WorldWideScience

Sample records for kinase pkv suggests

  1. PAK4 crystal structures suggest unusual kinase conformational movements.

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  2. Multisystem Disease, Including Eosinophilia and Progressive Hyper-Creatine-Kinase-emia over 10 Years, Suggests Mitochondrial Disorder

    Josef Finsterer

    2017-04-01

    Full Text Available Background: Eosinophilia has not been reported as a manifestation of a mitochondrial disorder (MID. Here, we report a patient with clinical features suggesting a MID and permanent eosinophilia, multisystem disease, and progressive hyper-creatine-kinase (CK-emia for at least 10 years. Materials and Methods: Methods applied included a clinical exam, blood chemical investigations, electrophysiological investigations, imaging, and invasive cardiological investigations. The patient was repeatedly followed up over several years. He required replacement cardiac surgery. Results: In a 57-year-old male, eosinophilia was first detected at the age of 44 years and has remained almost constantly present until today. In addition to eosinophilia, he developed progressive hyper-CK-emia at the age of 47 years. His history was further positive for hepatopathy, hyperlipidemia, hypothyroidism, renal insufficiency, spontaneous Achilles tendon rupture, double vision, exercise intolerance, muscle aching, mild hypoacusis, sensory neuropathy, seizures, and mitral insufficiency/stenosis requiring valve replacement therapy, oral anticoagulation, and pacemaker implantation. Based on the multisystem nature of his abnormalities and permanent hyper-CK-emia, a MID was suspected. Conclusion: Eosinophilia can be associated with a MID with myopathy, possibly as a reaction to myofiber necrosis. If eosinophilia is associated with progressive hyper-CK-emia and multisystem disease, a MID should be suspected.

  3. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking.

    Zirngibl, R; Schulze, D; Mirski, S E; Cole, S P; Greer, P A

    2001-05-15

    The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking. Copyright 2001 Academic Press.

  4. Characterization of a putative spindle assembly checkpoint kinase Mps1, suggests its involvement in cell division, morphogenesis and oxidative stress tolerance in Candida albicans.

    Mohan Kamthan

    Full Text Available In Saccharomyces cerevisiae MPS1 is one of the major protein kinase that governs the spindle checkpoint pathway. The S. cerevisiae structural homolog of opportunistic pathogen Candida albicans CaMPS1, is indispensable for the cell viability. The essentiality of Mps1 was confirmed by Homozygote Trisome test. To determine its biological function in this pathogen conditional mutant was generated through regulatable MET3 promoter. Examination of heterozygous and conditional (+Met/Cys mps1 mutants revealed a mitosis specific arrest phenotype, where mutants showed large buds with undivided nuclei. Flowcytometry analysis revealed abnormal ploidy levels in mps1 mutant. In presence of anti-microtubule drug Nocodazole, mps1 mutant showed a dramatic loss of viability suggesting a role of Mps1 in Spindle Assembly Checkpoint (SAC activation. These mutants were also defective in microtubule organization. Moreover, heterozygous mutant showed defective in-vitro yeast to hyphae morphological transition. Growth defect in heterozygous mutant suggest haploinsufficiency of this gene. qRT PCR analysis showed around 3 fold upregulation of MPS1 in presence of serum. This expression of MPS1 is dependent on Efg1 and is independent of other hyphal regulators like Ras1 and Tpk2. Furthermore, mps1 mutants were also sensitive to oxidative stress. Heterozygous mps1 mutant did not undergo morphological transition and showed 5-Fold reduction in colony forming units in response to macrophage. Thus, the vital checkpoint kinase, Mps1 besides cell division also has a role in morphogenesis and oxidative stress tolerance, in this pathogenic fungus.

  5. Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function

    Egea, Joaquim; Nissen, Ulla Vig; Dufour, Audrey

    2005-01-01

    Signaling by receptor tyrosine kinases (RTKs) is mediated by their intrinsic kinase activity. Typically, kinase-activating mutations result in ligand-independent signaling and gain-of-function phenotypes. Like other RTKs, Ephs require kinase activity to signal, but signaling by Ephs in vitro also...... requires clustering by their membrane bound ephrin ligands. The relative importance of Eph kinase activity and clustering for in vivo functions is unknown. We find that knockin mice expressing a mutant form of EphA4 (EphA4 EE), whose kinase is constitutively activated in the absence of ephrinB ligands......, are deficient in the development of thalamocortical projections and some aspects of central pattern generator rhythmicity. Surprisingly, other functions of EphA4 were regulated normally by EphA4EE, including midline axon guidance, hindlimb locomotion, in vitro growth cone collapse, and phosphorylation...

  6. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  7. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  8. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis.

    Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R

    2008-08-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.

  9. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.

    Talwar, Pooja Saigal; Gupta, Ravi; Maurya, Arun Kumar; Deswal, Renu

    2012-11-01

    Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 μM) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (∼13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ∼1.9 fold while its inactive analog 4αPDD was ineffective. Calcium and PMA activated the enzyme to ∼3 folds. Interestingly, 1,2-DG6 (2.5 μM) and PS (1 μM) with calcium activated the enzyme activity to ∼7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (∼90%) and calphostin-C (∼40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  11. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  12. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  13. Regulation of Autophagy by Kinases

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  14. Casein kinases

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  15. Kinases and Cancer

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  16. Signaling network of the Btk family kinases.

    Qiu, Y; Kung, H J

    2000-11-20

    The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.

  17. Hypnosis, suggestion, and suggestibility: an integrative model.

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  18. Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phosphofructo-2-kinase.

    Deprez, J; Bertrand, L; Alessi, D R; Krause, U; Hue, L; Rider, M H

    2000-01-01

    A wortmannin-sensitive and insulin-stimulated protein kinase (WISK), which phosphorylates and activates cardiac 6-phosphofructo-2-kinase (PFK-2), was partially purified from perfused rat hearts. Immunoblotting showed that WISK was devoid of protein kinase B (PKB), serum- and glucocorticoid-regulated protein kinase and protein kinase Czeta (PKCzeta). Comparison of the inhibition of WISK, PKCalpha and PKCzeta by different protein kinase inhibitors suggested that WISK was not a member of the PKC...

  19. Open to Suggestion.

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  20. Suicidality and interrogative suggestibility.

    Pritchard-Boone, Lea; Range, Lillian M

    2005-01-01

    All people are subject to memory suggestibility, but suicidal individuals may be especially so. The link between suicidality and suggestibility is unclear given mixed findings and methodological weaknesses of past research. To test the link between suicidality and interrogative suggestibility, 149 undergraduates answered questions about suicidal thoughts and reasons for living, and participated in a direct suggestibility procedure. As expected, suggestibility correlated with suicidality but accounted for little overall variance (4%). Mental health professionals might be able to take advantage of client suggestibility by directly telling suicidal persons to refrain from suicidal thoughts or actions.

  1. Thymidine kinases in archaea

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  2. Suggestive Objects at Work

    Ratner, Helene Gad

    2009-01-01

    In Western secular societies, spiritual life is no longer limited to classical religious institutions but can also be found at workplace organizations. While spirituality is conventionally understood as a subjective and internal process, this paper proposes the concept of ‘suggestive objects......’, constructed by combining insights from Gabriel Tarde's sociology with Bruno Latour's actor-network theory, to theorize the material dimension of organizational spirituality. The sacred in organizations arises not from the internalization of collective values but through the establishment of material...... scaffolding. This has deep implications for our understanding of the sacred, including a better appreciation of the way that suggestive objects make the sacred durable, the way they organize it....

  3. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Roles of Apicomplexan protein kinases at each life cycle stage.

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Muscle phosphorylase kinase deficiency

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  6. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  7. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  8. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.

    Kim, Dennis H; Feinbaum, Rhonda; Alloing, Geneviève; Emerson, Fred E; Garsin, Danielle A; Inoue, Hideki; Tanaka-Hino, Miho; Hisamoto, Naoki; Matsumoto, Kunihiro; Tan, Man-Wah; Ausubel, Frederick M

    2002-07-26

    A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

  9. Molecular cloning and characterization of a novel human kinase ...

    throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the ...

  10. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  11. Pyruvate kinase blood test

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  12. Fibronectin phosphorylation by ecto-protein kinase

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru

    1988-01-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [γ- 32 ]ATP for 10 min at 37 degree C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [γ- 32 P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation

  13. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...... MEK activity in a kinase independent manner, probably by serving as a scaffold to facilitate interaction of c-Raf....

  14. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  15. The secret life of kinases: functions beyond catalysis.

    Rauch, Jens

    2011-10-28

    Abstract Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.

  16. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  17. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  18. Enterococcus faecalis phosphomevalonate kinase

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  19. From Phosphosites to Kinases

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  20. Two-site immunoradiometric assay for the MB isoenzyme of creatine kinase

    Willson, V J.C.; Jones, H M; Thompson, R J [Cambridge Univ. (UK). Clinical School

    1981-06-18

    A two-site immunoradiometric assay for myocardial creatine kinase MB isoenzyme is described. The method utilizes immobilized anti-human creatine kinase BB antibodies and /sup 125/I-labelled anti-human creatine kinase MM antibodies and can specifically detect creatine kinase MB in the presence of approximately 1000-fold excess of creatine kinase MM or BB. Native kinase MB prepared from human heart and creatine kinase MB prepared by hybridisation of purified human creatine kinase MM and creatine kinase BB appeared to react identically in the assay. Serum estimations on patients with suspected myocardial infarction correlated with the presence of MB band on electrophoresis but preliminary results suggest that the two-site immunoradiometric assay may be more sensitive.

  1. A two-site immunoradiometric assay for the MB isoenzyme of creatine kinase

    Willson, V.J.C.; Jones, H.M.; Thompson, R.J.

    1981-01-01

    A two-site immunoradiometric assay for myocardial creatine kinase MB isoenzyme is described. The method utilizes immobilized anti-human creatine kinase BB antibodies and 125 I-labelled anti-human creatine kinase MM antibodies and can specifically detect creatine kinase MB in the presence of approximately 1000-fold excess of creatine kinase MM or BB. Native kinase MB prepared from human heart and creatine kinase MB prepared by hybridisation of purified human creatine kinase MM and creatine kinase BB appeared to react identically in the assay. Serum estimations on patients with suspected myocardial infarction correlated with the presence of MB band on electrophoresis but preliminary results suggest that the two-site immunoradiometric assay may be more sensitive. (Auth.)

  2. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  3. Plant PA signaling via diacylglycerol kinase

    Arisz, S.A.; Testerink, C.; Munnik, T.

    2009-01-01

    Accumulating evidence suggests that phosphatidic acid (PA) plays a pivotal role in the plant's response to environmental signals. Besides phospholipase D (PLD) activity, PA can also be generated by diacylglycerol kinase (DGK). To establish which metabolic route is activated, a differential

  4. Types of suggestibility: Relationships among compliance, indirect, and direct suggestibility.

    Polczyk, Romuald; Pasek, Tomasz

    2006-10-01

    It is commonly believed that direct suggestibility, referring to overt influence, and indirect suggestibility, in which the intention to influence is hidden, correlate poorly. This study demonstrates that they are substantially related, provided that they tap similar areas of influence. Test results from 103 students, 55 women and 48 men, were entered into regression analyses. Indirect suggestibility, as measured by the Sensory Suggestibility Scale for Groups, and compliance, measured by the Gudjonsson Compliance Scale, were predictors of direct suggestibility, assessed with the Barber Suggestibility Scale. Spectral analyses showed that indirect suggestibility is more related to difficult tasks on the BSS, but compliance is more related to easy tasks on this scale.

  5. SH2 domains: modulators of nonreceptor tyrosine kinase activity.

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-12-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.

  6. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  7. The target landscape of clinical kinase drugs.

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. ACTIVATION OF G-PROTEINS BY RECEPTOR-STIMULATED NUCLEOSIDE DIPHOSPHATE KINASE IN DICTYOSTELIUM

    Bominaar, Anthony A.; Molijn, Anco C.; Pestel, Martine; Veron, Michel; Haastert, Peter J.M. van

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC 2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase

  9. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors

    Stalter, G; Siemer, S; Becht, E

    1994-01-01

    of protein kinase CK2 alpha in tumors/normal tissue (T/N) was 1.58 and that of the protein kinase CK2 beta (T/N) was 2.65. The data suggest that the generally described increase in protein kinase CK2 activity in tumor cells may to some extent result from a deregulation in subunit biosynthesis or degradation...

  10. Suggestibility and suggestive modulation of the Stroop effect.

    Kirsch, Irving

    2011-06-01

    Although the induction of a hypnotic state does not seem necessary for suggestive modulation of the Stroop effect, this important phenomenon has seemed to be dependent on the subject's level of hypnotic suggestibility. Raz and Campbell's (2011) study indicates that suggestion can modulate the Stroop effect substantially in very low suggestible subjects, as well as in those who are highly suggestible. This finding casts doubt on the presumed mechanism by which suggestive modulation is brought about. Research aimed at uncovering the means by which low suggestible individuals are able to modulate the Stroop effect would be welcome, as would assessment of this effect in moderately suggestible people. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  12. Tyrosine kinases in rheumatoid arthritis

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  13. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  14. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  15. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  17. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  18. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  19. Deepening Sleep by Hypnotic Suggestion

    Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn

    2014-01-01

    Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909

  20. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  1. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  2. Bacterial Protein-Tyrosine Kinases

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  3. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα......GDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest...

  4. Representational constraints on children's suggestibility.

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  5. Classification of hadith into positive suggestion, negative suggestion, and information

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  6. Interrogative suggestibility in opiate users.

    Murakami, A; Edelmann, R J; Davis, P E

    1996-09-01

    The present study investigated interrogative suggestibility in opiate users. A group of patients undergoing a methadone detoxification programme in an in-patient drug treatment unit (Detox group, n = 21), and a group of residents who had come off drugs and were no longer suffering from withdrawal syndrome (Rehab group, n = 19) were compared on interrogative suggestibility and various other psychological factors. Significant differences were found between the two groups, with the Detox group having more physical and psychological problems, and a higher total suggestibility score in comparison with the Rehab group. These findings are discussed in relation to the context of police interrogations and the reliability of confessions made by suspects and witnesses dependent on opiates.

  7. Structure of the intact ATM/Tel1 kinase

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  8. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4.

    Klaus-Heisen, Dörte; Nurisso, Alessandra; Pietraszewska-Bogiel, Anna; Mbengue, Malick; Camut, Sylvie; Timmers, Ton; Pichereaux, Carole; Rossignol, Michel; Gadella, Theodorus W J; Imberty, Anne; Lefebvre, Benoit; Cullimore, Julie V

    2011-04-01

    Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.

  9. Receptor-interacting protein (RIP) kinase family

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  10. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  11. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  12. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  13. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    Fujii, Hiroaki; Verslues, Paul E.; Zhu, Jian-Kang

    2011-01-01

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved

  14. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  15. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  16. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  17. Protein Kinase A in Cancer

    Caretta, Antonio; Mucignat-Caretta, Carla

    2011-01-01

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors

  18. Protein Kinase A in Cancer

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: carla.mucignat@unipd.it [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)

    2011-02-28

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  19. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  20. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  1. SH2-dependent autophosphorylation within the Tec family kinase Itk.

    Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H

    2009-08-07

    The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.

  2. Structural analysis of the Csk homologous kinase CHK

    Mulhern, T.; Chong, Y.-P.; Cheng, H.-C.

    2003-01-01

    Full text: CHK (Csk homologous kinase) is an intracellular protein tyrosine kinase, which is highly expressed in the haematopoietic system and the brain. The in vivo role of CHK is to specifically phosphorylate and deactivate the Src family of protein tyrosine kinases. The members of the Src family: Src, Blk, Fyn, Fgr, Hck, Lck, Lyn, Yes and Yrk are major players in numerous cell signalling pathways and exquisitely tuned control of Src family activity is fundamental to many processes in normal cells (reviewed in Lowell and Soriano, 1996). For example, the Src family kinase Fyn is highly expressed in the brain and its activity is vital for memory and learning. In the haematopoietic system, the Src family kinase Hck controls cytoskeletal reorganization, cell motility and immunologic activation. While the Csk family enzymes are closely related to the Src proteins (∼37% identity), the x-ray crystal structures of Src (Xu et al., 1997) and Csk (Ogawa et al., 2002) do display several important differences. Unlike Src, the Csk the SH2 and SH3 domains do not bind intramolecular ligands and they adopt a strikingly different disposition to that observed in Src. Another interesting feature is that the linkers between the SH3 and SH2 domains and between the SH2 and kinase domains, are in intimate contact with the N-lobe of kinase and both appear to play important roles in regulation of the kinase activity. However, the structural and functional basis of how this can be altered is still unclear. We describe the results of biochemical analyses of CHK mediated deactivation of Hck, which suggest that in addition to direct tail-phosphorylation, protein-protein interactions are important. We also describe heteronuclear NMR studies of the structure and ligand binding properties of the CHK SH2 and SH3 domains with a particular emphasis on the transmission of regulatory signals from the ligand binding sites to the interdomain linkers

  3. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A. (UPENN-MED)

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  4. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  6. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...... suggested that the casein kinase is a dimer composed of subunits of identical molecular weight. The enzyme utilizes GTP as well as ATP as a phosphoryl donor. It preferentially phosphorylates acidic proteins, in particular the model substrates casein and phosvitin. Casein kinase is cyclic AMP...

