WorldWideScience

Sample records for kidney potential targets

  1. MicroRNAs as potential therapeutic targets in kidney disease

    Science.gov (United States)

    Gomez, Ivan G; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S

    2014-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD. PMID:23660218

  2. The gut-kidney axis in chronic renal failure: A new potential target for therapy.

    Science.gov (United States)

    Khoury, Tawfik; Tzukert, Keren; Abel, Roy; Abu Rmeileh, Ayman; Levi, Ronen; Ilan, Yaron

    2017-07-01

    Evidence is accumulating to consider the gut microbiome as a central player in the gut-kidney axis. Microbiome products, such as advanced glycation end products, phenols, and indoles, are absorbed into the circulation but are cleared by normal-functioning kidneys. These products then become toxic and contribute to the uremic load and to the progression of chronic kidney failure. In this review, we discuss the gut-kidney interaction under the state of chronic kidney failure as well as the potential mechanisms by which a change in the gut flora (termed gut dysbiosis) in chronic kidney disease (CKD) exacerbates uremia and leads to further progression of CKD and inflammation. Finally, the potential therapeutic interventions to target the gut microbiome in CKD are discussed. © 2016 International Society for Hemodialysis.

  3. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target.

    Science.gov (United States)

    Chen, C-H; Fong, L W R; Yu, E; Wu, R; Trott, J F; Weiss, R H

    2017-06-22

    Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.

  4. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.

    Science.gov (United States)

    Chade, Alejandro R; Kelsen, Silvia

    2012-05-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  5. RLIP76 Targeted Therapy for Kidney Cancer.

    Science.gov (United States)

    Singhal, Sharad S; Singhal, Jyotsana; Figarola, James; Horne, David; Awasthi, Sanjay

    2015-10-01

    Despite recent improvements in chemotherapeutic approaches to treating kidney cancer, this malignancy remains deadly if not found and removed at an early stage of the disease. Kidney cancer is highly drug-resistant, which may at least partially result from high expression of transporter proteins in the cell membranes of kidney cells. Although these transporter proteins can contribute to drug-resistance, targeting proteins from the ATP-binding cassette transporter family has not been effective in reversing drug-resistance in kidney cancer. Recent studies have identified RLIP76 as a key stress-defense protein that protects normal cells from damage caused by stress conditions, including heat, ultra-violet light, X-irradiation, and oxidant/electrophilic toxic chemicals, and is crucial for protecting cancer cells from apoptosis. RLIP76 is the predominant glutathione-electrophile-conjugate (GS-E) transporter in cells, and inhibiting it with antibodies or through siRNA or antisense causes apoptosis in many cancer cell types. To date, blocking of RLIP76, either alone or in combination with chemotherapeutic drugs, as a therapeutic strategy for kidney cancer has not yet been evaluated in human clinical trials, although there is considerable potential for RLIP76 to be developed as a therapeutic agent for kidney cancer. In the present review, we discuss the mechanisms underlying apoptosis caused by RLIP76 depletion, the role of RLIP76 in clathrin-dependent endocytosis deficiency, and the feasibility of RLIP76-targeted therapy for kidney cancer.

  6. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?

    Science.gov (United States)

    Cavalcanti Neto, Marinaldo Pacífico; Aquino, Jailane de Souza; Romão da Silva, Larissa de Fátima; de Oliveira Silva, Ruanniere; Guimarães, Keyth Sulamitta de Lima; de Oliveira, Yohanna; de Souza, Evandro Leite; Magnani, Marciane; Vidal, Hubert; de Brito Alves, José Luiz

    2018-04-01

    The gut microbiota plays an important role in host metabolism and its dysregulation have been related to cardiometabolic disorders (CMD), such as type 2 diabetes mellitus (T2D), dyslipidemia and arterial hypertension, as well as to chronic kidney diseases (CKD). The implication of the gut microbiota on systemic disorders has been associated with changes in its composition (dysbiosis) as a result of the oxidative unbalance in the body. This alteration may be the result of the adoption of unhealthy lifestyle behavior, including lack of physical activity and fat- or sugar-rich diets, which are largely associated with increased incidence of CMD and CKD. In last years, a number of clinical trials and experimental studies have demonstrated that probiotics can modulate the host metabolism, resulting in amelioration of systemic disease phenotypes by the improvement of dyslipidemia, glycemic profile and blood pressure or CKD parameters. The beneficial effects of probiotics consumption have been associated with their anti-inflammatory, antioxidant and gut-modulating properties. Despite of some mechanistic evidence, these effects are not totally elucidated. The present review summarizes and clarifies the effects of probiotics administration on CMD and CKD using combined evidence from clinical and experimental studies. Considering that the microbiota dysregulation has been associated with inflammation and oxidative stress and consequently with CMD and CKD, supplementation with probiotics is discussed as a strategy for management of CMD and CKD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Targeting of regulated necrosis in kidney disease

    Directory of Open Access Journals (Sweden)

    Diego Martin-Sanchez

    2018-03-01

    Full Text Available The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention. Resumen: La idea de que el término necrosis tubular aguda supone una denominación inapropiada se deriva de estudios morfológicos de necropsias humanas. La opinión generalizada ha sido que la necrosis representa una forma pasiva de muerte celular no regulada que no es susceptible de manipulación terapéutica. Los recientes avances han mejorado nuestra comprensión de la muerte celular en la lesión renal aguda. En primer lugar, la apoptosis origina una pérdida celular, pero no desencadena una respuesta inflamatoria. Sin embargo, los intentos rudimentarios de interferir en la apoptosis

  8. Polycystic Kidney Disease: Pathogenesis and Potential Therapies

    Science.gov (United States)

    Takiar, Vinita; Caplan, Michael J.

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent, inherited condition for which there is currently no effective specific clinical therapy. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells which gradually compress the parenchyma and compromise renal function. Current interests in the field focus on understanding and exploiting signaling mechanisms underlying disease pathogenesis as well as delineating the role of the primary cilium in cystogenesis. This review highlights the pathogenetic pathways underlying renal cyst formation as well as novel therapeutic targets for the treatment of PKD. PMID:21146605

  9. Obesity and target organ damage : the kidney

    NARCIS (Netherlands)

    de Jong, PE; Verhave, JC; Pinto-Sietsma, SJ; Hillege, HL

    2002-01-01

    Obesity is a risk marker for progressive renal function loss in patients with known renal disease. There is, however, increasing evidence that obesity may also damage the kidney in otherwise healthy subjects. There appears to be an intriguing parallel between the renal effects of obesity and those

  10. Palliative nephrectomy until targeted therapy of disseminated kidney cancer patients

    Directory of Open Access Journals (Sweden)

    A. V. Klimov

    2015-01-01

    Full Text Available Objective: to assess the role of palliative nephrectomy in disseminated kidney cancer patients planned to undergo targeted antiangiogenic treatment.Subjects and methods. The investigation included data on 83 patients with T1-4N0 / +M1 disseminated renal cell carcinoma (RCC who had received at least 2 targeted therapy cycles in 2009 to 2011. In 48 (57.8 % patients, the treatment was preceded by palliative nephrectomy that was not carried out in 35 (42.2 %. Before starting targeted therapy, all the cases were confirmed to be diagnosed with clear cell RCC, with a sarcomatoid component being in 7 (8.4 % patients. The median follow-up of all the patients was 21 (12–36 months.Results. The unremoved affected kidney in disseminated kidney cancer patients receiving targeted antiangiogenic therapy is an independent factor for the poor prognosis of progression-free (odds ratio (OR, 2.4; 95 % confidence interval (CI, 1.2–4.7 and overall (OR, 2.8; 95 % CI, 1.3–6.3 survival. Palliative nephrectomy does not improve the prognosis in patients with a low somatic status, the N+ category, and metastases into the bones and nonregional lymph nodes.Conclusion. Palliative nephrectomy in the selected patients with disseminated kidney cancer on targeted antiangiogenic therapy increases progression-free and overall survival.

  11. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  12. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  13. Identifying potential kidney donors using social networking web sites.

    Science.gov (United States)

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  14. Kidney in diabetes: from organ damage target to therapeutic target.

    Science.gov (United States)

    Salvatore, Teresa; Carbonara, Ornella; Cozzolino, Domenico; Torella, Roberto; Nasti, Rodolfo; Lascar, Nadia; Sasso, Ferdinando Carlo

    2011-09-01

    Despite the growing of pharmacological options for the treatment of diabetes, epidemiological studies suggest that a substantial proportion of patients does not achieve glycemic goals and so suffers from the risk of chronic complications. This review explores the inhibition of renal glucose reabsorption as a novel approach to treat hyperglycemia. Sodium-glucose cotransporter 2 (SGLT2), a low-affinity high-capacity transporter located in the brush-border membrane of the early segment (S1) of the proximal renal tubule, accounts for about 90% of the reabsorption of glucose from tubular fluid. Competitive inhibitors of SGLT2 that are responsible for renal excretion of glucose provide a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. They act independently of insulin secretion, thereby minimizing the risk of hypoglycemia and weight gain, to control energy balance in a negative direction, a distinctive advantage of this class of drugs over existing oral hypoglycemic agents. Although this group of medications is still under investigation, it appears to be safe and generally well tolerated and it would be expected to improve the treatment of type 2 diabetes as monotherapy or in combination with other oral or parenteral agents. Dapagliflozin is the first agent within this class, which induces clinically meaningful reductions in FPG, PPG, HbA1c, and body weight in type 2 diabetes.

  15. Potential Use of Stem Cells for Kidney Regeneration

    Directory of Open Access Journals (Sweden)

    Takashi Yokoo

    2011-01-01

    Full Text Available Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.

  16. New Targets for End-Stage Chronic Kidney Disease Therapy

    Directory of Open Access Journals (Sweden)

    Prakoura Niki

    2015-05-01

    Full Text Available Severe forms of chronic kidney disease can lead to a critical, end-stage condition, requiring renal replacement therapy, which may involve a form of dialysis or renal transplantation. Identification and characterization of novel markers and/or targets of therapy that could be applied in these critically ill patients remains the focus of the current research in the field of critical care medicine and has been the objective of our studies for some years past. To this end, we used models of renal vascular disease, Ang II, L-NAME or mice overexpressing renin, treated with AT1 antagonists at different stages of progression, to create cohorts of animals during progression, reversal or escape from therapy. Transcriptomic analysis and comparisons were performed and genes were selected according to the following criteria: a not previously described in the kidney, b highly upregulated during progression and returning to the normal levels during reversal, and c producing proteins that are either circulating or membrane receptors.

  17. Chronic Kidney Disease is a New Target of Cardiac Rehabilitation

    Directory of Open Access Journals (Sweden)

    Masahiro Kohzuki

    2017-05-01

    Full Text Available Chronic heart failure is increasingly prevalent worldwide and is associated with significant morbidity and mortality. The Cochrane review demonstrated that cardiac rehabilitation (CR resulted in improvements in QOL and a reduction in long-term mortality. Chronic kidney disease (CKD is another worldwide public health problem. This review focuses on the importance and efficacy of rehabilitation for CKD patients as a new target of CR. Patients with CKD on hemodialysis (HD have a high mortality rate, with cardiovascular diseases, such as chronic heart failure. A new systematic review and meta-analysis of randomized controlled trials reported that exercise-based renal rehabilitation improved aerobic capacity, muscular functioning, cardiovascular function, walking capacity, and QOL in CKD patients with HD. Moreover, exercise training may have renal protective effects, not only in some animal models of pre-HD CKD, but also in pre-HD CKD patients. Exercise therapy could be an effective clinical strategy in improving renal function, lowering the need for renal replacement therapy, such as HD, and reducing renal transplant risk in pre-HD CKD patients. This led the Ministry of Health, Labor and Welfare of Japan to extend renal rehabilitation partial coverage to stage 4 pre-HD CKD patients for the first time in the world in 2016.

  18. Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK3β

    Science.gov (United States)

    Jiang, Chunming; Zhu, Wei; Yan, Xiang; Shao, Qiuyuan; Xu, Biao; Zhang, Miao; Gong, Rujun

    2016-01-01

    Acute kidney injury (AKI) remains challenging for clinical practice and poses a risk of developing progressive chronic kidney disease (CKD) with no definitive treatment available yet. Tanshinone IIA, an active ingredient of Chinese herbal Salvia miltiorrhiza, has been widely used in Asia for the remarkable organoprotective activities. Its effect on established AKI, however, remains unknown. In mice with folic acid-induced AKI, delayed treatment with Tanshinone IIA, commenced early or late after injury, diminished renal expression of kidney injury markers, reduced apoptosis and improved kidney dysfunction, concomitant with mitigated histologic signs of AKI to CKD transition, including interstitial fibrosis and tubular atrophy, and with an ameliorated inflammatory infiltration in tubulointerstitium and a favored M2-skewed macrophage polarization. Mechanistically, Tanshinone IIA blunted glycogen synthase kinase (GSK)3β overactivity and hyperactivation of its downstream mitogen-activated protein kinases that are centrally implicated in renal fibrogenesis and inflammation. Inhibition of GSK3β is likely a key mechanism mediating the therapeutic activity of Tanshinone IIA, because sodium nitroprusside, a GSK3β activator, largely offset its renoprotective effect. In confirmatory studies, rescue treatment with Tanshinone IIA likewise ameliorated ischemia/reperfusion-induced kidney destruction in mice. Our data suggest that Tanshinone IIA represents a valuable treatment that improves post-AKI kidney salvage via targeting GSK3β. PMID:27857162

  19. Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases.

    Science.gov (United States)

    Sever, Sanja; Schiffer, Mario

    2018-06-01

    Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy

    NARCIS (Netherlands)

    Clar, Julie; Gri, Blandine; Calderaro, Julien; Birling, Marie-Christine; Herault, Yann; Smit, G. Peter A.; Mithieux, Gilles; Rajas, Fabienne

    2014-01-01

    Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and

  1. Distribution of the alphaGal- and the non-alphaGal T-antigens in the pig kidney: potential targets for rejection in pig-to-man xenotransplantation

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Mikkelsen, Hanne B

    2008-01-01

    Carbohydrate antigens, present on pig vascular endothelial cells, seem to be the prime agents responsible for graft rejection, and although genetically modified animals that express less amounts of carbohydrate antigen are available, it is still useful to decide the localization of the reactive...... xenoantigens in organs contemplated for xenotransplantation. Here we compare the distribution in pig kidney of antigens important in xenograft destruction, namely the Galalpha1-3Gal (alphaGal) glycans, with the localization of the T-antigen (Galbeta1-3GalNAc). The alpha-galactose-specific lectin Griffonia...... simplicifolia isolectin 1B4 was used to detect the Galalpha1-3Gal glycans, whereas Arachis hypogaea (PNA) lectin and a monoclonal antibody (3C9) detected T-antigen. In addition, two vascular markers (anti-caveolin-1 and anti-von Willebrand factor) served to identify vascular structures of the kidney. Both...

  2. Histopathologic Findings of Potential Kidney Donors With Asymptomatic Microscopic Hematuria: Impact on Donation.

    Science.gov (United States)

    Hassan, E A; Ali, T Z; Abdulbaki, A; Ibrahim, I A; Almanae, H M; Aleid, H A

    2017-10-01

    Isolated microscopic hematuria (IMH) is not uncommon in potential kidney donors. The aim was to study the kidney biopsy findings of potential kidney donors with IMH and the impact of the histopathologic diagnoses on the decision to accept or decline such donors from kidney donation. In this retrospective study, all the potential kidney donors with IMH were identified from the medical records of patients who underwent kidney biopsies between January 2010 and December 2016. Forty-five such individuals were identified. The mean age of these potential donors was 32.6 years and 76% were male. All of them had normal blood pressure and no significant proteinuria. Seventeen (38%) biopsies showed histopathologic abnormalities; thin basement membrane disease (n = 13; 28%) was the most common cause followed by immunoglobulin (Ig)A nephropathy (n = 4; 9%). Donors with abnormal biopsy findings were excluded from donation. However, 62% of the potential donors had normal kidney biopsy findings and were accepted for kidney donation. IMH justifies extensive work-up including kidney biopsy to identify donors who may have underlying significant glomerular pathology excluding them from kidney donation. On the other hand, kidney biopsy also helps in accepting the donors if it does not show significant abnormality. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  4. Potential Deleterious Effects of Vasopressin in Chronic Kidney Disease and Particularly Autosomal Dominant Polycystic Kidney Disease

    NARCIS (Netherlands)

    Meijer, E.; Boertien, W. E.; Zietse, R.; Gansevoort, R. T.

    2011-01-01

    The antidiuretic hormone vasopressin is crucial for regulating free water clearance in normal physiology. However, it has also been hypothesized that vasopressin has deleterious effects on the kidney. Vasopressin is elevated in animals and patients with chronic kidney disease. Suppression of

  5. Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.

    Science.gov (United States)

    Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun

    2017-08-01

    Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Pathogenesis and potential therapy of autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    O.O. Melnyk

    2017-10-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is a hereditary disease characterized by progressive growth of the cyst and an increase in the total volume of the kidneys which leads to kidney failure. The main causes of ADPKD are mutations in the genes PKD1 and PKD2 which encode the formation of polycystin-1 and polycystin-2 proteins. There is a connection between structural and functional defects in the primary cilia with the ADPKD. The most promising drugs for the treatment of ADPKD today are vasopressin-2 receptor antagonists, m-TOR and c-AMP inhibitors.

  7. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  8. Molecular Pathways: Fumarate Hydratase-Deficient Kidney Cancer: Targeting the Warburg Effect in Cancer

    Science.gov (United States)

    Linehan, W. Marston; Rouault, Tracey A.

    2015-01-01

    Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a hereditary cancer syndrome in which affected individuals are at risk for development of cutaneous and uterine leiomyomas and an aggressive form of type II papillary kidney cancer. HLRCC is characterized by germline mutation of the tricarboxylic acid cycle (TCA) enzyme, fumarate hydratase (FH). FH-deficient kidney cancer is characterized by impaired oxidative phosphorylation and a metabolic shift to aerobic glycolysis, a form of metabolic reprogramming referred to as the Warburg effect. Increased glycolysis generates ATP needed for increased cell proliferation. In FH-deficient kidney cancer levels of AMPK, a cellular energy sensor, are decreased; resulting in diminished p53 levels, decreased expression of the iron importer, DMT1, leading to low cellular iron levels, and to enhanced fatty acid synthesis by diminishing phosphorylation of acetyl CoA carboxylase, a rate limiting step for fatty acid synthesis. Increased fumarate and decreased iron levels in FH-deficient kidney cancer cells inactivate prolyl hydroxylases, leading to stabilization of HIF1α, and increased expression of genes such as vascular endothelial growth factor (VEGF) and GLUT1 to provide fuel needed for rapid growth demands. Several therapeutic approaches for targeting the metabolic basis of FH-deficient kidney cancer are under development or are being evaluated in clinical trials, including the use of agents such as metformin, which would reverse the inactivation of AMPK, approaches to inhibit glucose transport, LDH-A, the anti-oxidant response pathway, the heme oxygenase pathway and approaches to target the tumor vasculature and glucose transport with agents such as bevacizumab and erlotinib. These same types of metabolic shifts, to aerobic glycolysis with decreased oxidative phosphorylation, have been found in a wide variety of other cancer types. Targeting the metabolic basis of a rare cancer such as fumarate hydratase

  9. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Kim

    2012-09-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is the most common life-threatening hereditary disease in the USA resulting in chronic kidney disease and the need for dialysis and transplantation. Approximately 85% of cases of ADPKD are caused by a mutation in the Pkd1 gene that encodes polycystin-1, a large membrane receptor. The Pkd1 gene mutation results in abnormal proliferation in tubular epithelial cells, which plays a crucial role in cyst development and/or growth in PKD. Activation of the proliferative mammalian target of rapamycin (mTOR signaling pathway has been demonstrated in polycystic kidneys from rodents and humans. mTOR inhibition with sirolimus or everolimus decreases cysts in most animal models of PKD including Pkd1 and Pkd2 gene deficient orthologous models of human disease. On the basis of animal studies, human studies were undertaken. Two large randomized clinical trials published in the New England Journal of Medicine of everolimus or sirolimus in ADPKD patients were very unimpressive and associated with a high side-effect profile. Possible reasons for the unimpressive nature of the human studies include their short duration, the high drop-out rate, suboptimal dosing, lack of randomization of “fast” and “slow progressors” and the lack of correlation between kidney size and kidney function in ADPKD. The future of mTOR inhibition in ADPKD is discussed.

  10. a potential cause of cardiovascular diseases in chronic kidney ...

    African Journals Online (AJOL)

    Fibroblast growth factor 23 (FGF-23) has been identified as one of the risk factors for the development of cardiovascular diseases (CVDs) in chronic kidney disease (CKD) patients. Although FGF-23 is necessary for the maintenance of phosphate balance, it has been implicated in the pathogenesis of left ventricular ...

  11. The potential role of flaxseed oil on lead acetateinduced kidney ...

    African Journals Online (AJOL)

    The results showed that the administration of flaxseed oil efficiently protected albino rats against the Pb+2 caused injury, as revealed by some improvement in the histological structure of kidney as well as the restoration of the body weights loss of Pb+2 treated animals. At the same time, flaxseed oil decreased the levels of ...

  12. The association between individual counselling and health behaviour change: the See Kidney Disease (SeeKD) targeted screening programme for chronic kidney disease

    OpenAIRE

    Galbraith, Lauren; Hemmelgarn, Brenda; Manns, Braden; Samuel, Susan; Kappel, Joanne; Valk, Nadine; Ronksley, Paul

    2016-01-01

    Background Health behaviour change is an important component of management for patients with chronic kidney disease (CKD); however, the optimal method to promote health behaviour change for self-management of CKD is unknown. The See Kidney Disease (SeeKD) targeted screening programme screened Canadians at risk for CKD and promoted health behaviour change through individual counselling and goal setting. Objectives The objectives of this study are to determine the effectiveness of individual co...

  13. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2016-09-01

    pathways that are involved in cyst development and expansion. These experiments will make use of cultured ADPKD cells and a mouse model of ADPKD to...AWARD NUMBER: W81XWH-15-1-0420 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...PRINCIPAL INVESTIGATOR: Kenneth R. Hallows, MD, PhD, FASN CONTRACTING ORGANIZATION: University of Southern California Los Angeles, CA 90089-0701

  14. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

    Directory of Open Access Journals (Sweden)

    Wu S

    2014-12-01

    control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MBSDF-1 destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair. Keywords: mesenchymal stem cell, ultrasound, microbubbles, homing, stromal cell-derived factor-1, diabetic nephropathy

  15. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Nonspecific targeting of iron oxide nanoparticles to the liver, kidney and spleen: A novel approach to achieving specificity

    Science.gov (United States)

    Palihawadana Arachchige, Maheshika; Flack, Amanda; Chen, Xuequn; Li, Jing; Oupicky, David; Cheng, Y.-C. Norman; Shen, Yimin; Jena, Bhanu; Lawes, Gavin

    2013-03-01

    Recently, there has been significant interest in developing Fe3O4 nanoparticles for biomedical applications including targeted drug delivery and magnetic resonance imaging. One of the major problems in these applications is the undesirable filtration of these materials by the mononuclear phagocyte system. Preliminary magnetic resonance imaging and magnetization studies on hyaluronic acid coated nanoparticles injected intravenously into mice confirm that the nanoparticles accumulate in the liver, spleen, and kidneys. To identify whether certain specific proteins are responsible for nanoparticle accumulation in these organs, we exposed hyaluronic acid coated nanoparticles to proteins extracted from the liver, spleen, and kidneys, together with blood plasma proteins, then subsequently used gel electrophoresis and mass spectroscopy to identify the proteins binding to the nanoparticles. We find that the unwanted accumulation of nanoparticles in these organs can potentially be attributed to specific binding by a small number of proteins. By appropriately functionalizing the iron oxide nanoparticles, we expect that the nanoparticles uptake in the liver, spleen, and kidneys will be reduced.

  17. Biomeasures and mechanistic modeling highlight PK/PD risks for a monoclonal antibody targeting Fn14 in kidney disease.

    Science.gov (United States)

    Chen, Xiaoying; Farrokhi, Vahid; Singh, Pratap; Ocana, Mireia Fernandez; Patel, Jenil; Lin, Lih-Ling; Neubert, Hendrik; Brodfuehrer, Joanne

    2018-01-01

    Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.

  18. Obesity: Current and Potential Pharmacotherapeutics and Targets

    Science.gov (United States)

    Narayanaswami, Vidya; Dwoskin, Linda P.

    2016-01-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. PMID:27773782

  19. Human Anti-Oxidation Protein A1M—A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Jonas Ahlstedt

    2015-12-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.

  20. Cardiovascular calcifications in chronic kidney disease: Potential therapeutic implications

    Directory of Open Access Journals (Sweden)

    Jordi Bover

    2016-11-01

    Full Text Available Cardiovascular (CV calcification is a highly prevalent condition at all stages of chronic kidney disease (CKD and is directly associated with increased CV and global morbidity and mortality. In the first part of this review, we have shown that CV calcifications represent an important part of the CKD–MBD complex and are a superior predictor of clinical outcomes in our patients. However, it is also necessary to demonstrate that CV calcification is a modifiable risk factor including the possibility of decreasing (or at least not aggravating its progression with iatrogenic manoeuvres. Although, strictly speaking, only circumstantial evidence is available, it is known that certain drugs may modify the progression of CV calcifications, even though a direct causal link with improved survival has not been demonstrated. For example, non-calcium-based phosphate binders demonstrated the ability to attenuate the progression of CV calcification compared with the liberal use of calcium-based phosphate binders in several randomised clinical trials. Moreover, although only in experimental conditions, selective activators of the vitamin D receptor seem to have a wider therapeutic margin against CV calcification. Finally, calcimimetics seem to attenuate the progression of CV calcification in dialysis patients. While new therapeutic strategies are being developed (i.e. vitamin K, SNF472, etc., we suggest that the evaluation of CV calcifications could be a diagnostic tool used by nephrologists to personalise their therapeutic decisions.

  1. Complementary bodybuilding: A potential risk for permanent kidney disease

    Directory of Open Access Journals (Sweden)

    Wael El-Reshaid

    2018-01-01

    Full Text Available We report our experience of renal disease associated with bodybuilders who had been on high-protein diet, anabolic androgenic steroids (AASs, and growth hormone (GH for years. A total of 22 adult males who volunteered information about use of high protein diet and AAS or GH were seen over a six-year period with renal disease. Kidney biopsy revealed focal segmental glomerulosclerosis (FSGS in eight, nephroangiosclerosis in four, chronic interstitial nephritis in three, acute interstitial nephritis in two, nephrocalcinosis with chronic interstitial nephritis in two, and single patients with membranous glomerulopathy, crescentic glomerulopathy, and sclerosing glomerulonephritis. Patients with FSGS had a longer duration of exposure, late presentation, and worse prognosis. Those with interstitial disease had shorter exposure time and earlier presentation and had improved or stabilized after discontinuation of their practice. There is a need for health education for athletes and bodybuilders to inform them about the risks of renal disease involved with the use of high-protein diet, AAS, and GH.

  2. Complementary bodybuilding: A potential risk for permanent kidney disease.

    Science.gov (United States)

    El-Reshaid, Wael; El-Reshaid, Kamel; Al-Bader, Shaikha; Ramadan, Ahmad; Madda, John Patrick

    2018-01-01

    We report our experience of renal disease associated with bodybuilders who had been on high-protein diet, anabolic androgenic steroids (AASs), and growth hormone (GH) for years. A total of 22 adult males who volunteered information about use of high protein diet and AAS or GH were seen over a six-year period with renal disease. Kidney biopsy revealed focal segmental glomerulosclerosis (FSGS) in eight, nephroangiosclerosis in four, chronic interstitial nephritis in three, acute interstitial nephritis in two, nephrocalcinosis with chronic interstitial nephritis in two, and single patients with membranous glomerulopathy, crescentic glomerulopathy, and sclerosing glomerulonephritis. Patients with FSGS had a longer duration of exposure, late presentation, and worse prognosis. Those with interstitial disease had shorter exposure time and earlier presentation and had improved or stabilized after discontinuation of their practice. There is a need for health education for athletes and bodybuilders to inform them about the risks of renal disease involved with the use of high-protein diet, AAS, and GH.

