the periodic force experienced by the oscillator due to the relative motion of the lattice.