  7. Structural insight into the mechanism of synergistic autoinhibition of SAD kinases.

    Wu, Jing-Xiang; Cheng, Yun-Sheng; Wang, Jue; Chen, Lei; Ding, Mei; Wu, Jia-Wei

    2015-12-02

    The SAD/BRSK kinases participate in various important life processes, including neural development, cell cycle and energy metabolism. Like other members of the AMPK family, SAD contains an N-terminal kinase domain followed by the characteristic UBA and KA1 domains. Here we identify a unique autoinhibitory sequence (AIS) in SAD kinases, which exerts autoregulation in cooperation with UBA. Structural studies of mouse SAD-A revealed that UBA binds to the kinase domain in a distinct mode and, more importantly, AIS nestles specifically into the KD-UBA junction. The cooperative action of AIS and UBA results in an 'αC-out' inactive kinase, which is conserved across species and essential for presynaptic vesicle clustering in C. elegans. In addition, the AIS, along with the KA1 domain, is indispensable for phospholipid binding. Taken together, these data suggest a model for synergistic autoinhibition and membrane activation of SAD kinases.

  8. The anthraquinone emodin inhibits the non-exported FIKK kinase from Plasmodium falciparum.

    Lin, Benjamin C; Harris, Darcy R; Kirkman, Lucy M D; Perez, Astrid M; Qian, Yiwen; Schermerhorn, Janse T; Hong, Min Y; Winston, Dennis S; Xu, Lingyin; Lieber, Alexander M; Hamilton, Matthew; Brandt, Gabriel S

    2017-12-01

    The FIKK family of kinases is unique to parasites of the Apicomplexan order, which includes all malaria parasites. Plasmodium falciparum, the most virulent form of human malaria, has a family of 19 FIKK kinases, most of which are exported into the host red blood cell during malaria infection. Here, we confirm that FIKK 8 is a non-exported member of the FIKK kinase family. Through expression and purification of the recombinant kinase domain, we establish that emodin is a relatively high-affinity (IC 50 =2μM) inhibitor of PfFk8. Closely related anthraquinones do not inhibit PfFk8, suggesting that the particular substitution pattern of emodin is critical to the inhibitory pharmacophore. This first report of a P. falciparum FIKK kinase inhibitor lays the groundwork for developing specific inhibitors of the various members of the FIKK kinase family in order to probe their physiological function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    Irving, Helen R.; Kwezi, Lusisizwe; Wheeler, Janet I.; Gehring, Christoph A

    2012-01-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  10. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of tyrosine kinase activity with cloned liver GH receptor. The level of phosphorylation of the GH receptor was very low, as compared with the endogenous GH receptor in 3T3-F442A cells, suggesting that tyrosine kinase activity is not intrinsic to the cloned GH receptor but rather resides with a kinase present...... in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific....

  11. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  12. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  13. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  14. Chitin and stress induced protein kinase activation

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  15. Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis.

    Labbe, Benjamin D; Kristich, Christopher J

    2017-11-01

    Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo Enterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis , the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivo IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The

  16. Non-Viral Deoxyribonucleoside Kinases

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang

    2015-01-01

    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  17. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  18. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  19. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  20. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  1. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  2. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  3. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation.

    Sulyman Barkho

    Full Text Available The Src family of tyrosine kinases (SFKs regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk. Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.

  4. Protein kinase CK2 in human diseases

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  5. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    Sprowles, Amy; Robinson, Dan; Wu Yimi; Kung, H.-J.; Wisdom, Ron

    2005-01-01

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli

  6. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  7. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  8. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase

    Kenyon Colin P

    2012-08-01

    Full Text Available Abstract Background It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP as a molecular probe with site directed mutagenesis (SDM of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings. Results We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK and adenylate kinase 1 (AK1, are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP. Conclusions The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It

  9. Src kinase regulation by phosphorylation and dephosphorylation

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  10. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  11. Receptor-interacting protein (RIP) kinase family

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  12. Oncoprotein protein kinase antibody kit

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Thymidine kinase diversity in bacteria

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  14. Effect of triiodothyronine on rat liver chromatin protein kinase

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  15. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  16. Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor

    Jong-Eun Kim

    2017-10-01

    Full Text Available Targeting epigenetic changes in gene expression in cancer cells may offer new strategies for the development of selective cancer therapies. In the present study, we investigated coumestrol, a natural compound exhibiting broad anti-cancer effects against skin melanoma, lung cancer and colon cancer cell growth. Haspin kinase was identified as a direct target protein of coumestrol using kinase profiling analysis. Histone H3 is a direct substrate of haspin kinase. We observed haspin kinase overexpression as well as greater phosphorylation of histone H3 at threonine 3 (Thr-3 in the cancer cells compared to normal cells. Computer modeling using the Schrödinger Suite program identified the binding interface within the ATP binding site. These findings suggest that the anti-cancer effect of coumestrol is due to the direct targeting of haspin kinase. Coumestrol has considerable potential for further development as a novel anti-cancer agent.

  17. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  19. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  20. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  1. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors.

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi

    2017-04-01

    Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

  2. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  3. Kinases Involved in Both Autophagy and Mitosis.

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  4. Kinases Involved in Both Autophagy and Mitosis

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  5. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  6. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  7. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    Agarwala Usha

    2011-06-01

    Full Text Available Abstract Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6 are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP. An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with

  8. Receptor Tyrosine Kinases in Drosophila Development

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  9. SH2 dependent autophosphorylation within the Tec family kinase Itk

    Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.

    2009-01-01

    The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959

  10. Timeless links replication termination to mitotic kinase activation.

    Jayaraju Dheekollu

    2011-05-01

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  11. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  12. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    Victoria Prieto-Echagüe

    2011-04-01

    Full Text Available Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  13. Cloning of MASK, a novel member of mammalian germinal center kinase-III subfamily, with apoptosis-inducing properties

    Dan, Ippeita; Ong, Shao-En; Watanabe, Norinobu M

    2002-01-01

    We have cloned a novel human GCK family kinase that has been designated as MASK (Mst3 and SOK1-related kinase). MASK is widely expressed and encodes a protein of 416 amino acid residues, with an N-terminal kinase domain and a unique C-terminal region. Like other GCK-III subfamily kinases, MASK do...... apoptosis upon overexpression in mammalian cells that is abrogated by CrmA, suggesting involvement of MASK in the apoptotic machinery in mammalian cells. Udgivelsesdato: 2002-Feb-22...

  14. Suggestibility and negative priming: two replication studies.

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  15. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  16. Measuring Kinase Activity-A Global Challenge.

    Cann, Marissa L; McDonald, Ian M; East, Michael P; Johnson, Gary L; Graves, Lee M

    2017-11-01

    The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts.

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside analogs tested. This study suggests that nucleoside analog phosphorylation mediated by TK2 may be less important, compared to other deoxyribonucleoside kinases, for the cytotoxic effects of these compounds.

  18. AGC kinases, mechanisms of regulation ‎and innovative drug development.

    Leroux, Alejandro E; Schulze, Jörg O; Biondi, Ricardo M

    2018-02-01

    The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation. In the present review, we update the knowledge of the mechanisms of regulation of different AGC kinases. The conformation of the catalytic domain of many AGC kinases is regulated allosterically through the modulation of the conformation of a regulatory site on the small lobe of the kinase domain, the PIF-pocket. The PIF-pocket acts like an ON-OFF switch in AGC kinases with different modes of regulation, i.e. PDK1, PKB/Akt, LATS and Aurora kinases. In this review, we make emphasis on how the knowledge of the molecular mechanisms of regulation can guide the discovery and development of small allosteric modulators. Molecular probes stabilizing the PIF-pocket in the active conformation are activators, while compounds stabilizing the disrupted site are allosteric inhibitors. One challenge for the rational development of allosteric modulators is the lack of complete structural information of the inhibited forms of full-length AGC kinases. On the other hand, we suggest that the available information derived from molecular biology and biochemical studies can already guide screening strategies for the identification of innovative mode of action molecular probes and the development of selective allosteric drugs for the treatment of human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  20. Suggestibility and Expectancy in a Counseling Analogue

    Kaul, Theodore J.; Parker, Clyde A.

    1971-01-01

    The data indicated that (a) subjectively experienced suggestibility was more closely related to attitude change than was objective suggestibility, and (b) the generalized expectancy treatments were ineffective in influencing different criterion scores. (Author)

  1. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  2. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  3. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  4. Evidentiality and Suggestibility: A New Research Venue

    Aydin, Cagla; Ceci, Stephen J.

    2009-01-01

    Recent research suggests that acquisition of mental-state language may influence conceptual development. We examine this possibility by investigating the conceptual links between evidentiality in language and suggestibility. Young children are disproportionately suggestible and tend to change their reports or memories when questioned. The authors…

  5. The Effects of Suggestibility on Relaxation.

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  6. Reinventing suggestion systems for continuous improvement

    Schuring, R.W.; Luijten, Harald

    2001-01-01

    This article reports an experiment to increase the effectiveness of a suggestion system by deliberately applying principles of the kaizen and performance management. Design rules for suggestion systems are derived from these theories. The suggestion system that resulted differs from traditional

  7. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  8. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  9. The influence of suggestibility on memory.

    Nicolas, Serge; Collins, Thérèse; Gounden, Yannick; Roediger, Henry L

    2011-06-01

    We provide a translation of Binet and Henri's pioneering 1894 paper on the influence of suggestibility on memory. Alfred Binet (1857-1911) is famous as the author who created the IQ test that bears his name, but he is almost unknown as the psychological investigator who generated numerous original experiments and fascinating results in the study of memory. His experiments published in 1894 manipulated suggestibility in several ways to determine effects on remembering. Three particular modes of suggestion were employed to induce false recognitions: (1) indirect suggestion by a preconceived idea; (2) direct suggestion; and (3) collective suggestion. In the commentary we suggest that Binet and Henri's (1894) paper written over 115 years ago is still highly relevant even today. In particular, Binet's legacy lives on in modern research on misinformation effects in memory, in studies of conformity, and in experiments on the social contagion of memory. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. The relationships between suggestibility, influenceability, and relaxability.

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  11. Effects of stereotypes and suggestion on memory.

    Shechory, Mally; Nachson, Israel; Glicksohn, Joseph

    2010-02-01

    In this study, the interactive effect of stereotype and suggestion on accuracy of memory was examined by presenting 645 participants (native Israelis and immigrants from the former Soviet Union and Ethiopia) with three versions of a story about a worker who is waiting in a manager's office for a meeting. All versions were identical except for the worker's name, which implied a Russian or an Ethiopian immigrant or a person of no ethnic origin. Each participant was presented with one version of the story. After an hour delay, the participants' memories were tested via two questionnaires that differed in terms of level of suggestion. Data analyses show that (a) when a suggestion matched the participant's stereotypical perception, the suggestion was incorporated into memory but (b) when the suggestion contradicted the stereotype, it did not influence memory. The conclusion was that recall is influenced by stereotypes but can be enhanced by compatible suggestions.

  12. A rice kinase-protein interaction map.

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  13. Discovery of inhibitors of bacterial histidine kinases

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  14. Behavioural Decision Making and Suggestional Processes

    Molz, Günter

    2001-01-01

    Common features between the domains of behavioural decision making and suggestional processes are discussed. These features are allocated in two aspects. First, behavioural decision making and suggestional processes are traditionally considered to provoke inadequate human behaviour. In this article arguments are put forward against this interpretation: Actions induced by non-rational decisions and / or by suggestional processes often have adaptive functions. Second, two common themat...

  15. Interrogative suggestibility in patients with conversion disorders.

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  16. Personality Styles and Suggestibility: A Differential Approach

    Pires, Rute; Silva, Danilo R.; Ferreira, Ana Sousa

    2013-01-01

    This study addresses the relationship between personality styles measured with the Portuguese adaptation of the Millon Index of Personality Styles Revised – MIPS-R and interrogative suggestibility assessed by the Portuguese adaptation of the Gudjonsson Suggestibility Scale – GSS1. Hypotheses predicted individual differences in suggestibility and that these differences correspond to differences in individuals’ personality styles. The study was conducted with a sample of 258 individuals (M age ...

  17. dependent/calmodulin- stimulated protein kinase from moss

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  18. The Protein Kinase RSK Family - Roles in Prostate Cancer

    Lannigan, Deborah

    2006-01-01

    The Ser/Thr protein kinase p90-kDa ribosomal S6 kinase (RSK) is an important downstream effector of mitogen-activated protein kinase but its roles in prostate cancer have not been previously examined...

  19. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning.

    Farley, J; Auerbach, S

    Phosphorylation of ion channels has been suggested as one molecular mechanism responsible for learning-produced long-term changes in neuronal excitability. Persistent training-produced changes in two distinct K+ currents (IA (ref. 2), IK-Ca (refs 3,4)) and a voltage-dependent calcium current (ICa; refs 3,4) have previously been shown to occur in type B photoreceptors of Hermissenda, as a result of associative learning. But the identity of the phosphorylation pathway(s) responsible for these changes has not as yet been determined. Injections of cyclic AMP-dependent protein kinase reduce a K+ current (IK) in B cells which is different from those changed by training, but fails to reduce IA and IK-Ca. Phosphorylase b kinase (an exogenous calcium/calmodulin-dependent kinase) reduces IA, but whether IK-Ca and ICa are changed in the manner of associative training is not yet known. Another protein kinase present in high concentrations in both mammalian brain and molluscan nervous systems is protein kinase C, which is both calcium- and phospholipid-sensitive. We now present evidence that activation of protein kinase C by the tumour promoter phorbol ester (PDB) and intracellular injection of the enzyme induce conductance changes similar to those caused by associative training in Hermissenda B cells (that is a reduction of IA and IK-Ca, and enhancement of ICa). These results represent the first direct demonstration that protein kinase C affects membrane K+ ion conductance mechanisms.

  1. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  2. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  3. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  4. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells.

    Rix, U; Remsing Rix, L L; Terker, A S; Fernbach, N V; Hantschel, O; Planyavsky, M; Breitwieser, F P; Herrmann, H; Colinge, J; Bennett, K L; Augustin, M; Till, J H; Heinrich, M C; Valent, P; Superti-Furga, G

    2010-01-01

    Resistance to the BCR-ABL tyrosine kinase inhibitor imatinib poses a pressing challenge in treating chronic myeloid leukemia (CML). This resistance is often caused by point mutations in the ABL kinase domain or by overexpression of LYN. The second-generation BCR-ABL inhibitor INNO-406 is known to inhibit most BCR-ABL mutants and LYN efficiently. Knowledge of its full target spectrum would provide the molecular basis for potential side effects or suggest novel therapeutic applications and possible combination therapies. We have performed an unbiased chemical proteomics native target profile of INNO-406 in CML cells combined with functional assays using 272 recombinant kinases thereby identifying several new INNO-406 targets. These include the kinases ZAK, DDR1/2 and various ephrin receptors. The oxidoreductase NQO2, inhibited by both imatinib and nilotinib, is not a relevant target of INNO-406. Overall, INNO-406 has an improved activity over imatinib but a slightly broader target profile than both imatinib and nilotinib. In contrast to dasatinib and bosutinib, INNO-406 does not inhibit all SRC kinases and most TEC family kinases and is therefore expected to elicit fewer side effects. Altogether, these properties may make INNO-406 a valuable component in the drug arsenal against CML.

  5. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  6. Glycogen Synthase Kinase-3β

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    cells were quantitated using enzyme immunometric assays. The activity of GSK-3β (serine-9-phosphorylated GSK-3β/total GSK-3β) was lower at baseline compared with follow-up. No significant mean change over time was observed in levels of total GSK-3β and serine-9-phosphorylated GSK-3β. Exploratory......Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...

  7. Interrogative suggestibility and perceptual motor performance.

    Gudjonsson, G H

    1984-04-01

    This study investigates the relationship between interrogative suggestibility, as measured by the Gudjonsson Suggestibility Scale, and Arrow-Dot scores. The tendency of subjects (25 men and 25 women, mean age 30.2 yr.) to alter their answers once interpersonal pressure had been applied correlated significantly with poor Arrow-Dot Ego functioning.

  8. Maltreated Children's Memory: Accuracy, Suggestibility, and Psychopathology

    Eisen, Mitchell L.; Goodman, Gail S.; Qin, Jianjian; Davis, Suzanne; Crayton, John

    2007-01-01

    Memory, suggestibility, stress arousal, and trauma-related psychopathology were examined in 328 3- to 16-year-olds involved in forensic investigations of abuse and neglect. Children's memory and suggestibility were assessed for a medical examination and venipuncture. Being older and scoring higher in cognitive functioning were related to fewer…

  9. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

    Haupt, Armin; Dahl, Andreas; Lappe, Michael; Lehrach, Hans; Gonzalez, Cayetano; Drewes, Gerard; Lange, Bodo MH; Joberty, Gerard; Bantscheff, Marcus; Fröhlich, Holger; Stehr, Henning; Schweiger, Michal R; Fischer, Axel; Kerick, Martin; Boerno, Stefan T

    2012-01-01

    The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ('kinobeads'). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications

  10. Structural Studies of Archaealthermophilic Adenylate Kinase; TOPICAL

    Konisky, J.

    2002-01-01

    Through this DOE-sponsored program Konisky has studied the evolution and molecular biology of microbes that live in extreme environments. The emphasis of this work has been the determination of the structural features of thermophilic enzymes that allow them to function optimally at near 100 C. The laboratory has focused on a comparative study of adenylate kinase (ADK), an enzyme that functions to interconvert adenine nucleotides. Because of the close phylogenetic relatedness of members of the Methanococci, differences in the structure of their ADKs will be dominated by structural features that reflect contributions to their optimal temperature for activity, rather than differences due to phylogenetic divergence. We have cloned, sequenced and modeled the secondary structure for several methanococcal ADKs. Using molecular modeling threading approaches that are based on the solved structure for the porcine ADK, we have also proposed a general low resolution three dimensional structure for each of the methanococcal enzymes. These analyses have allowed us to propose structural features that confer hyperthermoactivity to those enzymes functioning in the hyperthermophilic members of the Methanococci. Using protein engineering methodologies, we have tested our hypotheses by examining the effects of selective structural changes on thermoactivity. Despite possessing between 68-81% sequence identity, the methanococcal AKs had significantly different stability against thermal denaturation, with melting points ranging from 69-103 C. The construction of several chimerical AKs by linking regions of the MVO and MJA AKs demonstrated the importance of cooperative interactions between amino- and carboxyl-terminal regions in influencing thermostability. Addition of MJA terminal fragments to the MVO AK increased thermal stability approximately 20 C while maintaining 88% of the mesophilic sequence. Further analysis using structural models suggested that hydrophobic interactions are

  11. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  12. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  13. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J; Smithgall, Thomas E

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  14. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases.