  3. Cardiovascular calcifications in chronic kidney disease: Potential therapeutic implications.

    Science.gov (United States)

    Bover, Jordi; Ureña-Torres, Pablo; Górriz, José Luis; Lloret, María Jesús; da Silva, Iara; Ruiz-García, César; Chang, Pamela; Rodríguez, Mariano; Ballarín, José

    Cardiovascular (CV) calcification is a highly prevalent condition at all stages of chronic kidney disease (CKD) and is directly associated with increased CV and global morbidity and mortality. In the first part of this review, we have shown that CV calcifications represent an important part of the CKD-MBD complex and are a superior predictor of clinical outcomes in our patients. However, it is also necessary to demonstrate that CV calcification is a modifiable risk factor including the possibility of decreasing (or at least not aggravating) its progression with iatrogenic manoeuvres. Although, strictly speaking, only circumstantial evidence is available, it is known that certain drugs may modify the progression of CV calcifications, even though a direct causal link with improved survival has not been demonstrated. For example, non-calcium-based phosphate binders demonstrated the ability to attenuate the progression of CV calcification compared with the liberal use of calcium-based phosphate binders in several randomised clinical trials. Moreover, although only in experimental conditions, selective activators of the vitamin D receptor seem to have a wider therapeutic margin against CV calcification. Finally, calcimimetics seem to attenuate the progression of CV calcification in dialysis patients. While new therapeutic strategies are being developed (i.e. vitamin K, SNF472, etc.), we suggest that the evaluation of CV calcifications could be a diagnostic tool used by nephrologists to personalise their therapeutic decisions. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  4. The association between individual counselling and health behaviour change: the See Kidney Disease (SeeKD) targeted screening programme for chronic kidney disease.

    Science.gov (United States)

    Galbraith, Lauren; Hemmelgarn, Brenda; Manns, Braden; Samuel, Susan; Kappel, Joanne; Valk, Nadine; Ronksley, Paul

    2016-01-01

    Health behaviour change is an important component of management for patients with chronic kidney disease (CKD); however, the optimal method to promote health behaviour change for self-management of CKD is unknown. The See Kidney Disease (SeeKD) targeted screening programme screened Canadians at risk for CKD and promoted health behaviour change through individual counselling and goal setting. The objectives of this study are to determine the effectiveness of individual counselling sessions for eliciting behaviour change and to describe participant characteristics associated with behaviour change. This is a cross-sectional, descriptive study. The study setting is the National SeeKD targeted screening programme. The participants are all 'at risk' patients who were screened for CKD and returned a follow-up health behaviour survey (n = 1129). Health behaviour change was defined as a self-reported change in lifestyle, including dietary changes or medication adherence. An individual counselling session was provided to participants by allied healthcare professionals to promote health behaviour change. A survey was mailed to all participants at risk of CKD within 2-4 weeks following the screening event to determine if behaviour changes had been initiated. Descriptive statistics were used to describe respondent characteristics and self-reported behaviour change following screening events. Results were stratified by estimated glomerular filtration rate (eGFR) (change. Of the 1129 respondents, the majority (89.8 %) reported making a health behaviour change after the screening event. Respondents who were overweight (body mass index [BMI] 25-29.9 kg/m(2)) or obese (BMI ≥ 30.0 kg/m(2)) were more likely to report a behaviour change (prevalence rate ratio (PRR) 0.66, 95 % confidence interval (CI) 0.44-0.99 and PRR 0.49, 95 % CI 0.30-0.80, respectively). Further, participants with a prior intent to change their behaviour were more likely to make a behaviour change

  5. Evaluating a surgeon led training program: Targeting kidney disease in Vietnam

    Directory of Open Access Journals (Sweden)

    Douglas P. Slakey

    2016-01-01

    Conclusions: The curriculum improved multidisciplinary team performance in the short and long term. Course design provided a structured training framework, and enhanced the learning. The methods used to deliver the educational material and simulation training overcame potential language and cultural barriers. Follow-up demonstrated a sustained acceptance and application of the training in the care of complex kidney disease patients. The Kirkpatrick evaluation method assisted in determining the effectiveness of this training methodology. Using this platform for education and training can foster improvements in patient outcomes effectiveness.

  6. MR imaging: a 'One Stop Shop' Modality for Preoperative Evaluation of Potential Living Kidney-Donors

    NARCIS (Netherlands)

    S.M. Hussain (Shahid); M.C.J.M. Kock (Marc); P.M.T. Pattynama (Peter); M.G.M. Hunink (Myriam); G.P. Krestin (Gabriel); J.N.M. IJzermans (Jan)

    2003-01-01

    textabstractAt many institutions, magnetic resonance (MR) angiography is the technique of choice for assessment of the renal arteries and renal parenchyma in potential living kidney donors. The renal arteries and renal veins have a varied anatomy and may consist of one or more

  7. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney

    DEFF Research Database (Denmark)

    Kassmann, M.; Harteneck, C.; Zhu, Z.

    2013-01-01

    Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neuro...... pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.......-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous...

  8. Ferumoxytol-enhanced magnetic resonance angiography for the assessment of potential kidney transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    Stoumpos, Sokratis; Mark, Patrick B. [Queen Elizabeth University Hospital, Renal and Transplant Unit, Glasgow (United Kingdom); University of Glasgow, Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow (United Kingdom); Hennessy, Martin; Kasthuri, Ram; Roditi, Giles [Queen Elizabeth University Hospital, Department of Radiology, Glasgow (United Kingdom); Vesey, Alex T.; Kingsmore, David B. [Queen Elizabeth University Hospital, Renal and Transplant Unit, Glasgow (United Kingdom); Radjenovic, Aleksandra [University of Glasgow, Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow (United Kingdom)

    2018-01-15

    Traditional contrast-enhanced methods for scanning blood vessels using magnetic resonance imaging (MRI) or CT carry potential risks for patients with advanced kidney disease. Ferumoxytol is a superparamagnetic iron oxide nanoparticle preparation that has potential as an MRI contrast agent in assessing the vasculature. Twenty patients with advanced kidney disease requiring aorto-iliac vascular imaging as part of pre-operative kidney transplant candidacy assessment underwent ferumoxytol-enhanced magnetic resonance angiography (FeMRA) between December 2015 and August 2016. All scans were performed for clinical indications where standard imaging techniques were deemed potentially harmful or inconclusive. Image quality was evaluated for both arterial and venous compartments. First-pass and steady-state FeMRA using incremental doses of up to 4 mg/kg body weight of ferumoxytol as intravenous contrast agent for vascular enhancement was performed. Good arterial and venous enhancements were achieved, and FeMRA was not limited by calcification in assessing the arterial lumen. The scans were diagnostic and all patients completed their studies without adverse events. Our preliminary experience supports the feasibility and utility of FeMRA for vascular imaging in patients with advanced kidney disease due for transplant listing, which has the advantages of obtaining both arteriography and venography using a single test without nephrotoxicity. (orig.)

  9. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets.

    Science.gov (United States)

    Whaley-Connell, Adam; Sowers, James R

    2017-08-01

    The global burden of kidney disease is increasing strikingly in parallel with increases in obesity and diabetes. Indeed, chronic kidney disease (CKD) and end-stage renal disease (ESRD) coupled with comorbidities such as obesity, diabetes, and hypertension cost the health care system hundreds of billions of dollars in the US alone. The progression to ESRD in patients with obesity and diabetes continues despite widespread use of inhibitors of the renin-angiotensin-aldosterone system (RAAS) along with aggressive blood pressure and glycemic control in these high-risk populations. Thereby, it is increasingly important to better understand the underlying mechanisms involved in obesity-related CKD in order to develop new strategies that prevent or interrupt the progression of this costly disease. In this context, a key mechanism that drives development and progression of kidney disease in obesity is endothelial dysfunction and associated tubulointerstitial fibrosis. However, the precise interactive mechanisms in the development of aortic and kidney endothelial dysfunction and tubulointerstitial fibrosis remain unclear. Further, strategies specifically targeting kidney fibrosis have yielded inconclusive benefits in human studies. While clinical data support the benefits derived from inhibition of the RAAS, there is a tremendous amount of residual risk for the progression of kidney disease in individuals with obesity and diabetes. There is promising experimental data to suggest that exercise, targeting inflammation and oxidative stress, lowering uric acid, and targeting the mineralocorticoid receptor signaling and/or sodium channel inhibition could improve tubulointerstitial fibrosis and mitigate progression of kidney disease in persons with obesity and diabetes. Published by Elsevier Inc.

  10. MicroRNAs in Renal Diseases: A Potential Novel Therapeutic Target.

    Science.gov (United States)

    Petrillo, Federica; Iervolino, Anna; Zacchia, Miriam; Simeoni, Adelina; Masella, Cristina; Capolongo, Giovanna; Perna, Alessandra; Capasso, Giovambattista; Trepiccione, Francesco

    2017-12-01

    MicroRNAs (miRNAs) are a family of short noncoding RNAs that play important roles in posttranscriptional gene regulation. miRNAs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiological and pathological processes. In the kidney, miRNAs play a role in the organogenesis and in the pathogenesis of several diseases, including renal carcinoma, diabetic nephropathy, cystogenesis, and glomerulopathies. Indeed, podocytes, but also the parietal cells of the Bowman capsule are severely affected by miRNA deregulation. In addition, several miRNAs have been found involved in the development of renal fibrosis. These experimental lines of evidence found a counterpart also in patients affected by diabetic and Ig-A nephropathies, opening the possibility of their use as biomarkers. Finally, the possibility to direct target-specific miRNA to prevent the development of renal fibrosis is encouraging potential novel therapies based on miRNA mimicking or antagonism. This review reports the main studies that investigate the role of miRNAs in the kidneys, in particular highlighting the experimental models used, their potential role as biomarkers and, finally, the most recent data on the miRNA-based therapy. miRNAs are crucial regulators of cell function. They are easy to detect and represent potentially good targets for novel therapies.

  11. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  12. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Science.gov (United States)

    Young, Simon A.; Mina, John G.; Denny, Paul W.; Smith, Terry K.

    2012-01-01

    Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions. PMID:22400113

  13. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  14. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  15. Targeted Gene Sequencing and Whole-Exome Sequencing in Autopsied Fetuses with Prenatally Diagnosed Kidney Anomalies

    DEFF Research Database (Denmark)

    Rasmussen, M; Sunde, L; Nielsen, M L

    2018-01-01

    Identification of fetal kidney anomalies invites questions about underlying causes and recurrence risk in future pregnancies. We therefore investigated the diagnostic yield of next-generation sequencing in fetuses with bilateral kidney anomalies and the correlation between disrupted genes and fetal...... phenotypes. Fetuses with bilateral kidney anomalies were screened using an in-house-designed kidney-gene panel. In families where candidate variants were not identified, whole-exome sequencing was performed. Genes uncovered by this analysis were added to our kidney-panel. We identified likely deleterious...... of nephronophthisis. Exome sequencing identified ROBO1 variants in one family and a GREB1L variant in another family. GREB1L and ROBO1 were added to our kidney-gene panel and additional variants were identified. Next-generation sequencing substantially contributes to identifying causes of fetal kidney anomalies...

  16. Targeting loss of the Hippo signaling pathway in NF2-deficient papillary kidney cancers

    Science.gov (United States)

    Ricketts, Christopher J.; Wei, Darmood; Yang, Youfeng; Baranes, Sarah M.; Gibbs, Benjamin K.; Ohanjanian, Lernik; Spencer Krane, L.; Scroggins, Bradley T.; Keith Killian, J.; Wei, Ming-Hui; Kijima, Toshiki; Meltzer, Paul S.; Citrin, Deborah E.; Neckers, Len; Vocke, Cathy D.; Marston Linehan, W.

    2018-01-01

    Papillary renal cell carcinomas (PRCC) are a histologically and genetically heterogeneous group of tumors that represent 15–20% of all kidney neoplasms and may require diverse therapeutic approaches. Alteration of the NF2 tumor suppressor gene, encoding a key regulator of the Hippo signaling pathway, is observed in 22.5% of PRCC. The Hippo signaling pathway controls cell proliferation by regulating the transcriptional activity of Yes-Associated Protein, YAP1. Loss of NF2 results in aberrant YAP1 activation. The Src family kinase member Yes also regulates YAP1 transcriptional activity. This study investigated the importance of YAP and Yes activity in three NF2-deficient PRCC cell lines. NF2-deficency correlated with increased expression of YAP1 transcriptional targets and siRNA-based knockdown of YAP1 and Yes1 downregulated this pathway and dramatically reduced cell viability. Dasatinib and saracatinib have potent inhibitory effects on Yes and treatment with either resulted in downregulation of YAP1 transcription targets, reduced cell viability, and G0-G1 cell cycle arrest. Xenograft models for NF2-deficient PRCC also demonstrated reduced tumor growth in response to dasatinib. Thus, inhibiting Yes and the subsequent transcriptional activity of YAP1 had a substantial anti-tumor cell effect both in vitro and in vivo and may provide a viable therapeutic approach for patients with NF2-deficient PRCC. PMID:29535838

  17. Potential targets for colorectal cancer prevention.

    Science.gov (United States)

    Temraz, Sally; Mukherji, Deborah; Shamseddine, Ali

    2013-08-22

    The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), survivin and insulin-like growth factor-I (IGF-I). Clinical trials of COX-2 inhibitors have provided the "proof of principle" that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.

  18. Potential Targets for Colorectal Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Ali Shamseddine

    2013-08-01

    Full Text Available The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2, nuclear factor kappa B (NF-κB, survivin and insulin-like growth factor-I (IGF-I. Clinical trials of COX-2 inhibitors have provided the “proof of principle” that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.

  19. Trailer-targeting a potential audience

    OpenAIRE

    Brůnová, Lada

    2013-01-01

    How can movie production companies speak to their potential audience thru movie trailers? Which means do they use and what is the public reception? How does a viewer interpret a movie trailer? What can we learn about viewers from movie trailers? This thesis is offering all the answers to questions mentioned above in two different parts - in the first part the concepts of movie trailers are introduced and explained, the second part analyses the outcomes of a research which studies the affects ...

  20. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  1. The potential use of biomarkers in predicting contrast-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Andreucci M

    2016-09-01

    Full Text Available Michele Andreucci,1 Teresa Faga,1 Eleonora Riccio,2 Massimo Sabbatini,2 Antonio Pisani,2 Ashour Michael,1 1Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, 2Department of Public Health, University of Naples Federico II, Naples, Italy Abstract: Contrast-induced acute kidney injury (CI-AKI is a problem associated with the use of iodinated contrast media, causing kidney dysfunction in patients with preexisting renal failure. It accounts for 12% of all hospital-acquired kidney failure and increases the length of hospitalization, a situation that is worsening with increasing numbers of patients with comorbidities, including those requiring cardiovascular interventional procedures. So far, its diagnosis has relied upon the rise in creatinine levels, which is a late marker of kidney damage and is believed to be inadequate. Therefore, there is an urgent need for biomarkers that can detect CI-AKI sooner and more reliably. In recent years, many new biomarkers have been characterized for AKI, and these are discussed particularly with their use in known CI-AKI models and studies and include neutrophil gelatinase-associated lipocalin, cystatin C (Cys-C, kidney injury molecule-1, interleukin-18, N-acetyl-β-d-glucosaminidase, and L-type fatty acid-binding protein (L-FABP. The potential of miRNA and metabolomic technology is also mentioned. Early detection of CI-AKI may lead to early intervention and therefore improve patient outcome, and in future any one or a combination of several of these markers together with development in technology for their analysis may prove effective in this respect. Keywords: radiocontrast media, acute renal failure, markers, renal injury

  2. Novel therapeutic approach targeting the HIF-HRE system in the kidney.

    Science.gov (United States)

    Nangaku, Masaomi

    2009-01-01

    Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal disease. Therefore, therapeutic approaches which target the chronic hypoxia should prove effective against a broad range of renal diseases. Many of hypoxia-triggered protective mechanisms are hypoxia inducible factor (HIF)-dependent. Although HIF-1 alpha and HIF-2 alpha share both structural and functional similarity, they have different localization and can contribute in a non-redundant manner. While gene transfer of constitutively active HIF has been shown effective, pharmacological approaches to activate HIF are more desirable. Oxygen-dependent activation of prolyl hydroxylases (PHD) regulates the amount of HIF by degradation of this transcription factor. Therefore, PHD inhibitors have been the focus of recent studies on novel strategies to stabilize HIF. Cobalt is one of the inhibitors of PHD, and stimulation of HIF with cobalt is effective in a variety of kidney disease models. Furthermore, crystal structures of the catalytic domain of human prolyl hydroxylase 2 have been clarified recently. The structure aids in the design of PHD selective inhibitors for the treatment of hypoxic tissue injury. Current advance has elucidated the detailed mechanism of hypoxia-induced transcription, giving hope for the development of novel therapeutic approaches against hypoxia.

  3. Using an interactive water bottle to target fluid adherence in pediatric kidney transplant recipients: a pilot study.

    Science.gov (United States)

    Kullgren, Kristin A; Scholl, Penny; Kidwell, Kelley M; Hmiel, S Paul

    2015-02-01

    Hydration is important post-renal transplant to maintain adequate renal perfusion and graft function. Adherence to fluid recommendations is challenging given barriers to staying hydrated. There are no studies of adherence to fluid intake recommendations following pediatric renal transplant. Through this pilot study, we sought to determine whether the use of a commercially available interactive water bottle would lead to better adherence to recommended fluid intake and improved kidney functioning post-transplant relative to standard of care. Participants included 32 youth ages 7-19 ≥1 month post-kidney transplant randomized to the intervention (HydraCoach(®) water bottle) or standard education control group. Laboratory records were reviewed for serum chemistries (Na, BUN, creatinine) at baseline and one-month follow-up, and participants recorded daily fluid intake for 28 days. Those in the intervention group were significantly more likely to meet or exceed their fluid target, but this did not translate into better kidney functioning. Participants in the intervention group largely reported satisfaction with the water bottle and were likely to continue its use. While an interactive water bottle providing real-time feedback may be a promising intervention to help pediatric kidney transplant patients meet fluid goals, it did not appear to impact kidney function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Selective Vitamin D Receptor Activation as Anti-Inflammatory Target in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    J. Donate-Correa

    2014-01-01

    Full Text Available Paricalcitol, a selective vitamin D receptor (VDR activator used for treatment of secondary hyperparathyroidism in chronic kidney disease (CKD, has been associated with survival advantages, suggesting that this drug, beyond its ability to suppress parathyroid hormone, may have additional beneficial actions. In this prospective, nonrandomised, open-label, proof-of-concept study, we evaluated the hypothesis that selective vitamin D receptor activation with paricalcitol is an effective target to modulate inflammation in CKD patients. Eight patients with an estimated glomerular filtration rate between 15 and 44 mL/min/1.73 m2 and an intact parathyroid hormone (PTH level higher than 110 pg/mL received oral paricalcitol (1 μg/48 hours as therapy for secondary hyperparathyroidism. Nine patients matched by age, sex, and stage of CKD, but a PTH level <110 pg/mL, were enrolled as a control group. Our results show that five months of paricalcitol administration were associated with a reduction in serum concentrations of hs-CRP (13.9%, P<0.01, TNF-α (11.9%, P=0.01, and IL-6 (7%, P<0.05, with a nonsignificant increase of IL-10 by 16%. In addition, mRNA expression levels of the TNFα and IL-6 genes in peripheral blood mononuclear cells decreased significantly by 30.8% (P=0.01 and 35.4% (P=0.01, respectively. In conclusion, selective VDR activation is an effective target to modulate inflammation in CKD.

  5. An interactive, bilingual, culturally targeted website about living kidney donation and transplantation for hispanics: development and formative evaluation.

    Science.gov (United States)

    Gordon, Elisa J; Feinglass, Joe; Carney, Paula; Ramirez, Daney; Olivero, Maria; O'Connor, Kate; MacLean, Jessica; Brucker, James; Caicedo, Juan Carlos

    2015-04-20

    As the kidney shortage continues to grow, patients on the waitlist are increasingly turning to live kidney donors for transplantation. Despite having a disproportionately higher prevalence of end-stage kidney disease (ESKD), fewer waitlisted Hispanic patients received living donor kidney transplants (LDKTs) than non-Hispanic whites in 2014. Although lack of knowledge has been identified as a barrier to living kidney donation (LKD) among Hispanics, little is known about information needs, and few bilingual educational resources provide transplant-related information addressing Hispanics' specific concerns. This paper describes the process of developing a bilingual website targeted to the Hispanic community. The website was designed to increase knowledge about LKD among Hispanic patients with ESKD, their families, and the public, and was inspired by educational sessions targeted to Hispanic transplant patients provided by Northwestern University's Hispanic Kidney Transplant Program. Northwestern faculty partnered with the National Kidney Foundation of Illinois for expertise in ESKD and Hispanic community partners across the Chicago area. We established a Community Advisory Board (CAB) of 10 Chicago-area Hispanic community leaders to provide insight into cultural concerns and community and patients' needs. Website content development was informed by 9 focus groups with 76 adult Hispanic kidney transplant recipients, living kidney donors, dialysis patients, and the general Hispanic public. The website development effort was guided by community input on images, telenovela scripts, and messages. After initial development, formal usability testing was conducted with 18 adult Hispanic kidney transplant recipients, dialysis patients, and living kidney donors to identify ways to improve navigability, design, content, comprehension, and cultural sensitivity. Usability testing revealed consistently high ratings as "easy to navigate", "informative", and "culturally appropriate

  6. TCGA bladder cancer study reveals potential drug targets

    Science.gov (United States)

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  7. Potential Impact of Risk and Loss Aversion on the Process of Accepting Kidneys for Transplantation.

    Science.gov (United States)

    Heilman, Raymond L; Green, Ellen P; Reddy, Kunam S; Moss, Adyr; Kaplan, Bruce

    2017-07-01

    Behavioral economic theory suggests that people make decisions based on maximizing perceived value; however, this may be influenced more by the risk of loss rather than of potential gain. Additionally, individuals may seek certainty over uncertainty. These are termed loss aversion and risk aversion, respectively. Loss aversion is particularly sensitive to how the decision is "framed." Thus, labeling a kidney as high Kidney Donor Profile Index results in higher discard rates because this creates a nonlinearity in perceived risk. There is also evidence that the perceived loss due to regulatory sanction results in increased organ discard rates. This may be due to the overuse of terminology that stresses regulatory sanctions and thus perpetuates fear of loss through a form of nudging. Our goal is to point out how these concepts of behavioral economics may negatively influence the decision process to accept these suboptimal organs. We hope to make the community more aware of these powerful psychological influences and thus potentially increase the utilization of these suboptimal organs. Further, we would urge regulatory bodies to avoid utilizing strategies that frame outcomes in terms of loss due to flagging and build models that are less prone to uncertain expected versus observed outcomes.

  8. Social Media Use Among Living Kidney Donors and Recipients: Survey on Current Practice and Potential

    OpenAIRE

    Kazley, Abby Swanson; Hamidi, Bashir; Balliet, Wendy; Baliga, Prabhakar

    2016-01-01

    Background In the United States, there is a national shortage of organs donated for transplant. Among the solid organs, most often kidneys are donated by living donors, but the lack of information and complicated processes limit the number of individuals who serve as living kidney donors. Social media can be a tool for advocacy, educating the public about the need, process, and outcomes of live kidney donors, yet little is known about social media use by kidney transplant patients. Objective ...

  9. Potentialities of the internal target station at the Nuclotron

    Energy Technology Data Exchange (ETDEWEB)

    Malakhov, A.I.; Afanasiev, S.V.; Anisimov, Yu.S.; Artiomov, A.S.; Bazilev, S.N.; Khrenov, A.N.; Kliman, J.; Krasnov, V.A.; Matousek, V.; Morhac, M. E-mail: fyzimiro@savba.sk; Starikov, A.Yu.; Shabunov, A.V.; Slepnev, V.M.; Turzo, I

    2000-02-01

    The potentialities of the internal target station used in physics experiments at the Nuclotron, as well as its construction, hardware and software configurations are described. The remote control of the station is performed by means of a PC and is based on operative presentation of the magnetic field cycle, the beam parameters and the target position on screen. Consequently, the space-time trajectory of motion of a chosen target can be determined in an interactive way by an operator. During the accelerator operation the motion is carried out by means of a stepper motor.

  10. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  11. Kidney transplant

    Science.gov (United States)

    ... always take your medicine as directed. Alternative Names Renal transplant; Transplant - kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney - blood and urine flow Kidneys Kidney transplant - ...

  12. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most prevalent genetic disease, affecting at least 600,000 Americans . It is characterized...Pennathur, Michigan Metabolomics and Obesity Center (MMOC) at U. Michigan and statistical consultation from Dr. K. Abebe at U. Pittsburgh. Cell

  13. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  14. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  15. Novel treatment strategies for feline chronic kidney disease: A critical look at the potential of mesenchymal stem cell therapy.

    Science.gov (United States)

    Quimby, J M; Dow, S W

    2015-06-01

    Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application that holds promise for the treatment of a variety of diseases in veterinary medicine. Based on the known desirable properties of mesenchymal stem cells, the therapy has potential for treatment of both acute kidney injury and chronic kidney disease in cats. This review details terminology commonly used in this field of study, sources of mesenchymal stem cells and their proposed mechanism of action particularly as it relates to renal repair. Studies performed in rodent models of chronic kidney disease and feline clinical trial results are also summarized with the aim of providing an overview of the current status of this treatment modality and its potential for the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders.

    Science.gov (United States)

    Mallett, Andrew J; McCarthy, Hugh J; Ho, Gladys; Holman, Katherine; Farnsworth, Elizabeth; Patel, Chirag; Fletcher, Jeffery T; Mallawaarachchi, Amali; Quinlan, Catherine; Bennetts, Bruce; Alexander, Stephen I

    2017-12-01

    Inherited kidney disease encompasses a broad range of disorders, with both multiple genes contributing to specific phenotypes and single gene defects having multiple clinical presentations. Advances in sequencing capacity may allow a genetic diagnosis for familial renal disease, by testing the increasing number of known causative genes. However, there has been limited translation of research findings of causative genes into clinical settings. Here, we report the results of a national accredited diagnostic genetic service for familial renal disease. An expert multidisciplinary team developed a targeted exomic sequencing approach with ten curated multigene panels (207 genes) and variant assessment individualized to the patient's phenotype. A genetic diagnosis (pathogenic genetic variant[s]) was identified in 58 of 135 families referred in two years. The genetic diagnosis rate was similar between families with a pediatric versus adult proband (46% vs 40%), although significant differences were found in certain panels such as atypical hemolytic uremic syndrome (88% vs 17%). High diagnostic rates were found for Alport syndrome (22 of 27) and tubular disorders (8 of 10), whereas the monogenic diagnostic rate for congenital anomalies of the kidney and urinary tract was one of 13. Quality reporting was aided by a strong clinical renal and genetic multidisciplinary committee review. Importantly, for a diagnostic service, few variants of uncertain significance were found with this targeted, phenotype-based approach. Thus, use of targeted massively parallel sequencing approaches in inherited kidney disease has a significant capacity to diagnose the underlying genetic disorder across most renal phenotypes. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  18. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  19. Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool?