    Nikita Chopra

    2016-03-01

    Full Text Available Bruton's tyrosine kinase (Btk is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA. Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.

  15. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-01-01

    Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P 2 and PI(4,5)P 2 -synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P 2 . PIP5-kinase Iα bound PI(4,5)P 2 , and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P 2 . Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P 2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P 2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P 2

  16. LSD enhances suggestibility in healthy volunteers.

    Carhart-Harris, R L; Kaelen, M; Whalley, M G; Bolstridge, M; Feilding, A; Nutt, D J

    2015-02-01

    Lysergic acid diethylamide (LSD) has a history of use as a psychotherapeutic aid in the treatment of mood disorders and addiction, and it was also explored as an enhancer of mind control. The present study sought to test the effect of LSD on suggestibility in a modern research study. Ten healthy volunteers were administered with intravenous (i.v.) LSD (40-80 μg) in a within-subject placebo-controlled design. Suggestibility and cued mental imagery were assessed using the Creative Imagination Scale (CIS) and a mental imagery test (MIT). CIS and MIT items were split into two versions (A and B), balanced for 'efficacy' (i.e. A ≈ B) and counterbalanced across conditions (i.e. 50 % completed version 'A' under LSD). The MIT and CIS were issued 110 and 140 min, respectively, post-infusion, corresponding with the peak drug effects. Volunteers gave significantly higher ratings for the CIS (p = 0.018), but not the MIT (p = 0.11), after LSD than placebo. The magnitude of suggestibility enhancement under LSD was positively correlated with trait conscientiousness measured at baseline (p = 0.0005). These results imply that the influence of suggestion is enhanced by LSD. Enhanced suggestibility under LSD may have implications for its use as an adjunct to psychotherapy, where suggestibility plays a major role. That cued imagery was unaffected by LSD implies that suggestions must be of a sufficient duration and level of detail to be enhanced by the drug. The results also imply that individuals with high trait conscientiousness are especially sensitive to the suggestibility-enhancing effects of LSD.

  17. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture.

    Boon Siang Nicholas Tan

    Full Text Available Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL cells from mouse embryonic stem (mES cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.

  18. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture

    Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy

    2016-01-01

    Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793

  19. Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth

    Panagiotou, Gianni; Grotkjær, Thomas; Hofmann, Gerald

    2009-01-01

    .7.1.86) has been identified. The enzyme has a predicted molecular weight of 49 kDa. We characterised the role of this NADH kinase by genomic integration of the putative gene AN8837.2 under a strong constitutive promoter. The physiological effects of overexpressed NADH kinase in combination with different...... yield on glucose and the maximum specific growth rate increased from 0.47 g/g and 0.22 h(-1) (wild type) to 0.54 g/g and 0.26 h(-1) (NADH kinase overexpressed), respectively. The results suggest that overexpression of NADH kinase improves the growth efficiency of the cell by increasing the access...

  20. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  1. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  2. Kinetic properties of ATP sulfurylase and APS kinase from Thiobacillus denitrificans.

    Gay, Sean C; Fribourgh, Jennifer L; Donohoue, Paul D; Segel, Irwin H; Fisher, Andrew J

    2009-09-01

    The Thiobacillus denitrificans genome contains two sequences corresponding to ATP sulfurylase (Tbd_0210 and Tbd_0874). Both genes were cloned and expressed protein characterized. The larger protein (Tbd_0210; 544 residues) possesses an N-terminal ATP sulfurylase domain and a C-terminal APS kinase domain and was therefore annotated as a bifunctional enzyme. But, the protein was not bifunctional because it lacked ATP sulfurylase activity. However, the enzyme did possess APS kinase activity and displayed substrate inhibition by APS. Truncated protein missing the N-terminal domain had APS kinase activity suggesting the function of the inactive sulfurylase domain is to promote the oligomerization of the APS kinase domains. The smaller gene product (Tbd_0874; 402 residues) possessed strong ATP sulfurylase activity with kinetic properties that appear to be kinetically optimized for the direction of APS utilization and ATP+sulfate production, which is consistent with an enzyme that functions physiologically to produce inorganic sulfate.

  3. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  4. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    Romuald Polczyk

    2016-01-01

    Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence ...

  5. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck

    Pene-Dumitrescu Teodora

    2012-03-01

    Full Text Available Abstract Background Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency. Conclusions These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.

  6. Measuring Children's Suggestibility in Forensic Interviews.

    Volpini, Laura; Melis, Manuela; Petralia, Stefania; Rosenberg, Melina D

    2016-01-01

    According to the scientific literature, childrens' cognitive development is not complete until adolescence. Therefore, the problems inherent in children serving as witnesses are crucial. In preschool-aged children, false memories may be identified because of misinformation and insight bias. Additionally, they are susceptible of suggestions. The aim of this study was to verify the levels of suggestibility in children between three and 5 years of age. Ninety-two children were examined (44 male, 48 female; M = 4.5 years, SD = 9.62). We used the correlation coefficient (Pearson's r) and the averages variance by SPSS statistical program. The results concluded that: younger children are almost always more susceptible to suggestibility. The dimension of immediate recall was negatively correlates with that of total suggestibility (r = -0.357 p suggestibility, because older children shift their answers more often (r = 0.394 p < 0.001). Younger children change their answers more times (r = -0.395 p < 0.001). © 2016 American Academy of Forensic Sciences.

  7. Impulsivity, self-control, and hypnotic suggestibility.

    Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H

    2013-06-01

    Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Myosin light chain kinase regulates synaptic plasticity and fear learning in the lateral amygdala.

    Lamprecht, R; Margulies, D S; Farb, C R; Hou, M; Johnson, L R; LeDoux, J E

    2006-01-01

    Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

  9. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  10. Overview of the SBS 2016 Suggestion Track

    Koolen, Marijn; Bogers, Toine; Jaap, Kamps

    2016-01-01

    The goal of the SBS 2016 Suggestion Track is to evaluate approaches for supporting users in searching collections of books who express their information needs both in a query and through example books. The track investigates the complex nature of relevance in book search and the role of traditional...... and user-generated book metadata in retrieval. We consolidated last year’s investigation into the nature of book suggestions from the LibraryThing forums and how they compare to book relevance judgements. Participants were encouraged to incorporate rich user profiles of both topic creators and other...

  11. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.

  12. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  13. Leadership Theories--Managing Practices, Challenges, Suggestions

    Hawkins, Cheryl

    2009-01-01

    A shortage of community college executives due to the number of retirements occurring among current leaders is predicted. An examination of three leadership theories--servant-leadership, business leadership and transformational leadership--suggests techniques for potential community college leaders. Servant-leaders focus on the needs of their…

  14. Seven Salutary Suggestions for Counselor Stamina

    Osborn, Cynthia J.

    2004-01-01

    Counselor stamina is deemed essential in the midst of a consistently challenging, complex, and changing mental health care environment. Rather than perpetuating conversations about "burnout" and "burnout prevention," this article provides a salutary or health-promoting perspective. Seven suggestions for counselor stamina are presented and…

  15. Interrogative Suggestibility in an Adolescent Forensic Occupation.

    Richardson, G.; And Others

    1995-01-01

    Sixty-five juvenile offenders in residential care completed the Gudjonsson Suggestibility Scale, and their scores were matched for IQ and memory with those of 60 adult offenders. The juveniles gave in significantly more to interrogative pressure through negative feedback but were no more yielding to leading questions than adults. (JPS)

  16. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile

    2017-01-01

    , 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent...

  17. Didactic Experiments Suggest Enhanced Learning Outcomes

    Pals Svendsen, Lisbet

    2011-01-01

    and presenting material in the language studied, just as they were encouraged to systematically use evaluation processes to enhance learning outcomes. Eventually, increased grade point averages suggested that the experiment was successful. The article also mentions subsequent revisions to the original format...

  18. Do astrophysical measurements suggest massive neutrinos?

    Ali, M.; Fazal-e-Aleem; Rashid, H.

    1996-01-01

    We discuss the solar neutrino puzzle and suggest modification in the standard solar model. It has been observed that the discrepancy between experimental measurements and theoretically produced values can be removed by considering neutrinos to process non-zero mass. (author)

  19. The role of tag suggestions in folksonomies

    Bollen, D.G.F.M.; Halpin, H.

    2009-01-01

    Most tagging systems support the user in the tag selection process by providing tag suggestions, or recommendations, based on a popularity measurement of tags other users provided when tagging the same resource. The majority of theories and mathematical models of tagging found in the literature

  20. Cable Television Report and Suggested Ordinance.

    League of California Cities, Sacramento.

    Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…

  1. Suggestions for Structuring a Research Article

    Klein, James D.; Reiser, Robert A.

    2014-01-01

    Researchers often experience difficulty as they attempt to prepare journal articles that describe their work. The purpose of this article is to provide researchers in the field of education with a series of suggestions as to how to clearly structure each section of a research manuscript that they intend to submit for publication in a scholarly…

  2. Family Living: Suggestions for Effective Parenting.

    Katz, Lilian G.; And Others

    Suggestions for effective parenting of preschool children are provided in 33 brief articles on children's feelings concerning self-esteem; fear; adopted children; the birth of a sibling; death; depression; and coping with stress, trauma, and divorce. Children's behavior is discussed in articles on toddlers' eating habits, punishment and…

  3. Overview of the SBS 2016 Suggestion Track

    Koolen, Marijn; Bogers, Toine; Jaap, Kamps

    2016-01-01

    and user-generated book metadata in retrieval. We consolidated last year’s investigation into the nature of book suggestions from the LibraryThing forums and how they compare to book relevance judgements. Participants were encouraged to incorporate rich user profiles of both topic creators and other...

  4. Accounting: Suggested Content for Postsecondary Tax Course

    King, Patricia H.; Morgan, Samuel D.

    1978-01-01

    Surveys of community college graduates and of certified public accountants were made to determine employment relevance of the accounting curriculum. The article suggests topics from the study data which should be included in taxation courses, e.g., income tax accounting, corporate taxation accounting, and tax law. (MF)

  5. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  6. Isoprenoid biosynthesis and mevalonate kinase deficiency

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens

  7. Expression Profiling of Tyrosine Kinase Genes

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  8. MAP kinase cascades in Arabidopsis innate immunity

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  9. Protein Kinases in Human Breast Carcinoma

    Cane, William

    1998-01-01

    .... Rak is a novel nuclear tyrosine that our group has identified in breast cancer tissues and cell lines that has structural homology to the Src tyrosine kinase, with SH2 and SH3 domains at its amino terminus...

  10. Ror receptor tyrosine kinases: orphans no more

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  11. Mediator kinase module and human tumorigenesis.

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  12. Suggestion of a conventional Islamic calendar

    M.G. Rashed

    2017-12-01

    Full Text Available There is a complexity of the problem concerning the first sighting of the new lunar crescent, which is attributed to various astronomical, astrophysical and geographical factors. Therefore, Astronomers adopted various criteria for the new crescent visibility. Muslims around the world differ in the beginning of the Hijric months. In fact the differences are not due to different methodology of astronomical calculations, which in turn the variations of the calendar at different countries gives. Farewell Hajj of Prophet Mohamed was on Friday, the ninth of Thul'hejja of the tenth year of immigration (Biography of the Prophet Mohamed. Therefor; the beginning of the month of Thul'hejja 10 A.H is on Thursday. Our suggested calendar takes Farewell Hajj of the Prophet Mohammad to be the base of this calendar. The advantage of our suggested calendar far away from any criteria; where the adoption of criteria for the new crescent visibility is often misleading.

  13. Suggestion of a conventional Islamic calendar

    Rashed, M. G.; Moklof, M. G.

    2017-12-01

    There is a complexity of the problem concerning the first sighting of the new lunar crescent, which is attributed to various astronomical, astrophysical and geographical factors. Therefore, Astronomers adopted various criteria for the new crescent visibility. Muslims around the world differ in the beginning of the Hijric months. In fact the differences are not due to different methodology of astronomical calculations, which in turn the variations of the calendar at different countries gives. Farewell Hajj of Prophet Mohamed was on Friday, the ninth of Thul'hejja of the tenth year of immigration (Biography of the Prophet Mohamed). Therefor; the beginning of the month of Thul'hejja 10 A.H is on Thursday. Our suggested calendar takes Farewell Hajj of the Prophet Mohammad to be the base of this calendar. The advantage of our suggested calendar far away from any criteria; where the adoption of criteria for the new crescent visibility is often misleading.

  14. Hypnotic suggestibility, cognitive inhibition, and dissociation.

    Dienes, Zoltán; Brown, Elizabeth; Hutton, Sam; Kirsch, Irving; Mazzoni, Giuliana; Wright, Daniel B

    2009-12-01

    We examined two potential correlates of hypnotic suggestibility: dissociation and cognitive inhibition. Dissociation is the foundation of two of the major theories of hypnosis and other theories commonly postulate that hypnotic responding is a result of attentional abilities (including inhibition). Participants were administered the Waterloo-Stanford Group Scale of Hypnotic Susceptibility, Form C. Under the guise of an unrelated study, 180 of these participants also completed: a version of the Dissociative Experiences Scale that is normally distributed in non-clinical populations; a latent inhibition task, a spatial negative priming task, and a memory task designed to measure negative priming. The data ruled out even moderate correlations between hypnotic suggestibility and all the measures of dissociation and cognitive inhibition overall, though they also indicated gender differences. The results are a challenge for existing theories of hypnosis.

  15. A High Affinity Adenosine Kinase from Anopheles gambiae

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  16. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  17. Serum creatine kinase isoenzymes in children with osteogenesis imperfecta.

    D'Eufemia, P; Finocchiaro, R; Zambrano, A; Lodato, V; Celli, L; Finocchiaro, S; Persiani, P; Turchetti, A; Celli, M

    2017-01-01

    This study evaluates serum creatine kinase isoenzyme activity in children with osteogenesis imperfecta to determine its usefulness as a biochemical marker during treatment with bisphosphonate. The changes of creatine kinase (CK) isoenzyme activity during and after discontinuation therapy were observed. These results could be useful in addressing over-treatment risk prevention. The brain isoenzyme of creatine kinase (CKbb) is highly expressed in mature osteoclasts during osteoclastogenesis, thus plays an important role in bone resorption. We previously identified high serum CKbb levels in 18 children with osteogenesis imperfect (OI) type 1 treated for 1 year with bisphosphonate (neridronate). In the present study, serum CK isoenzymes were evaluated in the same children with continuous versus discontinued neridronate treatment over a further 2-year follow-up period. This study included 18 children with OI type 1, 12 with continued (group A) and 6 with ceased (group B) neridronate treatment. Auxological data, serum biochemical markers of bone metabolism, bone mineral density z-score, and serum total CK and isoenzyme activities were determined in both groups. Serum CKbb was progressively and significantly increased in group A (p < 0.004) but rapidly decreased to undetectable levels in group B. In both groups, the cardiac muscle creatine kinase isoenzyme (CKmb) showed a marked decrease, while serum C-terminal telopeptide (CTx) levels were almost unchanged. This study provides evidence of the cumulative effect of neridronate administration in increasing serum CKbb levels and the reversible effect after its discontinuation. This approach could be employed for verifying the usefulness of serum CKbb as a biochemical marker in patients receiving prolonged bisphosphonate treatment. Moreover, the decreased serum CKmb levels suggest a systemic effect of these drugs.

  18. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  19. [Suggestions to improve dentist-endodontist collaboration].

    Zabalegui, B; Zabalegui, I; Flores, L

    1989-01-01

    Referrals from the general dentist to the endodontist are in some occasions complicated with lack of proper communication among dentist-patient-specialist, resulting in the loss of confidence or even the patient. Suggestions to improve this communication are discussed, which will provide the patient a higher confidence in the indicated endodontic treatment and a better dental service. It will also enhance the prestige of the general dentists' and specialists' practice.

  20. Application for Suggesting Restaurants Using Clustering Algorithms

    Iulia Alexandra IANCU

    2014-10-01

    Full Text Available The aim of this article is to present an application whose purpose is to make suggestions of restaurants to users. The application uses as input the descriptions of restaurants, reviews, user reviews available on the specialized Internet sites and blogs. In the application there are used processing techniques of natural language implemented using parsers, clustering algorithms and techniques for data collection from the Internet through web crawlers.

  1. The PIM kinases in hematological cancers.

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  2. Effects of obesity on protein kinase C, brain creatine kinase, transcription, and autophagy in cochlea.