    Science.gov (United States)

    Ebah, Leonard M; Read, Ian; Sayce, Andrew; Morgan, Jane; Chaloner, Christopher; Brenchley, Paul; Mitra, Sandip

    2012-01-01

    Background Patients with chronic kidney disease (CKD) need regular monitoring, usually by blood urea and creatinine measurements, needing venepuncture, frequent attendances and a healthcare professional, with significant inconvenience. Noninvasive monitoring will potentially simplify and improve monitoring. We tested the potential of transdermal reverse iontophoresis of urea in patients with CKD and healthy controls. Methods Using a MIC 2® Iontophoresis Controller, reverse iontophoresis was applied on the forearm of five healthy subjects (controls) and 18 patients with CKD for 3–5 h. Urea extracted at the cathode was measured and compared with plasma urea. Results Reverse iontophoresis at 250 μA was entirely safe for the duration. Cathodal buffer urea linearly correlated with plasma urea after 2 h (r = 0·82, P urea (y) from cathodal urea after 2 and 3 h, respectively. Cathodal urea concentration in controls was significantly lower than in patients with CKD after a minimum current application of 2 h (P urea cut-off of 30 μM gave a sensitivity of 83·3% and positive predictive value of 87% CKD. During haemodialysis, the fall in cathodal urea was able to track that of blood urea. Conclusion Reverse iontophoresis is safe, can potentially discriminate patients with CKD and healthy subjects and is able to track blood urea changes on dialysis. Further development of the technology for routine use can lead to an exciting opportunity for its use in diagnostics and monitoring. PMID:22409780

  20. Soluble CD30 and HLA antibodies as potential risk factors for kidney transplant rejection.

    Science.gov (United States)

    Slavcev, Antonij; Lácha, Jiri; Honsová, Eva; Sajdlová, Helena; Lodererová, Alena; Vitko, Stefan; Skibová, Jelena; Striz, Ilja

    2005-06-01

    Recent literary data suggest that high pre- and post-transplant serum levels of the soluble CD30 (sCD30) molecule may be a risk factor for acute rejection and worse prognosis of the transplanted kidney. The aim of our study was to correlate the concentrations of sCD30 and the presence of HLA antibodies as defined by flow cytometry and ELISA with the clinical course and graft prognosis after transplantation. One hundred and seventeen kidney transplant patients were included into the study. The incidence of rejection episodes, graft function and graft survival for up to 1 year post-transplant were evaluated. Soluble CD30 levels before transplantation were virtually the same in patients who experienced rejection and in non-rejecting patients. In both patient groups, a significant decrease of sCD30 was detected 2 weeks after transplantation (104.4 U/ml before vs. 37.0 U/ml post-transplant, P sCD30 between rejecting and non-rejecting patients. Patients without rejection had lower sCD30 values (31.2 U/ml post-transplant) compared to patients who experienced rejection episodes (62.9 U/ml), P antigens and elevated concentrations of sCD30 shortly after transplantation were associated with increased risk for acute rejection in the first post-transplant year. Measurement of soluble CD30 after transplantation, taken into consideration with the presence of HLA class II antibodies, might be helpful for evaluating the potential risk for acute rejection.

  1. Expression of methionine adenosyltransferase 2A in renal cell carcinomas and potential mechanism for kidney carcinogenesis

    International Nuclear Information System (INIS)

    Wang, Xuliang; Guo, Xiaoqiang; Yu, Wenshui; Li, Cailing; Gui, Yaoting; Cai, Zhiming

    2014-01-01

    Methionine adenosyltransferase 2A (MAT2A) is an enzyme that catalyzes the formation of S-adenosylmethionine (SAMe) by joining methionine and ATP. SAMe is a methyl donor for transmethylation and has an important role for DNA and/or protein methylation. MAT2A is expressed widely in many tissues especially in kidney. Several studies have demonstrated that there are abnormal expressions of MAT2A in several kinds of cancers such as liver and colon cancers. But the relationship of MAT2A between renal cell carcinomas (RCC) is less understood. The mRNA expression level of the MAT2A gene was determined in 24 RCC patients and 4 RCC cell lines, using real-time quantitative-polymerase chain reaction (RT-PCR). The MAT2A protein content was measured by western blotting and immunohistochemical analysis in 55 RCC patients. The mRNA levels of heme oxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) were also analysized in patients using RT-PCR. The correlations between the MAT2A and HO-1 as well as COX-2 were analyzed with nonparametric Spearman method. MAT2A transcript was significantly downregulated in cancer tissues compared to normal tissues (P < 0.05). Immunohistochemical analysis and western blotting indicated that level of MAT2A protein was decreased in cancer tissues. The statistical analysis reveals a negative correlation between MAT2A and HO-1 expression in RCC patients and cell lines (P < 0.01). This study demonstrated that MAT2A was lower expression in cancer tissues, suggesting that it may be involved in the development of RCC. MAT2A is a transcriptional corepressor for HO-1 expression by supplying SAM for methyltransferases, which may be one of potential mechanism of MAT2A as tumor suppressor in kidney carcinogenesis

  2. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors.

    Science.gov (United States)

    Cangoz, S; Chang, Y-Y; Chempakaseril, S J; Guduru, R C; Huynh, L M; John, J S; John, S T; Joseph, M E; Judge, R; Kimmey, R; Kudratov, K; Lee, P J; Madhani, I C; Shim, P J; Singh, S; Singh, S; Ruchalski, C; Raffa, R B

    2013-10-01

    A novel class of antidiabetic drugs - SGLT2 (Na(+) /glucose cotransporter type 2) inhibitors - target renal reabsorption of glucose and promote normal glucose levels, independent of insulin production or its action at receptors. We review this new mechanistic approach and the reported efficacy and safety of clinical testing of lead compounds. Information was obtained from various bibliographic sources, including PubMed and others, on the basic science and the clinical trials of SGLT2 inhibitors. The information was then summarized and evaluated from the perspective of contribution to a fuller understanding of the potential and current status of the lead clinical candidates. Diabetes mellitus is a spectrum of disorders that involves inadequate insulin function resulting in adverse health sequelae due to acute and chronic hyperglycaemia. Current antidiabetic pharmacotherapy primarily addresses either insulin production at the pancreatic β-cells or insulin action at insulin receptors. These drugs have less than full clinical effectiveness and sometimes therapy-limiting adverse effects. The third major component of glucose balance, namely elimination, has not been a significant therapeutic target to date. SGLT2 inhibitors are a novel approach. A sufficient number of clinical trials have been conducted on sufficiently chemically diverse SGLT2 inhibitors to reasonably conclude that they have efficacy (HbA1c reductions of 0·4-1%), and thus far, the majority of adverse effects have been mild and transitory or treatable, with the caveat of possible association with increased risk of breast cancer in women and bladder cancer in men. © 2013 John Wiley & Sons Ltd.

  3. Precision Medicine for Hypertension Management in Chronic Kidney Disease: Relevance of SPRINT for Therapeutic Targets in Nondiabetic Renal Disease.

    Science.gov (United States)

    Ruzicka, Marcel; Burns, Kevin D; Hiremath, Swapnil

    2017-05-01

    In this review we evaluate the literature to determine if lower blood pressure (BP) targets are beneficial for patients with nondiabetic chronic kidney disease (CKD). Modification of Diet in Renal Disease (MDRD), African American Study of Kidney Disease and Hypertension (AASK), and Ramipril Efficacy in Nephropathy-2 (REIN-2), designed to assess the benefit of lower BP on progression of nondiabetic CKD, generally came to the same negative conclusion. They were not designed and powered to assess an effect of lower BP on cardiovascular outcomes. The Systolic Blood Pressure Intervention Trial (SPRINT) was the first trial designed and powered to address this issue, and showed a clear benefit of a lower targeted and achieved BP. SPRINT did not show any renal benefits from lower BP, and it was not designed to assess this outcome, and it enrolled patients with less "renal risk" per se. A distinguishing feature of SPRINT compared with other large trials is that it highlighted the importance of precise BP measurement methods in defining targets in hypertension treatment. Accordingly, we propose that SPRINT is truly a "game-changing" clinical trial that sets the bar for management of hypertension in select patients with nondiabetic CKD. In these patients, systolic BP target depends critically on the BP measurement method: < 140 mm Hg when derived from 3 readings using a mercury sphygmomanometer after 5 minutes of rest, < 130 mm Hg when calculated from at a minimum of 3 readings using an automated oscillometric device, and < 120 mm Hg when taken using an automated oscillometric device after 5 minutes of unattended rest. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  4. Heart failure—potential new targets for therapy

    Science.gov (United States)

    Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.

    2016-01-01

    Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454

  5. Semaphorin 3A: A Potential Target for Low Back Pain.

    Science.gov (United States)

    Yin, Pengbin; Lv, Houchen; Zhang, Lihai; Zhang, Licheng; Tang, Peifu

    2015-01-01

    Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  6. Semaphorin 3A, A Potential Target for Low Back Pain.

    Directory of Open Access Journals (Sweden)

    Pengbin eYin

    2015-11-01

    Full Text Available Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  7. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer.

    Science.gov (United States)

    Kesharwani, Prashant; Tekade, Rakesh K; Jain, Narendra K

    2014-07-01

    Dendrimer-mediated delivery of bioactive is a successful and widely explored concept. This paper desribes comparative data pertaining to generation dependent cancer targeting propensity of Poly(propyleneimine) (PPI) dendrimers. This debut report reportsthe drug targeting and antciancer potential of different dendrimer generations. PPI dendrimers of different generations (3.0G, 4.0G and 5.0G) were synthesized and loaded with Melphalan. Results from loading, hemolysis, hematologic, cytotoxicty and flow cytometry assay depicted that as the generation of dendrimer increased from fourth to fifth, the only parameter i.e. toxicty is increased exponentionally. However, others parameters, i.e. loading, sustained release behavior, and targeting efficacy increased negligibly. Kaplan-Meier survival curves clearly depicted comparable therapeutic potential of PPI4M with PPI5M. In vivo investigations in Balb/c mice again favored 4.0G PPI dendrimer to be preferable nanocarrier for anticancer drug delivery owing to analogous anticancer potential. The outcomes of the investigation evidently projects 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer in respect of its drug delivery benefit as well as superior biocompatibility. Thus, much against the common belief, 4.0G PPI dendrimers may be considered to be optimum in respect of drug delivery precluding the use of much more toxic 5.0G PPI dendrimer, which offers no benefit over 4.0G. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Potential role of genetic markers in the management of kidney cancer

    NARCIS (Netherlands)

    Junker, K.; Ficarra, V.; Kwon, E.D.; Leibovich, B.C.; Thompson, R.H.; Oosterwijk, E.

    2013-01-01

    CONTEXT: Kidney cancer is not a single entity but comprises a number of different types of cancer that occur in the kidney including renal cell tumours as the most common type. Four major renal cell tumour subtypes can be distinguished based on morphologic and genetic characteristics. To

  9. Fetal Kidney Anomalies: Next Generation Sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  10. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury.

    Science.gov (United States)

    Penno, G; Garofolo, M; Del Prato, S

    2016-05-01

    Type 2 diabetes mellitus (T2DM) is associated with a high risk of chronic kidney disease (CKD). About 20% of patients with T2DM have CKD of stage ≥ 3; up to 40% have some degree of CKD. Beyond targeting all renal risk factors together, renin-angiotensin-aldosterone system blockers are to date the only effective mainstay for the treatment of diabetic kidney disease (DKD). Indeed, several potentially nephroprotective agents have been in use, which have been unsuccessful. Some glucose-lowering agents, including dipeptidyl peptidase-4 inhibitors (DPP-4i), have shown promising results. Here, we discuss the evidence that glucose lowering with DPP-4i may be an option for protecting against diabetes-related renal injury. A comprehensive search was performed of the literature using the terms "alogliptin," "linagliptin," "saxagliptin," "sitagliptin," and "vildagliptin" for original articles and reviews addressing this topic. DPP-4i are an effective, well-tolerated treatment option for T2DM with any degree of renal impairment. Preclinical observations and clinical studies suggest that DPP-4i might also be a promising strategy for the treatment of DKD. The available data are in favor of saxagliptin and linagliptin, but the consistency of results points to the possible nephroprotective effect of DPP-4i. This property appears to be independent of glucose lowering and can potentially complement other therapies that preserve renal function. Larger prospective clinical trials are ongoing, which might strengthen these hypothesis-generating findings. The improvement in albuminuria associated with DPP-4i suggests that these agents may provide renal benefits beyond their glucose-lowering effects, thus offering direct protection from DKD. These promising results must be interpreted with caution and need to be confirmed in forthcoming studies. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human

  11. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  12. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  13. Pre-donation cognitions of potential living organ donors: the development of the Donation Cognition Instrument in potential kidney donors.

    Science.gov (United States)

    Wirken, Lieke; van Middendorp, Henriët; Hooghof, Christina W; Sanders, Jan-Stephan F; Dam, Ruth E; van der Pant, Karlijn A M I; Berendsen, Elsbeth C M; Wellink, Hiske; Dackus, Henricus J A; Hoitsma, Andries J; Hilbrands, Luuk B; Evers, Andrea W M

    2017-03-01

    Cognitions surrounding living organ donation, including the motivation to donate, expectations of donation and worries about donation, are relevant themes during living donor evaluation. However, there is no reliable psychometric instrument assessing all these different cognitions. This study developed and validated a questionnaire to assess pre-donation motivations, expectations and worries regarding donation, entitled the Donation Cognition Instrument (DCI). Psychometric properties of the DCI were examined using exploratory factor analysis for scale structure and associations with validated questionnaires for construct validity assessment. From seven Dutch transplantation centres, 719 potential living kidney donors were included. The DCI distinguishes cognitions about donor benefits, recipient benefits, idealistic incentives, gratitude and worries about donation (Cronbach's alpha 0.76-0.81). Scores on pre-donation cognitions differed with regard to gender, age, marital status, religion and donation type. With regard to construct validity, the DCI was moderately correlated with expectations regarding donor's personal well-being and slightly to moderately to health-related quality of life. The DCI is found to be a reliable instrument assessing cognitions surrounding living organ donation, which might add to pre-donation quality of life measures in facilitating psychosocial donor evaluation by healthcare professionals. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  14. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  15. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  16. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  17. Multidetector row computed tomography evaluation of the micropig kidney as a potential renal donor.

    Science.gov (United States)

    Yoon, Woong; Lee, Min Young; Ryu, Jung Min; Moon, Yong Ju; Lee, Sang Hun; Park, Jae Hong; Yun, Seung Pil; Jang, Min Woo; Park, Sung Su; Han, Ho Jae

    2010-03-01

    Multidetector row computed tomography (MDCT) provides anatomical information about the kidney and other internal organs. Presently, the suitability of 64-channel MDCT to assess the kidney of healthy micropigs was evaluated. Morphological evaluations of the kidney and the major renal vessels of six healthy micropigs were carried out using MDCT, recording kidney volume and the diameter and length of renal arteries and veins. The mean diameters and lengths of the renal artery were 0.44 +/- 0.05 and 4.51 +/- 0.55 cm on the right side and 0.46 +/- 0.06 and 3.36 +/- 0.27 cm on the left side, respectively. The mean diameters and lengths of the renal vein were 1.44 +/- 0.52 and 4.22 +/- 1.29 cm on the right side and 1.38 +/- 0.17 and 5.15 +/- 0.87 cm on the left side, respectively. The mean volume of the right kidney was 79.3 +/- 14.5 mL and of the left kidney was 78.0 +/- 13.9 mL. The data presented in this study suggest that the MDCT offers a noninvasive, rapid, and accurate method for the evaluation of the renal anatomy in living kidney donors. It also provides sufficient information about extra-renal anatomy important for donor surgery and determination of organ suitability.

  18. The potential role of perivascular lymphatic vessels in preservation of kidney allograft function.

    Science.gov (United States)

    Tsuchimoto, Akihiro; Nakano, Toshiaki; Hasegawa, Shoko; Masutani, Kosuke; Matsukuma, Yuta; Eriguchi, Masahiro; Nagata, Masaharu; Nishiki, Takehiro; Kitada, Hidehisa; Tanaka, Masao; Kitazono, Takanari; Tsuruya, Kazuhiko

    2017-08-01

    Lymphangiogenesis occurs in diseased native kidneys and kidney allografts, and correlates with histological injury; however, the clinical significance of lymphatic vessels in kidney allografts is unclear. This study retrospectively reviewed 63 kidney transplant patients who underwent protocol biopsies. Lymphatic vessels were identified by immunohistochemical staining for podoplanin, and were classified according to their location as perivascular or interstitial lymphatic vessels. The associations between perivascular lymphatic density and kidney allograft function and pathological findings were analyzed. There were no significant differences in perivascular lymphatic densities in kidney allograft biopsy specimens obtained at 0 h, 3 months and 12 months. The groups with higher perivascular lymphatic density showed a lower proportion of progression of interstitial fibrosis/tubular atrophy grade from 3 to 12 months (P for trend = 0.039). Perivascular lymphatic density was significantly associated with annual decline of estimated glomerular filtration rate after 12 months (r = -0.31, P = 0.017), even after adjusting for multiple confounders (standardized β = -0.30, P = 0.019). High perivascular lymphatic density is associated with favourable kidney allograft function. The perivascular lymphatic network may be involved in inhibition of allograft fibrosis and stabilization of graft function.

  19. Autophagy as a potential target for sarcoma treatment.

    Science.gov (United States)

    Min, Li; Choy, Edwin; Pollock, Raphael E; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-08-01

    Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Boehn Susanne NE

    2008-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD. Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD.

  1. Precision-cut kidney slices (PCKS to study development of renal fibrosis and efficacy of drug targeting ex vivo

    Directory of Open Access Journals (Sweden)

    Fariba Poosti

    2015-10-01

    Full Text Available Renal fibrosis is a serious clinical problem resulting in the greatest need for renal replacement therapy. No adequate preventive or curative therapy is available that could be clinically used to target renal fibrosis specifically. The search for new efficacious treatment strategies is therefore warranted. Although in vitro models using homogeneous cell populations have contributed to the understanding of the pathogenetic mechanisms involved in renal fibrosis, these models poorly mimic the complex in vivo milieu. Therefore, we here evaluated a precision-cut kidney slice (PCKS model as a new, multicellular ex vivo model to study the development of fibrosis and its prevention using anti-fibrotic compounds. Precision-cut slices (200-300 μm thickness were prepared from healthy C57BL/6 mouse kidneys using a Krumdieck tissue slicer. To induce changes mimicking the fibrotic process, slices were incubated with TGFβ1 (5 ng/ml for 48 h in the presence or absence of the anti-fibrotic cytokine IFNγ (1 µg/ml or an IFNγ conjugate targeted to PDGFRβ (PPB-PEG-IFNγ. Following culture, tissue viability (ATP-content and expression of α-SMA, fibronectin, collagen I and collagen III were determined using real-time PCR and immunohistochemistry. Slices remained viable up to 72 h of incubation, and no significant effects of TGFβ1 and IFNγ on viability were observed. TGFβ1 markedly increased α-SMA, fibronectin and collagen I mRNA and protein expression levels. IFNγ and PPB-PEG-IFNγ significantly reduced TGFβ1-induced fibronectin, collagen I and collagen III mRNA expression, which was confirmed by immunohistochemistry. The PKCS model is a novel tool to test the pathophysiology of fibrosis and to screen the efficacy of anti-fibrotic drugs ex vivo in a multicellular and pro-fibrotic milieu. A major advantage of the slice model is that it can be used not only for animal but also for (fibrotic human kidney tissue.

  2. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Wang, Chuangyuan [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Duan, Yingjie [General hospital of Fuxin mining (Group) Co., Ltd (China); Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China)

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  3. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-01-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  4. Remaining Physiological Barriers in Porcine Kidney Xenotransplantation: Potential Pathways behind Proteinuria as well as Factors Related to Growth Discrepancies following Pig-to-Kidney Xenotransplantation.

    Science.gov (United States)

    Shah, Jigesh A; Lanaspa, Miguel A; Tanabe, Tatsu; Watanabe, Hironosuke; Johnson, Richard J; Yamada, Kazuhiko

    2018-01-01

    Considerable shortages in the supply of available organs continue to plague the field of solid organ transplantation. Despite changes in allocation, as well as the utilization of extended criteria and living donors, the number of patients waiting for organs continues to grow at an alarming pace. Xenotransplantation, cross-species solid organ transplantation, offers one potential solution to this dilemma. Previous extensive research dedicated to this field has allowed for resolution of xenograft failure due to acute rejection, leaving new areas of unresolved challenges as barriers to success in large animal models. Specific to kidney xenotransplantation, recent data seems to indicate that graft compromise can occur due to discrepancies in growth between breeds of donors and significant proteinuria leading to nephrotic syndrome in the recipient. Given these potential limitations, herein, we review potential pathways behind proteinuria, as well as potential causative factors related to growth discrepancies. Control of both of these has the potential to allow xenotransplantation to become clinically applicable in an effort to resolve this organ shortage crisis.

  5. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  6. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane.

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M P; Albano, E; Bianchi, F B

    2000-04-01

    Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack. The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum. Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes. AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.

  7. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  8. Sequential Targeting of CD52 and TNF Allows Early Minimization Therapy in Kidney Transplantation: From a Biomarker to Targeting in a Proof-Of-Concept Trial.

    Directory of Open Access Journals (Sweden)

    Ondrej Viklicky

    Full Text Available There is high medical need for safe long-term immunosuppression monotherapy in kidney transplantation. Selective targeting of post-transplant alloantigen-(reactivated effector-T cells by anti-TNF antibodies after global T cell depletion may allow safe drug minimization, however, it is unsolved what might be the best maintenance monotherapy.In this open, prospective observational single-centre trial, 20 primary deceased donor kidney transplant recipients received 2x20 mg Alemtuzumab (d0/d1 followed by 5 mg/kg Infliximab (d2. For 14 days all patients received only tacrolimus, then they were allocated to either receive tacrolimus (TAC, n = 13 or sirolimus (SIR, n = 7 monotherapy, respectively. Protocol biopsies and extensive immune monitoring were performed and patients were followed-up for 60 months.TAC-monotherapy resulted in excellent graft survival (5yr 92%, 95%CI: 56.6-98.9 and function, normal histology, and no proteinuria. Immune monitoring revealed low intragraft inflammation (urinary IP-10 and hints for the development of operational tolerance signature in the TAC- but not SIR-group. Remarkably, the TAC-monotherapy was successful in all five presensitized (ELISPOT+ patients. However, recruitment into SIR-arm was stopped (after n = 7 because of high incidence of proteinuria and acute/chronic rejection in biopsies. No opportunistic infections occurred during follow-up.In conclusion, our novel fast-track TAC-monotherapy protocol is likely to be safe and preliminary results indicated an excellent 5-year outcome, however, a full-scale study will be needed to confirm our findings.EudraCT Number: 2006-003110-18.

  9. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  10. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  11. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  12. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers

    Directory of Open Access Journals (Sweden)

    Chui-Mian Zeng

    2018-05-01

    Full Text Available Frizzled receptors (FZDs are a family of seven-span transmembrane receptors with hallmarks of G protein-coupled receptors (GPCRs that serve as receptors for secreted Wingless-type (WNT ligands in the WNT signaling pathway. Functionally, FZDs play crucial roles in regulating cell polarity, embryonic development, cell proliferation, formation of neural synapses, and many other processes in developing and adult organisms. In this review, we will introduce the basic structural features and review the biological function and mechanism of FZDs in the progression of human cancers, followed by an analysis of clinical relevance and therapeutic potential of FZDs. We will focus on the development of antibody-based and small molecule inhibitor-based therapeutic strategies by targeting FZDs for human cancers.

  13. Gadofosveset-enhanced MR imaging for the preoperative evaluation of potential living kidney donors. Correlation with intraoperative findings

    International Nuclear Information System (INIS)

    Kuhlemann, J.; Blondin, D.; Reichelt, D.; Heinen, W.; Scherer, A.; Lanzman, R.S.; Grotemeyer, D.; Zgoura, P.

    2010-01-01

    Purpose: The purpose of this study was to evaluate the blood pool contrast agent gadofosveset for MR angiography (MRA) of the renal vasculature in living kidney donors (LKD). Materials and Methods: Of the 28 consecutive potential LKDs (13 men, 15 women; mean age 55.14 years ± 11.97) initially included in this prospective study, 20 patients underwent surgery and were considered for further evaluation. 7 acquisitions of a 3D T1-weighted FLASH sequence were performed following administration of gadofosveset for the assessment of the vascular anatomy and collecting system at predefined time points at 1.5 T. All MR exams were prospectively analyzed by 2 radiologists in consensus mode prior to surgery. In addition, ROI-based relative SNR measurements were performed in the vena cava inferior and abdominal aorta. Results: MR image acquisition was completed in all 20 potential living donors. In 8 donors an additional CT scan was available for further comparison with the collateral anatomy, resulting in a total of 28 analyzed kidneys. MRA disclosed 36 renal arteries, since 8 accessory arteries were found in 8 subjects. One accessory artery and one case of fibromuscular dysplasia were missed by MRA. The venous anatomy and the collecting system were assessed correctly with MRI. In addition, MRI diagnosed two renal cell carcinomas. The overall sensitivity and positive predictive value of gadofosveset-enhanced MRI on a per kidney basis were 92.9 % and 100 %, respectively. Conclusion: Gadofosveset enables accurate evaluation of potential LKDs. (orig.)

  14. Gadofosveset-enhanced MR imaging for the preoperative evaluation of potential living kidney donors. Correlation with intraoperative findings

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, J.; Blondin, D.; Reichelt, D.; Heinen, W.; Scherer, A.; Lanzman, R.S. [Universitaetsklinikum Duesseldorf (Germany). Inst. fuer Radiologie; Grotemeyer, D. [Universitaetsklinikum Duesseldorf (Germany). Klinik fuer Gefaesschirurgie und Nierentransplantation; Zgoura, P. [Universitaetsklinikum Duesseldorf (Germany). Klinik fuer Nephrologie

    2010-11-15

    Purpose: The purpose of this study was to evaluate the blood pool contrast agent gadofosveset for MR angiography (MRA) of the renal vasculature in living kidney donors (LKD). Materials and Methods: Of the 28 consecutive potential LKDs (13 men, 15 women; mean age 55.14 years {+-} 11.97) initially included in this prospective study, 20 patients underwent surgery and were considered for further evaluation. 7 acquisitions of a 3D T1-weighted FLASH sequence were performed following administration of gadofosveset for the assessment of the vascular anatomy and collecting system at predefined time points at 1.5 T. All MR exams were prospectively analyzed by 2 radiologists in consensus mode prior to surgery. In addition, ROI-based relative SNR measurements were performed in the vena cava inferior and abdominal aorta. Results: MR image acquisition was completed in all 20 potential living donors. In 8 donors an additional CT scan was available for further comparison with the collateral anatomy, resulting in a total of 28 analyzed kidneys. MRA disclosed 36 renal arteries, since 8 accessory arteries were found in 8 subjects. One accessory artery and one case of fibromuscular dysplasia were missed by MRA. The venous anatomy and the collecting system were assessed correctly with MRI. In addition, MRI diagnosed two renal cell carcinomas. The overall sensitivity and positive predictive value of gadofosveset-enhanced MRI on a per kidney basis were 92.9 % and 100 %, respectively. Conclusion: Gadofosveset enables accurate evaluation of potential LKDs. (orig.)

  15. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    experimental studies have concentrated on the targeted therapy of carcinoma of the prostate, pancreas and ovary. On 120 paraffin embedded specimens from patients who underwent radical retro-pubic prostatectomy or trans-urethralresection of the prostate for primary untreated carcinoma of the pancreas MUC1 expression was detected in 58% primary Ca prostate tissues and 90% lymph node metastases but not in normal prostates or benign tissues. The 213 Bi-C595 conjugate demonstrated cell killing in PC-3 and DU 145 cell lines isolated from human prostatic adenocarcinoma. Other results indicate that 213 Bi-C595 targeting efficacy is in accordance with the expression of MUC1 in three pancreatic cancer cell clusters CFPAC-1, PANC-1 and CAPAN-1 and demonstrated effective toxicity of tumour spheroids of up to 100 m in diameter. When administered to tumour bearing mice at 333 MBq/kg the c595 alpha conjugate caused significant tumour growth delay, compared with the non-specific control at after 16 weeks. Similar results have been obtained in monolayers and cell clusters of the ovarian OVCAR-3 cell line. We believe this antibody conjugate offers great potential for targeted alpha therapy of prostatic, pancreatic and ovarian tumours. (author)

  16. GPR 120: The Potential Target for Obesity Treatment.

    Science.gov (United States)

    Tanagho, Peter A; Shohdy, Kyrillus S

    2016-01-01

    G protein coupled receptor 120 (GPR120) is a class of receptors in the gastrointestinal tract (GIT) that is implicated in nutrient sensing and body weight regulation. Functions of GPR120 are thought to be mediated by the release of a group of hormones known as incretins, such as glucagon like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). We have searched PubMed with the keywords "GPR120","GLP-1" and "obesity". Relevant studies were retrieved and included in the review. Recently, many exogenous compounds have been investigated in their role in the release of GLP-1 and in causing weight loss in obese rats. However, some results question the putative role of GPR120 in metabolic homeostasis. Herein, we evaluate the potential use of GPR120 as a target receptor in obesity and found it to be ubiquitous throughout the GIT, with various functions in each site. In order to find the optimal drug, the role of GPR120 in each site needs to be defined and selectivity of the potential drug needs to be studied to ensure the success of this growing line of obesity management.

  17. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target

    Science.gov (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.

    2017-01-01

    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophils — neutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  18. Activated mammalian target of rapamycin is a potential therapeutic target in gastric cancer

    International Nuclear Information System (INIS)

    Xu, Da-zhi; Sun, Xiao-wei; Guan, Yuan-xiang; Li, Yuan-fang; Lin, Tong-yu; Geng, Qi-rong; Tian, Ying; Cai, Mu-yan; Fang, Xin-juan; Zhan, You-qing; Zhou, Zhi-wei; Li, Wei; Chen, Ying-bo

    2010-01-01

    The mammalian target of rapamycin (mTOR) plays a key role in cellular growth and homeostasis. The purpose of our present study is to investigate the expression of activated mTOR (p-mTOR) in gastric cancer patients, their prognostic significance and the inhibition effect of RAD001 on tumor growth and to determine whether targeted inhibition of mTOR could be a potential therapeutic strategy for gastric cancer. The expression of p-mTOR was detected in specimens of 181 gastric cancers who underwent radical resection (R0) by immunohistochemistry. The correlation of p-mTOR expression to clinicopathologic features and survival of gastric cancer was studied. We also determined the inhibition effect of RAD001 on tumor growth using BGC823 and AGS human gastric cancer cell lines. Immunostaining for p-mTOR was positive in 93 of 181 (51.4%) gastric cancers, closely correlated with lymph node status and pTNM stage. Patients with p-mTOR positive showed significantly shorter disease-free survival (DFS) and overall survival (OS) rates than those with p-mTOR-negative tumors in univariable analyses, and there was a trend toward a correlation between p-mTOR expression and survival in multivariable analyses. RAD001 markedly inhibited dose-dependently proliferation of human gastric carcinoma cells by down-regulating expression of p70s6k, p-p70s6k, C-myc, CyclinD1 and Bcl-2, up-regulating expression of P53. In gastric cancer, p-mTOR is a potential therapeutic target and RAD001 was a promising treatment agent with inducing cell cycle arrest and apoptosis by down-regulating expression of C-myc, CyclinD1 and Bcl-2, up-regulating expression of P53

  19. Immunoadsorption and Its Application for Desensitizing Incompatible Kidney Transplant Candidates Who Have a Potential Living Donor

    Directory of Open Access Journals (Sweden)

    Sébastien Maggioni

    2014-02-01

    Results and Conclusions. The IA sessions were associated with a net body-weight gain of ~ 1 kg. Normally, IA is performed first and then hemodialysis on the same or following day; however, we were able to simultaneously perform IA with hemodialysis (tandem procedure. This tandem procedure has reduced costs. Implementation of IA has enabled the successful transplantation of 32 kidney patients.

  20. A systematic review on potential mechanisms of minocycline in kidney diseases.

    Science.gov (United States)

    Haghi-Aminjan, Hamed; Asghari, Mohammad Hossein; Goharbari, Mohammad Hadi; Abdollahi, Mohammad

    2017-08-01

    Kidney diseases need specialized health care and still are a reason of death. There is a large body of evidence that indicates minocycline possesses some cytoprotective effects beside of antibacterial properties. In this review, we aimed to explain cytoprotective mechanisms and kidney protection of minocycline. In order to find the effects of minocycline on kidney diseases a systematic literature search was performed, according to the guidelines proposed at the PRISMA statement in the electronic databases, including: PubMed, Scopus, and Web of Science up to August 2016, using the term 'minocycline' combined either by 'kidney' or 'renal' and published in English language. The following criteria were included: (1) studies that used minocycline in renal diseases; (2) full-text articles; (3) English language; (4) no limitation in publications with in-vivo or in-vitro and human or animal subjects. Our search provided a total of 1056 articles which 1045 of them were discarded due to not meeting the inclusion criteria. It has been clear that several factors, including apoptosis, oxidative stress, mitochondrial dysfunction and inflammation have pivotal roles in the development and progression of kidney diseases. Minocycline protective properties are via several ways, including anti-apoptotic, free radical scavenging, anti-inflammatory, effect on mitochondrial functions and inhibition of matrix metalloproteinase. This systematic review confirmed that minocycline could have significant effects on treatment of renal malfunctions. However, regarding any possible adverse effects of antibiotics, it appears that more investigation is still needed in this context. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Syndecans as modulators and potential pharmacological targets in cancer progression

    Directory of Open Access Journals (Sweden)

    Despoina eBarbouri

    2014-02-01

    Full Text Available Extracellular matrix (ECM components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs, a family of transmembrane heparan sulfate proteoglycans (HSPGs. Specifically, heparan sulfate (HS chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs, ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.

  2. The world of targeted therapies in kidney cancers: pitfalls, tips and tricks

    Directory of Open Access Journals (Sweden)

    Vallard A

    2017-03-01

    Full Text Available Alexis Vallard, Jane-Chloé Trone, Julien Langrand-Escure, Sophie Espenel, Jean-Baptiste Guy, Chloé Rancoule, Yaoxiong Xia, Anis El Meddeb Hamrouni, Majed Ben Mrad, Nicolas Magné Department of Radiation Oncology, Lucien Neuwirth Cancer Institute, Saint-Priest en Jarez, France Abstract: In the past few years, metastatic renal cell carcinoma prognosis was improved by the development of molecular targeted therapies (TTs. At the metastatic stage, the tolerance to treatment is a major concern, not only because of the challenge of the efficacy/toxicity ratio improvement but also because of the importance of an optimal adherence to oral treatments. The present case series relates the issues of dealing with uncommon and sometimes never described side effects of sunitinib and sorafenib. The first case report deals with grade 3 vomiting during hemodialysis with concurrent administration of sunitinib. The second case is an iterative gout attack induced by sunitinib. The third case presents a grade 3 scalp dysesthesia with sorafenib. The fourth case includes an astonishing efficacy of metronomic (ie, low doses during a long period of time bevacizumab in monotherapy. Multidisciplinary management and systematic reporting of unexpected efficacies and toxicities are needed to better understand TTs real therapeutic index. Although TTs revolutionized metastatic renal cell cancer prognosis, they also brought about previously unknown side effects. Identification and management of these off-target effects may be tricky, and therefore, comedication must be wisely chosen. As the physiopathology of these side effects is still unclear, multidisciplinary management and systematic reporting of toxicities are essential. Keywords: renal cell carcinoma, bevacizumab, sunitinib, sorafenib, toxicity, efficacy

  3. Pharmacological effects and potential therapeutic targets of DT-13.

    Science.gov (United States)

    Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li

    2018-01-01

    DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of

  4. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  5. Pyruvate kinase M2: a potential target for regulating inflammation

    Directory of Open Access Journals (Sweden)

    Jose Carlos eAlves-Filho

    2016-04-01

    Full Text Available Pyruvate kinase (PK is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders.

  6. Targeting gut microbiome: A novel and potential therapy for autism.

    Science.gov (United States)

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Metabolic control of female puberty: potential therapeutic targets.

    Science.gov (United States)

    Castellano, Juan M; Tena-Sempere, Manuel

    2016-10-01

    The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.

  8. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    Science.gov (United States)

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  9. Solute carrier transporters: potential targets for digestive system neoplasms.

    Science.gov (United States)

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.

  10. HIV LIFE CYCLE AND POTENTIAl TARGETS FOR DRUG ACTIVITY

    African Journals Online (AJOL)

    TABLE Ill. STAGES IN THE HIV UFE CYCLE THAT ARE TARGETS FOR CURRENTLY AVAIlABLE ANTIRETROVIRAlS. Fig. 7. Life cycle ofHIVand targets for ontiretrovirol theropy. (Reproduced with permission from: 5Miller, The Clinician's Guide to. Antiretroviral Resistance, 2007.) JULY 2002. Budding: immature virus.

  11. A novel assay for detecting antibodies to cytochrome P4502D6, the molecular target of liver kidney microsomal antibody type 1.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Hussain, M; Muratori, L; Targett, C; Williams, R; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1999-03-04

    Liver Kidney Microsomal type 1 (LKM1) antibody, the diagnostic marker of autoimmune hepatitis type 2, is also found in a proportion of patients with hepatitis C virus infection (HCV). It is detected conventionally by the subjective immunofluorescence technique. Our aim was to establish a simple and objective enzyme-linked immunosorbent assay (ELISA) that measures antibodies to cytochrome P4502D6 (CYP2D6), the target of LKM1. An indirect ELISA using eukaryotically expressed CYP2D6 was designed. Absorbance values obtained against a reference microsomal preparation were subtracted from those obtained against a microsomal preparation over-expressing CYP2D6, thus removing the non-CYP2D6-specific reaction. Sera from 51 LKM1 positive patients (21 autoimmune hepatitis and 30 with HCV infection), 111 LKM1 negative patients with chronic liver disease (including 20 with HCV infection) and 43 healthy controls were tested. Of 51 patients positive by immunofluorescence, 48 were also positive by ELISA while all the 154 LKM1 negative subjects were also negative by ELISA. There was a high degree of association between IFL and ELISA as demonstrated by a kappa reliability value of 0.96. The absorbance values by ELISA correlated with immunofluorescence LKM1 titres both in autoimmune hepatitis (r = 0.74, p < 0.001) and HCV infection (r = 0.67, p < 0.001). The simple, objective ELISA described has the potential to replace the standard immunofluorescence technique.

  12. Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting.

    Science.gov (United States)

    Gerlai, R; Williams, S P; Cairns, B; Van Bruggen, N; Moran, P; Shih, A; Caras, I; Sauer, H; Phillips, H S; Winslow, J W

    1998-11-01

    Gene targeting using homologous recombination in embryonic stem (ES) cells offers unprecedented precision with which one may manipulate single genes and investigate the in vivo effects of defined mutations in the mouse. Geneticists argue that this technique abrogates the lack of highly specific pharmacological tools in the study of brain function and behavior. However, by now it has become clear that gene targeting has some limitations too. One problem is spatial and temporal specificity of the generated mutation, which may appear in multiple brain regions or even in other organs and may also be present throughout development, giving rise to complex, secondary phenotypical alterations. This may be a disadvantage in the functional analysis of a number of genes associated with learning and memory processes. For example, several proteins, including neurotrophins--cell-adhesion molecules--and protein kinases, that play a significant developmental role have recently been suggested to be also involved in neural and behavioral plasticity. Knocking out genes of such proteins may lead to developmental alterations or even embryonic lethality in the mouse, making it difficult to study their function in neural plasticity, learning, and memory. Therefore, alternative strategies to gene targeting may be needed. Here, we suggest a potentially useful in vivo strategy based on systemic application of immunoadhesins, genetically engineered fusion proteins possessing the Fc portion of the human IgG molecule and, for example, a binding domain of a receptor of interest. These proteins are stable in vivo and exhibit high binding specificity and affinity for the endogenous ligand of the receptor, but lack the ability to signal. Thus, if delivered to the brain, immunoadhesins may specifically block signalling of the receptor of interest. Using osmotic minipumps, the protein can be infused in a localized region of the brain for a specified period of time (days or weeks). Thus, the location

  13. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    Energy Technology Data Exchange (ETDEWEB)

    Skröder, Helena [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Hawkesworth, Sophie [Medical Research Council (MRC), International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK. (United Kingdom); Kippler, Maria [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); El Arifeen, Shams [International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka (Bangladesh); Wagatsuma, Yukiko [Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. (Japan); Moore, Sophie E. [MRC Human Nutrition Research, Cambridge (United Kingdom); Vahter, Marie, E-mail: marie.vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2015-07-15

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  14. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    International Nuclear Information System (INIS)

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria; El Arifeen, Shams; Wagatsuma, Yukiko; Moore, Sophie E.; Vahter, Marie

    2015-01-01

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m 2 , corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  15. MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer.

    Science.gov (United States)

    Yu, Shaorong; Qin, Xiaobing; Chen, Tingting; Zhou, Leilei; Xu, Xiaoyue; Feng, Jifeng

    2017-09-01

    Systemic therapy with cytotoxic agents remains one of the main treatment methods for non-small-cell lung cancer (NSCLC). Cisplatin is a commonly used chemotherapeutic agent, that, when combined with other drugs, is an effective treatment for NSCLC. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. Unfortunately, the potential mechanism underlying such resistance remains unclear. In this study, we explored the mechanism of microRNA-106b-5p (miR-106b-5p), which is involved in the resistance to cisplatin in the A549 cell line of NSCLC. Quantitative real-time PCR was used to test the expression of miR-106-5p in the A549 and the A549/DDP cell line of NSCLC. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell cycle and cell apoptosis. Luciferase reporter assays and western blot were performed to confirm whether polycystic kidney disease-2 (PKD2) is a direct target gene of miR-106b-5p. Immunohistochemistry was performed to examine the distribution of PKD2 expression in patients who are sensitive and resistant to cisplatin. The experiments indicated that the expression of miR-106b-5p was significantly decreased in A549/DDP compared with that in A549. MiR-106b-5p affected the tolerance of cells to cisplatin by negatively regulating PKD2. Upregulation of miR-106b-5p or downregulation of PKD2 expression can cause A549/DDP cells to become considerably more sensitive to cisplatin. The results showed that miR-106b-5p enhanced the sensitivity of A549/DDP cells to cisplatin by targeting the expression of PKD2. These findings suggest that the use of miR-106b-5p may be a promising clinical strategy in the treatment of NSCLC.

  16. Standardized deceased donor kidney donation rates in the UK reveal marked regional variation and highlight the potential for increasing kidney donation: a prospective cohort study†

    Science.gov (United States)

    Summers, D. M.; Johnson, R. J.; Hudson, A. J.; Collett, D.; Murphy, P.; Watson, C. J. E.; Neuberger, J. M.; Bradley, J. A.

    2014-01-01

    Background The UK has implemented a national strategy for organ donation that includes a centrally coordinated network of specialist nurses in organ donation embedded in all intensive care units and a national organ retrieval service for deceased organ donors. We aimed to determine whether despite the national approach to donation there is significant regional variation in deceased donor kidney donation rates. Methods The UK prospective audit of deaths in critical care was analysed for a cohort of patients who died in critical care between April 2010 and December 2011. Multivariate logistic regression was used to identify the factors associated with kidney donation. The logistic regression model was then used to produce risk-adjusted funnel plots describing the regional variation in donation rates. Results Of the 27 482 patients who died in a critical care setting, 1528 (5.5%) became kidney donors. Factors found to influence donation rates significantly were: type of critical care [e.g. neurointensive vs general intensive care: OR 1.53, 95% confidence interval (CI) 1.34–1.75, P69 vs age 18–39 yr: OR 0.2, 0.15–0.25, Pdonation rates for the 20 UK kidney donor regions showed marked variation. The overall standardized donation rate ranged from 3.2 to 7.5%. Four regions had donation rates of >2 standard deviations (sd) from the mean (two below and two above). Regional variation was most marked for donation after circulatory death (DCD) kidney donors with 9 of the 20 regions demonstrating donation rates of >2 sd from the mean (5 below and 4 above). Conclusions The marked regional variation in kidney donation rates observed in this cohort after adjustment for factors strongly associated with donation rates suggests that there is considerable scope for further increasing kidney donation rates in the UK, particularly DCD. PMID:24335581

  17. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development

    Directory of Open Access Journals (Sweden)

    Farhana Abu Bakar

    2018-02-01

    Full Text Available Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.

  18. Raman-based detection of hydroxyethyl starch in kidney allograft biopsies as a potential marker of allograft quality in kidney transplant recipients

    Science.gov (United States)

    Vuiblet, Vincent; Fere, Michael; Bankole, Ezechiel; Wynckel, Alain; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-09-01

    In brain-dead donor resuscitation, hydroxyethyl starch (HES) use has been associated with presence of osmotic-nephrosis-like lesions in kidney transplant recipients. Our aim was to determine whether the presence of HES in protocol renal graft biopsies at three months (M3) after transplantation is associated with renal graft quality. According to the HES administered to the donor during the procurement procedure, two groups of patients were defined according graft exposition to HES: HES group, (N = 20) and control group (N = 6). Detection and relative quantification of HES was performed by Raman spectroscopy microimaging on M3 protocol renal graft biopsies. Statistical analyses were used to investigate the association between Raman data and graft characteristics. HES spectral signal was revealed negative in the control group, whereas it was positive in 40% of biopsies from the HES group. In the HES group, a stronger HES signal was associated with a lower risk of graft failure measured by the Kidney Donor Risk Index (KDRI) and was correlated with the allograft kidney function. Thus, HES accumulation in donor kidney, as probed by Raman biophotonic technique, is correlated with the quality of donor kidney and consequently the graft renal function and graft survival.

  19. Development of a liquid chromatography tandem mass spectrometry method for iothalamate measurement to assess renal function for potential kidney donation.

    Science.gov (United States)

    Rhea, Jeanne M; Ritchie, James C; Molinaro, Ross J

    2013-05-01

    Chronic kidney disease often goes undetected due to the insensitivity of current methods to accurately assess glomerular filtration rate (GFR) in early stages of renal dysfunction. The clearance of exogenously introduced iothalamate, a commonly used radiopaque agent, is an alternative to inulin clearance for the assessment of renal function and its use in calculating GFR can serve as a screening tool for kidney transplant donors. A method was developed to measure iothalamate in plasma and urine samples by HPLC combined with electrospray positive ionization tandem mass spectrometry (MS/MS). Iothalamate is isolated from plasma by methanol extraction and urine using a quick-spin filtration approach, then monitored by multiple reaction monitoring using the hydrogen adduct mass transitions. Iohexol was used as an internal standard. Iothalamate was measured within an analytical run time of 5 min, with a lower limit of quantification of 18.75 ng/ml. The intraassay and interassay variations of the plasma and urine iothalamate assays were both calculated using the patient's urine flow rate and plasma and urine iothalamate values. Linear correlations tested by LC-MS/MS and an accepted capillary electrophoresis (CE) assay showed similar results (GFR, r=0.92, Sy/x=10.3). We developed and validated an LC-MS/MS method for quantitating iothalamate in plasma and urine to calculate GFR used for screening potential kidney donors in our hospital system. A less sensitive mass spectrometry system does not sacrifice analytical or clinical sensitivity for measuring GFR. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The potential of natural products for targeting PPARα

    Directory of Open Access Journals (Sweden)

    Daniela Rigano

    2017-07-01

    Full Text Available Peroxisome proliferator activated receptors (PPARs α, -γ and -β/δ are ligand-activated transcription factors and members of the superfamily of nuclear hormone receptor. These receptors play key roles in maintaining glucose and lipid homeostasis by modulating gene expression. PPARs constitute a recognized druggable target and indeed several classes of drugs used in the treatment of metabolic disease symptoms, such as dyslipidemia (fibrates, e.g. fenofibrate and gemfibrozil and diabetes (thiazolidinediones, e.g. rosiglitazone and pioglitazone are ligands for the various PPAR isoforms. More precisely, antidiabetic thiazolidinediones act on PPARγ, while PPARα is the main molecular target of antidyslipidemic fibrates. Over the past few years, our understanding of the mechanism underlying the PPAR modulation of gene expression has greatly increased. This review presents a survey on terrestrial and marine natural products modulating the PPARα system with the objective of highlighting how the incredible chemodiversity of natural products can provide innovative leads for this “hot” target.

  1. Potential diagnostic biomarkers for chronic kidney disease of unknown etiology (CKDu) in Sri Lanka: a pilot study.

    Science.gov (United States)

    Sayanthooran, Saravanabavan; Magana-Arachchi, Dhammika N; Gunerathne, Lishanthe; Abeysekera, Tilak

    2017-01-19

    In Sri Lanka, there exists chronic kidney disease of both known (CKD) and unknown etiologies (CKDu). Identification of novel biomarkers that are customized to the specific causative factors would lead to early diagnosis and clearer prognosis of the diseases. This study aimed to find genetic biomarkers in blood to distinguish and identify CKDu from CKD as well as healthy populations from CKDu endemic and non-endemic areas of Sri Lanka. The expression patterns of a selected panel of 12 potential genetic biomarkers were analyzed in blood using RT-qPCR. Fold changes of gene expressions in early and late stages of CKD and CKDu patients, and an apparently healthy population of a CKDu endemic area, Girandurukotte (GH) were calculated relative to apparently healthy volunteers from a CKDu non-endemic area, Kandy (KH) of Sri Lanka, using the comparative CT method. Significant differences were observed between KH and early stage CKDu for both the insulin-like growth factor binding protein 1 (IGFBP1; p = 0.012) and kidney injury molecule-1 (KIM1; p = 0.003) genes, and KH and late stage CKD and CKDu for the glutathione-S-transferase mu 1 (GSTM1; p CKDu (p CKDu, whereas these genes in addition with FN1, IGFBP3 and KLK1 could be used to monitor progression of CKDu. The regulation of these genes has to be studied on larger populations to validate their efficiency for further clinical use.

  2. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS.

    Science.gov (United States)

    Huang, Yue; Liu, Xinyu; Zhao, Longshan; Li, Famei; Xiong, Zhili

    2014-06-01

    Traditional Chinese medicine and modern science have indicated that there is a close relationship between bone and kidney. In light of this, this project was designed to study the metabolic profiling by UHPLC/MS/MS of glucocorticoid-induced osteoporosis in kidney tissue and the possible therapeutic effects of Rhizoma Drynariae (RD), a classic traditional Chinese medicine, in improving the kidney function and strengthening bone. Twenty-one Wistar rats were divided into three groups: control group (rats before prednisolone inducing), a model group (prednisolone-induced group) and a treatment group (prednisolone-induced rats that were then administered RD ethanol extracts). By using pattern recognition analysis, a significant change in the metabolic profile of kidney tissue samples was observed in the model group and restoration of the profile was observed after the administration of RD ethanol extracts. Some significantly changed biomarkers related to osteoporosis such as sphingolipids (C16 dihydrosphingosine, C18 dihydrosphingosine, C18 phytosphingosine, C20 phytosphingosine), lysophosphatidycholines (C16:0 LPC, C18:0 LPC) and phenylalanine were identified. As a complement to the metabolic profiling of RD in plasma, these biomarkers suggest that kidney damage, cell cytotoxicity and apoptosis exist in osteoporosis rats, which is helpful in further understanding the underlying process of glucocorticoid-induced osetoporosis and the suggested therapeutic effects of RD. The method shows that tissue target metabonomics might provide a powerful tool to further understand the process of disease and the mechanism of therapeutic effect of Chinese medicines. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Kidney Disease

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Kidney Disease KidsHealth / For Teens / Kidney Disease What's in ... Coping With Kidney Conditions Print What Do the Kidneys Do? You might never think much about some ...

  4. Kidney Problems

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... kidney (renal) diseases are called nephrologists . What are Kidney Diseases? For about one-third of older people, ...

  5. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  6. Cognitive Impairment in Chronic Kidney Disease: Vascular Milieu and the Potential Therapeutic Role of Exercise

    Directory of Open Access Journals (Sweden)

    Ulf G. Bronas

    2017-01-01

    Full Text Available Chronic kidney disease (CKD is considered a model of accelerated aging. More specifically, CKD leads to reduced physical functioning and increased frailty, increased vascular dysfunction, vascular calcification and arterial stiffness, high levels of systemic inflammation, and oxidative stress, as well as increased cognitive impairment. Increasing evidence suggests that the cognitive impairment associated with CKD may be related to cerebral small vessel disease and overall impairment in white matter integrity. The triad of poor physical function, vascular dysfunction, and cognitive impairment places patients living with CKD at an increased risk for loss of independence, poor health-related quality of life, morbidity, and mortality. The purpose of this review is to discuss the available evidence of cerebrovascular-renal axis and its interconnection with early and accelerated cognitive impairment in patients with CKD and the plausible role of exercise as a therapeutic modality. Understanding the cerebrovascular-renal axis pathophysiological link and its interconnection with physical function is important for clinicians in order to minimize the risk of loss of independence and improve quality of life in patients with CKD.

  7. MicroRNAs and potential target interactions in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John Robert; Løvendorf, Marianne B.; Litman, Thomas

    2010-01-01

    BACKGROUND: Psoriasis is a chronic inflammatory skin disease often seen in patients with a genetic susceptibility. MicroRNAs (miRNA) are endogenous, short RNA molecules that can bind to parts of mRNA target genes, thus inhibiting their translation and causing accelerated turnover or transcript...... degradation. MicroRNAs are important in the pathogenesis of human diseases such as immunological disorders, as they regulate a broad range of biological processes. OBJECTIVE: We investigated miRNA-mRNA interactions in involved (PP) and non-involved (PN) psoriatic skin compared with healthy skin (NN). METHODS...