    Hwang, Juen-Haur

    2017-06-01

    Diet-induced obesity (DIO) has been shown to exacerbate hearing degeneration via increased hypoxia, inflammatory responses, and cell loss via both caspase-dependent and caspase-independent apoptosis signaling pathways. This study aimed to investigate the effects of DIO on the mRNA expressions of protein kinase c-β (PKC-β), brain creatine kinase (CKB), transcription modification genes, and autophagy-related genes in the cochlea of CD/1 mice. Sixteen 4-week-old male CD/1 mice were randomly divided into 2 groups. For 16 weeks, the DIO group was fed a high fat diet (60% kcal fat) and the controls were fed a standard diet. Morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared. Results showed that body weight, body length, body-mass index, omental fat, plasma triglyceride, and auditory brainstem response thresholds were significantly elevated in the DIO group compared with those of the control group. The ratio of vessel wall thickness to radius in the stria vascularis was significantly higher in the DIO group. The cell densities in the spiral ganglion, but not in the spiral prominence, of the cochlea were significantly lower in the DIO group. The expression of histone deacetylation gene 1 (HDAC1) was significantly higher in the DIO group than the control group. However, the expressions of PKC-β, CKB, HDAC3, histone acetyltransferase gene (P300), lysosome-associated membrane protein 2 (Lamp2), and light chain 3 (Lc3) genes were not significantly different between two groups. These results suggest that DIO might exacerbate hearing degeneration possibly via increased HDAC1 gene expression in the cochlea of CD/1 mice.

  3. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  4. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum.

    Mearls, Elizabeth B; Lynd, Lee R

    2014-08-01

    In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C. thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C. thermocellum biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases

    Devroe, Eric; Silver, Pamela A.; Engelman, Alan

    2005-01-01

    Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells

  6. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity

    Azzeh, Maysa; Honigman, Alik; Taraboulos, Albert; Rouvinski, Alexander; Wolf, Dana G.

    2006-01-01

    Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (ΔUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the ΔUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or ΔUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites

  8. Tumor promoter induced membrane-bound protein kinase C - its influence on hematogenous metastasis

    Gopalakrishna, R.; Barsky, S.H.

    1987-01-01

    A correlation between the amount of membrane-bound detergent-extractable protein kinase C activity in various B16 melanoma sublines (F10, F1, BL6) and their lung metastasizing abilities following intravenous injection was found. The F10 subline which exhibits higher metastasizing ability was found to have higher membrane-bound protein kinase C compared to the lower metastasizing subline, F1. Treatment of F1 cells with 100 nM 12-0 tetradecanoylphorbol-13-acetate (TPA) for 1h resulted in 90% decrease in protein kinase C activity in the cytosol with a concommitent increase in membrane-bound activity. These TPA-treated cells when injected intravenously in C57BL/6 mice produced 6-fold increase in pulmonary metastases compared to untreated F1 cells. However, biologically inactive analogues 4 α-phorbol 12,13-didecanoate and phorbol 13-acetate had no effect on either membrane-bound protein kinase C activity or pulmonary metastases. Treating F1 cells with the second-stage tumor promoter, mezerin, resulted in increase in both membrane association of protein kinase C and also lung metastases. Thus, these results strongly suggests that membrane associated protein kinase C activity influences hematogenous metastasis of these melanoma cells

  9. PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases.

    Esperanza Martín-Sánchez

    Full Text Available Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL. The Proviral Integration site of Moloney murine leukemia virus (PIM kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs and pharmacologically (mainly with the pan-PIM inhibitor (PIMi ETP-39010 in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.

  10. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  11. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  12. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    Romuald Polczyk

    2016-05-01

    Full Text Available Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence for the existence of the two factors has been scarce. In the present study, more sophisticated and reliable tools for measuring suggestibility were applied than in the previous research, in the hope that better measurement would reveal the factor structure of suggestibility. Two tests of direct suggestibility were used: the Harvard Group Scale of Hypnotic Susceptibility, Form A, measuring hypnotic susceptibility, and the Barber Suggestibility Scale, measuring non-hypnotic direct imaginative suggestibility. Three tests served to measure indirect suggestibility: the Sensory Suggestibility Scale, measuring indirect suggestibility relating to perception; the Gudjonsson Suggestibility Scale, measuring the tendency to yield to suggestive questions and changing answers after negative feedback; and the Emotional Dialogs Tests, measuring the tendency to perceive nonexistent aggression. Participants and procedure In sum, 115 participants were tested, 69 women, 49 men, mean age 22.20 years, SD = 2.20. Participants were tested in two sessions, lasting for a total of four hours. Results Confirmatory factor analyses confirmed the existence of two uncorrelated factors of suggestibility: direct and indirect. Conclusions Suggestibility may indeed involve two factors, direct and indirect, and failure to discover them in previous research may be due to methodological problems.

  13. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  14. Complexes of γ-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macurek, Libor; Sulimenko, Tetyana; Draberova, Eduarda; Draber, Pavel

    2004-01-01

    Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that γ-tubulin (γ-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, γ-tubulin, and with anti-phosphotyrosine antibody revealed that γ-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in γ-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated γ-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing γ-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of γ-tubulin interaction with tubulin dimers or other proteins during neurogenesis

  15. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes

    Frank Fasbender

    2017-07-01

    Full Text Available In a synthetic biology approach using Schneider (S2 cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

  16. New dynamic system suggested for earth expansion

    Fitzpatrick, J [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    It is here suggested that there may have been much more radioactive materials in the deep interior of the earth than bitherto supposed. Trapped heat being generated in the interior would provide a mechanism for earth expansion. An assumption of heat generation in the deep interior of the earth of the order of 0,5 X 10-13 calories per second, per cubic centimeter, would provide sufficient thermal expansion to account for approximately 0.1 mm. change in the radius of the earth per year.

  17. Do experiments suggest a hierarchy problem?

    Vissani, F.

    1997-09-01

    The hierarchy problem of the scalar sector of the standard model is reformulated, emphasizing the role of experimental facts that may suggest the existence of a new physics large mass scale, for instance indications of the instability of the matter, or indications in favor of massive neutrinos. In the see-saw model for the neutrino masses a hierarchy problem arises if the mass of the right-handed neutrinos is larger than approximatively 10 7 GeV: this problem, and its possible solutions, are discussed. (author)

  18. Responding to hypnotic and nonhypnotic suggestions: performance standards, imaginative suggestibility, and response expectancies.

    Meyer, Eric C; Lynn, Steven Jay

    2011-07-01

    This study examined the relative impact of hypnotic inductions and several other variables on hypnotic and nonhypnotic responsiveness to imaginative suggestions. The authors examined how imaginative suggestibility, response expectancies, motivation to respond to suggestions, and hypnotist-induced performance standards affected participants' responses to both hypnotic and nonhypnotic suggestions and their suggestion-related experiences. Suggestions were administered to 5 groups of participants using a test-retest design: (a) stringent performance standards; (b) lenient performance standards; (c) hypnosis test-retest; (d) no-hypnosis test-retest; and (e) no-hypnosis/hypnosis control. The authors found no support for the influence of a hypnotic induction or performance standards on responding to suggestions but found considerable support for the role of imaginative suggestibility and response expectancies in predicting responses to both hypnotic and nonhypnotic suggestions.

  19. The effect of posthypnotic suggestion, hypnotic suggestibility, and goal intentions on adherence to medical instructions.

    Carvalho, Claudia; Mazzoni, Giuliana; Kirsch, Irving; Meo, Maria; Santandrea, Maura

    2008-04-01

    The effects of implementation intentions and posthypnotic suggestion were investigated in 2 studies. In Experiment 1, participants with high levels of hypnotic suggestibility were instructed to take placebo pills as part of an investigation of how to best enhance compliance with medical instruction. In Experiment 2, participants with high, medium, and low levels of hypnotic suggestibility were asked to run in place, take their pulse rate before, and send an e-mail report to the experimenter each day. Experiment 1 revealed enhanced adherence as a function of both implementation intentions and posthypnotic suggestion. Experiment 2 failed to find any significant main effects but found a significant interaction between suggestibility and the effects of posthypnotic suggestion. Posthypnotic suggestion enhanced adherence among high suggestible participants but lowered it among low suggestibles.

  20. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  1. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  2. Substrate-specific reorganization of the conformational ensemble of CSK implicates novel modes of kinase function.

    Michael A Jamros

    Full Text Available Protein kinases use ATP as a phosphoryl donor for the posttranslational modification of signaling targets. It is generally thought that the binding of this nucleotide induces conformational changes leading to closed, more compact forms of the kinase domain that ideally orient active-site residues for efficient catalysis. The kinase domain is oftentimes flanked by additional ligand binding domains that up- or down-regulate catalytic function. C-terminal Src kinase (Csk is a multidomain tyrosine kinase that is up-regulated by N-terminal SH2 and SH3 domains. Although the X-ray structure of Csk suggests the enzyme is compact, X-ray scattering studies indicate that the enzyme possesses both compact and open conformational forms in solution. Here, we investigated whether interactions with the ATP analog AMP-PNP and ADP can shift the conformational ensemble of Csk in solution using a combination of small angle x-ray scattering and molecular dynamics simulations. We find that binding of AMP-PNP shifts the ensemble towards more extended rather than more compact conformations. Binding of ADP further shifts the ensemble towards extended conformations, including highly extended conformations not adopted by the apo protein, nor by the AMP-PNP bound protein. These ensembles indicate that any compaction of the kinase domain induced by nucleotide binding does not extend to the overall multi-domain architecture. Instead, assembly of an ATP-bound kinase domain generates further extended forms of Csk that may have relevance for kinase scaffolding and Src regulation in the cell.

  3. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  4. FEM effective suggestion of guitar construction

    Vladimír Dániel

    2006-01-01

    Full Text Available Modal analysis of the whole guitar construction was performed. The results of eigenfrequencies were obtained. Stress in strings affects not only static loading of material, but also shift of eigenfrequencies. From obtained natural frequencies for solved spectrum such frequencies were used which coincides with assumed ribs new positions of ribs were suggested. Other ribs which do not carry out the mechanical function were removed. Also static reaction was evaluated and new position of ribs was adjusted. For final model new eigenfrequencies were computed and compared with previous ones. Significant changes were revealed in low frequencies (bellow 400 Hz where fewer amounts of natural shapes were obtained. Approximately 50% were lost by adding of ribs. For chosen frequencies of equal temperament the harmonic analysis was performed. The analysis proved ability of oscillation for frequencies far of natural frequencies. The final model satisfies the requirement of minimization of static stress in material due to strings and allows very effective oscillation of top the guitar resonance board. In comparison with literature good agreement in amplitude size of front board and amount of modes in appropriate frequencies were achieved. Suggested model even offers higher amount of natural shapes in comparison with literature, namely in high frequencies. From additional comparison of eigenfrequencies and natural shapes the influence of ribs position on natural shapes was approved.

  5. Dinosaur peptides suggest mechanisms of protein survival.

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  6. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  7. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity.

    Lorenz, Sonja; Deng, Patricia; Hantschel, Oliver; Superti-Furga, Giulio; Kuriyan, John

    2015-06-01

    Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.

  8. Chest magnetic resonance imaging: a protocol suggestion

    Bruno Hochhegger

    2015-12-01

    Full Text Available Abstract In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation.

  9. Ultrasonographic findings of early abortion: suggested predictors

    Jun, Soon Ae; Ahn, Myoung Ock; Cha, Kwang Yul; Lee, Young Doo

    1992-01-01

    To investigate predictable ultrasonographic findings of early abortion. To investigate objective rules for the screening of abortion. Ultrasonographic examination of 111 early pregnancies between the sixth and ninth week in women who had regular 28 day menstrual cycles was performed. Ultrasonographic measurements of the gestational sac, crown rump length and fetal heart rate were performed using a linear array real time transducer with doppler ultrasonogram. All measurements of 17 early abortions were compared to those of 94 normal pregnancies. Most of early aborted pregnancies were classified correctly by discriminant analysis with G-SAC and CRL (G-SAC=0.5 CRL + 15, sensitivity 76.5%, specificity 96.8%). With the addition of FHR, 94.1% of early abortions could be predicted. In conclusion, ultrasonographic findings of early intrauterine growth retardation, small gestational sac and bradycardia can be predictable signs suggestive of poor prognosis of early pregnancies

  10. Elastic wave scattering methods: assessments and suggestions

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  11. Non-degradative Ubiquitination of Protein Kinases.

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  12. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  13. Eckmaxol, a Phlorotannin Extracted from Ecklonia maxima, Produces Anti-β-amyloid Oligomer Neuroprotective Effects Possibly via Directly Acting on Glycogen Synthase Kinase 3β.

    Wang, Jialing; Zheng, Jiachen; Huang, Chunhui; Zhao, Jiaying; Lin, Jiajia; Zhou, Xuezhen; Naman, C Benjamin; Wang, Ning; Gerwick, William H; Wang, Qinwen; Yan, Xiaojun; Cui, Wei; He, Shan

    2018-04-10

    Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the elderly. Soluble β-amyloid oligomer, which can induce neurotoxicity, is generally regarded as the main neurotoxin in Alzheimer's disease. Here we report that eckmaxol, a phlorotannin extracted from the brown alga Ecklonia maxima, could produce neuroprotective effects in SH-SY5Y cells. Eckmaxol effectively prevented but did not rescue β-amyloid oligomer-induced neuronal apoptosis and increase of intracellular reactive oxygen species. Eckmaxol also significantly reversed the decreased expression of phospho-Ser9-glycogen synthase kinase 3β and increased expression of phospho-extracellular signal-regulated kinase, which was induced by Aβ oligomer. Moreover, both glycogen synthase kinase 3β and mitogen activated protein kinase inhibitors produced neuroprotective effects in SH-SY5Y cells. Furthermore, eckmaxol showed favorable interaction in the ATP binding site of glycogen synthase kinase 3β and mitogen activated protein kinase. These results suggested that eckmaxol might produce neuroprotective effects via concurrent inhibition of glycogen synthase kinase 3β and extracellular signal-regulated kinase pathways, possibly via directly acting on glycogen synthase kinase 3β and mitogen activated protein kinase. Based on the central role that β-amyloid oligomers play in the pathogenesis of Alzheimer's disease and the high annual production of Ecklonia maxima for alginate and other nutritional ingredients, this report represents a new candidate for the treatment of Alzheimer's disease, and also expands the potential application of Ecklonia maxima and its constituents in the field of pharmacology.

  14. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  15. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  16. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  17. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    Engel, M; Issinger, O G; Lascu, I

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  18. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  19. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; Liu, Zhen; Qiu, Wen-Li; Whitham, Steven A.; Qian, Wei-Jun

    2017-09-29

    It is well known that the reactive oxygen species, nitric oxide (NO), can trigger cell death in plants, but the underlying molecular mechanisms are not well understood. Here, we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicon) through inhibiting the phosphoinositide-dependent kinase 1 (PDK1) kinase activity via S-nitrosylation. Biotin-switch assays and LC-MS/MS analyses demonstrated that SlPDK1 was a target of S-nitrosylation modification, which primarily occurred on the cysteine residue at position 128 (Cys128). Accordingly, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione (GSNO) both in vitro and in vivo in a concentration-dependent manner, indicating that SlPDK1 activity is regulated by S-nitrosylation. The inhibition of SlPDK1 kinase activity by GSNO was reversible in the presence of a reducing agent but synergistically enhanced by hydrogen peroxide (H2O2). Mutation of Cys128 to serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for the inhibition of the kinase activity of SlPDK1. In sum, our results established a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1, a conserved negative regulator of cell death in yeasts, mammals and plants. Nitric oxide (NO) potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen species (ROS) (1). However, the molecular mechanism of the NO-induced cell death remains an enigma. One potential mechanism is that the activity of proteins that control cell death may be altered by a post-translational modification, S-nitrosylation. S-nitrosylation is the addition of the NO moiety to thiol groups, including cysteine (Cys) residues in proteins, to form S-nitrosothiols (SNOs). S-nitrosylation is an enzyme-independent post-translational and labile modification that can function as an on/off switch of protein activity (2- 4). Thousands of diverse

  20. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  1. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  2. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  3. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    Konrad Kubiński

    2017-02-01

    Full Text Available The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors.

  4. Maxillectomy defects: a suggested classification scheme.

    Akinmoladun, V I; Dosumu, O O; Olusanya, A A; Ikusika, O F

    2013-06-01

    The term "maxillectomy" has been used to describe a variety of surgical procedures for a spectrum of diseases involving a diverse anatomical site. Hence, classifications of maxillectomy defects have often made communication difficult. This article highlights this problem, emphasises the need for a uniform system of classification and suggests a classification system which is simple and comprehensive. Articles related to this subject, especially those with specified classifications of maxillary surgical defects were sourced from the internet through Google, Scopus and PubMed using the search terms maxillectomy defects classification. A manual search through available literature was also done. The review of the materials revealed many classifications and modifications of classifications from the descriptive, reconstructive and prosthodontic perspectives. No globally acceptable classification exists among practitioners involved in the management of diseases in the mid-facial region. There were over 14 classifications of maxillary defects found in the English literature. Attempts made to address the inadequacies of previous classifications have tended to result in cumbersome and relatively complex classifications. A single classification that is based on both surgical and prosthetic considerations is most desirable and is hereby proposed.

  5. Suggestion on Information Sharing for AP implementation

    Shim, Hye Won; Kim, Min Su; Koh, Byung Marn [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2013-10-15

    Under the Additional Protocol, States should provide the IAEA with expanded declarations of activities related to the nuclear fuel cycle and other nuclear activities, and with expanded access to the relevant information and sites to allow the IAEA to verify the completeness of these declarations. The AP to the Safeguards Agreement (the Additional Protocol) was signed on June 21{sup st}, 1999 and entered into force on February 19{sup th}, 2004. ROK submitted initial declarations in August 2004. Since then, ROK has been submitting annual updated reports of initial declaration on every May 15{sup th}. To achieve successful implementation, it is necessary to collect the information for each individual article in Article 2 of the AP and verify the declared information provided by facility operators. Therefore, the cooperation among the ministries and offices concerned is a prerequisite for successful implementation of AP. Unfortunately, the formal procedure for inter-organizational information sharing and cooperation is not established. This paper will briefly outline the AP declarations and suggest the information sharing among the ministries, offices and organizations for effective and efficient implementation of AP. The State authority has responsibility for AP implementation and it should verify correctness and completeness of the information declared by facility operators before submitting the declarations. The close cooperation and information sharing among the ministries, offices and organizations are indispensable to effective and efficient implementation of AP.

  6. [Evidence that suggest the reality of reincarnation].

    Bonilla, Ernesto

    2015-06-01

    Worldwide, children can be found who reported that they have memories of a previous life. More than 2,500 cases have been studied and their specifications have been published and preserved in the archives of the Division of Perceptual Studies at the University of Virginia (United States). Many of those children come from countries where the majority of the inhabitants believe in reincarnation, but others come from countries with different cultures and religions that reject it. In many cases, the revelations of the children have been verified and have corresponded to a particular individual, already dead. A good number of these children have marks and birth defects corresponding to wounds on the body of his previous personality. Many have behaviors related to their claims to their former life: phobias, philias, and attachments. Others seem to recognize people and places of his supposed previous life, and some of their assertions have been made under controlled conditions. The hypothesis of reincarnation is controversial. We can never say that it does not occur, or will obtain conclusive evidence that it happens. The cases that have been described so far, isolated or combined, do not provide irrefutable proof of reincarnation, but they supply evidence that suggest its reality.

  7. Resveratrol stimulates AMP kinase activity in neurons.

    Dasgupta, Biplab; Milbrandt, Jeffrey

    2007-04-24

    Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.

  8. Mechanism of polyphosphate kinase from Propionibacterium shermanii

    Robinson, N.A.

    1986-01-01

    Polyphosphate kinase, which catalyzes the reaction shown below, is one of two enzymes which have been reported to catalyze the synthesis of polyphosphate. Purification performed by ammonium sulfate precipitation (0-40% fraction) was followed by chromatography. The enzyme represents 70% of the protein in the hydroxylapatite pool and is stable at this level of purity. The subunit molecular weight was determined by SDS polyacrylamide gel analysis, (83,000 +/- 3000), nondenaturing polyacrylamide gel electrophoresis, (80,000 and 86,000 daltons), gel filtration (Biogel A 0.5m column was 85,000 +/- 4000.) Polyphosphate kinase appears to be a monomeric enzyme of ∼83,000 daltons. Four assays were developed for polyphosphate kinase. Basic proteins such as polylysine stimulate the synthesis of polyphosphate, these proteins cause precipitation of polyphosphate kinase from relatively impure enzyme extracts: Synthesized polyphosphate interacts noncovalently with the basic protein-enzyme precipitate. Efficient synthesis of polyphosphate requires the addition of either phosphate or short chain polyphosphate. Synthesis did occur at 1/10 the rate when neither of these two compounds were included. Initiation, elongation, and termination events of polyphosphate synthesis were examined. Short chain polyphosphate acts as a primer, with [ 32 P] short-chain polyphosphate incorporation into long chain polyphosphate by the kinase

  9. Radioimmunoassay of bovine heart protein kinase

    Fleischer, N.; Rosen, O.M.; Reichlin, M.

    1976-01-01

    Immunization of guinea pigs with bovine cardiac cAMP-dependent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) resulted in the development of precipitating antibodies to the cAMP-binding subunit of the enzyme. Both the phosphorylated and nonphosphorylated cAMP-binding protein of the protein kinase reacted with the antiserum. A radioimmunoassay was developed that detects 10 ng of holoenzyme and permits measurement of enzyme concentrations in bovine cardiac muscle. Bovine liver, kidney, brain, and skeletal muscle contain protein kinases which are immunologically identical to those found in bovine cardiac muscle. However, the proportion of immunoreactive enzyme activity differed for each tissue. All of the immunologically nonreactive enzyme in skeletal muscle and heart was separable from immunoreactive enzyme by chromatography on DEAE-cellulose. Rat tissues and pig heart contained protein kinase activity that cross reacted immunologically in a nonparallel fashion with bovine cardiac enzyme. These results indicate that cAMP-dependent protein kinases within and between species are immunologically heterogeneous

  10. Janus kinase inhibitors: jackpot or potluck?

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  11. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  12. Protocols for the Design of Kinase-focused Compound Libraries.

    Jacoby, Edgar; Wroblowski, Berthold; Buyck, Christophe; Neefs, Jean-Marc; Meyer, Christophe; Cummings, Maxwell D; van Vlijmen, Herman

    2018-05-01

    Protocols for the design of kinase-focused compound libraries are presented. Kinase-focused compound libraries can be differentiated based on the design goal. Depending on whether the library should be a discovery library specific for one particular kinase, a general discovery library for multiple distinct kinase projects, or even phenotypic screening, there exists today a variety of in silico methods to design candidate compound libraries. We address the following scenarios: 1) Datamining of SAR databases and kinase focused vendor catalogues; 2) Predictions and virtual screening; 3) Structure-based design of combinatorial kinase inhibitors; 4) Design of covalent kinase inhibitors; 5) Design of macrocyclic kinase inhibitors; and 6) Design of allosteric kinase inhibitors and activators. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative histological models suggest endothermy in plesiosaurs

    Corinna V. Fleischle

    2018-06-01

    Full Text Available Background Plesiosaurs are marine reptiles that arose in the Late Triassic and survived to the Late Cretaceous. They have a unique and uniform bauplan and are known for their very long neck and hydrofoil-like flippers. Plesiosaurs are among the most successful vertebrate clades in Earth’s history. Based on bone mass decrease and cosmopolitan distribution, both of which affect lifestyle, indications of parental care, and oxygen isotope analyses, evidence for endothermy in plesiosaurs has accumulated. Recent bone histological investigations also provide evidence of fast growth and elevated metabolic rates. However, quantitative estimations of metabolic rates and bone growth rates in plesiosaurs have not been attempted before. Methods Phylogenetic eigenvector maps is a method for estimating trait values from a predictor variable while taking into account phylogenetic relationships. As predictor variable, this study employs vascular density, measured in bone histological sections of fossil eosauropterygians and extant comparative taxa. We quantified vascular density as primary osteon density, thus, the proportion of vascular area (including lamellar infillings of primary osteons to total bone area. Our response variables are bone growth rate (expressed as local bone apposition rate and resting metabolic rate (RMR. Results Our models reveal bone growth rates and RMRs for plesiosaurs that are in the range of birds, suggesting that plesiosaurs were endotherm. Even for basal eosauropterygians we estimate values in the range of mammals or higher. Discussion Our models are influenced by the availability of comparative data, which are lacking for large marine amniotes, potentially skewing our results. However, our statistically robust inference of fast growth and fast metabolism is in accordance with other evidence for plesiosaurian endothermy. Endothermy may explain the success of plesiosaurs consisting in their survival of the end-Triassic extinction

  14. Employee suggestion programs: the rewards of involvement.

    Mishra, J M; McKendall, M

    1993-09-01

    Successful ESPs are the products of a great deal of effort by managers, administrators, teams, individuals, and reviewers, who are all striving to achieve the goals of increased profitability and enhanced employee involvement. A review of the literature indicates that there are several prescriptions that will increase the likelihood of a successful ESP (see the box). Today's American business prophets sound ceaseless calls to arms in the name of "world class performance," "global competitiveness," "total quality management," and a variety of other buzz terms. A burgeoning industry has evolved that promises, through speeches, teleconferences, seminars, and consulting contracts, to teach American organizations how to achieve excellence. In the face of a sputtering economy and unrelenting competitive pressure, today's managers must translate these laudatory ideals into hands-on reality without sacrificing the firm's profit margin to experimentation. If any idea can help an organization achieve improvement through a workable program, then that idea and that program deserve real consideration. An ESP represents an opportunity to tap the intelligence and resourcefulness of an organization's employees, and by doing so, reap significant cost savings. Those companies and managers that have an ESP program uniformly list economic advantages first when describing the benefits of their employee suggestion programs. But there is another deeper and longer term benefit inherent in an ESP. These programs allow employees to become involved in their organization; they drive deaccession to lower levels, they give employees more responsibility, they foster creative approaches to work, and they encourage creativity in pursuit of company goals.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Suggestions for an updated fusion power program

    Clarke, J.F.

    1976-02-01

    This document contains suggestions for a revised CTR Program strategy which should allow us to achieve equivalent goals while operating within the above constraints. The revised program is designed around three major facilities. The first is an upgrading of the present TFTR facility which will provide a demonstration of the generation of tens of megawatts electric equivalent originally envisioned for the 1985 EPR. The second device is the TTAP which will allow the integration and optimization of the plasma physics results obtained from the next generation of plasma physics experiments. The improvement in tokamak reactor operation resulting from this optimization of fusion plasma performance will enable an EPR to be designed which will produce several hundred megawatts of electric power by 1990. This will move the fusion program much closer to its goal of commercial fusion power by the turn of the century. In addition to this function the TTAP will serve as a prototype of the 1990 EPR system, thus making more certain the successful operation of this device. The third element of this revised program is an intense radiation damage facility which will provide the radiation damage information necessary for the EPR and subsequent fusion reactor facilities. The sum total of experience gained from reacting plasma experiments on TFTR, reactor grade plasma optimization and technological prototyping on TTAP, and end of life radiation damage results from the intense neutron facility will solve all of the presently foreseen problems associated with a tokamak fusion power reactor except those associated with the external nuclear systems. These external system problems such as tritium breeding and optimal power recovery can be developed in parallel on the 1990 EPR

  16. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Anne N Shemon

    2009-06-01

    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  17. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  18. CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function

    Peter Canning

    2018-01-01

    Full Text Available Various kinases, including a cyclin-dependent kinase (CDK family member, regulate the growth and functions of primary cilia, which perform essential roles in signaling and development. Neurological disorders linked to CDK-Like (CDKL proteins suggest that these underexplored kinases may have similar functions. Here, we present the crystal structures of human CDKL1, CDKL2, CDKL3, and CDKL5, revealing their evolutionary divergence from CDK and mitogen-activated protein kinases (MAPKs, including an unusual αJ helix important for CDKL2 and CDKL3 activity. C. elegans CDKL-1, most closely related to CDKL1–4 and localized to neuronal cilia transition zones, modulates cilium length; this depends on its kinase activity and αJ helix-containing C terminus. Human CDKL5, linked to Rett syndrome, also localizes to cilia, and it impairs ciliogenesis when overexpressed. CDKL5 patient mutations modeled in CDKL-1 cause localization and/or cilium length defects. Together, our studies establish a disease model system suggesting cilium length defects as a pathomechanism for neurological disorders, including epilepsy.

  19. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring

    Andrs, M.; Kobarecny, J.; Jun, D.; Hodný, Zdeněk; Bartek, Jiří; Kuca, K.

    2015-01-01

    Roč. 58, č. 1 (2015), s. 41-71 ISSN 0022-2623 R&D Projects: GA MŠk(CZ) CZ.1.07/2.3.00/30.0044 Grant - others:University Hospital Hradec Kralove(CZ) 00179906; Faculty of Military Health Sciences, University of Defence(CZ) SV/FVZ201402 Institutional support: RVO:68378050 Keywords : DEPENDENT PROTEIN-KINASE * STRAND BREAK REPAIR * SELECTIVE PI3K-BETA INHIBITORS * TELANGIECTASIA MUTATED KINASE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.589, year: 2015

  20. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-01-01

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn 2+ , while Fe 2+ and Mn 2+ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca 2+ , phorbol ester, or antigen

  1. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn/sup 2 +/, while Fe/sup 2 +/ and Mn/sup 2 +/ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca/sup 2 +/, phorbol ester, or antigen.

  2. The role of suggestibility in determinations of Miranda abilities: a study of the Gudjonsson Suggestibility Scales.

    Rogers, Richard; Harrison, Kimberly S; Rogstad, Jill E; LaFortune, Kathryn A; Hazelwood, Lisa L

    2010-02-01

    Traditionally, high levels of suggestibility have been widely assumed to be linked with diminished Miranda abilities, especially in relationship to the voluntariness of waivers. The current investigation examined suggestibility on the Gudjonsson Suggestibility Scales in a multisite study of pretrial defendants. One important finding was the inapplicability of British norms to American jurisdictions. Moreover, suggestibility appeared unrelated to Miranda comprehension, reasoning, and detainees' perceptions of police coercion. In testing rival hypotheses, defendants with high compliance had significantly lower Miranda comprehension and ability to reason about exercising Miranda rights than their counterparts with low compliance. Implications of these findings to forensic practice are examined.

  3. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  4. Protein Kinases in Shaping Plant Architecture.

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao

    2018-02-13

    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. The Role of PAS Kinase in PASsing the Glucose Signal

    Julianne H. Grose

    2010-06-01

    Full Text Available PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

  6. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  7. Are Dysphoric Individuals More Suggestible or Less Suggestible Than Nondysphoric Individuals?

    MacFarland, Wendy L.; Morris, Steven J.

    1998-01-01

    Dysphoric individuals are shown to be susceptible to interrogative suggestion, whether in the form of leading questions or interrogative pressure. The association of a clinically relevant condition of dysphoria (depression) with relatively high levels of suggestibility was investigated in a college student population (N=139). Applicability to…

  8. Suggestibility under Pressure: Theory of Mind, Executive Function, and Suggestibility in Preschoolers

    Karpinski, Aryn C.; Scullin, Matthew H.

    2009-01-01

    Eighty preschoolers, ages 3 to 5 years old, completed a 4-phase study in which they experienced a live event and received a pressured, suggestive interview about the event a week later. Children were also administered batteries of theory of mind and executive function tasks, as well as the Video Suggestibility Scale for Children (VSSC), which…

  9. Testing increases suggestibility for narrative-based misinformation but reduces suggestibility for question-based misinformation.

    LaPaglia, Jessica A; Chan, Jason C K

    2013-01-01

    A number of recent studies have found that recalling details of an event following its occurrence can increase people's suggestibility to later presented misinformation. However, several other studies have reported the opposite result, whereby earlier retrieval can reduce subsequent eyewitness suggestibility. In the present study, we investigated whether differences in the way misinformation is presented can modulate the effects of testing on suggestibility. Participants watched a video of a robbery and some were questioned about the event immediately afterwards. Later, participants were exposed to misinformation in a narrative (Experiment 1) or in questions (Experiment 2). Consistent with previous studies, we found that testing increased suggestibility when misinformation was presented via a narrative. Remarkably, when misinformation was presented in questions, testing decreased suggestibility. Copyright © 2013 John Wiley & Sons, Ltd.

  10. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  11. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  12. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  13. Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency

    Schneiders, Marit S.; Houten, Sander M.; Turkenburg, Marjolein; Wanders, Ronald J. A.; Waterham, Hans R.

    2006-01-01

    OBJECTIVE: In cells from patients with the autoinflammatory disorder mevalonate kinase (MK) deficiency, which includes the hyperimmunoglobulin D with periodic fever syndrome, MK becomes the rate-limiting enzyme in the isoprenoid biosynthesis pathway. This suggests that up-regulation of residual MK

  14. Kinase cogs go forward and reverse in the Wnt signaling machine.

    Dale, Trevor

    2006-01-01

    An important link between Wnt binding at the cell surface and nuclear -catenin-TCF-dependent transcription has been made with the identification of kinases that promote the association of the Wnt receptor and -catenin turnover complexes. Surprisingly, the enzymes implicated had previously been suggested to inhibit rather than promote Wnt signaling.

  15. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  16. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  17. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    Ly-Thuy-Tram Le

    2013-02-01

    Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.

  18. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  19. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains.

    Travis W Bainbridge

    Full Text Available Receptor tyrosine kinase-like orphan receptors (ROR 1 and 2 are atypical members of the receptor tyrosine kinase (RTK family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.

  20. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer.

    Michie, Alison M; McCaig, Alison M; Nakagawa, Rinako; Vukovic, Milica

    2010-01-01

    Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells. This review will focus on recent data describing potential mechanisms that may alter the expression, regulation or function of DAPK.

  1. Side-effects of protein kinase inhibitors on ion channels

    2013-11-06

    Nov 6, 2013 ... with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies .... family, the β-adrenergic receptor kinase (βARK), the ribosomal S6 ..... urinary bladder smooth muscle cells. While no ...

  2. Creatine kinase activity is associated with blood pressure

    Brewster, Lizzy M.; Mairuhu, Gideon; Bindraban, Navin R.; Koopmans, Richard P.; Clark, Joseph F.; van Montfrans, Gert A.

    2006-01-01

    BACKGROUND: We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascular

  3. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  4. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  5. Allosteric small-molecule kinase inhibitors

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  6. Nonorthologous gene displacement of phosphomevalonate kinase

    Houten, S. M.; Waterham, H. R.

    2001-01-01

    Phosphomevalonate kinase (PMK; EC 2.7.4.2) catalyzes the phosphorylation of 5-phosphomevalonate into 5-diphosphomevalonate, an essential step in isoprenoid biosynthesis via the mevalonate pathway. So far, two nonorthologous genes encoding PMK have been described, the Saccharomyces cerevisiae ERG8

  7. Casein kinase-2 structure-function relationship

    Boldyreff, B; Meggio, F; Pinna, L A

    1992-01-01

    Nine mutants of human casein kinase-2 beta subunit have been created and assayed for their ability to assemble with the catalytic alpha subunit to give, at a 1:1 molar ratio, a fully competent CK-2 holoenzyme as judged by the following criteria: 1) the generation of an active heterotetrameric form...