  8. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Whaley JM

    2012-07-01

    Full Text Available Jean M Whaley,1 Mark Tirmenstein,2 Timothy P Reilly,2 Simon M Poucher,3 JoAnne Saye,4 Shamik Parikh,5 James F List61Bristol-Myers Squibb, Metabolic Disease Discovery Biology, Research and Development, Princeton, NJ, USA; 2Bristol-Myers Squibb, Drug Safety Evaluation, Research and Development, New Brunswick and Princeton, NJ, USA; 3AstraZeneca, Cardiovascular and Gastrointestinal Innovative Medicines Science Unit, Alderley Park, Macclesfield, Cheshire, UK; 4AstraZeneca, Global Safety Assessment, Research and Development, Wilmington, DE, USA; 5AstraZeneca, Cardiovascular, Clinical Development, Wilmington, DE, USA; 6Bristol-Myers Squibb, Global Clinical Development, Research and Development, Princeton, NJ, USAAbstract: Sodium-glucose cotransporter-2 (SGLT2 inhibitors are a novel class of glucuretic, antihyperglycemic drugs that target the process of renal glucose reabsorption and induce glucuresis independently of insulin secretion or action. In patients with type 2 diabetes mellitus, SGLT2 inhibitors have been found to consistently reduce measures of hyperglycemia, including hemoglobin A1c, fasting plasma glucose, and postprandial glucose, throughout the continuum of disease. By inducing the renal excretion of glucose and its associated calories, SGLT2 inhibitors reduce weight and have the potential to be disease modifying by addressing the caloric excess that is believed to be one of the root causes of type 2 diabetes mellitus. Additional benefits, including the possibility for combination with insulin-dependent antihyperglycemic drugs, a low potential for hypoglycemia, and the ability to reduce blood pressure, were anticipated from the novel mechanism of action and have been demonstrated in clinical studies. Mechanism-related risks include an increased incidence of urinary tract and genital infections and the possibility of over-diuresis in volume-sensitive patients. Taken together, the results of Phase III clinical studies generally point to a

  9. DEPDC5 as a potential therapeutic target for epilepsy.

    Science.gov (United States)

    Myers, Kenneth A; Scheffer, Ingrid E

    2017-06-01

    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  10. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  11. Intracerebral Event-related Potentials to Subthreshold Target Stimuli

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Rektor, I.; Daniel, P.; Dufek, M.; Jurák, Pavel

    2001-01-01

    Roč. 112, č. 4 (2001), s. 650-661 ISSN 1388-2457 R&D Projects: GA ČR GA309/98/0490 Institutional research plan: CEZ:AV0Z2065902 Keywords : event-related potentials * intracerebral recordings * oddball paradigm Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.922, year: 2001

  12. The potential role of salt abuse on the risk for kidney stone formation

    Science.gov (United States)

    Sakhaee, K.; Harvey, J. A.; Padalino, P. K.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The kidney stone-forming risk of a high sodium diet was evaluated by assessing the effect of such a diet on the crystallization of stone-forming salts in urine. Fourteen normal subjects participated in 2 phases of study of 10 days duration each, comprising a low sodium phase (basal metabolic diet containing 50 mmol. sodium per day) and a high sodium phase (basal diet plus 250 mmol. sodium chloride per day). The high sodium intake significantly increased urinary sodium (34 +/- 12 to 267 +/- 56 mmol. per day), calcium (2.73 +/- 1.03 to 3.93 +/- 1.51 mmol. per day) and pH (5.79 +/- 0.44 to 6.15 +/- 0.25), and significantly decreased urinary citrate (3.14 +/- 1.19 to 2.52 +/- 0.83 mmol. per day). Arterialized venous blood bicarbonate and total serum carbon dioxide concentrations decreased significantly during the high sodium diet, whereas serum chloride concentration increased. However, no change in arterialized venous pH was detected. Thus, a high sodium intake not only increased calcium excretion, but also increased urinary pH and decreased citrate excretion. The latter effects are probably due to sodium-induced bicarbonaturia and a significant decrease in serum bicarbonate concentration, respectively. Commensurate with these changes, the urinary saturation of calcium phosphate (brushite) and monosodium urate increased, and the inhibitor activity against calcium oxalate crystallization (formation product) decreased. The net effect of a high sodium diet was an increased propensity for the crystallization of calcium salts in urine.

  13. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis.

    Science.gov (United States)

    Leong, Daniel J; Choudhury, Marwa; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2013-11-21

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  14. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Daniel J. Leong

    2013-11-01

    Full Text Available Osteoarthritis (OA is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  15. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  16. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    Directory of Open Access Journals (Sweden)

    Smolej L

    2014-12-01

    Full Text Available Lukáš Smolej 4th Department of Internal Medicine – Hematology, University Hospital Hradec Králové and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic Abstract: Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101 is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. Keywords: chronic lymphocytic leukemia, anti-CD20 antibodies, chlorambucil, rituximab, ofatumumab, obinutuzumab, overall survival

  17. Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

    Directory of Open Access Journals (Sweden)

    Veronika Redmann

    2013-12-01

    Full Text Available Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTAE177Qegfp to identify compounds that target RTA retrograde translocation. Stabilizing RTAE177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  18. Regulatory T Cells As Potential Targets for HIV Cure Research

    Science.gov (United States)

    Kleinman, Adam J.; Sivanandham, Ranjit; Pandrea, Ivona; Chougnet, Claire A.; Apetrei, Cristian

    2018-01-01

    T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.

  19. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma.

    Science.gov (United States)

    Riedlinger, Dorothee; Bahra, Marcus; Boas-Knoop, Sabine; Lippert, Steffen; Bradtmöller, Maren; Guse, Katrin; Seehofer, Daniel; Bova, Roberta; Sauer, Igor M; Neuhaus, Peter; Koch, Arend; Kamphues, Carsten

    2014-08-01

    Innovative treatment concepts targeting essential signaling pathways may offer new chances for patients suffering from cholangiocarcinoma (CCC). For that, we performed a systematic molecular genetic analysis concerning the Hedgehog activity in human CCC samples and analyzed the effect of Hh inhibition on CCC cells in vitro and in vivo. Activation of the Hh pathway was analyzed in 50 human CCC samples using quantitative polymerase chain reaction (qPCR). The efficacy of Hh inhibition using cyclopamine and BMS-833923 was evaluated in vitro. In addition, the effect of BMS-833923, alone or in combination with gemcitabine, was analyzed in vivo in a murine subcutaneous xenograft model. Expression analysis revealed a significant activation of the Hh-signaling pathway in nearly 50% of CCCs. Hh inhibition resulted in a significant decrease in cell proliferation of CCC cells. Moreover, a distinct inhibition of tumor growth could be seen as a result of a combined therapy with BMS-833923 and gemcitabine in CCC xenografts. The results of our study suggest that the Hh pathway plays a relevant role at least in a subset of human CCC. Inhibition of this pathway may represent a possible treatment option for CCC patients in which the Hh pathway is activated. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  1. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis.

  2. GPNMB expression in uveal melanoma: a potential for targeted therapy.

    Science.gov (United States)

    Williams, Michelle D; Esmaeli, Bita; Soheili, Aydin; Simantov, Ronit; Gombos, Dan S; Bedikian, Agop Y; Hwu, Patrick

    2010-06-01

    Uveal melanoma is an aggressive disease without effective adjuvant therapy for metastases. Despite genomic differences between cutaneous and uveal melanomas, therapies based on shared biological factors could be effective against both tumor types. High expression of glycoprotein-NMB (GPNMB) in cutaneous melanomas led to the development of CDX-011 (glembatumumab vedotin), a fully human monoclonal antibody against the extracellular domain of GPNMB conjugated to the cytotoxic microtubule toxin monomethylauristatin E. Ongoing phase II trials suggest that CDX-011 has activity against advanced cutaneous melanomas. To determine the potential role of CDX-011 in uveal melanomas, we studied their GPNMB expression. Paraffin-embedded tissues from 22 uveal melanomas treated by enucleation from 2004-2007 at one institution were evaluated immunohistochemically for expression of GPNMB using biotinylated CDX-011 (unconjugated) antibody. Melanoma cells were evaluated for percentage and intensity of expression. Spectral imaging was used in one case with high melanin content. Clinical data were reviewed. Twelve women and 10 men with a median age of 58.7 years (range: 28-83 years) were included. Eighteen of 21 tumors evaluated immunohistochemically (85.7%) expressed GPNMB in 10-90% of tumor cells with variable intensity (5 tumors, 1+; 11, 2+; and 2, 3+). Eleven of 18 tumors (61.1%) expressed GPNMB in >or=50% of cells. Spectral imaging showed diffuse CDX-011 (unconjugated) reactivity in the remaining case. Uveal melanoma, like cutaneous melanoma, commonly expresses GPNMB. Ongoing clinical trials of CDX-011 should be extended to patients with metastatic uveal melanoma to determine potential efficacy in this subset of patients with melanoma.

  3. DTMiner: identification of potential disease targets through biomedical literature mining.

    Science.gov (United States)

    Xu, Dong; Zhang, Meizhuo; Xie, Yanping; Wang, Fan; Chen, Ming; Zhu, Kenny Q; Wei, Jia

    2016-12-01

    Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy. In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene-disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset. The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php The web service is available at http://gdr-web.rwebox.com/public_html/index.php CONTACT: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Urine Kidney Injury Molecule-1: A Potential Non-invasive Biomarker for Patients with Renal Cell Carcinoma

    Science.gov (United States)

    Zhang, Ping L.; Mashni, Joseph W.; Sabbisetti, Venkata S.; Schworer, Charles M.; Wilson, George D.; Wolforth, Stacy C.; Kernen, Kenneth M.; Seifman, Brian D.; Amin, Mitual B.; Geddes, Timothy J.; Lin, Fan; Bonventre, Joseph V.; Hafron, Jason M.

    2014-01-01

    Objective To evaluate the use of urine KIM-1 as a biomarker for supporting a diagnosis of kidney cancers before operation. Methods A total of 19 patients were enrolled in the study based on preoperative imaging studies. Pre-operative and follow-up (1 month) uKIM-1 levels were measured and normalized with uCr levels and renal tumors were stained for KIM-1 using immunohistochemical techniques. Results The percentage of KIM-1 positive staining RCC cells ranged from 10 to 100% and the staining intensity ranged from 1+ to 3+. Based on the KIM-1 staining, 19 cases were divided into the KIM-1-negative staining group (n =7) and the KIM-1-positive group (n = 12). Serum creatinine (sCR) levels were significantly elevated after nephrectomy in both groups. In the KIM-1 negative group, uKIM-1/uCr remained at a similar level before (0.37 ± 0.1 ng/mg Cr) and after nephrectomy (0.32 ± 0.01 ng/mg Cr). However, in the KIM-1 positive group, elevated uKIM-1/uCr at 1.20 ± 0.31 ng/mg Cr was significantly reduced to 0.36± 0.1 ng/mg Cr, which was similar to the pre-operative uKIM-1/uCr (0.37 ± 0.1 ng/mg Cr) in the KIM-1 negative group. Conclusion Our study showed significant reduction in uKIM-1/uCr after nephrectomy, suggesting that urine KIM-1 may serve as a surrogate biomarker for kidney cancer and a non-invasive pre-operative measure to evaluate the malignant potential of renal masses. PMID:23979814

  5. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  6. Unintended Sunburn: A Potential Target for Sun Protection Messages

    Directory of Open Access Journals (Sweden)

    Geraldine F. H. McLeod

    2017-01-01

    Full Text Available New Zealand (NZ has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents’ experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents’ outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade and reducing potential barriers to sun protection.

  7. Unintended Sunburn: A Potential Target for Sun Protection Messages.

    Science.gov (United States)

    McLeod, Geraldine F H; Reeder, Anthony I; Gray, Andrew R; McGee, Rob

    2017-01-01

    New Zealand (NZ) has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR) remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents' experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents' outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade) and reducing potential barriers to sun protection.

  8. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  9. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Osama H. Elshenawy

    2017-02-01

    Full Text Available Cytochrome P450-mediated metabolism of arachidonic acid (AA is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal 19 ischemia/reperfusion (I/R injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.

  10. Clinical relevancy and determinants of potential drug–drug interactions in chronic kidney disease patients: results from a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Saleem A

    2017-02-01

    Full Text Available Ahsan Saleem,1,2 Imran Masood,1 Tahir Mehmood Khan3 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 2Pharmacy Services Department, Integrated Medical Center, The Aga Khan University Hospital, Lahore, Pakistan; 3School of Pharmacy, Monash University, Sunway Campus, Selangor, Malaysia Background: Chronic kidney disease (CKD alters the pharmacokinetic and pharmacodynamic responses of various renally excreted drugs and increases the risk of drug-related problems, such as drug–drug interactions.Objectives: To assess the pattern, determinants, and clinical relevancy of potential drug–drug interactions (pDDIs in CKD patients.Materials and methods: This study retrospectively reviewed medical charts of all CKD patients admitted in the nephrology unit of a tertiary care hospital in Pakistan from January 2013 to December 2014. The Micromedex Drug-Reax® system was used to screen patient profiles for pDDIs, and IBM SPSS version 20 was used to carry out statistical analysis.Results: We evaluated 209 medical charts and found pDDIs in nearly 78.5% CKD patients. Overall, 541 pDDIs were observed, of which, nearly 60.8% patients had moderate, 41.1% had minor, 27.8% had major, and 13.4% had contraindicated interactions. Among those interactions, 49.4% had good evidence, 44.0% had fair, 6.3% had excellent evidence, and 35.5% interactions had delayed onset of action. The potential adverse outcomes of pDDIs included postural hypotension, QT prolongation, ceftriaxone–calcium precipitation, cardiac arrhythmias, and reduction in therapeutic effectiveness. The occurrence of pDDIs was found strongly associated with the age of <60 years, number of prescribed medicines ≥5, hypertension, and the lengthy hospitalization of patients.Conclusion: The occurrence of pDDIs was high in CKD patients. It was observed that CKD patients with an older age, higher number of prescribed medicines, lengthy hospitalization, and hypertension were at

  11. Fucoidan improves bioactivity and vasculogenic potential of mesenchymal stem cells in murine hind limb ischemia associated with chronic kidney disease.

    Science.gov (United States)

    Lee, Jun Hee; Ryu, Jung Min; Han, Yong-Seok; Zia, Mohammad Farid; Kwon, Hyog Young; Noh, Hyunjin; Han, Ho Jae; Lee, Sang Hun

    2016-08-01

    Chronic kidney disease (CKD) is a significant risk factor for cardiovascular and peripheral vascular disease. Although mesenchymal stem cell (MSC)-based therapy is a promising strategy for treatment of ischemic diseases associated with CKD, the associated pathophysiological conditions lead to low survival and proliferation of transplanted MSCs. To address these limitations, we investigated the effects of fucoidan, a sulfated polysaccharide, on the bioactivity of adipose tissue-derived MSCs and the potential of fucoidan-treated MSCs to improve neovascularization in ischemic tissues of CKD mice. Treatment of MSCs with fucoidan increased their proliferative potential and the expression of cell cycle-associated proteins, such as cyclin E, cyclin dependent kinase (CDK) 2, cyclin D1, and CDK4, via focal adhesion kinase and the phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt axis. Moreover, fucoidan enhanced the immunomodulatory activity of MSCs through the ERK-IDO-1 signal cascade. Fucoidan was found to augment the proliferation, incorporation, and endothelial differentiation of transplanted MSCs at ischemic sites in CKD mice hind limbs. In addition, transplantation of fucoidan-treated MSCs enhanced the ratio of blood flow and limb salvage in CKD mice with hind limb ischemia. To our knowledge, our findings are the first to reveal that fucoidan enhances the bioactivity of MSCs and improves their neovascularization in ischemic injured tissues of CKD. In conclusion, fucoidan-treated MSCs may provide an important pathway toward therapeutic neovascularization in patients with CKD. Copyright © 2016. Published by Elsevier Ltd.

  12. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Chai HJ

    2017-01-01

    tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state.Conclusion/Implications: The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier. Keywords: carboxylated polymers, carboxylated polypeptides, carrier, diabetes, renal drug delivery, acute kidney injury, chronic renal failure, end-stage renal failure

  13. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    Science.gov (United States)

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  14. Kidney biopsy

    Science.gov (United States)

    ... the kidney (in rare cases, may require a blood transfusion) Bleeding into the muscle, which might cause soreness Infection (small risk) Alternative Names Renal biopsy; Biopsy - kidney Images Kidney anatomy ...

  15. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    OpenAIRE

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confo...

  16. Assessment of the Renal Function in Potential Donors of Living Kidney Transplants: Expanded Study.

    Science.gov (United States)

    Macías, L B; Poblet, M S; Pérez, N N; Jerez, R I; Gonzalez Roncero, F M; Blanco, G B; Valdivia, M A P; Benjumea, A S; Gentil Govantes, M A

    2015-11-01

    It is very important to determine as accurately as possible the renal function in potential living renal transplant donors, especially those with limited renal function (CrCl graphic we have observed that the most dispersed results are obtained with the eGFR using CCr in 24-hour urine and CKD-EPI. By means of Pasing & Bablock, we realized that MDRD-4 and MDRD-6 show the highest approximation to the reference method proposed to be substituted, whereas CCr shows a high dispersion. eGFR using MDRD-4 and MDRD-6 formulas reveal the best adjustment to the measure by EDTA-Cr51. This might represent the best option if a direct eGFR measure is not available. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Microvascular pericytes in healthy and diseased kidneys

    Science.gov (United States)

    Pan, Szu-Yu; Chang, Yu-Ting; Lin, Shuei-Liong

    2014-01-01

    Pericytes are interstitial mesenchymal cells found in many major organs. In the kidney, microvascular pericytes are defined anatomically as extensively branched, collagen-producing cells in close contact with endothelial cells. Although many molecular markers have been proposed, none of them can identify the pericytes with satisfactory specificity or sensitivity. The roles of microvascular pericytes in kidneys were poorly understood in the past. Recently, by using genetic lineage tracing to label collagen-producing cells or mesenchymal cells, the elusive characteristics of the pericytes have been illuminated. The purpose of this article is to review recent advances in the understanding of microvascular pericytes in the kidneys. In healthy kidney, the pericytes are found to take part in the maintenance of microvascular stability. Detachment of the pericytes from the microvasculature and loss of the close contact with endothelial cells have been observed during renal insult. Renal microvascular pericytes have been shown to be the major source of scar-forming myofibroblasts in fibrogenic kidney disease. Targeting the crosstalk between pericytes and neighboring endothelial cells or tubular epithelial cells may inhibit the pericyte–myofibroblast transition, prevent peritubular capillary rarefaction, and attenuate renal fibrosis. In addition, renal pericytes deserve attention for their potential to produce erythropoietin in healthy kidneys as pericytes stand in the front line, sensing the change of oxygenation and hemoglobin concentration. Further delineation of the mechanisms underlying the reduced erythropoietin production occurring during pericyte–myofibroblast transition may be promising for the development of new treatment strategies for anemia in chronic kidney disease. PMID:24465134

  18. Validation of the Kidney Disease Quality of Life-Short Form: a cross-sectional study of a dialysis-targeted health measure in Singapore

    Directory of Open Access Journals (Sweden)

    Mooppil Nandakumar

    2010-12-01

    Full Text Available Abstract Background In Singapore, the prevalence of end-stage renal disease (ESRD and the number of people on dialysis is increasing. The impact of ESRD on patient quality of life has been recognized as an important outcome measure. The Kidney Disease Quality Of Life-Short Form (KDQOL-SF™ has been validated and is widely used as a measure of quality of life in dialysis patients in many countries, but not in Singapore. We aimed to determine the reliability and validity of the KDQOL-SF™ for haemodialysis patients in Singapore. Methods From December 2006 through January 2007, this cross-sectional study gathered data on patients ≥21 years old, who were undergoing haemodialysis at National Kidney Foundation in Singapore. We used exploratory factor analysis to determine construct validity of the eight KDQOL-SF™ sub-scales, Cronbach's alpha coefficient to determine internal consistency reliability, correlation of the overall health rating with kidney disease-targeted scales to confirm validity, and correlation of the eight sub-scales with age, income and education to determine convergent and divergent validity. Results Of 1980 haemodialysis patients, 1180 (59% completed the KDQOL-SF™. Full information was available for 980 participants, with a mean age of 56 years. The sample was representative of the total dialysis population in Singapore, except Indian ethnicity that was over-represented. The instrument designers' proposed eight sub-scales were confirmed, which together accounted for 68.4% of the variance. All sub-scales had a Cronbach's α above the recommended minimum value of 0.7 to indicate good reliability (range: 0.72 to 0.95, except for Social function (0.66. Correlation of items within subscales was higher than correlation of items outside subscales in 90% of the cases. The overall health rating positively correlated with kidney disease-targeted scales, confirming validity. General health subscales were found to have significant

  19. Validation of the kidney disease quality of life-short form: a cross-sectional study of a dialysis-targeted health measure in Singapore.

    Science.gov (United States)

    Joshi, Veena D; Mooppil, Nandakumar; Lim, Jeremy Fy

    2010-12-20

    In Singapore, the prevalence of end-stage renal disease (ESRD) and the number of people on dialysis is increasing. The impact of ESRD on patient quality of life has been recognized as an important outcome measure. The Kidney Disease Quality Of Life-Short Form (KDQOL-SF™) has been validated and is widely used as a measure of quality of life in dialysis patients in many countries, but not in Singapore. We aimed to determine the reliability and validity of the KDQOL-SF™ for haemodialysis patients in Singapore. From December 2006 through January 2007, this cross-sectional study gathered data on patients ≥21 years old, who were undergoing haemodialysis at National Kidney Foundation in Singapore. We used exploratory factor analysis to determine construct validity of the eight KDQOL-SF™ sub-scales, Cronbach's alpha coefficient to determine internal consistency reliability, correlation of the overall health rating with kidney disease-targeted scales to confirm validity, and correlation of the eight sub-scales with age, income and education to determine convergent and divergent validity. Of 1980 haemodialysis patients, 1180 (59%) completed the KDQOL-SF™. Full information was available for 980 participants, with a mean age of 56 years. The sample was representative of the total dialysis population in Singapore, except Indian ethnicity that was over-represented. The instrument designers' proposed eight sub-scales were confirmed, which together accounted for 68.4% of the variance. All sub-scales had a Cronbach's α above the recommended minimum value of 0.7 to indicate good reliability (range: 0.72 to 0.95), except for Social function (0.66). Correlation of items within subscales was higher than correlation of items outside subscales in 90% of the cases. The overall health rating positively correlated with kidney disease-targeted scales, confirming validity. General health subscales were found to have significant associations with age, income and education

  20. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A potential kidney-bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+

    DEFF Research Database (Denmark)

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva

    2015-01-01

    , as induced by total bilateral nephrectomy and to study the effect of absence of kidneys on the rapid recovery of p-Ca(2+) from a brief induction of acute hypocalcemia. METHODS: The rapid regulation of p-Ca(2+) was examined in sham-operated rats, acute nephrectomized rats (NX), acute thyroparathyrectomized......(TPTX) rats and NX-TPTX rats. RESULTS: The results clearly showed that p-Ca(2+) falls rapidly and significantly very early after acute NX, from 1.23 ± 0.02 to 1.06 ± 0.04 mM (p hypocalcemia was induced by a 30 min iv infusion of EGTA. Control groups had saline. After discontinuing EGTA...... a rapid increase in p-Ca(2+) took place, but with a lower level in NX rats (p effect of accumulation of Calcitonin and C-terminal PTH, both having potential hypocalcemic actions. Acute TPTX resulted in hypercalcemia, 1.44 ± 0.02 mM and less in NX-TPTX rats,1...

  2. Simple Kidney Cysts

    Science.gov (United States)

    ... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...

  3. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

    Science.gov (United States)

    Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin

    2017-07-03

    The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    International Nuclear Information System (INIS)

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2012-01-01

    A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

  5. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours

    International Nuclear Information System (INIS)

    Guggenberg, E. von; Gabriel, M.; Virgolini, I.J.; Decristoforo, C.; Dietrich, H.; Skvortsova, I.

    2007-01-01

    Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA 0 ,DGlu 1 ]minigastrin (DTPA-MG0) radiolabelled with 111 In and 90 Y, our group developed a 99m Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC 0 ,DGlu 1 ,desGlu 2-6 ]minigastrin (HYNIC-MG11). 99m Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. 99m Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of 99m Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. 99m Tc-EDDA-HYNIC-MG11 shows advantages over 99m Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement. (orig.)

  6. Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Kumar, Vikash; Wollner, Clayton; Kurth, Theresa; Bukowy, John D; Cowley, Allen W

    2017-10-01

    The goal of the present study was to explore the protective effects of mTORC1 (mammalian target of rapamycin complex 1) inhibition by rapamycin on salt-induced hypertension and kidney injury in Dahl salt-sensitive (SS) rats. We have previously demonstrated that H 2 O 2 is elevated in the kidneys of SS rats. The present study showed a significant upregulation of renal mTORC1 activity in the SS rats fed a 4.0% NaCl for 3 days. In addition, renal interstitial infusion of H 2 O 2 into salt-resistant Sprague Dawley rats for 3 days was also found to stimulate mTORC1 activity independent of a rise of arterial blood pressure. Together, these data indicate that the salt-induced increases of renal H 2 O 2 in SS rats activated the mTORC1 pathway. Daily administration of rapamycin (IP, 1.5 mg/kg per day) for 21 days reduced salt-induced hypertension from 176.0±9.0 to 153.0±12.0 mm Hg in SS rats but had no effect on blood pressure salt sensitivity in Sprague Dawley treated rats. Compared with vehicle, rapamycin reduced albumin excretion rate in SS rats from 190.0±35.0 to 37.0±5.0 mg/d and reduced the renal infiltration of T lymphocytes (CD3 + ) and macrophages (ED1 + ) in the cortex and medulla. Renal hypertrophy and cell proliferation were also reduced in rapamycin-treated SS rats. We conclude that enhancement of intrarenal H 2 O 2 with a 4.0% NaCl diet stimulates the mTORC1 pathway that is necessary for the full development of the salt-induced hypertension and kidney injury in the SS rat. © 2017 American Heart Association, Inc.

  7. Periodontal Disease and Decreased Kidney Function in Japanese Elderly

    NARCIS (Netherlands)

    Iwasaki, Masanori; Taylor, George W.; Nesse, Willem; Vissink, Arjan; Yoshihara, Akihiro; Miyazaki, Hideo

    Background: Early detection of decreased kidney function can help prevent the progression of kidney disease to kidney failure and cardiovascular events. Potentially significant associations between kidney function and periodontal disease have been reported in cross-sectional studies. However, no

  8. Role of humoral immune reactions as target for antirejection therapy in recipients of a spousal-donor kidney graft.

    Science.gov (United States)

    Böhmig, G A; Regele, H; Säemann, M D; Exner, M; Druml, W; Kovarik, J; Hörl, W H; Zlabinger, G J; Watschinger, B

    2000-04-01

    Excellent graft outcome has been reported for spousal-donor kidney transplantation. In husband-to-wife transplantation, however, a tendency toward inferior graft survival has been described for recipients who were previously pregnant. In our series of spousal-kidney transplantations (nine transplantations; three female recipients), actual graft survival is 100% (median observation time, 339 days). Five patients experienced early allograft rejection. In four transplant recipients, rejection was easily reversible by conventional antirejection therapy. In a multiparous recipient, however, mild interstitial allograft rejection associated with early graft dysfunction was resistant to anticellular treatment (antilymphocyte antibody, tacrolimus rescue therapy). The particular finding of polymorphonuclear neutrophils in peritubular capillaries and the finding of diffuse capillary deposits of the complement split product, C4d, in a posttransplantation biopsy specimen suggested a role of antibody-mediated graft injury. Retrospective flow cytometry cross-matching showed the presence of preformed immunoglobulin G (IgG) antibodies to HLA class I antigens that were not detectable by pretransplantation lymphocytotoxic cross-match testing or screening for panel reactive antibodies. After transplantation, however, complement-fixing antibodies, also presumably triggered by reexposure to spousal-donor HLA antigens, could be detected in the patient's serum. These findings suggested antibody-mediated allograft rejection and led to the initiation of immunoadsorption therapy (14 sessions) with staphylococcal protein A. Selective removal of recipient IgG resulted in complete reversal of graft dysfunction. Our findings suggest that in husband-to-wife transplantation, donor-specific antibodies, presumably triggered by previous pregnancies, might occasionally induce sustained allograft dysfunction. Thus, in this particular setting, a detailed immunologic and histopathologic work-up regarding

  9. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum.
RESULTS—Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes.
CONCLUSIONS—AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.


Keywords: liver/kidney microsomal antibody type 1; autoimmunity; autoimmune hepatitis; hepatitis C virus infection; confocal microscopy PMID:10716687

  10. Epigenetics of kidney disease.

    Science.gov (United States)

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  11. Differences between hospitals in attainment of parathyroid hormone treatment targets in chronic kidney disease do not reflect differences in quality of care.

    Science.gov (United States)

    Peeters, Mieke J; van Zuilen, Arjan D; van den Brand, Jan A J G; Blankestijn, Peter J; ten Dam, Marc A G J; Wetzels, Jack F M

    2012-08-06

    Transparency in quality of care (QoC) is stimulated and hospitals are compared and judged on the basis of indicators of performance on specific treatment targets. In patients with chronic kidney disease, QoC differed significantly between hospitals. In this analysis we explored additional parameters to explain differences between centers in attainment of parathyroid hormone (PTH) treatment targets. Using MASTERPLAN baseline data, we selected one of the worst (center A) and one of the best (center B) performing hospitals. Differences between the two centers were analyzed from the year prior to start of the MASTERPLAN study until the baseline evaluation. Determinants of PTH were assessed. 101 patients from center A (median PTH 9.9 pmol/l, in 67 patients exceeding recommended levels) and 100 patients from center B (median PTH 6.5 pmol/l, in 34 patients exceeding recommended levels), were included. Analysis of clinical practice did not reveal differences in PTH management between the centers. Notably, hyperparathyroidism resulted in a change in therapy in less than 25% of patients. In multivariate analysis kidney transplant status, MDRD-4, and treatment center were independent predictors of PTH. However, when MDRD-6 (which accounts for serum urea and albumin) was used instead of MDRD-4, the center effect was reduced. Moreover, after calibration of the serum creatinine assays treatment center no longer influenced PTH. We show that differences in PTH control between centers are not explained by differences in treatment, but depend on incomparable patient populations and laboratory techniques. Therefore, results of hospital performance comparisons should be interpreted with great caution.

  12. The Role of Y-Box Binding Protein 1 in Kidney Injury: Friend or Foe?

    Science.gov (United States)

    Ke, Ben; Fan, Chuqiao; Tu, Weiping; Fang, Xiangdong

    2018-01-01

    Y-box-binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes via the transcriptional and translational regulation of target gene expression. YB-1 promotes acute or chronic kidney injury through multiple molecular pathways; however, accumulating evidence suggests that significantly increased YB-1 levels are of great importance in renoprotection. In addition, YB-1 may contribute to obesity-related kidney disease by promoting adipogenesis. Thus, the role of YB-1 in kidney injury is complicated, and no comprehensive review is currently available. In this review, we summarise recent progress in our understanding of the function of YB-1 in kidney injury and provide an overview of the dual role of YB-1 in kidney disease. Moreover, we propose that YB-1 is a potential therapeutic target to restrict kidney disease. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  14. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    Science.gov (United States)

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  15. Biodegradable microspheres for the sustained release of PDGF-receptor directed pPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Steendam, Rob; Zuidema, Johan; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGF receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal models,

  16. Biodegradable microspheres for the sustained release of PDGF-receptor directed PPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGFβ receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal

  17. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr; Sirma-Ekmekci, Sema, E-mail: semasirma@gmail.com; Yildirim, Ozlem, E-mail: ozlm-yildirim@hotmail.com; Erginel-Unaltuna, Nihan, E-mail: nihanerginel@yahoo.com

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.

  18. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  19. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit

    2011-01-01

    patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...

  20. Kidney Cancer

    Science.gov (United States)

    ... kind of kidney cancer called Wilms' tumor. The incidence of kidney cancer seems to be increasing. One ... doesn't go away Loss of appetite Unexplained weight loss Tiredness Fever, which usually comes and goes ( ...

  1. Kidney Failure

    Science.gov (United States)

    Healthy kidneys clean your blood by removing excess fluid, minerals, and wastes. They also make hormones that keep your ... strong and your blood healthy. But if the kidneys are damaged, they don't work properly. Harmful ...

  2. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  3. Theoretical aspects of the definition of market potential and targeting by domestic companies

    OpenAIRE

    T.А. Zaychuk

    2012-01-01

    The article deals with methodological approaches to determine market potential, which are used in world practice. Based on analysis of existing scientific approaches to the selection of target market it is developed the methodology of assessment of market segments attractiveness adapted to the needs and capabilities of domestic enterprises.

  4. Deepening of floating potential for tungsten target plate on the way to nanostructure formation

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori; Ohno, Noriyasu

    2010-01-01

    Deepening of floating potential has been observed on the tungsten target plate immersed in high-density helium plasma with hot electron component on the way to nanostructure formation. The physical mechanism is thought to be a reduction of secondary electron emission from such a complex nano fiber-form structure on the tungsten surface. (author)

  5. Learning networks as an enabler for informed decisions to target energy-efficiency potentials in companies

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, W.A.; Schlomann, Barbara; Mielicke, Ursula

    2017-01-01

    his paper deals with possibilities of targeting energy efficiency potentials in German companies by delivering information and support within a cooperative management system “Learning Energy Efficiency Networks” (LEEN). Information deficits are pointed out as a relevant barrier to implementing

  6. siRNAs targeting PB2 and NP genes potentially inhibit replication

    Indian Academy of Sciences (India)

    % and has caused the death or culling of millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, ...

  7. Environmental pollution and kidney diseases.

    Science.gov (United States)

    Xu, Xin; Nie, Sheng; Ding, Hanying; Hou, Fan Fan

    2018-05-01

    The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose-response relationship between pollutants and kidney diseases.

  8. An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy

    International Nuclear Information System (INIS)

    Siva, Shankar; Pham, Daniel; Gill, Suki; Bressel, Mathias; Dang, Kim; Devereux, Thomas; Kron, Tomas; Foroudi, Farshad

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment modality for primary renal cell carcinoma. To account for respiratory-induced target motion, an internal target volume (ITV) concept is often used in treatment planning of SABR. The purpose of this study is to assess patterns of kidney motion and investigate potential surrogates of kidney displacement with the view of ITV verification during treatment. Datasets from 71 consecutive patients with free breathing four-dimensional computed tomography (4DCT) planning scans were included in this study. The displacement of the left and right hemi-diaphragm, liver dome and abdominal wall were measured and tested for correlation with the displacement of the both kidneys and patient breathing frequency. Nine patients were excluded due to severe banding artifact. Of 62 evaluable patients, the median age was 68 years, with 41 male patients and 21 female patients. The mean (range) of the maximum, minimum and average breathing frequency throughout the 4DCTs were 20.1 (11–38), 15.1 (9–24) and 17.3 (9–27.5) breaths per minute, respectively. The mean (interquartile range) displacement of the left and right kidneys was 0.74 cm (0.45-0.98 cm) and 0.75 cm (0.49-0.97) respectively. The amplitude of liver-dome motion was correlated with right kidney displacement (r=0.52, p<0.001), but not with left kidney displacement (p=0.796). There was a statistically significant correlation between the magnitude of right kidney displacement and that of abdominal displacement (r=0.36, p=0.004), but not the left kidney (r=0.24, p=0.056). Hemi-diaphragm displacements were correlated with kidney displacements respectively, with a weaker correlation for the left kidney/left diaphragm (r=0.45, [95% CI 0.22 to 0.63], p=<0.001) than for the right kidney/right diaphragm (r=0.57, [95% CI 0.37 to 0.72], p=<0.001). For the majority of patients, maximal left and right kidney displacement is subcentimeter in magnitude. The magnitude of

  9. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    Science.gov (United States)

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    Science.gov (United States)

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; Plabelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of the vascular anatomy in potential living kidney donors with gadolinium-enhanced magnetic resonance angiography: comparison with digital subtraction angiography and intraoperative findings.

    Science.gov (United States)

    Asgari, Majid A; Dadkhah, Farid; Ghadian, Ali R; Razzaghi, Mohammad R; Noorbala, Mohammad H; Amini, Erfan

    2011-01-01

    X-ray contrast arteriography has traditionally been used for pre-operative evaluation in living kidney donors. However, magnetic resonance angiography (MRA) offers a non-invasive alternative, which has been considered to be less accurate. This study was performed to determine whether MRA in the pre-operative investigation of living kidney donors provides sufficient information. From December 2005 to December 2007, 173 potential live donors were evaluated in this study. Donors performed digital subtraction angiography (DSA) and those with one or more accessory arteries at least on one side recruited for further evaluation with three-dimensional gadolinium-enhanced MRA. A total of 30 donors constituted the study population. When compared with DSA as the reference method, MRA detected 20 of 36 renal accessory arteries which indicates a sensitivity of 55.6%. The difference between MRA and DSA in identifying accessory renal arteries was significant (p-value kidneys. MRA has the advantage of avoiding exposure to ionizing radiation and is non-invasive. These are important considerations in pre-operative evaluation of a generally healthy donor population. However, MRA provides suboptimal accuracy in detecting small accessory arteries. © 2010 John Wiley & Sons A/S.

  12. Potential impact of miR-137 and its targets in schizophrenia

    Directory of Open Access Journals (Sweden)

    Carrie eWright

    2013-04-01

    Full Text Available The significant impact of microRNAs (miRNAs on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. Schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, Ingenuity Pathway Analysis (IPA, and freely accessible bioinformatics resources. Using TargetScan and the Schizophrenia Gene Resource (SZGR database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2 and HTR2C. IPA analyses of all the potential targets identified several nervous system functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in nervous system development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function.

  13. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms.

    Science.gov (United States)

    Marei, Hadir; Malliri, Angeliki

    2017-07-03

    Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.

  14. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  15. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  16. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  17. Omen: identifying potential spear-phishing targets before the email is sent.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Jeremy Daniel.

    2013-07-01

    We present the results of a two year project focused on a common social engineering attack method called "spear phishing". In a spear phishing attack, the user receives an email with information specifically focused on the user. This email contains either a malware-laced attachment or a link to download the malware that has been disguised as a useful program. Spear phishing attacks have been one of the most effective avenues for attackers to gain initial entry into a target network. This project focused on a proactive approach to spear phishing. To create an effective, user-specific spear phishing email, the attacker must research the intended recipient. We believe that much of the information used by the attacker is provided by the target organization's own external website. Thus when researching potential targets, the attacker leaves signs of his research in the webserver's logs. We created tools and visualizations to improve cybersecurity analysts' abilities to quickly understand a visitor's visit patterns and interests. Given these suspicious visitors and log-parsing tools, analysts can more quickly identify truly suspicious visitors, search for potential spear-phishing targeted users, and improve security around those users before the spear phishing email is sent.

  18. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges

    Science.gov (United States)

    Hoshida, Yujin; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Chronic fibrotic liver diseases such as viral hepatitis eventually develop liver cirrhosis, which causes occurrence of hepatocellular carcinoma (HCC). Given the limited therapeutic efficacy in advanced HCC, prevention of HCC development could be an effective strategy for improving patient prognosis. However, there is still no established therapy to meet the goal. Studies have elucidated a wide variety of molecular mechanisms and signaling pathways involved in HCC development. Genetically-engineered or chemically-treated experimental models of cirrhosis and HCC have been developed and shown their potential value in investigating molecular therapeutic targets and diagnostic biomarkers for HCC prevention. In this review, we overview potential targets of prevention and currently available experimental models, and discuss strategies to translate the findings into clinical practice. PMID:22873223

  19. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity

    Directory of Open Access Journals (Sweden)

    Mostafa Wanees Ahmed El husseny

    2017-01-01

    Full Text Available Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM, insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity.

  20. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  1. Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    R. Dey-Rao

    2017-08-01

    Full Text Available The microarray dataset attached to this report is related to the research article with the title: “A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia” (Dey-Rao and Sinha, 2017 [1]. Male-pattern hair loss that is induced by androgens (testosterone in genetically predisposed individuals is known as androgenetic alopecia (AGA. The raw dataset is being made publicly available to enable critical and/or extended analyses. Our related research paper utilizes the attached raw dataset, for genome-wide gene-expression associated investigations. Combined with several in silico bioinformatics-based analyses we were able to delineate five strategic molecular elements as potential novel targets towards future AGA-therapy.

  2. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Shunfei Yan

    2017-01-01

    Full Text Available Overall survival for patients with ovarian cancer (OC has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC. HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose polymerase (PARP inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.

  3. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    Science.gov (United States)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  4. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  5. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    Science.gov (United States)

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  6. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  7. Time-in-a-bottle (TIAB): a longitudinal, correlational study of patterns, potential predictors, and outcomes of immunosuppressive medication adherence in adult kidney transplant recipients.

    Science.gov (United States)

    Russell, Cynthia L; Ashbaugh, Catherine; Peace, Leanne; Cetingok, Muammer; Hamburger, Karen Q; Owens, Sarah; Coffey, Deanna; Webb, Andrew W; Hathaway, Donna; Winsett, Rebecca P; Madsen, Richard; Wakefield, Mark R

    2013-01-01

    This study examined patterns, potential predictors, and outcomes of immunosuppressive medication adherence in a convenience sample of 121 kidney transplant recipients aged 21 yr or older from three kidney transplant centers using a theory-based, descriptive, correlational, longitudinal design. Electronic monitoring was conducted for 12 months using electronic monitoring. Participants were persistent in taking their immunosuppressive medications, but execution, which includes both taking and timing, was poor. Older age was the only demographic variable associated with medication adherence (r = 0.25; p = 0.005). Of the potential predictors examined, only medication self-efficacy was associated with medication non-adherence, explaining about 9% of the variance (r = 0.31, p = 0.0006). The few poor outcomes that occurred were not significantly associated with medication non-adherence, although the small number of poor outcomes may have limited our ability to detect a link. Future research should test fully powered, theory-based, experimental interventions that include a medication self-efficacy component. © 2013 John Wiley & Sons A/S.

  8. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  9. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; Ruiz-Merlo, Tamara; López-Medrano, Francisco; San Juan, Rafael; Polanco, Natalia; González, Esther; Andrés, Amado; Aguado, José María

    2018-02-01

    The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P role for iron overload in the individual susceptibility to post-transplant infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Establishment of calculated panel reactive antibody and its potential benefits in improving the kidney allocation strategy in Taiwan

    Directory of Open Access Journals (Sweden)

    Ssu-Wen Shen

    2017-12-01

    Full Text Available Background/Purpose: Renal transplant candidates who are highly sensitized to human leukocyte antigens (HLAs tend to wait longer to find a matched donor and have poor outcomes. Most organ-sharing programs prioritize highly sensitized patients in the allocation scoring system. The HLA sensitization status is traditionally evaluated by the panel-reactive antibody (PRA assay. However, this assay is method dependent and does not consider the ethnic differences in HLA frequencies. A calculated PRA (cPRA, based on a population's HLA frequency and patients' unacceptable antigens (UAs, correctly estimates the percentage of donors suitable for candidates. The Taiwan Organ Registry and Sharing Center does not prioritize sensitized patients. We propose that the incorporation of the cPRA and UAs into the renal allocation program will improve the local kidney allocation policy. Methods: We established a cPRA calculator using 6146 Taiwanese HLA-A, -B, -C, -DR, and -DQ phenotypes. We performed simulated allocation based on the concept of acceptable mismatch for 76 candidates with cPRA values exceeding 80%. Results: We analyzed 138 waitlisted renal transplant candidates at our hospital, and we determined that the concordance rate of the cPRA and PRA for highly sensitized (%PRA > 80% candidates was 92.5%, which decreased to 20% for those with %PRA < 80%. We matched 76 highly sensitized patients based on acceptable mismatch with the HLA phenotypes of 93 cadaver donors. Forty-six patients (61% found at least one suitable donor. Conclusion: The application of the cPRA and acceptable mismatch can benefit highly sensitized patients and reduce positive lymphocyte cytotoxicity crossmatch. Keywords: Kidney transplantation, Human leukocyte antigen, CPRA

  11. Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Georg Melmer

    2013-01-01

    Full Text Available Conventional cancer treatments lack specificity and often cause severe side effects. Targeted therapeutic approaches are therefore preferred, including the use of immunotoxins (ITs that comprise cell-binding and cell death-inducing components to allow the direct and specific delivery of pro-apoptotic agents into malignant cells. The first generation of ITs consisted of toxins derived from bacteria or plants, making them immunogenic in humans. The recent development of human cytolytic fusion proteins (hCFP consisting of human effector enzymes offers the prospect of highly-effective targeted therapies with minimal side effects. One of the most promising candidates is granzyme B (GrB and this enzyme has already demonstrated its potential for targeted cancer therapy. However, the clinical application of GrB may be limited because it is inactivated by the overexpression in tumors of its specific inhibitor serpin B9 (PI-9. It is also highly charged, which means it can bind non-specifically to the surface of non-target cells. Furthermore, human enzymes generally lack an endogenous translocation domain, thus the endosomal release of GrB following receptor-mediated endocytosis can be inefficient. In this review we provide a detailed overview of these challenges and introduce promising solutions to increase the cytotoxic potency of GrB for clinical applications.

  12. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    Science.gov (United States)

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cellular Signaling Pathway Alterations and Potential Targeted Therapies for Medullary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Serena Giunti

    2013-01-01

    Full Text Available Parafollicular C-cell-derived medullary thyroid cancer (MTC comprises 3% to 4% of all thyroid cancers. While cytotoxic treatments have been shown to have limited efficacy, targeted molecular therapies that inhibit rearranged during transfection (RET and other tyrosine kinase receptors that are mainly involved in angiogenesis have shown great promise in the treatment of metastatic or locally advanced MTC. Multi-tyrosine kinase inhibitors such as vandetanib, which is already approved for the treatment of progressive MTC, and cabozantinib have shown distinct advantages with regard to rates of disease response and control. However, these types of tyrosine kinase inhibitor compounds are able to concurrently block several types of targets, which limits the understanding of RET as a specific target. Moreover, important resistances to tyrosine kinase inhibitors can occur, which limit the long-term efficacy of these treatments. Deregulated cellular signaling pathways and genetic alterations in MTC, particularly the activation of the RAS/mammalian target of rapamycin (mTOR cascades and RET crosstalk signaling, are now emerging as novel and potentially promising therapeutic treatments for aggressive MTC.

  14. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  15. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  16. Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species.

    Science.gov (United States)

    Watanabe, Takayasu; Shibasaki, Masaki; Maruyama, Fumito; Sekizaki, Tsutomu; Nakagawa, Ichiro

    2017-01-01

    The oral bacterial species Porphyromonas gingivalis, a periodontal pathogen, has plastic genomes that may be driven by homologous recombination with exogenous deoxyribonucleic acid (DNA) that is incorporated by natural transformation and conjugation. However, bacteriophages and plasmids, both of which are main resources of exogenous DNA, do not exist in the known P. gingivalis genomes. This could be associated with an adaptive immunity system conferred by clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes in P. gingivalis as well as innate immune systems such as a restriction-modification system. In a previous study, few immune targets were predicted for P. gingivalis CRISPR/Cas. In this paper, we analyzed 51 P. gingivalis genomes, which were newly sequenced, and publicly available genomes of 13 P. gingivalis and 46 other Porphyromonas species. We detected 6 CRISPR/Cas types (classified by sequence similarity of repeat) in P. gingivalis and 12 other types in the remaining species. The Porphyromonas CRISPR spacers with potential targets in the genus Porphyromonas were approximately 23 times more abundant than those with potential targets in other genus taxa (1,720/6,896 spacers vs. 74/6,896 spacers). Porphyromonas CRISPR/Cas may be involved in genome plasticity by exhibiting selective interference against intra- and interspecies nucleic acids.

  17. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  18. Tumor blood flow modifying effects of electrochemotherapy. A potential vascular targeted mechanism

    International Nuclear Information System (INIS)

    Sersa, G.; Cemazar, M.; Miklavcic, D.

    2003-01-01

    Background. The aim of this study was to determine the tumor blood flow modifying, and potential vascular targeted effect of electrochemotherapy with bleomycin or cisplatin. Materials and methods. Electrochemotherapy was performed by application of short intense electric pulses to the tumors after systemic administration of bleomycin or cisplatin. Evaluated were antitumor effectiveness of electrochemotherapy by tumor measurement, tumor blood flow modifying effect by Patent blue staining technique, and sensitivity of endothelial and tumor cells to the drugs and electrochemotherapy by clonogenicity assay. Results. Electrochemotherapy was effective in treatment of SA-1 tumors in A/J mice resulting in substantial tumor growth delay and also tumor cures. Tumor blood flow reduction following electrochemotherapy correlated well with its antitumor effectiveness. Virtually complete shut down of the tumor blood flow was observed already at 24 h after electrochemotherapy with bleomycin whereas only 50% reduction was observed after electrochemotherapy with cisplatin. Sensitivity of human endothelial HMEC-1 cells to electrochemotherapy suggests a vascular targeted effect for electrochemotherapy in vivo with bleomycin as well as with cisplatin. Conclusion. These results show that, in addition to direct electroporation of tumor cells, other vascular targeted mechanisms are involved in electrochemotherapy with bleomycin or cisplatin, potentially mediated by tumor blood flow reduction, and enhanced tumor cell death as a result of endothelial damage by electrochemotherapy. (author)

  19. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    Science.gov (United States)

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  20. Kidney Stones

    Science.gov (United States)

    ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ...

  1. Kidney Cancer

    Science.gov (United States)

    You have two kidneys. They are fist-sized organs on either side of your backbone above your waist. The tubes inside filter and ... blood, taking out waste products and making urine. Kidney cancer forms in the lining of tiny tubes ...

  2. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Science.gov (United States)

    Regad, Leslie; Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude

    2017-01-01

    Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.

  3. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Directory of Open Access Journals (Sweden)

    Leslie Regad

    Full Text Available Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC, obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at

  4. Diabetic kidney disease.

    Science.gov (United States)

    Thomas, Merlin C; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A M; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E

    2015-07-30

    The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin-angiotensin-aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg.

  5. Photopatternable Magnetic Hollowbots by Nd-Fe-B Nanocomposite for Potential Targeted Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available In contrast to traditional drug administration, targeted drug delivery can prolong, localize, target and have a protected drug interaction with the diseased tissue. Drug delivery carriers, such as polymeric micelles, liposomes, dendrimers, nanotubes, and so on, are hard to scale-up, costly, and have short shelf life. Here we show the novel fabrication and characterization of photopatternable magnetic hollow microrobots that can potentially be utilized in microfluidics and drug delivery applications. These magnetic hollowbots can be fabricated using standard ultraviolet (UV lithography with low cost and easily accessible equipment, which results in them being easy to scale up, and inexpensive to fabricate. Contact-free actuation of freestanding magnetic hollowbots were demonstrated by using an applied 900 G external magnetic field to achieve the movement control in an aqueous environment. According to the movement clip, the average speed of the magnetic hollowbots was estimated to be 1.9 mm/s.

  6. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  7. Potential functional and pathological side effects related to off-target pharmacological activity.

    Science.gov (United States)

    Lynch, James J; Van Vleet, Terry R; Mittelstadt, Scott W; Blomme, Eric A G

    2017-09-01

    Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, Michael T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arora, Neha [Indian Institute of Technology Roorkee; Pruthi, Vikas [Indian Institute of Technology Roorkee; Poluri, Krishna Mohan [Indian Institute of Technology Roorkee

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.

  9. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  10. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  11. Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical

    International Nuclear Information System (INIS)

    Kumar, Chandan; Subramanian, Suresh; Samuel, Grace

    2016-01-01

    Curcumin, a component of the spice turmeric has widely reported anticancer properties in several types of cancer. The differential accumulation and mechanism of its action in normal and cancer cells have proven its potential in targeting tumor. Therefore, it was of interest to label curcumin with a suitable radionuclide and explore its potential for use in nuclear medicine. Curcumin was labeled with "1"2"5I by iodogen method. The radiochemical purity was analyzed by paper electrophoresis and high-performance liquid chromatography (HPLC) method. Cell binding was carried out in murine lymphoma and melanoma cell lines. Bioevaluation and pharmacokinetics of radioiodinated curcumin was carried out in lymphoma-bearing mice for various time points (1, 3, 24, and 48 h). The efficiency of labeling was >75% and the radiochemical purity postpurification was >95%. The maximum uptake (∼7% at 2 h, 37°C using 5 X 10"5 cells) was observed in EL4 cells. Significant tumor uptake in lymphoma-bearing mice was observed at 180 min (3.3 ± 0.76% ID/g). In addition, pharmacokinetics of radioiodinated curcumin is fast, with the majority of the preparation out of the bloodstream in 3 h. The results of these studies suggest that curcumin has the potential for targeting lymphomas, which may be used as diagnostic/therapeutic agent by labeling with other radionuclides. (author)

  12. A resource of potential drug targets and strategic decision-making for obstructive sleep apnoea pharmacotherapy.

    Science.gov (United States)

    Horner, Richard L; Grace, Kevin P; Wellman, Andrew

    2017-07-01

    There is currently no pharmacotherapy for obstructive sleep apnoea (OSA) but there is no principled a priori reason why there should not be one. This review identifies a rational decision-making strategy with the necessary logical underpinnings that any reasonable approach would be expected to navigate to develop a viable pharmacotherapy for OSA. The process first involves phenotyping an individual to quantify and characterize the critical predisposing factor(s) to their OSA pathogenesis and identify, a priori, if the patient is likely to benefit from a pharmacotherapy that targets those factors. We then identify rational strategies to manipulate those critical predisposing factor(s), and the barriers that have to be overcome for success of any OSA pharmacotherapy. A new analysis then identifies candidate drug targets to manipulate the upper airway motor circuitry for OSA pharmacotherapy. The first conclusion is that there are two general pharmacological approaches for OSA treatment that are of the most potential benefit and are practically realistic, one being fairly intuitive but the second perhaps less so. The second conclusion is that after identifying the critical physiological obstacles to OSA pharmacotherapy, there are current therapeutic targets of high interest for future development. The final analysis provides a tabulated resource of 'druggable' targets that are relatively restricted to the circuitry controlling the upper airway musculature, with these candidate targets being of high priority for screening and further study. We also emphasize that a pharmacotherapy may not cure OSA per se, but may still be a useful adjunct to improve the effectiveness of, and adherence to, other treatment mainstays. © 2017 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.

  13. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    Directory of Open Access Journals (Sweden)

    Wang SM

    2015-04-01

    Full Text Available Shan-Mei Wang,1,* Xian He,2,* Nan Li,1,* Feng Yu,3 Yang Hu,1 Liu-Sheng Wang,1 Peng Zhang,4 Yu-Kui Du,1 Shan-Shan Du,1 Zhao-Fang Yin,1 Ya-Ru Wei,1 Xavier Mulet,5 Greg Coia,6 Dong Weng,1 Jian-Hua He,3 Min Wu,7 Hui-Ping Li1 1Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 2School of Medicine, Suzhou University, SuZhou, 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 4Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China; 5CSIRO (Commonwealth Scientific and Industrial Research Materials Science and Engineering, Clayton, 6CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia; 7Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA *These authors contributed equally to this work Abstract: Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high

  14. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    International Nuclear Information System (INIS)

    Nagano, Kazuya; Yamashita, Takuya; Inoue, Masaki; Higashisaka, Kazuma; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko

    2014-01-01

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here

  15. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  16. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Ludwig, Megan L.; Birkeland, Andrew C.; Hoesli, Rebecca; Swiecicki, Paul; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21 st century

  17. Injury - kidney and ureter

    Science.gov (United States)

    ... kidney; Ureteral injury; Pre-renal failure - injury, Post-renal failure - injury; Kidney obstruction - injury Images Kidney anatomy Kidney - blood and urine flow References Molitoris BA. Acute kidney injury. In: Goldman ...

  18. Chronic Kidney Diseases

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Chronic Kidney Diseases KidsHealth / For Kids / Chronic Kidney Diseases What's ... re talking about your kidneys. What Are the Kidneys? Your kidneys are tucked under your lower ribs ...