  8. Mitogen-activated protein kinases mediate Mycobacterium ...

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  9. Kinase-Centric Computational Drug Development

    Kooistra, Albert J.; Volkamer, Andrea

    2017-01-01

    Kinases are among the most studied drug targets in industry and academia, due to their involvement in a majority of cellular processes and, upon dysregulation, in a variety of diseases including cancer, inflammation, and autoimmune disorders. The high interest in this druggable protein family

  10. Kinases involved in Rec8 phosphorylation revealed

    Anger, Martin

    2010-01-01

    Roč. 9, č. 14 (2010), s. 2708-2708 ISSN 1538-4101 Institutional research plan: CEZ:AV0Z50450515 Keywords : kinases * Rec8 * meisosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.999, year: 2010

  11. Gene regulation by MAP kinase cascades

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  12. Cellular reprogramming through mitogen-activated protein kinases

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  13. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  14. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-11-27

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.

  15. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  16. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  17. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-01-01

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development

  18. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  19. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  20. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement.

    Jamie A Moroco

    Full Text Available Src-family kinases (SFKs are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12 to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.

  1. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

    Wang, Qi; Vogan, Erik M; Nocka, Laura M; Rosen, Connor E; Zorn, Julie A; Harrison, Stephen C; Kuriyan, John

    2015-01-01

    Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. DOI: http://dx.doi.org/10.7554/eLife.06074.001 PMID:25699547

  2. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  3. Apoptosis and inactivation of the PI3-kinase pathway by tetrocarcin A in breast cancers

    Nakajima, Hiroo; Sakaguchi, Koichi; Fujiwara, Ikuya; Mizuta, Mitsuhiko; Tsuruga, Mie; Magae, Junji; Mizuta, Naruhiko

    2007-01-01

    A survival kinase, Akt, is a downstream factor in the phosphatidylinositide-3'-kinase-dependent pathway, which mediates many biological responses including glucose uptake, protein synthesis and the regulation of proliferation and apoptosis, which is assumed to contribute to acquisition of malignant properties of human cancers. Here we find that an anti-tumor antibiotic, tetrocarcin A, directly induces apoptosis of human breast cancer cells. The apoptosis is accompanied by the activation of a proteolytic cascade of caspases including caspase-3 and -9, and concomitantly decreases phosphorylation of Akt, PDK1, and PTEN, a tumor suppressor that regulates the activity of Akt through the dephosphorylation of polyphosphoinositides. Tetrocarcin A affected neither expression of Akt, PDK1, or PTEN, nor did it affect the expression of Bcl family members including Bcl-2, Bcl-X L , and Bax. These results suggest that tetrocarcin A could be a potent chemotherapeutic agent for human breast cancer targeting the phosphatidylinositide-3'-kinase/Akt signaling pathway

  4. Preparation of kinase-biased compounds in the search for lead inhibitors of kinase targets.

    Lai, Justine Y Q; Langston, Steven; Adams, Ruth; Beevers, Rebekah E; Boyce, Richard; Burckhardt, Svenja; Cobb, James; Ferguson, Yvonne; Figueroa, Eva; Grimster, Neil; Henry, Andrew H; Khan, Nawaz; Jenkins, Kerry; Jones, Mark W; Judkins, Robert; Major, Jeremy; Masood, Abid; Nally, James; Payne, Helen; Payne, Lloyd; Raphy, Gilles; Raynham, Tony; Reader, John; Reader, Valérie; Reid, Alison; Ruprah, Parminder; Shaw, Michael; Sore, Hannah; Stirling, Matthew; Talbot, Adam; Taylor, Jess; Thompson, Stephen; Wada, Hiroki; Walker, David

    2005-05-01

    This work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.g., purines, oxindoles, and imidazoles, whereby each core scaffold generally includes the hydrogen bond acceptor/donor properties known to be important for kinase binding. Several of these are based upon literature kinase templates, or adaptations of them to provide novelty. The routes to their preparation are outlined. A variety of automation techniques were used to prepare >500 compounds per scaffold. Where applicable, scavenger resins were employed to remove excess reagents and when necessary, preparative high performance liquid chromatography (HPLC) was used for purification. These compounds were screened against an 'in-house' kinase panel. The success rate in HTS was significantly higher than the corporate compound collection. Copyright (c) 2004 Wiley Periodicals, Inc.

  5. Kinase detection with gallium nitride based high electron mobility transistors.

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  6. Diversity, classification and function of the plant protein kinase superfamily

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  7. Genomic analysis of murine DNA-dependent protein kinase

    Fujimori, A.; Abe, M.

    2003-01-01

    Full text: The gene of catalytic subunit of DNA dependent protein kinase is responsible gene for SCID mice. The molecules play a critical role in non-homologous end joining including the V(D)J recombination. Contribution of the molecules to the difference of radiosensitivity and the susceptibility to cancer has been suggested. Here we show the entire nucleotide sequence of approximately 193 kbp and 84 kbp genomic regions encoding the entire DNA-PKcs gene in the mouse and chicken respectively. Retroposon was found in the intron 51 of mouse genomic DNA-PKcs gene but in human and chicken. Comparative analysis of these two species strongly suggested that only two genes, DNA-PKcs and MCM4, exist in the region of both species. Several conserved sequences and cis elements, however, were predicted. Recently, the orthologous region for the human DNA-PKcs locus was completed. The results of further comparative study will be discussed

  8. Are You Suggesting That's My Hand? The Relation Between Hypnotic Suggestibility and the Rubber Hand Illusion.

    Walsh, E; Guilmette, D N; Longo, M R; Moore, J W; Oakley, D A; Halligan, P W; Mehta, M A; Deeley, Q

    2015-01-01

    Hypnotic suggestibility (HS) is the ability to respond automatically to suggestions and to experience alterations in perception and behavior. Hypnotically suggestible participants are also better able to focus and sustain their attention on an experimental stimulus. The present study explores the relation between HS and susceptibility to the rubber hand illusion (RHI). Based on previous research with visual illusions, it was predicted that higher HS would lead to a stronger RHI. Two behavioral output measures of the RHI, an implicit (proprioceptive drift) and an explicit (RHI questionnaire) measure, were correlated against HS scores. Hypnotic suggestibility correlated positively with the implicit RHI measure contributing to 30% of the variation. However, there was no relation between HS and the explicit RHI questionnaire measure, or with compliance control items. High hypnotic suggestibility may facilitate, via attentional mechanisms, the multisensory integration of visuoproprioceptive inputs that leads to greater perceptual mislocalization of a participant's hand. These results may provide insight into the multisensory brain mechanisms involved in our sense of embodiment.

  9. The Roles of Protein Kinases in Learning and Memory

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  10. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-01-01

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca 2+ -dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca 2+ -independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10 -6 M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10 -4 M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 μM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [γ- 32 P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase

  11. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors.

  12. Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress

    Kwang eChoi

    2011-07-01

    Full Text Available Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database (www.stanleygenomics.org and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK, the cyclin-dependent kinase (CDK, the mitogen-activated protein kinase (MAPK, and the protein kinase C (PKC in the prefrontal cortex (PFC of mood disorder patients died with suicide (n=45 and without suicide (N=38. We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (n=46. The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (FDR-adjusted p < 0.05, fold change > 1.1. Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05. These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress-associated neural plasticity and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.

  13. 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase.

    Kolesnick, R N; Clegg, S

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C

  14. Dicty_cDB: SFF660 [Dicty_cDB

    Full Text Available kakepststf*vlkksfqilklts*pkv kkfhsqfh*nhtlihhllmmvihtiqlafhfkdsiemnsmlllyxvmxfk*xiirvxsis Translated Amino A...NQPFSNIL*emvnwkensqvqvgvh iqrrrlnimkldqylemfyslnvqldpivyqvkakepststf*vlkksfqilklts*pkv kkfhsqfh*nhtlihhllmmvihtiqlafhfkdsiem

  15. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2018-01-01

    Abstract Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5′-kinase fusion genes, combinatorial effects between 3′-KDR kinases and their 5′-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3′-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of ‘effective’ (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3′-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs’ clinical implications. PMID:28013235

  16. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Dhawan Gunjan

    2012-07-01

    Full Text Available Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD. One hypothesis is that amyloid beta (Aβ peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA, respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis. Results Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals. Conclusions These data suggest that amyloid

  17. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Kim, Eung-Yoon; Choi, Young-Jin [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of); Park, Chan-Won [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Kang, In-Cheol, E-mail: ickang@hoseo.edu [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of)

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  18. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-01-01

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-γ-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  19. Virus-specific DNA sequences present in cells which carry the herpes simplex virus thymidine kinase gene.

    Minson, A C; Darby, G K; Wildy, P

    1979-11-01

    Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.

  20. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  1. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  3. β-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia.

    Eiring, A M; Khorashad, J S; Anderson, D J; Yu, F; Redwine, H M; Mason, C C; Reynolds, K R; Clair, P M; Gantz, K C; Zhang, T Y; Pomicter, A D; Kraft, I L; Bowler, A D; Johnson, K; Partlin, M Mac; O'Hare, T; Deininger, M W

    2015-12-01

    Activation of nuclear β-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear β-catenin has a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, β-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples β-catenin expression from BCR-ABL1 kinase activity. In β-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of β-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic β-catenin levels, arguing against a role for β-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than β-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear β-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment.

  4. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  5. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Prerna Grover

    Full Text Available The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery

  6. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  7. The evolving field of kinase inhibitors in thyroid cancer.

    Marotta, V; Sciammarella, C; Vitale, M; Colao, A; Faggiano, A

    2015-01-01

    Most of the genetic events implicated in the pathogenesis of thyroid cancer (TC) involve genes with kinase activity. Thus, kinase inhibitors (KIs) are very relevant in this field. KIs are considered the most suitable treatment for patients with iodine-refractory differentiated TC; these patients comprise the subgroup with the poorer prognosis. To date, only sorafenib has been approved for this indication, but promising results have been reported with several other KIs. In particular, lenvatinib has demonstrated excellent efficacy, with both progression-free survival and objective tumour response being better than with sorafenib. Despite being considered to be well tolerated, both sorafenib and lenvatinib have shown a remarkable toxicity, which has led to dose reductions in the majority of patients and to treatment discontinuation in a significant proportion of cases. The role of KIs in differentiated TC may be revolutionised by the finding that selumetinib may restore a clinical response to radioactive iodine (RAI). Vandetanib and cabozantinib have been approved for the treatment of advanced, progressive medullary TC (MTC). Nevertheless, the toxicity of both compounds suggests their selective use in those patients with strong disease progression. Treatment with the mTOR-inhibitor everolimus, alone or in combination with somatostatin analogues, should be studied in metastatic MTC patients with slow progression of disease, these representing the vast majority of patients. KIs did not significantly impact on the clinical features of anaplastic TC (ATC). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Kinase activation through dimerization by human SH2-B.

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  9. Children's Memory for Their Mother's Murder: Accuracy, Suggestibility, and Resistance to Suggestion.

    McWilliams, Kelly; Narr, Rachel; Goodman, Gail S; Ruiz, Sandra; Mendoza, Macaria

    2013-01-31

    From its inception, child eyewitness memory research has been guided by dramatic legal cases that turn on the testimony of children. Decades of scientific research reveal that, under many conditions, children can provide veracious accounts of traumatic experiences. Scientific studies also document factors that lead children to make false statements. In this paper we describe a legal case in which children testified about their mother's murder. We discuss factors that may have influenced the accuracy of the children's eyewitness memory. Children's suggestibility and resistance to suggestion are illustrated. Expert testimony, based on scientific research, can aid the trier of fact when children provide crucial evidence in criminal investigations and courtroom trials about tragic events.

  10. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    motility parameters. These findings, although preliminary, suggest that resveratrol-induced improvement of cryopreserved sperm functions may be mediated through activation of AMP-activated protein kinase, indicating the importance of AMP-activated protein kinase activity for human spermatozoa functions. Further investigations are required to elucidate the mechanism by which resveratrol ameliorates oxidative stress-mediated damages in an AMP-activated protein kinase-dependent mechanism. © 2016 American Society of Andrology and European Academy of Andrology.

  11. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  12. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  13. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Protein kinase C regulates human pluripotent stem cell self-renewal.

    Masaki Kinehara

    Full Text Available The self-renewal of human pluripotent stem (hPS cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2 appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC, GF109203X (GFX, increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β, suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2 synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells.Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK, PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though h

  15. Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal

    Kinehara, Masaki; Kawamura, Suguru; Tateyama, Daiki; Suga, Mika; Matsumura, Hiroko; Mimura, Sumiyo; Hirayama, Noriko; Hirata, Mitsuhi; Uchio-Yamada, Kozue; Kohara, Arihiro; Yanagihara, Kana; Furue, Miho K.

    2013-01-01

    Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long

  16. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  17. Src family kinases in chronic kidney disease.

    Wang, Jun; Zhuang, Shougang

    2017-09-01

    Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved. Copyright © 2017 the American Physiological Society.

  18. Tyrosine kinase signalling in breast cancer

    Hynes, Nancy E

    2000-01-01

    Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors to signalling molecules on neighbouring cells. Receptors of the tyrosine kinase family play an important role in the integration and interpretation of these external stimuli, allowing a cell to respond appropriately to its environment. The activation of receptor tyrosine kinases (RTKs) is tightly controlled, allowing a normal cell to correctly integrate its external environment with internal signal transduction pathways. In contrast, due to numerous molecular alterations arising during the course of malignancy, a tumour is characterized by an abnormal response to its environment, which allows cancer cells to evade the normal mechanisms controlling cellular proliferation. Alterations in the expression of various RTKs, in their activation, and in the signalling molecules lying downstream of the receptors play important roles in the development of cancer. This topic is the major focus of the thematic review section of this issue of Breast Cancer Research

  19. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Boura, Evzen; Nencka, Radim

    2015-01-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine

  20. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Boura, Evzen, E-mail: boura@uochb.cas.cz; Nencka, Radim, E-mail: nencka@uochb.cas.cz

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  1. Ror receptor tyrosine kinases: orphans no more.

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  2. Aurora kinase inhibitors: Progress towards the clinic

    Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, Pathik; Lepšík, Martin; Hajduch, M.

    2012-01-01

    Roč. 30, č. 6 (2012), s. 2411-2432 ISSN 0167-6997 Grant - others:GA ČR(CZ) GA301/08/1649; GA ČR(CZ) GD303/09/H048 Program:GA; GD Institutional research plan: CEZ:AV0Z40550506 Keywords : Aurora kinases * cancer * inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  3. MAP kinases in inflammatory bowel disease

    Coskun, Mehmet; Olsen, Jørgen; Seidelin, Jakob Benedict

    2011-01-01

    The mammalian family of mitogen-activated protein kinases (MAPKs) is activated by diverse extracellular and intracellular stimuli, and thereby they play an essential role in connecting cell-surface receptors to changes in transcriptional programs. The MAPK signaling pathways regulate a wide range...... these signaling pathways have been exploited for the development of therapeutics and discuss the current knowledge of potential MAPK inhibitors and their anti-inflammatory effects in clinical trials related to IBD....

  4. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 337, č. 2 (2015), s. 136-145 ISSN 0014-4827 R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302; GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * inhibitor * crystal structure * virus Subject RIV: CC - Organic Chemistry Impact factor: 3.378, year: 2015

  5. Molecular Imaging of the ATM Kinase Activity

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  6. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  7. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1.

    Ye Seul Kim

    Full Text Available Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1 is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF, histone H3, and the cAMP response element (CRE-binding protein (CREB. In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.

  8. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors

    Annegret Ulke-Lemée

    2010-05-01

    Full Text Available Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine; therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK and integrin-linked kinase (ILK are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.

  9. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  10. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  11. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  12. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    Roland G Huber

    2015-10-01

    Full Text Available ZAP-70 (Zeta-chain-associated protein kinase 70 is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD, and binding of its regulatory tandem Src homology 2 (SH2 domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  13. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  14. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  15. Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E and BRAF wild-type metastatic malignant melanoma.

    Andliena Tahiri

    Full Text Available Treatment of metastatic malignant melanoma patients harboring BRAF(V600E has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed.In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status.Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro.Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.

  16. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  17. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.

    Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U

    2000-09-12

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

  18. CIKS, a connection to IκB kinase and stress-activated protein kinase

    Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich

    2000-01-01

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033

  19. Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches

    Marshall, Alex; Aalen, Reidunn B.; Audenaert, Dominique; Beeckman, Tom; Broadley, Martin R.; Butenko, Melinka A.; Caño-Delgado, Ana I.; de Vries, Sacco; Dresselhaus, Thomas; Felix, Georg; Graham, Neil S.; Foulkes, John; Granier, Christine; Greb, Thomas; Grossniklaus, Ueli; Hammond, John P.; Heidstra, Renze; Hodgman, Charlie; Hothorn, Michael; Inzé, Dirk; Østergaard, Lars; Russinova, Eugenia; Simon, Rüdiger; Skirycz, Aleksandra; Stahl, Yvonne; Zipfel, Cyril; De Smet, Ive

    2012-01-01

    Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops. PMID:22693282

  20. Fear memory consolidation in sleep requires protein kinase A.

    Cho, Jiyeon; Sypniewski, Krzysztof A; Arai, Shoko; Yamada, Kazuo; Ogawa, Sonoko; Pavlides, Constantine

    2018-05-01

    It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory. © 2018 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  2. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  3. Ste20-like kinase SLK, at the crossroads

    Al-Zahrani, Khalid N.; Baron, Kyla D.; Sabourin, Luc A.

    2013-01-01

    Reorganization of the cytoskeleton is necessary for apoptosis, proliferation, migration, development and tissue repair. However, it is well established that mutations or overexpression of key regulators contribute to the phenotype and progression of several pathologies such as cancer. For instance, c-src mutations and the overexpression of FAK have been implicated in the invasive and metastatic process, suggesting that components of the motility system may represent a new class of therapeutic targets. Over the last several years, we and others have established distinct roles for the Ste20-like kinase SLK, encompassing apoptosis, growth, motility and development. Here, we review the SLK field from its initial cloning to the most recent findings from our laboratory. We summarize the various roles of SLK and the biochemical mechanisms that regulate its activity. These various findings reveal very complex functions and pattern of regulation for SLK in development and cancer, making it a potential therapeutic target. PMID:23154402

  4. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  5. The Pim kinases: new targets for drug development.

    Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

    2011-12-01

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

  6. A framework for classification of prokaryotic protein kinases.

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  7. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans.

    De Souza, Colin P; Hashmi, Shahr B; Osmani, Aysha H; Osmani, Stephen A

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  8. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    kinase-ε and C3 mutations. Conclusions Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. PMID:25135762

  9. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences

  10. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  11. HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Kazuhiko Fujita

    Full Text Available Heat shock protein 90 (HSP90 that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α, a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6 through p44/p42 mitogen-activated protein (MAP kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1, a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.

  12. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    substitutions (E308Q and E463Q) preserved normal kinase activation in vitro but blocked cellular chemotaxis in vivo, suggesting that these sites lie within the docking site of an adaptation enzyme, CheR or CheB. Overall, this study highlights the importance of electrostatics in signal transduction and regulation of kinase activity by the cytoplasmic domain of the aspartate receptor. PMID:15683239

  13. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence.

    Alves de Castro, Patrícia; Dos Reis, Thaila Fernanda; Dolan, Stephen K; Oliveira Manfiolli, Adriana; Brown, Neil Andrew; Jones, Gary W; Doyle, Sean; Riaño-Pachón, Diego M; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H

    2016-11-01

    The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways. © 2016 John Wiley & Sons Ltd.

  14. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  15. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  16. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK.

    Wang, Qi; Amato, Stephen P; Rubitski, David M; Hayward, Matthew M; Kormos, Bethany L; Verhoest, Patrick R; Xu, Lan; Brandon, Nicholas J; Ehlers, Michael D

    2016-02-01

    Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Protein kinase Cη activates NF-κB in response to camptothecin-induced DNA damage

    Raveh-Amit, Hadas; Hai, Naama; Rotem-Dai, Noa; Shahaf, Galit; Gopas, Jacob; Livneh, Etta

    2011-01-01

    Highlights: → Protein kinase C-eta (PKCη) is an upstream regulator of the NF-κB signaling pathway. → PKCη activates NF-κB in non-stressed conditions and in response to DNA damage. → PKCη regulates NF-κB by activating IκB kinase (IKK) and inducing IκB degradation. -- Abstract: The nuclear factor κB (NF-κB) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-κB in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-κB regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKCη) regulates NF-κB upstream signaling by activating the IκB kinase (IKK) and the degradation of IκB. Furthermore, PKCη enhances the nuclear translocation and transactivation of NF-κB under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKCη confers protection against DNA damage-induced apoptosis. Our present study suggests that PKCη is involved in NF-κB signaling leading to drug resistance.

  18. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA.

    Li, Zhiru; Dugan, Aisling S; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R

    2009-09-17

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.

  19. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.

  20. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-01-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed ...

  1. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.

    2001-01-01

    Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine ki......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  2. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  3. MAP kinase genes and colon and rectal cancer

    Slattery, Martha L.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation, differentiation, migration and apoptosis. We evaluate genetic variation in the c-Jun-N-terminal kinases, p38, and extracellular regulated kinases 1/2 MAPK-signaling pathways and colon and rectal cancer risk using data from population-based case-control studies (colon: n = 1555 cases, 1956 controls; rectal: n = 754 cases, 959 controls). We assess 19 genes (DUSP1, DUSP2, DUSP4, DUSP6, DUSP7, MAP2K1, MAP3K1, MAP3K2, MAP3K3, MAP3K7, MAP3K9, MAP3K10, MAP3K11, MAPK1, MAPK3, MAPK8, MAPK12, MAPK14 and RAF1). MAP2K1 rs8039880 [odds ratio (OR) = 0.57, 95% confidence interval (CI) = 0.38, 0.83; GG versus AA genotype] and MAP3K9 rs11625206 (OR = 1.41, 95% CI = 1.14, 1.76; recessive model) were associated with colon cancer (P adj value rectal cancer (P adj cancer risk. Genetic variants had unique associations with KRAS, TP53 and CIMP+ tumors. DUSP2 rs1724120 [hazard rate ratio (HRR) = 0.72, 95%CI = 0.54, 0.96; AA versus GG/GA), MAP3K10 rs112956 (HRR = 1.40, 95% CI = 1.10, 1.76; CT/TT versus CC) and MAP3K11 (HRR = 1.76, 95% CI 1.18, 2.62 TT versus GG/GT) influenced survival after diagnosis with colon cancer; MAP2K1 rs8039880 (HRR = 2.53, 95% CI 1.34, 4.79 GG versus AG/GG) and Raf1 rs11923427 (HRR = 0.59 95% CI = 0.40, 0.86; AA versus TT/TA) were associated with rectal cancer survival. These data suggest that genetic variation in the MAPK-signaling pathway influences colorectal cancer risk and survival after diagnosis. Associations may be modified by lifestyle factors that influence inflammation and oxidative stress. PMID:23027623

  4. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    Issinger, O G; Beier, H; Speichermann, N

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were...... by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins...... from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  5. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region...

  6. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2.

    Jeong-Hun Kang

    Full Text Available Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32P [counts per minute (CPM] for each peptide substrate was determined by the radiolabel assay using [γ-(32P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135 were phosphorylated by other enzymes (PKA, PKCα, and ERK1, R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.

  7. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  8. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  9. Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition

    Soundararajan, M.; Roos, A.K.; Savitsky, P.

    2013-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK sub...

  10. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  11. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  12. How protein kinases co-ordinate mitosis in animal cells.

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  13. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  14. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  15. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  18. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  19. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  20. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  1. Radioimmunoassay of creatine kinase BB isoenzyme

    Jianguo, Geng [Shanghai Medical Univ. (China). Zhongshan Hospital; and others

    1988-11-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and {sup 125}I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10{sup 9} mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10{sup -8} {approx} 1.2 x 10{sup -5} mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10{sup -7} +- 8.1 x 10{sup -8} mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10{sup -6} +- 1.2 x 10{sup -4} mmol/L, n = 28) and cerebral vascular accident (8.4 x 10{sup -4} +- 5.0 x 10{sup -4} mmol/L, n = 10).

  2. Targeting the Pim kinases in multiple myeloma.

    Keane, N A

    2015-07-17

    Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine\\/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and\\/or with novel drugs targeting other survival pathways in MM.

  3. Radioimmunoassay of creatine kinase BB isoenzyme

    Geng Jianguo

    1988-01-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and 125 I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10 9 mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10 -8 ∼ 1.2 x 10 -5 mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10 -7 +- 8.1 x 10 -8 mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10 -6 +- 1.2 x 10 -4 mmol/L, n = 28) and cerebral vascular accident (8.4 x 10 -4 +- 5.0 x 10 -4 mmol/L, n = 10)

  4. Activation of oocyte phosphatidylinositol kinase by polyamines

    Allende, J.E.; Carrasco, D.; Allende, C.C.

    1987-01-01

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [ 32 ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H 1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  5. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    Pieterse Corné MJ

    2007-02-01

    Full Text Available Abstract Background Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian systems, but since substrates from many organisms are present we decided to test these arrays for the determination of kinase activities in the model plant species Arabidopsis thaliana. Results Kinome profiling using Arabidopsis cell extracts resulted in the labelling of many consensus peptides by kinases from the plant, indicating the usefulness of this kinome profiling tool for plants. Method development showed that fresh and frozen plant material could be used to make cell lysates containing active kinases. Dilution of the plant extract increased the signal to noise ratio and non-radioactive ATP enhances full development of spot intensities. Upon infection of Arabidopsis with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato, we could detect differential kinase activities by measuring phosphorylation of consensus peptides. Conclusion We show that kinome profiling on arrays with consensus substrates can be used to monitor kinase activities in plants. In a case study we show that upon infection with avirulent P. syringae differential kinase activities can be found. The PepChip can for example be used to purify (unknown kinases that play a role in P. syringae infection. This paper shows that kinome profiling using arrays of consensus peptides is a valuable new tool to study signal-transduction in plants. It complements the available methods for genomics and proteomics research.

  6. AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma.

    Namiki, Takeshi; Tanemura, Atsushi; Valencia, Julio C; Coelho, Sergio G; Passeron, Thierry; Kawaguchi, Masakazu; Vieira, Wilfred D; Ishikawa, Masashi; Nishijima, Wataru; Izumo, Toshiyuki; Kaneko, Yasuhiko; Katayama, Ichiro; Yamaguchi, Yuji; Yin, Lanlan; Polley, Eric C; Liu, Hongfang; Kawakami, Yutaka; Eishi, Yoshinobu; Takahashi, Eishi; Yokozeki, Hiroo; Hearing, Vincent J

    2011-04-19

    The identification of genes that participate in melanomagenesis should suggest strategies for developing therapeutic modalities. We used a public array comparative genomic hybridization (CGH) database and real-time quantitative PCR (qPCR) analyses to identify the AMP kinase (AMPK)-related kinase NUAK2 as a candidate gene for melanomagenesis, and we analyzed its functions in melanoma cells. Our analyses had identified a locus at 1q32 where genomic gain is strongly associated with tumor thickness, and we used real-time qPCR analyses and regression analyses to identify NUAK2 as a candidate gene at that locus. Associations of relapse-free survival and overall survival of 92 primary melanoma patients with NUAK2 expression measured using immunohistochemistry were investigated using Kaplan-Meier curves, log rank tests, and Cox regression models. Knockdown of NUAK2 induces senescence and reduces S-phase, decreases migration, and down-regulates expression of mammalian target of rapamycin (mTOR). In vivo analysis demonstrated that knockdown of NUAK2 suppresses melanoma tumor growth in mice. Survival analysis showed that the risk of relapse is greater in acral melanoma patients with high levels of NUAK2 expression than in acral melanoma patients with low levels of NUAK2 expression (hazard ratio = 3.88; 95% confidence interval = 1.44-10.50; P = 0.0075). These data demonstrate that NUAK2 expression is significantly associated with the oncogenic features of melanoma cells and with the survival of acral melanoma patients. NUAK2 may provide a drug target to suppress melanoma progression. This study further supports the importance of NUAK2 in cancer development and tumor progression, while AMPK has antioncogenic properties.

  7. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1

    Park, In-Hyun; Erbay, Ebru; Nuzzi, Paul; Chen Jie

    2005-01-01

    The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector

  8. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    Ryu, S.H.; Lee, S.Y.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P 3 ) is an important second-messenger molecule that mobilizes Ca 2+ from intracellular stores in response to the occupancy of receptor by various Ca 2+ -mobilizing agonists. The fate of Ins-1,4,5-P 3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P 3 to Ins-1,3,4,5-P 4 , whereas the latter forms Ins-1,4-P 2 . Recent studies suggest that Ins-1,3,4,5-P 4 might modulate the entry of Ca 2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca 2+ /calmodulin complex. Therefore, they propose that Ca 2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P 3 forms a complex with calmodulin, and that the Ca 2+ /calmodulin complex stimulates the conversion of Ins-1,4,5-P 3 , and intracellular Ca 2+ mobilizer, to Ins-1,3,4,5-P 4 , an extracellular Ca 2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3- 32 P]Ins-1,3,4,5-P 4 and [γ- 32 P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P 3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg 2+ > > Mn 2+ > Ca 2+ ) for the 3-kinase

  9. A conserved cysteine motif is critical for rice ceramide kinase activity and function.

    Fang-Cheng Bi

    Full Text Available Ceramide kinase (CERK is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare and investigate the effects of ceramides on rice cell viability.OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing.OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.

  10. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling

    Cuenca-López, María D; Montero, Juan C; Morales, Jorge C; Prat, Aleix; Pandiella, Atanasio; Ocana, Alberto

    2014-01-01

    The androgen receptor (AR) plays a central role in the oncogenesis of different tumors, as is the case in prostate cancer. In triple negative breast cancer (TNBC) a gene expression classification has described different subgroups including a luminal androgen subtype. The AR can be controlled by several mechanisms like the activation of membrane tyrosine kinases and downstream signaling pathways. However little is known in TNBC about how the AR is modulated by these mechanisms and the potential therapeutic strategists to inhibit its expression. We used human samples to evaluate the expression of AR by western-blot and phospho-proteomic kinase arrays that recognize membrane tyrosine kinase receptors and downstream mediators. Western-blots in human cell lines were carried out to analyze the expression and activation of individual proteins. Drugs against these kinases in different conditions were used to measure the expression of the androgen receptor. PCR experiments were performed to assess changes in the AR gene after therapeutic modulation of these pathways. AR is present in a subset of TNBC and its expression correlates with activated membrane receptor kinases-EGFR and PDGFRβ in human samples and cell lines. Inhibition of the PI3K/mTOR pathway in TNBC cell lines decreased notably the expression of the AR. Concomitant administration of the anti-androgen bicalutamide with the EGFR, PDGFRβ and Erk1/2 inhibitors, decreased the amount of AR compared to each agent given alone, and had an additive anti-proliferative effect. Administration of dihydrotestosterone augmented the expression of AR that was not modified by the inhibition of the PI3K/mTOR or Erk1/2 pathways. AR expression was posttranscriptionally regulated by PI3K or Erk1/2 inhibition. Our results describe the expression of the AR in TNBC as a druggable target and further suggest the combination of bicalutamide with inhibitors of EGFR, PDGFRβ or Erk1/2 for future development

  11. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway

    Matsumoto, Ken-ichi; Minamitani, Takeharu; Orba, Yasuko; Sato, Mami; Sawa, Hirofumi; Ariga, Hiroyoshi

    2004-01-01

    The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway

  12. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons.

    Bohnsack, John Peyton; Carlson, Stephen L; Morrow, A Leslie

    2016-06-01

    The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Serena A D'Souza

    2016-04-01

    Full Text Available The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  14. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy.

    Ojo, Kayode K; Dangoudoubiyam, Sriveny; Verma, Shiv K; Scheele, Suzanne; DeRocher, Amy E; Yeargan, Michelle; Choi, Ryan; Smith, Tess R; Rivas, Kasey L; Hulverson, Matthew A; Barrett, Lynn K; Fan, Erkang; Maly, Dustin J; Parsons, Marilyn; Dubey, Jitender P; Howe, Daniel K; Van Voorhis, Wesley C

    2016-12-01

    Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis. Copyright © 2016

  15. An effective suggestion method for keyword search of databases

    Huang, Hai; Chen, Zonghai; Liu, Chengfei; Huang, He; Zhang, Xiangliang

    2016-01-01

    This paper solves the problem of providing high-quality suggestions for user keyword queries over databases. With the assumption that the returned suggestions are independent, existing query suggestion methods over databases score candidate

  16. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International

  17. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  18. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    Iqbal, Mohd S. [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Enteric and Food Microbiology Laboratory, Laboratory Sciences Division, International Center for Diarrhoeal Disease Research, Bangladesh, P.O. Box 128, Dhaka 1000 (Bangladesh); Tsuyama, Naohiro [Department of Analytical Molecular Medicine and Devices, Division of Frontier Medical Science, Graduate School of Medical Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553 (Japan); Obata, Masanori [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Ishikawa, Hideaki, E-mail: hishika@yamaguchi-u.ac.jp [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan)

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  19. RhoA–Rho kinase and Platelet Activating Factor Stimulation of Ovine Fetal Pulmonary Vascular Smooth Muscle Cell Proliferation

    Renteria, Lissette S.; Austin, Monique; Lazaro, Mariecon; Andrews, Mari Ashley; Lustina, Jennessee; Raj, J. Usha; Ibe, Basil O.

    2013-01-01

    Objectives Platelet Activating Factor (PAF) is produced by pulmonary vascular smooth muscle Cells (PVSMC). We studied effect of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand a role for RhoA/Rho kinase on PAF-induced ovine fetal pulmonary vascular remodeling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signaling, to induce arterial (SMC-PA) and venous (SMC-PV) growth in the hypoxic lung environment of the fetus in utero. Materials and methods Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell growth and PAFR expression were studied by DNA synthesis, Western and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation was also studied. Results Hypoxia increased PVSMC proliferation and the Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly down-regulated in both cell types by both Y-27632 and HA-1077 with comparable profiles. Also cells treated with Y-27632 showed less PAF receptor fluorescence with significant disruption of the cell morphology. Conclusions Our results show that Rho kinase nonspecifically modulates PAFR-mediated responses via a translational modification of PAFR protein and suggest that, in vivo, activation of Rho kinase by PAF may be one other pathway to sustain PAFR-mediated PVSMC growth. PMID:24033386

  20. RhoA-Rho kinase and platelet-activating factor stimulation of ovine foetal pulmonary vascular smooth muscle cell proliferation.

    Renteria, L S; Austin, M; Lazaro, M; Andrews, M A; Lustina, J; Raj, J U; Ibe, B O

    2013-10-01

    Platelet-activating factor (PAF) is produced by pulmonary vascular smooth muscle cells (PVSMC). We studied effects of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand the role of RhoA/Rho kinase on PAF-induced ovine foetal pulmonary vascular remodelling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signals, to induce arterial (SMC-PA) and venous (SMC-PV) cell proliferation in the hypoxic lung environment of the foetus, in utero. Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell population expansion, and PAFR expression, were studied by DNA synthesis, western blot analysis and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation were also investigated. Hypoxia increased PVSMC proliferation and Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly downregulated in both cell types by both Y-27632 and HA-1077, with comparable profiles. Also, cells treated with Y-27632 had less PAF receptor fluorescence with significant disruption of cell morphology. Our results show that Rho kinase non-specifically modulated PAFR-mediated responses by a translational modification of PAFR protein, and suggest that, in vivo, activation of Rho kinase by PAF may be a further pathway to sustain PAFR-mediated PVSMC proliferation. © 2013 John Wiley & Sons Ltd.