  19. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar

    2015-06-01

    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  20. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    Directory of Open Access Journals (Sweden)

    Masaaki Sawa

    2008-11-01

    Full Text Available Masaaki Sawa1, Hisao Masai21Carna Biosciences, Inc., Kobe, Japan; 2Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, JapanAbstract: Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 of less than 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.Keywords: Cdc7 kinase, cell cycle, replication fork, genome stability, DNA damages, ATP-binding pocket, kinase inhibitor

  1. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  2. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    Science.gov (United States)

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  3. The potential of AR-V7 as a therapeutic target.

    Science.gov (United States)

    Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C

    2018-03-01

    The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.

  4. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  5. Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide.

    Directory of Open Access Journals (Sweden)

    Mathias Gehrmann

    Full Text Available We have previously used a unique mouse monoclonal antibody cmHsp70.1 to demonstrate the selective presence of a membrane-bound form of Hsp70 (memHsp70 on a variety of leukemia cells and on single cell suspensions derived from solid tumors of different entities, but not on non-transformed cells or cells from corresponding 'healthy' tissue. This antibody can be used to image tumors in vivo and target them for antibody-dependent cellular cytotoxicity. Tumor-specific expression of memHsp70 therefore has the potential to be exploited for theranostic purposes. Given the advantages of peptides as imaging and targeting agents, this study assessed whether a 14-mer tumor penetrating peptide (TPP; TKDNNLLGRFELSG, the sequence of which is derived from the oligomerization domain of Hsp70 which is expressed on the cell surface of tumor cells, can also be used for targeting membrane Hsp70 positive (memHsp70+ tumor cells, in vitro.The specificity of carboxy-fluorescein (CF- labeled TPP (TPP to Hsp70 was proven in an Hsp70 knockout mammary tumor cell system. TPP specifically binds to different memHsp70+ mouse and human tumor cell lines and is rapidly taken up via endosomes. Two to four-fold higher levels of CF-labeled TPP were detected in MCF7 (82% memHsp70+ and MDA-MB-231 (75% memHsp70+ cells compared to T47D cells (29% memHsp70+ that exhibit a lower Hsp70 membrane positivity. After 90 min incubation, TPP co-localized with mitochondrial membranes in memHsp70+ tumors. Although there was no evidence that any given vesicle population was specifically localized, fluorophore-labeled cmHsp70.1 antibody and TPP preferentially accumulated in the proximity of the adherent surface of cultured cells. These findings suggest a potential association between membrane Hsp70 expression and cytoskeletal elements that are involved in adherence, the establishment of intercellular synapses and/or membrane reorganization.This study demonstrates the specific binding and rapid

  6. Profile of peginesatide and its potential for the treatment of anemia in adults with chronic kidney disease who are on dialysis

    Directory of Open Access Journals (Sweden)

    Mikhail A

    2012-05-01

    Full Text Available Ashraf MikhailRenal Unit, Morriston Hospital, Swansea University, Wales, UKAbstract: Peginesatide is a synthetic, dimeric peptide that is covalently linked to polyethylene glycol (PEG. The amino acid sequence of peginesatide is unrelated to that of erythropoietin (EPO and is not immunologically cross-reactive with EPO. Peginesatide binds to and activates the human EPO receptor, stimulating the proliferation and differentiation of human red cell precursors in vitro in a manner similar to other EPO-stimulating agents (ESAs. In Phase II and III studies in dialysis and predialysis patients, peginesatide administered once monthly was as effective as epoetin alfa given thrice weekly (dialysis patients or darbepoetin given once weekly (nondialysis patients, in correcting anemia of chronic kidney disease as well as maintaining hemoglobin within the desired target range. In the dialysis population, the reported side-effect profile of peginesatide was comparable to that known with other marketed ESAs. In the nondialysis studies, compared with those treated with darbepoetin, patients treated with peginesatide experienced a higher adverse-effect profile. Peginesatide is likely to be licensed for treatment of renal anemia in dialysis patients and not in nondialysis patients. Despite this limitation, peginesatide is likely to prove valuable in treating dialysis patients because of its infrequent mode of administration, thereby allowing for a reduced number of injections, with associated better compliance, reduced cold storage requirement, and improved stock accountability. PEGylated therapeutic proteins can elicit immunological response to the PEG moiety of the therapeutic complex. Only long-term experience and post-marketing surveillance will address whether this immunological response will have any impact on the clinical efficacy or safety of peginesatide in clinical practice.Keywords: peginesatide, dialysis, chronic kidney disease

  7. Type I IL-1 Receptor (IL-1RI as Potential New Therapeutic Target for Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Jyh-Hong Lee

    2010-01-01

    Full Text Available The IL-1R/TLR family has been receiving considerable attention as potential regulators of inflammation through their ability to act as either activators or suppressors of inflammation. Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, allergic inflammation, elevated serum total, allergen-specific IgE levels, and increased Th2 cytokine production. The discovery that the IL-1RI–IL-1 and ST2–IL-33 pathways are crucial for allergic inflammation has raised interest in these receptors as potential targets for developing new therapeutic strategies for bronchial asthma. This paper discusses the current use of neutralizing mAb or soluble receptor constructs to deplete cytokines, the use of neutralizing mAb or recombinant receptor antagonists to block cytokine receptors, and gene therapy from experimental studies in asthma. Targeting IL-1RI–IL-1 as well as ST2–IL-33 pathways may promise a disease-modifying approach in the future.

  8. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sciuto

    Full Text Available The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  9. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.

    Science.gov (United States)

    Clermont, Pier-Luc; Crea, Francesco; Chiang, Yan Ting; Lin, Dong; Zhang, Amy; Wang, James Z L; Parolia, Abhijit; Wu, Rebecca; Xue, Hui; Wang, Yuwei; Ding, Jiarui; Thu, Kelsie L; Lam, Wan L; Shah, Sohrab P; Collins, Colin C; Wang, Yuzhuo; Helgason, Cheryl D

    2016-01-01

    While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities. In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis. Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.

  10. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS

    Directory of Open Access Journals (Sweden)

    Jeong Eun Kim

    2018-04-01

    Full Text Available Pemetrexed and platinum (PP combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM. However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions. We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.

  11. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS.

    Science.gov (United States)

    Kim, Jeong Eun; Kim, Deokhoon; Hong, Yong Sang; Kim, Kyu-Pyo; Yoon, Young Kwang; Lee, Dae Ho; Kim, Sang-We; Chun, Sung-Min; Jang, Se Jin; Kim, Tae Won

    2018-04-01

    Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target.

    Science.gov (United States)

    Frei, Priska; Pang, Lijuan; Silbermann, Marleen; Eriş, Deniz; Mühlethaler, Tobias; Schwardt, Oliver; Ernst, Beat

    2017-08-25

    Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets.

    Science.gov (United States)

    Prakash, Pravin; Rajakani, Raja; Gupta, Vikrant

    2016-04-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer.

    Science.gov (United States)

    Choi, Stephen Yiu Chuen; Xue, Hui; Wu, Rebecca; Fazli, Ladan; Lin, Dong; Collins, Colin C; Gleave, Martin E; Gout, Peter W; Wang, Yuzhuo

    2016-06-01

    The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting.

    Directory of Open Access Journals (Sweden)

    Aman P Mann

    Full Text Available Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA against E-selectin (ESTA-1 by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D = 47 nM while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition of sLe(x positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1 that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.

  16. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  17. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  18. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  19. Kidney Quiz

    Science.gov (United States)

    ... Cares Peers Support Ask the Doctor My Food Coach Nutrition Dialysis Patient & Family Resources Emergency Resources A ... State Charity Registration Disclosures © 2017 National Kidney Foundation, Inc., 30 East 33rd Street, New York, NY 10016, ...

  20. Kidney Transplant

    Science.gov (United States)

    ... that links the kidney to the bladder — is connected to your bladder. After the procedure After your ... three to eight weeks after transplant. No lifting objects weighing more than 10 pounds or exercise other ...

  1. Kidney School

    Science.gov (United States)

    ... but food is a major focus of family life and social events. Learn how to balance your food intake so you can eat the foods ... Getting Adequate Dialysis Healthy kidneys work 24 hours a day, 7 days a week. ...

  2. Kidney Cancer

    Science.gov (United States)

    ... common cancers in the United States. Cancer Home Kidney Cancer Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir Anatomy of the male urinary system (left panel) and ...

  3. Kidney Facts

    Science.gov (United States)

    ... Research Institute Veterans Administration Special thanks to our corporate sponsor for supporting excellence in transplant education: Learn more about the UNOS Kidney Transplant Learning Center Patient brochures What Every Patient Needs to ...

  4. Kidney Dysplasia

    Science.gov (United States)

    ... whose mothers used certain prescription medications or illegal drugs during pregnancy What are the signs of kidney dysplasia? Many ... the use of certain prescription medications or illegal drugs during pregnancy. Pregnant women should talk with their health care ...

  5. Kidney Facts

    Science.gov (United States)

    ... to know FAQ Living donation What is living donation? Organs Types Being a living donor First steps Being ... treatment option for kidney failure or disease through organ donation from a healthy, living person who is a ...

  6. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  7. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  8. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    Science.gov (United States)

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.

  9. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  10. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    Science.gov (United States)

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  11. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  12. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    Science.gov (United States)

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  13. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    Science.gov (United States)

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy.

    Science.gov (United States)

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-30

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells.

  15. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    Science.gov (United States)

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  16. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment.

    Science.gov (United States)

    Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe

    2015-02-01

    There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Classification tree analyses reveal limited potential for early targeted prevention against childhood overweight.

    Science.gov (United States)

    Beyerlein, Andreas; Kusian, Dennis; Ziegler, Anette-Gabriele; Schaffrath-Rosario, Angelika; von Kries, Rüdiger

    2014-02-01

    Whether specific combinations of risk factors in very early life might allow identification of high-risk target groups for overweight prevention programs was examined. Data of n = 8981 children from the German KiGGS study were analyzed. Using a classification tree approach, predictive risk factor combinations were assessed for overweight in 3-6, 7-10, and 11-17-year-old children. In preschool children, the subgroup with the highest overweight risk were migrant children with at least one obese parent, with a prevalence of 36.6 (95% confidence interval or CI: 22.9, 50.4)%, compared to an overall prevalence of 10.0 (8.9, 11.2)%. The prevalence of overweight increased from 18.3 (16.8, 19.8)% to 57.9 (46.6, 69.3)% in 7-10-year-old children, if at least one parent was obese and the child had been born large-for-gestational-age. In 11-17-year-olds, the overweight risk increased from 20.1 (18.9, 21.3)% to 63.0 (46.4, 79.7)% in the highest risk group. However, high prevalence ratios were found only in small subgroups, containing <10% of all overweight cases in the respective age group. Our results indicate only a limited potential for early targeted preventions against overweight in children and adolescents. Copyright © 2013 The Obesity Society.

  18. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    Science.gov (United States)

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  19. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  20. The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Etievant Chantal

    2009-02-01

    Full Text Available Abstract Background NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. Results We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. Conclusion We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.

  1. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    Science.gov (United States)

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  2. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  3. Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Muneo Yamaguchi

    2017-01-01

    Full Text Available Rho-associated kinase (Rho-kinase/ROCK was originally identified as an effector protein of the G protein Rho. Its involvement in various diseases, particularly cancer and cardiovascular disease, has been elucidated, and ROCK inhibitors have already been applied clinically for cerebral vasospasm and glaucoma. Vitreoretinal diseases including diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinoapthy are still a major cause of blindness. While anti-VEGF therapy has recently been widely used for vitreoretinal disorders due to its efficacy, attention has been drawn to new unmet needs. The importance of ROCK in pathological vitreoretinal conditions has also been elucidated and is attracting attention as a potential therapeutic target. ROCK is involved in angiogenesis and hyperpermeability and also in the pathogenesis of various pathologies such as inflammation and fibrosis. It has been expected that ROCK inhibitors will become new molecular target drugs for vitreoretinal diseases. This review summarizes the recent progress on the mechanisms of action of ROCK and their applications in disease treatment.

  4. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    Science.gov (United States)

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  6. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy

    2015-08-01

    Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.

  7. Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy

    2015-01-01

    Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582

  8. Biomarkers as Potential Treatment Targets in Inflammatory Bowel Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Travis B Murdoch

    2015-01-01

    Full Text Available There is increasing interest in the concept of ‘treat-to-target’ in inflammatory bowel disease as a mechanism to standardize management and prevent complications. While clinical, radiographic and endoscopic treatment end points will figure prominently in this promising management paradigm, the role that noninvasive biomarkers will play is currently undefined. The goal of the present systematic review was to investigate the potential value of biomarkers as treatment targets in inflammatory bowel disease, with particular focus on those best studied: serum C-reactive protein (CRP and fecal calprotectin. In Crohn disease, elevated CRP levels at baseline predict response to anti-tumour necrosis factor agents, and normalization is usually associated with clinical and endoscopic remission. CRP and hemoglobin levels can be used to help predict clinical relapse in the context of withdrawal of therapy. Ultimately, the authors conclude that currently available biomarkers should not be used as treatment targets in inflammatory bowel disease because they have inadequate operational characteristics to make them safe surrogates for clinical, endoscopic and radiographic evaluation. However, CRP and fecal calprotectin are important adjunctive measures that help alert the clinician to pursue further investigation.

  9. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Giorgia Pierelli

    2017-01-01

    Full Text Available Uncoupling protein 2 (UCP2 is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases.

  10. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome.

    Science.gov (United States)

    Lu, Simin; Kanekura, Kohsuke; Hara, Takashi; Mahadevan, Jana; Spears, Larry D; Oslowski, Christine M; Martinez, Rita; Yamazaki-Inoue, Mayu; Toyoda, Masashi; Neilson, Amber; Blanner, Patrick; Brown, Cris M; Semenkovich, Clay F; Marshall, Bess A; Hershey, Tamara; Umezawa, Akihiro; Greer, Peter A; Urano, Fumihiko

    2014-12-09

    Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.

  11. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Tzu-Ting Huang

    2017-06-01

    Full Text Available The Src homology 2 (SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1, a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3 and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.

  12. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  13. Differential proteomics of human seminal plasma: A potential target for searching male infertility marker proteins.

    Science.gov (United States)

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2012-04-01

    The clinical fertility tests, available in the market, fail to define the exact cause of male infertility in almost half of the cases and point toward a crucial need of developing better ways of infertility investigations. The protein biomarkers may help us toward better understanding of unknown cases of male infertility that, in turn, can guide us to find better therapeutic solutions. Many clinical attempts have been made to identify biomarkers of male infertility in sperm proteome but only few studies have targeted seminal plasma. Human seminal plasma is a rich source of proteins that are essentially required for development of sperm and successful fertilization. This viewpoint article highlights the importance of human seminal plasma proteome in reproductive physiology and suggests that differential proteomics integrated with functional analysis may help us in searching potential biomarkers of male infertility. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.

    Science.gov (United States)

    Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita

    2016-01-01

    Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.

  15. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  16. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    Science.gov (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans.

  17. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Lue Sun

    Full Text Available Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS production, mitochondria function, oxygen consumption rate (OCR, energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  18. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    Science.gov (United States)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  19. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  20. HA/CD44 interactions as potential targets for cancer therapy

    Science.gov (United States)

    Misra, Suniti; Heldin, Paraskevi; Hascall, Vincent C.; Karamanos, Nikos K.; Skandalis, Spyros S.; Markwald, Roger R.; Ghatak, Shibnath

    2011-01-01

    It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as, survival progression, and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites for localizing into distant organs. CD44, an adhesion/homing molecule is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix (ECM). CD44, a multi structural and multifunctional molecule, detects changes in ECM components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-ECM interactions, cell traffic, lymph node homing, and presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44variants (CD44v), especially CD44v4-v7 and CD44v6-v9 in tumor progression was confirmed for many tumor types in numerous clinical studies. Down regulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be due to their higher binding affinity for hyaluronan than CD44s. Alternatively, CD44v-specific functions could be due to differences in associating molecules, which may bind selectively to the CD44v exon. This review summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing the CD44v can target multiple metastatic tumors. PMID:21362138

  1. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  2. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  3. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target

    International Nuclear Information System (INIS)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo JA; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-01-01

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients’ clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression. The online version of this article (doi:10.1186/s12885-015-1450-3) contains supplementary material, which is available to authorized users

  4. Phosphate is a potential biomarker of disease severity and predicts adverse outcomes in acute kidney injury patients undergoing continuous renal replacement therapy.

    Directory of Open Access Journals (Sweden)

    Su-Young Jung

    Full Text Available Hyperphosphatemia is associated with mortality in patients with chronic kidney disease, and is common in critically ill patients with acute kidney injury (AKI; however, its clinical implication in these patients is unknown. We conducted an observational study in 1144 patients (mean age, 63.2 years; male, 705 [61.6%] with AKI who received continuous renal replacement therapy (CRRT between January 2009 and September 2016. Phosphate levels were measured before (0 h and 24 h after CRRT initiation. We assessed disease severity using various clinical parameters. Phosphate at 0 h positively correlated with the Acute Physiology and Chronic Health Evaluation II (APACHE II; P < 0.001 and Sequential Organ Failure Assessment (SOFA; P < 0.001 scores, and inversely with mean arterial pressure (MAP; P = 0.02 and urine output (UO; P = 0.01. In a fully adjusted linear regression analysis for age, sex, Charlson comorbidity index (CCI, MAP, and estimated glomerular filtration rate (eGFR, higher 0 h phosphate level was significantly associated with high APACHE II (P < 0.001 and SOFA (P = 0.04 scores, suggesting that phosphate represents disease severity. A multivariable Cox model also showed that hyperphosphatemia was significantly associated with increased 28-day (HR 1.05, 95% CI 1.02-1.08, P = 0.001 and 90-day (HR 1.05, 95% CI 1.02-1.08, P = 0.001 mortality. Furthermore, patients with increased phosphate level during 24 h were at higher risk of death than those with stable or decreased phosphate levels. Finally, c-statistics significantly increased when phosphate was added to a model that included age, sex, CCI, body mass index, eGFR, MAP, hemoglobin, serum albumin, C-reactive protein, and APACHE II score. This study shows that phosphate is a potential biomarker that can reflect disease severity and predict mortality in critically ill patients receiving CRRT.

  5. Kidney injury in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Krag, Aleksander; Bendtsen, Flemming

    2014-01-01

    Acute kidney injury (AKI) is frequent in patients with cirrhosis. AKI and hyponatraemia are major determinants of the poor prognosis in advanced cirrhosis. The hepatorenal syndrome (HRS) denotes a functional and potential reversible impairment of renal function. Type 1 HRS, a special type of AKI...

  6. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    OpenAIRE

    Huang, Hao; He, Yuehan; Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biologi...

  7. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  8. Application of local singularity in prospecting potential oil/gas Targets

    Directory of Open Access Journals (Sweden)

    Zhengyu Bao

    2007-06-01

    Full Text Available Together with generalized self-similarity and the fractal spectrum, local singularity analysis has been introduced as one part of the new 3S principle and technique for mineral resource assessment based on multifractal modeling, which has been demonstrated to be useful for anomaly delineation. Local singularity is used in this paper to characterize the property of multifractal distribution patterns of geochemical indexes to delineate potential areas for oil/gas exploration using the advanced GeoDAS GIS technology. Geochemical data of four oil/gas indexes, consisting of acid-extracted methane (SC1, ethane (SC2, propane (SC3, and secondary carbonate (ΔC, from 9637 soil samples amassed within a large area of 11.2×104 km2 in the Songpan-Aba district, Sichuan Province, southwestern China, were analyzed. By eliminating the interference of geochemical oil/gas data with the method of media-modification and Kriging, the prospecting area defined by the local singularity model is better identified and the results show that the subareas with higher singularity exponents for the four oil/gas indexes are potential targets for oil/gas exploration. These areas in the shape of rings or half-rings are spatially associated with the location of the known producing drilling well in this area. The spatial relationship between the anomalies delineated by oil/gas geochemical data and distribution patterns of local singularity exponents is confirmed by using the stable isotope of δ13C.

  9. Clinically targeted screening for congenital CMV - potential for integration into the National Hearing Screening Programme.

    Science.gov (United States)

    Kadambari, S; Luck, S; Davis, A; Williams, Ej; Berrington, J; Griffiths, Pd; Sharland, M

    2013-10-01

    Screening for a condition should only be undertaken if certain strict criteria are met. Congenital CMV (cCMV) is a leading cause of sensorineuronal hearing loss (SNHL) and meets many of these criteria, but is not currently screened for in the UK. Ganciclovir reduces CMV-induced progressive SNHL if treatment is begun in the first month of life. The Newborn Hearing Screening Programme (NHSP) has been shown to identify SNHL at the earliest possible age. The potential of integrating screening for cCMV into the NHSP is discussed to consolidate the link between screening, early diagnosis and management. The early diagnosis and treatment of cCMV may prevent a small proportion of late SNHL. In the absence of any screening programme, we provide evidence that clinically targeted screening through the NHSP is a potential option in the UK, enhancing the diagnostic pathway and enabling appropriate early treatment to reduce long-term morbidity. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  10. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease.

    Science.gov (United States)

    Annadurai, Narendran; Agrawal, Khushboo; Džubák, Petr; Hajdúch, Marián; Das, Viswanath

    2017-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

  11. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandra Winkler

    2016-07-01

    Full Text Available Background: The beneficial impact of mesenchymal stem cells (MSC on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1 increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β and hypoxia-inducible factor 1-α (HIF1-α signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration.

  12. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Kha Wai Hon

    2017-08-01

    Full Text Available The number of colorectal cancer (CRC cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.

  13. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy

    Directory of Open Access Journals (Sweden)

    Cin Kong

    2016-03-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.

  14. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma

    Directory of Open Access Journals (Sweden)

    Asoka Banno

    2018-01-01

    Full Text Available Asthma affects approximately 300 million people worldwide, significantly impacting quality of life and healthcare costs. While current therapies are effective in controlling many patients' symptoms, a large number continue to experience exacerbations or treatment-related adverse effects. Alternative therapies are thus urgently needed. Accumulating evidence has shown that the peroxisome proliferator-activated receptor (PPAR family of nuclear hormone receptors, comprising PPARα, PPARβ/δ, and PPARγ, is involved in asthma pathogenesis and that ligand-induced activation of these receptors suppresses asthma pathology. PPAR agonists exert their anti-inflammatory effects primarily by suppressing pro-inflammatory mediators and antagonizing the pro-inflammatory functions of various cell types relevant to asthma pathophysiology. Experimental findings strongly support the potential clinical benefits of PPAR agonists in the treatment of asthma. We review current literature, highlighting PPARs' key role in asthma pathogenesis and their agonists' therapeutic potential. With additional research and rigorous clinical studies, PPARs may become attractive therapeutic targets in this disease.

  15. An Emerging Translational Model to Screen Potential Medicinal Plants for Nephrolithiasis, an Independent Risk Factor for Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    San-Yuan Wu

    2014-01-01

    Full Text Available Pharmacological therapy for urolithiasis using medicinal plants has been increasingly adopted for the prevention of its recurrence. A Drosophila melanogaster model developed for translational research of urolithiasis was applied to evaluate agents with potential antilithic effects and calcium oxalate (CaOx formation. Potential antilithic herbs were prepared in a mixture of food in a diluted concentration of 5,000 from the original extract with 0.5% ethylene glycol (EG as the lithogenic agent. The control group was fed with food only. After 3 weeks, flies (n≥150 for each group were killed using CO2 narcotization, and the Malpighian tubules were dissected, removed, and processed for polarized light microscopy examination of the crystals. The crystal formation rate in the EG group was 100.0%. In the study, 16 tested herbal drugs reached the crystal formation rate of 0.0%, including Salviae miltiorrhizae, Paeonia lactiflora, and Carthami flos. Scutellaria baicalensis enhanced CaOx crystal formation. Two herbal drugs Commiphora molmol and Natrii sulfas caused the death of all flies. Our rapid screening methods provided evidence that some medicinal plants have potential antilithic effects. These useful medicinal plants can be further studied using other animal or human models to verify their effects.

  16. Urinary Metabolite Profiling Offers Potential for Differentiation of Liver-Kidney Yin Deficiency and Dampness-Heat Internal Smoldering Syndromes in Posthepatitis B Cirrhosis Patients

    Directory of Open Access Journals (Sweden)

    Xiaoning Wang

    2015-01-01

    Full Text Available Zheng is the basic theory and essence of traditional Chinese medicine (TCM in diagnosing diseases. However, there are no biological evidences to support TCM Zheng differentiation. In this study we elucidated the biological alteration of cirrhosis with TCM “Liver-Kidney Yin Deficiency (YX” or “Dampness-Heat Internal Smoldering (SR” Zheng and the potential of urine metabonomics in TCM Zheng differentiation. Differential metabolites contributing to the intergroup variation between healthy controls and liver cirrhosis patients were investigated, respectively, and mainly participated in energy metabolism, gut microbiota metabolism, oxidative stress, and bile acid metabolism. Three metabolites, aconitate, citrate, and 2-pentendioate, altered significantly in YX Zheng only, representing the abnormal energy metabolism. Contrarily, hippurate and 4-pyridinecarboxylate altered significantly in SR Zheng only, representing the abnormalities of gut microbiota metabolism. Moreover, there were significant differences between two TCM Zhengs in three metabolites, glycoursodeoxycholate, cortolone-3-glucuronide, and L-aspartyl-4-phosphate, among all differential metabolites. Metabonomic profiling, as a powerful approach, provides support to the understanding of biological mechanisms of TCM Zheng stratification. The altered urinary metabolites constitute a panel of reliable biological evidence for TCM Zheng differentiation in patients with posthepatitis B cirrhosis and may be used for the potential biomarkers of TCM Zheng stratification.

  17. Metabotropic glutamate receptor 5 as a potential target for smoking cessation.

    Science.gov (United States)

    Chiamulera, Cristiano; Marzo, Claudio Marcello; Balfour, David J K

    2017-05-01

    Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.

  18. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA.

    Science.gov (United States)

    Fusco, William G; Choudhary, Neelima R; Stewart, Shelley M; Alam, S Munir; Sempowski, Gregory D; Elkins, Christopher; Leduc, Isabelle

    2015-04-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.

  19. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas.

    Directory of Open Access Journals (Sweden)

    Priscila Daniele Ramos Cirilo

    Full Text Available Uterine Leiomyomas (ULs are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs. Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs.We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC and gene expression microarrays (SAM. The CONEXIC algorithm was applied to integrate the data.The integrated analysis identified the top 30 significant genes (P<0.01, which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively and IGFBP5 (P = 0.0002 and P = 0.006, respectively were up-regulated in the tumours when compared with the adjacent normal myometrium.The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs.

  20. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal.

    Directory of Open Access Journals (Sweden)

    Ryan Rhome

    Full Text Available Cryptococcus neoformans (Cn is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1 was deleted in Cn, resulting in a strain (Δgcs1 that does not produce glucosylceramide (GlcCer and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2. These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz, a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.

  1. Nephrectomy (Kidney Removal)

    Science.gov (United States)

    ... nephrectomy is needed because of other kidney diseases. Kidney function Most people have two kidneys — fist-sized ... and the disease that prompted the surgery? Monitoring kidney function Most people can function well with only ...

  2. Kidney Stones (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Kidney Stones KidsHealth / For Parents / Kidney Stones What's in ... other treatments to help remove the stones. How Kidney Stones Form It's the kidneys' job to remove ...