  1. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Creatine kinase isozyme expression in embryonic chicken heart

    Lamers, W. H.; Geerts, W. J.; Moorman, A. F.; Dottin, R. P.

    1989-01-01

    The distribution pattern of creatine kinase (EC 2.7.3.2) isozymes in developing chicken heart was studied by immunohistochemistry. Creatine kinase M, which is absent from adult heart, is transiently expressed between 4 and 11 days of incubation. During that period, numerous muscular cells in the

  3. Role of Bruton's tyrosine kinase in B cells and malignancies

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  4. Oral protein kinase c β inhibition using ruboxistaurin

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J

    2011-01-01

    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2 ruboxi...

  5. Enhanced expression of a calcium-dependent protein kinase

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  6. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C. M.; Serra, M.

    2013-01-01

    Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell

  7. ATR kinase regulates its attenuation via PPM1D phosphatase ...

    In eukaryotes, in response to replication stress, DNA damage response kinase, ATR is activated, whose signalling abrogationleads to cell lethality due to aberrant fork remodelling and excessive origin firing. Here we report that inhibition ofATR kinase activity specifically during replication stress recovery results in persistent ...

  8. Is high hypnotic suggestibility necessary for successful hypnotic pain intervention?

    Milling, Leonard S

    2008-04-01

    Hypnotic suggestibility is a trait-like, individual difference variable reflecting the general tendency to respond to hypnosis and hypnotic suggestions. Research with standardized measures of hypnotic suggestibility has demonstrated that there are substantial individual differences in this variable. Higher suggestibility has been found to be associated with greater relief from hypnotic pain interventions. Although individuals in the high suggestibility range show the strongest response to hypnotic analgesia, people of medium suggestibility, who represent approximately one third of the population, also have been found to obtain significant relief from hypnosis. Thus, high hypnotic suggestibility is not necessary for successful hypnotic pain intervention. However, the available evidence does not support the efficacy of hypnotic pain interventions for people who fall in the low hypnotic suggestibility range. However, some studies suggest that these individuals may benefit from imaginative analgesia suggestions, or suggestions for pain reduction that are delivered while the person is not in hypnosis.

  9. Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase.adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase

    Renosto, F.; Martin, R.L.; Segel, I.H.

    1989-01-01

    At a noninhibitory steady state concentration of adenosine 5'-phosphosulfate (APS), increasing the concentration of Penicillium chrysogenum ATP sulfurylase drives the rate of the APS kinase-catalyzed reaction toward zero. The result indicates that the ATP sulfurylase.APS complex does not serve as a substrate for APS kinase, i.e. there is no ''substrate channeling'' of APS between the two sulfate-activating enzymes. APS kinase had no effect on the [S]0.5 values, nH values, or maximum isotope trapping in the single turnover of ATP sulfurylase-bound [ 35 S]APS. Equimolar APS kinase (+/- MgATP or APS) also had no effect on the rate constants for the inactivation of ATP sulfurylase by phenylglyoxal, diethylpyrocarbonate, or N-ethylmaleimide. Similarly, ATP sulfurylase (+/- ligands) had no effect on the inactivation of equimolar APS kinase by trinitrobenzene sulfonate, diethylpyrocarbonate, or heat. (The last promotes the dissociation of dimeric APS kinase to inactive monomers.) ATP sulfurylase also had no effect on the reassociation of APS kinase subunits at low temperature. The cumulative results suggest that the two sulfate activating enzymes do not associate to form a ''3'-phosphoadenosine 5'-phosphosulfate synthetase'' complex

  10. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium...... channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results...... as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant...

  11. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  12. Glycogen synthase kinase-3 regulation of urinary concentrating ability.

    Rao, Reena

    2012-09-01

    Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.

  13. Tyrosine kinases, drugs, and Shigella flexneri dissemination.

    Dragoi, Ana-Maria; Agaisse, Hervé

    2014-01-01

    Shigella flexneri is an enteropathogenic bacterium responsible for approximately 100 million cases of severe dysentery each year. S. flexneri colonization of the human colonic epithelium is supported by direct spread from cell to cell, which relies on actin-based motility. We have recently uncovered that, in intestinal epithelial cells, S. flexneri actin-based motility is regulated by the Bruton's tyrosine kinase (Btk). Consequently, treatment with Ibrutinib, a specific Btk inhibitor currently used in the treatment of B-cell malignancies, effectively impaired S. flexneri spread from cell to cell. Thus, therapeutic intervention capitalizing on drugs interfering with host factors supporting the infection process may represent an effective alternative to treatments with antimicrobial compounds.

  14. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety.

    Dow, Robert L; Ammirati, Mark; Bagley, Scott W; Bhattacharya, Samit K; Buckbinder, Leonard; Cortes, Christian; El-Kattan, Ayman F; Ford, Kristen; Freeman, Gary B; Guimarães, Cristiano R W; Liu, Shenping; Niosi, Mark; Skoura, Athanasia; Tess, David

    2018-04-12

    Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.

  15. On the Effects of Suggested Prices in Gasoline Markets

    R.P. Faber (Riemer); M.C.W. Janssen (Maarten)

    2008-01-01

    textabstractThis article analyzes the role of suggested prices in the Dutch retail market for gasoline. Suggested prices are announced by large oil companies with the suggestion that retailers follow them. There are at least two competing rationales for the existence of suggested prices: they may

  16. The Effect of Memory Trace Strength on Suggestibility.

    Pezdek, Kathy; Roe, Chantal

    1995-01-01

    Examined the conditions under which children's memory is resistant to suggestibility versus vulnerable to suggestibility. Results suggest that children have more accurate memory for an event that occurred to them frequently, and that they are less vulnerable to suggestive influences such as biased interviewing procedures than they would be for an…

  17. Protein kinase substrate identification on functional protein arrays

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  18. Src protein-tyrosine kinase structure and regulation

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  19. Structural studies of Schistosoma mansoni adenylate kinases

    Marques, I.A.; Pereira, H.M.; Garrat, R.C.

    2012-01-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  20. Hybrid and rogue kinases encoded in the genomes of model eukaryotes.

    Ramaswamy Rakshambikai

    Full Text Available The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions.

  1. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    2017-01-01

    v e V ia b il it y Figure 8. PC3-LN4 cells in normoxia or hypoxia were treated with Pim inhibitors. Left panel shows a Western blot and the...3728-36, PMID 25241892 4. Warfel, NA, Kraft, AS. Pim kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015 Jul; 151: 41 - 9. doi: 10.1016...Associated Fibroblast Biology in Prostate Cancer These studies will accelerate and significantly advance the rational development of targeted agents

  2. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  3. Creatine kinase and creatine kinase subunit-B in coronary sinus blood in pacing-induced angina pectoris

    Bagger, J P; Ingerslev, J; Heinsvig, E M

    1982-01-01

    In nine out of 10 patients with angiographic documented coronary artery disease, pacing-induced angina pectoris provoked myocardial production of lactate, whereas no significant release of either creatine kinase or creatine kinase subunit-B to coronary sinus and peripheral venous blood could...

  4. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension.

    Su, Hao; Yan, Ji; Xu, Jian; Fan, Xi-Zhen; Sun, Xian-Lin; Chen, Kang-Yu

    2015-08-01

    Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.

  6. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  7. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.

    Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A

    2007-02-02

    The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.

  8. Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase.

    Nakayama, Yuji; Yamaguchi, Naoto

    2005-04-01

    Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.

  9. Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase

    Nakayama, Yuji; Yamaguchi, Naoto

    2005-01-01

    Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation

  10. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

    Wilfried Jonkers

    2014-11-01

    Full Text Available Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this

  11. Levoglucosan kinase involved in citric acid fermentation by Aspergillus niger CBX-209 using levoglucosan as sole carbon and energy source

    Zhuang, X.L.; Zhang, H.X.; Tang, J.J. [Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences

    2001-07-01

    Conditions were optimized for the production of citric acid by a mutant A. niger CBX-209 using levoglucosan derived from pyrolysis of wastepaper as a sole carbon and energy source in a simple medium. The optimum concentration of levoglucosan and wheat bran in the medium was 8% and 3%, respectively, at an optimum initial pH between 5.5 and 6.0 at 35{sup o}C. During fermentation, direct formation of glucose 6-phosphate from levogluocosan in the presence of ATP and Mg{sup 2+} as observed by HPLC in the reaction with both cell extracts and partially purified enzyme, suggested that the enzyme acting on levoglucosan isa kinase. Time-course changes in the levels of this special levoglucosan kinase in A. niger CBX-209 grown on levoglucosan and glucose revealed that levoglucosan kinase was an inductive enzyme. (Author)

  12. Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break.

    Anderson, Carol M; Korkin, Dmitry; Smith, Dana L; Makovets, Svetlana; Seidel, Jeffrey J; Sali, Andrej; Blackburn, Elizabeth H

    2008-04-01

    The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.

  13. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-03

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  15. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  16. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  17. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  18. Physical and functional interactions between ZIP kinase and UbcH5

    Ohbayashi, Norihiko; Okada, Katsuya; Kawakami, Shiho; Togi, Sumihito; Sato, Noriko; Ikeda, Osamu; Kamitani, Shinya; Muromoto, Ryuta; Sekine, Yuichi; Kawai, Taro; Akira, Shizuo; Matsuda, Tadashi

    2008-01-01

    Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase that has been implicated in cell death and transcriptional regulation, but its mechanism of regulation remains unknown. In our previous study, we showed that leukemia inhibitory factor stimulated threonine-265 phosphorylation of ZIPK, thereby leading to phosphorylation and activation of signal transducer and activator of transcription 3. Here, we identified UbcH5c as a novel ZIPK-binding partner by yeast two-hybrid screening. Importantly, we found that UbcH5c induced ubiquitination of ZIPK. Small-interfering RNA-mediated reduction of endogenous UbcH5 expression decreased ZIPK ubiquitination. Furthermore, coexpression of UbcH5c with ZIPK influenced promyelocytic leukemia protein nuclear body (PML-NB) formation. These results suggest that UbcH5 regulates ZIPK accumulation in PML-NBs by interacting with ZIPK and stimulating its ubiquitination

  19. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  20. The role of Na,K-ATPase/Src-kinase signaling pathway in the vascular wall contaction

    Bouzinova, Elena

    Aim: Na,K-ATPase is essential for maintaining the transmembrane ion gradient and might initiate various intracellular signaling. These signals possibly act through a modification of the local ion concentrations or via Src-kinase activation. It is known that inhibition of the α-2 isoform of Na......,K-ATPase by ouabain elevates blood pressure. Consequently, ouabain was shown to potentiate arterial contraction in vitro. In contrast, we have demonstrated that siRNA-induced down-regulation of the α-2 isoform Na,K-ATPase expression reduced arterial sensitivity to agonist stimulation and prevented the effect......) phosphorylation assay. Down-regulation of the α-2 isoform Na,K-ATPase prevented the inhibitory effect of Src inhibitors on arterial contraction. Conclusions: The pro-contractile action of ouabain-sensitive Na,K-ATPase inhibition is associated with Src-kinase inhibition suggesting the role of this signaling...

  1. Protein kinase M ζ and the maintenance of long-term memory.

    Zhang, Yang; Zong, Wei; Zhang, Lei; Ma, Yuanye; Wang, Jianhong

    2016-10-01

    Although various molecules have been found to mediate the processes of memory acquisition and consolidation, the molecular mechanism to maintain memory still remains elusive. In recent years, a molecular pathway focusing on protein kinase Mζ (PKMζ) has become of interest to researchers because of its potential role in long-term memory maintenance. PKMζ is an isoform of protein kinase C (PKC) and has a related structure that influences its function in maintaining memory. Considerable evidence has been gathered on PKMζ activity, including loss of function studies using PKMζ inhibitors, such as PKMζ inhibitory peptide (ZIP), suggesting PKMζ plays an important role in long-term memory maintenance. This review provides an overview of the role of PKMζ in long-term memory and outlines the molecular structure of PKMζ, the molecular mechanism of PKMζ in long-term memory maintenance and future directions of PKMζ research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids

    Powell, K A; Valova, V A; Malladi, C S

    2000-01-01

    Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding ...... assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine...... the phosphorylation site in PKCalpha-phosphorylated dynamin I as a single site at Ser-795, located near a binding site for the SH3 domain of p85, the regulatory subunit of phosphatidylinositol 3-kinase. However, phosphorylation had no effect on dynamin binding to a bacterially expressed p85-SH3 domain. Thus...

  3. The pat1 protein kinase controls transcription of the mating-type genes in fission yeast

    Nielsen, O; Egel, R; Nielsen, Olaf

    1990-01-01

    . This differentiation process is characterized by a transcriptional induction of the mating-type genes. Conjugation can also be induced in pat1-ts mutants by a shift to a semi-permissive temperature. The pat1 gene encodes a protein kinase, which also functions further downstream in the developmental pathway controlling...... of the mating-type genes in the zygote leads to complete loss of pat1 protein kinase activity causing entry into meiosis. Thus, pat1 can promote its own inactivation. We suggest a model according to which a stepwise inactivation of pat1 leads to sequential derepression of the processes of conjugation......The developmental programme of fission yeast brings about a transition from mitotic cell division to the dormant state of ascospores. In response to nitrogen starvation, two cells of opposite mating type conjugate to form a diploid zygote, which then undergoes meiosis and sporulation...

  4. Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix.

    Li, Hongyan; Jeong, Hyung Min; Choi, You Hee; Lee, Sung Ho; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl

    2013-05-10

    Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3α regulates osteogenic activity of Osterix. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    Celine Hebras

    Full Text Available Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner and INCENP (a vertebrate AURKB partner and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody

  6. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  8. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa.

    Anne Dettmann

    2012-09-01

    Full Text Available Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell-cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell-cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication.

  9. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.

    Chen, Jun; Kinoshita, Taisei; Sukbuntherng, Juthamas; Chang, Betty Y; Elias, Laurence

    2016-12-01

    Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2 + MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  11. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  12. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  13. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  14. Suggestibility and signal detection performance in hallucination-prone students.

    Alganami, Fatimah; Varese, Filippo; Wagstaff, Graham F; Bentall, Richard P

    2017-03-01

    Auditory hallucinations are associated with signal detection biases. We examine the extent to which suggestions influence performance on a signal detection task (SDT) in highly hallucination-prone and low hallucination-prone students. We also explore the relationship between trait suggestibility, dissociation and hallucination proneness. In two experiments, students completed on-line measures of hallucination proneness (the revised Launay-Slade Hallucination Scale; LSHS-R), trait suggestibility (Inventory of Suggestibility) and dissociation (Dissociative Experiences Scale-II). Students in the upper and lower tertiles of the LSHS-R performed an auditory SDT. Prior to the task, suggestions were made pertaining to the number of expected targets (Experiment 1, N = 60: high vs. low suggestions; Experiment 2, N = 62, no suggestion vs. high suggestion vs. no voice suggestion). Correlational and regression analyses indicated that trait suggestibility and dissociation predicted hallucination proneness. Highly hallucination-prone students showed a higher SDT bias in both studies. In Experiment 1, both bias scores were significantly affected by suggestions to the same degree. In Experiment 2, highly hallucination-prone students were more reactive to the high suggestion condition than the controls. Suggestions may affect source-monitoring judgments, and this effect may be greater in those who have a predisposition towards hallucinatory experiences.

  15. RhoA/Rho-Kinase in the Cardiovascular System.

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  16. Kinase inhibition by the Jamaican ball moss, Tillandsia recurvata L.

    Lowe, Henry I C; Watson, Charah T; Badal, Simone; Toyang, Ngeh J; Bryant, Joseph

    2012-10-01

    This research was undertaken in order to investigate the inhibitory potential of the Jamaican ball moss, Tillandsia recurvata against several kinases. The inhibition of these kinases has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Kinase inhibition was investigated using competition binding (to the ATP sites) assays, which have been previously established and authenticated. Four hundred and fifty one kinases were tested against the Jamaican ball moss extract and a dose-response was tested on 40 kinases, which were inhibited by more than 35% compared to the control. Out of the 40 kinases, the Jamaican ball moss selectively inhibited 5 (CSNK2A2, MEK5, GAK, FLT and DRAK1) and obtained Kd(50)s were below 20 μg/ml. Since MEK5 and GAK kinases have been associated with aggressive prostate cancer, the inhibitory properties of the ball moss against them, coupled with its previously found bioactivity towards the PC-3 cell line, makes it promising in the arena of drug discovery towards prostate cancer.

  17. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  18. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  19. Disorganized Cortical Patches Suggest Prenatal Origin of Autism

    ... 2014 Disorganized cortical patches suggest prenatal origin of autism NIH-funded study shows disrupted cell layering process ... study suggests that brain irregularities in children with autism can be traced back to prenatal development. “While ...

  20. Correlates of the Gudjonsson Suggestibility Scale in delinquent adolescents.

    Muris, Peter; Meesters, Cor; Merckelbach, Harald

    2004-02-01

    Correlations between scores on the Gudjonsson Suggestibility Scale and a number of relevant personality characteristics, i.e., intelligence, memory, social inadequacy, social desirability, and fantasy proneness, were examined in a sample of 71 delinquent boys. Analysis showed that intelligence and memory were negatively related to suggestibility scores. That is, lower memory and intelligence were associated with higher suggestibility. No significant correlations were found between suggestibility and other personality characteristics.