  3. Chronic Kidney Disease.

    Science.gov (United States)

    Webster, Angela C; Nagler, Evi V; Morton, Rachael L; Masson, Philip

    2017-03-25

    The definition and classification of chronic kidney disease (CKD) have evolved over time, but current international guidelines define this condition as decreased kidney function shown by glomerular filtration rate (GFR) of less than 60 mL/min per 1·73 m 2 , or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause. Diabetes and hypertension are the main causes of CKD in all high-income and middle-income countries, and also in many low-income countries. Incidence, prevalence, and progression of CKD also vary within countries by ethnicity and social determinants of health, possibly through epigenetic influence. Many people are asymptomatic or have non-specific symptoms such as lethargy, itch, or loss of appetite. Diagnosis is commonly made after chance findings from screening tests (urinary dipstick or blood tests), or when symptoms become severe. The best available indicator of overall kidney function is GFR, which is measured either via exogenous markers (eg, DTPA, iohexol), or estimated using equations. Presence of proteinuria is associated with increased risk of progression of CKD and death. Kidney biopsy samples can show definitive evidence of CKD, through common changes such as glomerular sclerosis, tubular atrophy, and interstitial fibrosis. Complications include anaemia due to reduced production of erythropoietin by the kidney; reduced red blood cell survival and iron deficiency; and mineral bone disease caused by disturbed vitamin D, calcium, and phosphate metabolism. People with CKD are five to ten times more likely to die prematurely than they are to progress to end stage kidney disease. This increased risk of death rises exponentially as kidney function worsens and is largely attributable to death from cardiovascular disease, although cancer incidence and mortality are also increased. Health-related quality of life is substantially lower for people with CKD than for the general population, and falls as GFR

  4. Kidney pain (image)

    Science.gov (United States)

    A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the size of sand or ... A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the ...

  5. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  6. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  7. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Masato eFujioka

    2014-12-01

    Full Text Available The inner ear was previously assumed to be an immune-privileged organ due to the existence of its tight junction-based blood-labyrinth barrier. However, studies performed during the past decade revealed that the mesenchymal region of the cochlea, including its lateral wall, is a common site of inflammation. Neutrophils do not enter this region, which is consistent with the old dogma; however, bone marrow-derived resident macrophages are always present in the spiral ligament of the lateral wall and are activated in response to various types of insults, including noise exposure, ischemia, mitochondrial damage and surgical stress. Recent studies have also revealed another type of immune cell, called perivascular melanocyte-like macrophages (PVM/Ms, in the stria vascularis. These dedicated antigen-presenting cells also control vascular contraction and permeability. This review discusses a series of reports regarding inflammatory/immune cells in the cochlear lateral wall, the pathways involved in cochlear damage and their potential as therapeutic targets.

  8. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia

    Directory of Open Access Journals (Sweden)

    Kim D. Johnson

    2007-08-01

    Full Text Available Angiosarcoma (ASA in humans, hemangiosarcoma (HSA in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, poor response to chemotherapy. Galectin-3 (Gal-3, a p-galactoside-binding lectin implicated in tumor progression, metastasis, endothelial cell biology, angiogenesis, regulation of apoptosis, neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA, canine HSA, could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10, canine HSA (17 of 17 samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP, lactulosyl-l-leucine (LL, caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP, LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC50 of doxorubicin by 10.7-fold, 3.64old, respectively. These results highlight the important role of Gal-3 in the biology of ASA, identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.

  9. [Medication regularity and potential targets of Professor XU Jing-fan's prescription for treating ulcerative colitis].

    Science.gov (United States)

    Ning, Li-Qin; Ye, Bai; Shen, Hong; Lu, Wei-Min; Xu, Dan-Hua; Yan, Jing; Tan, Chang; Tang, De-Cai

    2018-03-01

    Ulcerative colitis (UC) is a chronic nonspecific inflammation mainly involving rectum and colon mucosa, which seriously affects the health and quality of life of patients, and is listed as one of modern refractory diseases by WHO. Professor XU Jing-fan, a great master of traditional Chinese medicine, has accumulated rich experiences in the treatment of UC. The study collected Professor XU's 77 prescriptions of treating UC, analyzed the frequency of traditional Chinese medicines and there categories, and investigated the medication regularity by the system clustering method. The findings showed that the most frequently used drugs were clearing-heat herbs, which were followed by hemostatic herbs, excreting-dampness herbs, improving-digestion herbs and tonifying-Qi herbs. At the same time, the commonly combined drugs were excavated. Finally, in order to analyze potential molecular targets of the frequently used herbs, GO enrichment analysis and KEGG signal pathway enrichment analysis were performed with bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine (BATMAN-TCM). The results indicated that Chinese herbal compounds may treat UC by activating PPAR-γ pathway and regulating intestinal inflammation. The exact mechanisms shall be verified through subsequent molecular biological experiments. Copyright© by the Chinese Pharmaceutical Association.

  10. Modulation of Lipid Droplet Metabolism—A Potential Target for Therapeutic Intervention in Flaviviridae Infections

    Directory of Open Access Journals (Sweden)

    Jingshu Zhang

    2017-11-01

    Full Text Available Lipid droplets (LDs are endoplasmic reticulum (ER-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV, and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.

  11. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    Science.gov (United States)

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  12. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  13. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  14. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    Science.gov (United States)

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  15. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer

    Science.gov (United States)

    Arichi, Naoko; Mitsui, Yozo; Hiraki, Miho; Nakamura, Sigenobu; Hiraoka, Takeo; Sumura, Masahiro; Hirata, Hiroshi; Tanaka, Yuichiro; Dahiya, Rajvir; Yasumoto, Hiroaki; Shiina, Hiroaki

    2015-01-01

    In the current study, we investigated a combination of docetaxel and thalidomide (DT therapy) in castration-resistant prostate cancer (CRPC) patients. We identified marker genes that predict the effect of DT therapy. Using an androgen-insensitive PC3 cell line, we established a docetaxel-resistant PC-3 cell line (DR-PC3). In DR-PC3 cells, DT therapy stronger inhibited proliferation/viability than docetaxel alone. Based on gene ontology analysis, we found versican as a selective gene. This result with the findings of cDNA microarray and validated by quantitative RT-PCR. In addition, the effect of DT therapy on cell viability was the same as the effect of docetaxel plus versican siRNA. In other words, silencing of versican can substitute for thalidomide. In the clinical setting, versican expression in prostate biopsy samples (before DT therapy) correlated with PSA reduction after DT therapy (p<0.05). Thus targeting versican is a potential therapeutic strategy in docetaxel-resistant prostate cancer. PMID:25859560

  16. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Tony; Norris, Murray D.; Haber, Michelle; Henderson, Michelle J., E-mail: mhenderson@ccia.unsw.edu.au [Experimental Therapeutics Program, Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, University of New South Wales and Sydney Children’s Hospital, Sydney, NSW (Australia)

    2012-12-19

    Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  17. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma

    International Nuclear Information System (INIS)

    Huynh, Tony; Norris, Murray D.; Haber, Michelle; Henderson, Michelle J.

    2012-01-01

    Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  18. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.

    Science.gov (United States)

    Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong

    2014-03-01

    Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.

  20. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  1. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tony eHuynh

    2012-12-01

    Full Text Available Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  3. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Science.gov (United States)

    Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua

    2018-04-01

    Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming

  4. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Directory of Open Access Journals (Sweden)

    Enling Tang

    2018-04-01

    Full Text Available Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane, respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential

  5. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  6. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    Science.gov (United States)

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  7. Oxotechnetium and Oxorhenium 3+1 mixed ligand complexes as potential melanoma targeting gents

    International Nuclear Information System (INIS)

    Rey, A.; Giglio, J.; Leon, E.; Paolino, A.; Fernandez, R.; Manta, E.; Leon, A.; Pirmettis, I.; Papadopoulos, M.; Schreiber, F.; Chabalgoity, J.

    2005-01-01

    Tc-99m '3+1' mixed ligand complexes with potential affinity for melanoma have been designed by an integrated approach using N-alkyl substituted benzamides as leader structure. This paper presents the preparation of a series of complexes with general formula Tc-99m O[(CH 3 CH 2 ) 2 N(CH 2 ) 2 N (CH 2 CH 2 ) 2 S) 2 ][RS] and their 'in vivo' evaluation as potential melanoma targeting agents. Tc-99m complexes Tc1, Tc2, Tc3 and Tc4 were prepared by combining the tridentate ligand N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine with 4 different modentate thiols. Labelling was performed by substitution using Tc-99m-glucoheptonate as precursor. All complexes were obtained with high yield ( 85%) and high radiochemical purity (90%). Identity of Tc compounds was corroborated by HPLC coinjection with the analogous rhenium complexes. Biodistribution studies were performed on the murine C57B16 mouse melanoma model obtained by subcutaneous inoculation of melanoma cells B16F1. After intravenous injection, all complexes showed high initial blood, lung and liver uptake but clearance after 12-24 hours was almost complete. Initial tumour uptake was relatively high (0.83.4% dose/g at 2 hrs. post-injection) and retention until 24 hours significant (0.450.88% dose/g). Tumour/blood and tumour/muscle ratios were favourable from 6 to 24 hours after injection due to fast blood and soft tissue clearance. Complex Tc2 showed the best tumour/blood and tumour/muscle ratios at 12 and 24 hours post-injection (1.9-2.4 and 7.5-12.0, respectively). Early and late static gamma-camera images acquired for this compound allowed delineation of the tumour with tumour/soft tissue ratios 7.4 at 12 hours. post/inj.) Complex Tc2 was also administered subcutaneously in the peritumoral region of melanoma bearing mice, in order to avoid high liver and hepatobiliary doses. In this condition, a very high percentage of the injected dose remained in the tumour, even after 24 hours (21.5%/g) with considerably

  8. HN125: A Novel Immunoadhesin Targeting MUC16 with Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xinran Xiang, Mingqian Feng, Mildred Felder, Joseph P. Connor, Yan-gao Man, Manish S. Patankar, Mitchell Ho

    2011-01-01

    Full Text Available Background: The mucin MUC16 expresses the repeating peptide epitope CA125 that has been known for decades to be a well-validated cancer marker that is overexpressed on the cell surface of ovarian cancers and other malignant tumors. In spite of recent efforts to make mouse monoclonal antibodies to MUC16 to treat ovarian cancer, a human monoclonal antibody against this mucin has not been described. MUC16 interacts with mesothelin, a protein that mediates heterotypic cancer cell adhesion, indicating that MUC16 and mesothelin play an important role in the peritoneal implantation and metastasis of ovarian tumors. Therefore, a suitable candidate for therapeutic targeting of MUC16 would functionally block the interaction of MUC16 and mesothelin.Methodology/Principal Findings: Here we report the generation of a novel immunoadhesin, HN125, against MUC16 that consists of a functional MUC16 binding domain of mesothelin (IAB and the Fc portion of a human antibody IgG1. The yield for purified HN125 proteins is over 100 µg/mL of HEK-293 culture supernatant. We show that HN125 has high and specific affinity for MUC16-expressing cancer cells by flow cytometry and immunohistochemistry. HN125 has the ability to disrupt the heterotypic cancer cell adhesion mediated by the MUC16-mesothelin interaction. Moreover, it elicits strong antibody-dependent cell mediated cytotoxicity against MUC16-positive cancer cells in vitro.Conclusion/Significance: This report describes a novel human immunotherapeutic agent highly specific for MUC16 with potential for treating ovarian cancer and other MUC16-expressing tumors. Because of its lower immunogenicity in patients, a fully human protein is the most desirable format for clinical applications. We believe that the methods developed here may apply to the generation of other tumor-targeting immunoadhesins when it is difficult to obtain a human monoclonal antibody to a given antigen for clinical applications. The resultant

  9. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers.

    Science.gov (United States)

    Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping

    2014-01-01

    P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (Penrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.

  10. Profile of peginesatide and its potential for the treatment of anemia in adults with chronic kidney disease who are on dialysis.

    Science.gov (United States)

    Mikhail, Ashraf

    2012-01-01

    Peginesatide is a synthetic, dimeric peptide that is covalently linked to polyethylene glycol (PEG). The amino acid sequence of peginesatide is unrelated to that of erythropoietin (EPO) and is not immunologically cross-reactive with EPO. Peginesatide binds to and activates the human EPO receptor, stimulating the proliferation and differentiation of human red cell precursors in vitro in a manner similar to other EPO-stimulating agents (ESAs). In Phase II and III studies in dialysis and predialysis patients, peginesatide administered once monthly was as effective as epoetin alfa given thrice weekly (dialysis patients) or darbepoetin given once weekly (nondialysis patients), in correcting anemia of chronic kidney disease as well as maintaining hemoglobin within the desired target range. In the dialysis population, the reported side-effect profile of peginesatide was comparable to that known with other marketed ESAs. In the nondialysis studies, compared with those treated with darbepoetin, patients treated with peginesatide experienced a higher adverse-effect profile. Peginesatide is likely to be licensed for treatment of renal anemia in dialysis patients and not in nondialysis patients. Despite this limitation, peginesatide is likely to prove valuable in treating dialysis patients because of its infrequent mode of administration, thereby allowing for a reduced number of injections, with associated better compliance, reduced cold storage requirement, and improved stock accountability. PEGylated therapeutic proteins can elicit immunological response to the PEG moiety of the therapeutic complex. Only long-term experience and post-marketing surveillance will address whether this immunological response will have any impact on the clinical efficacy or safety of peginesatide in clinical practice.

  11. Validation of the Kidney Disease Quality of Life-Short Form: a cross-sectional study of a dialysis-targeted health measure in Singapore

    OpenAIRE

    Joshi, Veena D; Mooppil, Nandakumar; Lim, Jeremy FY

    2010-01-01

    Abstract Background In Singapore, the prevalence of end-stage renal disease (ESRD) and the number of people on dialysis is increasing. The impact of ESRD on patient quality of life has been recognized as an important outcome measure. The Kidney Disease Quality Of Life-Short Form (KDQOL-SF™) has been validated and is widely used as a measure of quality of life in dialysis patients in many countries, but not in Singapore. We aimed to determine the reliability and validity of the KDQOL-SF™ for h...

  12. Roles of protein kinase R in cancer: Potential as a therapeutic target.

    Science.gov (United States)

    Watanabe, Takao; Imamura, Takeshi; Hiasa, Yoichi

    2018-04-01

    Double-stranded (ds) RNA-dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Diversity of Physicians’ Handwriting and Name Stamp in Chemotherapy Prescriptions: Potential Target for Fraud

    Directory of Open Access Journals (Sweden)

    Asiyeh Amouei

    2018-02-01

    Full Text Available BBackgrounds: Verification and authentication of the paper-based handwritten prescriptions is of great importance for antineoplastic medications that are good targets for forgery and fraud. Pharmacists usually investigate handwriting, signature and name stamp of prescribers to verify prescriptions in Iran. Anecdotal reports of variations in handwriting and name stamp of physicians who wrote antineoplastic prescriptions raised concerns in this regard. The aim of the study was to investigate the reported diversity and evaluate the quality of writing physician identity and required items in antineoplastic prescriptions.Methods: All insured hand-written prescriptions contained at least one antineoplastic medication and were dispensed by four main authorized community pharmacies dispensing antineoplastic medications in Tehran during one month were included. Prescriptions that were written by specialties other than oncology-related fields were excluded. Prescriptions of each physician were evaluated considering handwriting and name stamp by experienced pharmacy staff and the frequency of detected handwriting and name stamp types was recorded.Results: Of the 11022 included prescriptions, 10944 were eligible and written by 241 physicians. Median (third quartile number of physicians’ prescriptions was 17 (51. Maximum number of observed handwriting and name stamp types were eight and six respectively. High prescribers tended to have several handwriting and name stamp types.Conclusion: The observed diversity and variation in handwriting and name stamp of the physicians in antineoplastic prescriptions may facilitate the entrance of forged prescription and makes fraud detection difficult. Administrative and regulatory interventions in addition to notification of health care professionals about the observed potential might be necessary.

  14. Cytosolic Phospholipase A2-α: A Potential Therapeutic Target for Prostate Cancer

    Science.gov (United States)

    Patel, Manish I.; Singh, Jaskirat; Niknami, Marzieh; Kurek, Caroline; Yao, Mu; Lu, Sasa; Maclean, Fiona; King, Nicholas J.C.; Gelb, Michael H.; Scott, Kieran F.; Russell, Pamela J.; Boulas, John; Dong., Qihan

    2008-01-01

    Purpose Cytosolic Phospholipase A2-α (cPLA2-α) provides intracellular arachidonic acid to supply both cyclooxygenase and lipoxygenase pathways. We aim to determine the expression and activation of cPLA2-α in prostate cancer (PC) cell line and tissue and the effect of targeting cPLA2-α in-vitro and in-vivo. Experimental Design The expression of cPLA2-α was determined in PC cells by RT-PCR, Western blot and immunocytochemistry. Growth inhibition, apoptosis and cPLA2-α activity were determined after inhibition with cPLA2-α siRNA or inhibitor (Wyeth-1). cPLA2-α inhibitor or vehicle was also administered to PC xenograft mouse models. Finally the expression of phospho-cPLA2-α was determined by immunohistochemistry in human normal, androgen sensitive and insensitive PC specimens. Results cPLA2-α is present in all PC cells lines, but increased in androgen insensitive cells. Inhibition with siRNA or Wyeth-1 results in significant reductions in PC cell numbers, as a result of reduced proliferation as well as increased apoptosis and this was also associated with a reduction in cPLA2-α activity. Expression of cyclin D1 and phosphorylation of Akt were also observed to decrease. Wyeth-1 inhibited PC3 xenograft growth by approximately 33% and again, also reduced cyclin D1. Immunohistochemistry of human prostate tissue revealed that phospho-cPLA2-α is increased when hormone refractory is reached. Conclusions cPLA2-α expression and activation is increased in the androgen insensitive cancer cell line and tissue. Inhibition of cPLA2-α results in cells and xenograft tumor growth inhibition and serves as a potentially effective therapy for hormone refractory PC. PMID:19088022

  15. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Aminopeptidase N/CD13 as a Potential Therapeutic Target in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Otsuki, Takahiko; Nakashima, Taku; Hamada, Hironobu; Takayama, Yusuke; Akita, Shin; Masuda, Takeshi; Horimasu, Yasushi; Miyamoto, Shintaro; Iwamoto, Hiroshi; Fujitaka, Kazunori; Miyata, Yoshihiro; Miyake, Masayuki; Kohno, Nobuoki; Okada, Morihito; Hattori, Noboru

    2018-03-08

    Angiogenesis is a crucial factor in the progression of malignant pleural mesothelioma (MPM), and antiangiogenic strategies might be effective against MPM. Aminopeptidase N/CD13 (APN/CD13) promotes tumour angiogenesis and is associated with poor prognosis; however, its clinical significance in MPM remains unclear.In 37 consecutive patients with surgically resected MPM, we evaluated the association between immunohistochemical APN/CD13 expression in resected tumours and survival. Additionally, the antitumour and antiangiogenic effects of MT95-4, a fully humanized anti-APN/CD13 monoclonal antibody, were evaluated in mice orthotopically implanted with EHMES-10 (abundantly expressing APN/CD13) and MSTO-211H (scarcely expressing APN/CD13) MPM cells.High tumour APN/CD13 expression was associated with poor prognosis in MPM patients ( P =0.04), and MT95-4 treatment reduced tumour growth and angiogenesis in mice harbouring EHMES-10, but not MSTO-211H, cells. Furthermore, in mice harbouring EHMES-10 cells, MT95-4 combined with cisplatin more effectively suppressed tumour progression than cisplatin alone.Taken together these results suggested that APN/CD13 is implicated in the aggressiveness of MPM. Here, MT95-4 treatment reduced tumour progression likely by inhibiting angiogenesis, suggesting APN/CD13 as a potential molecular target for MPM treatment. Additionally, combination treatment with MT95-4 and cisplatin could represent a promising approach to treating MPM exhibiting high APN/CD13 expression. Copyright ©ERS 2018.

  17. The kidneys

    International Nuclear Information System (INIS)

    Freeman, L.M.; Lutzker, L.G.

    1984-01-01

    It has unfortunately remained true that radionuclide renal imaging studies have not been so widely accepted as other types of scintigraphy, despite improvements in radiopharmaceuticals and imaging techniques. Perhaps this is because of the variety of established radiologic techniques available for the study of the kidneys and the addition of new modalities such as CT scanning and ultrasound. Clinicians may have become confused by the multiplicity of options, which has obscured the distinction between renal scintigraphy and all other methods of imaging the kidney, i.e., that renal scintigraphy provides functional information in an easily quantifiable form. It is interesting that pediatric practitioners have more easily recognized the functional importance of this modality than have the practitioners of adult medicine, who more often prefer anatomic modalities, either traditional or new

  18. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  19. Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) : Study protocol for establishing a core outcome set in polycystic kidney disease

    NARCIS (Netherlands)

    Cho, Yeoungjee; Sautenet, Benedicte; Rangan, Gopala; Craig, Jonathan C.; Ong, Albert C. M.; Chapman, Arlene; Ahn, Curie; Chen, Dongping; Coolican, Helen; Kao, Juliana Tze-Wah; Gansevoort, Ron; Perrone, Ronald; Harris, Tess; Torres, Vicente; Pei, York; Kerr, Peter G.; Ryan, Jessica; Gutman, Talia; Howell, Martin; Ju, Angela; Manera, Karine E.; Teixeira-Pinto, Armando; Hamiwka, Lorraine A.; Tong, Allison

    2017-01-01

    Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the

  20. Development and evaluation of camptothecin loaded polymer stabilized nanoemulsion: Targeting potential in 4T1-breast tumour xenograft model.

    Science.gov (United States)

    Sugumaran, Abimanyu; Ponnusamy, Chandrasekar; Kandasamy, Palanivel; Krishnaswami, Venkateshwaran; Palanichamy, Rajaguru; Kandasamy, Ruckmani; Lakshmanan, Manikandan; Natesan, Subramanian

    2018-04-30

    Targeted delivery of anticancer agents is poised to improve cancer therapy, for which polymers can serve as targeting ligands or nanocarriers for chemotherapeutic agents. In this study, we have developed and evaluated the efficacy of a camptothecin (CPT)-loaded polymer stabilized nanoemulsion (PSNE) for the passive targeted delivery to breast cancer. Based on the pseudo-ternary phase diagrams, PSNEs were developed using capmul MCM:poloxamer 407 (4:1), solutol HS 15:simulsol P23 (1:2) and water. CPT polymer mixture was developed by solvent evaporation technique. The PSNEs were characterized for droplet size distribution, plasma protein adsorption, drug release, in-vivo targeting potential, hemolytic potential, cytotoxicity, genotoxicity, in-vivo biodistribution and CPT lactone ring stability. The developed PSNEs showed uniform droplet distribution, extended drug release (76.59±6.12% at 24h), acceptable hemolytic potential, significant cytotoxicity (IC 50 =176±4.3ng/mL) and genotoxicity against MCF-7 cancer cells but low DNA damage potential in human peripheral blood lymphocytes. The efficiency of PSNEs for the targeted delivery of CPT into the tumour regions was documented in 4T1-breast tumour xenografted BALB/c mice. In-vivo biodistribution study shows that 7105.84±568.46ng/g of CPT was passively targeted from PSNE to breast cancer tissue. About 80% of the lactone form was stable for 24h. Taken together, our study provides a promising strategy for developing PSNE-targeted drug delivery system for the breast cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Role of the Immune System in Diabetic Kidney Disease.

    Science.gov (United States)

    Hickey, Fionnuala B; Martin, Finian

    2018-03-12

    The purpose of this review is to examine the proposed role of immune modulation in the development and progression of diabetic kidney disease (DKD). Diabetic kidney disease has not historically been considered an immune-mediated disease; however, increasing evidence is emerging in support of an immune role in its pathophysiology. Both systemic and local renal inflammation have been associated with DKD. Infiltration of immune cells, predominantly macrophages, into the kidney has been reported in a number of both experimental and clinical studies. In addition, increased levels of circulating pro-inflammatory cytokines have been linked to disease progression. Consequently, a variety of therapeutic strategies involving modulation of the immune response are currently being investigated in diabetic kidney disease. Although no current therapies for DKD are directly based on immune modulation many of the therapies in clinical use have anti-inflammatory effects along with their primary actions. Macrophages emerge as the most likely beneficial immune cell target and compounds which reduce macrophage infiltration to the kidney have shown potential in both animal models and clinical trials.

  2. Screening of potential diagnostic markers and therapeutic targets against colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tian XQ

    2015-07-01

    Full Text Available XiaoQing Tian, DanFeng Sun, ShuLiang Zhao, Hua Xiong, JingYuan Fang Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Objective: To identify genes with aberrant promoter methylation for developing novel diagnostic markers and therapeutic targets against primary colorectal cancer (CRC. Methods: Two paired CRC and adjacent normal tissues were collected from two CRC patients. A Resi: MBD2b protein-sepharose-4B column was used to enrich the methylated DNA fragments. Difference in the average methylation level of each DNA methylation region between the tumor and control samples was determined by log2 fold change (FC in each patient to screen the differentially methylated DNA regions. Genes with log2FC value ≥4 or ≤-4 were identified to be hypermethylated and hypomethylated, respectively. Then, the underlying functions of methylated genes were speculated by Gene Ontology database and pathway enrichment analyses. Furthermore, a protein–protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database, and the transcription factor binding sites were screened via the Encyclopedia of DNA Elements (ENCODE database. Results: Totally, 2,284 and 1,142 genes were predicted to have aberrant promoter hypermethylation or hypomethylation, respectively. MAP3K5, MAP3K8, MAPK14, and MAPK9 with promoter hypermethylation functioned via MAPK signaling pathway, focal adhesion, or Wnt signaling pathway, whereas MAP2K1, MAPK3, MAPK11, and MAPK7 with promoter hypomethylation functioned via TGF-beta signaling pathway, neurotrophin signaling pathway, and chemokine signaling pathway. CREBBP, PIK3R1, MAPK14, APP, ESR1, MAPK3, and HRAS were the seven hubs in the constructed protein–protein interaction network. RPL22, RPL36, RPLP2, RPS7, and RPS9 were commonly regulated by

  3. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  4. Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target.

    Science.gov (United States)

    Hanaoka, Tatsuya; Akashi, Osamu; Fujiwara, Kazuya; Motoki, Yuko; Hibino, Go

    2014-12-01

    This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60-80% reductions in 2050 from the reference scenario while achieving the 2 °C target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    International Nuclear Information System (INIS)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C.

    2013-01-01

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level

  6. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  7. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    Science.gov (United States)

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  8. Role of Smad signaling in kidney disease.

    Science.gov (United States)

    Zhang, Yanhua; Wang, Songyan; Liu, Shengmao; Li, Chunguang; Wang, Ji

    2015-12-01

    Smads are the key intermediates of canonical transforming growth factor-beta (TGF-β) signaling. These intermediates are divided into three distinct subgroups based on their role in TGF-β family signal transduction: Receptor-regulated Smads (R-Smads) 1, 2, 3, 5 and 8, common Smad4, and inhibitory Smads6 and 7. TGF-β signaling through Smad pathway involves phosphorylation, ubiquitination, sumoylation, acetylation, and protein-protein interactions with mitogen-activated protein kinases, PI3K-Akt/PKB, and Wnt/GSK-3. Several studies have suggested that upregulation or downregulation of TGF-β/Smad signaling pathways may be a pathogenic mechanism in the progression of chronic kidney disease. Smad2 and 3 are the two major downstream R-Smads in TGF-β-mediated renal fibrosis, while Smad7 also controls renal inflammation. In this review, we characterize the role of Smads in kidney disease, describe the molecular mechanisms, and discuss the potential of Smads as a therapeutic target in chronic kidney disease.

  9. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry

    Science.gov (United States)

    2018-01-01

    Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain. PMID:29436819

  10. Functional genomics in renal transplantation and chronic kidney disease

    International Nuclear Information System (INIS)

    Wilflingseder, J.

    2010-01-01

    For the past decade, the development of genomic technology has revolutionized modern biological research. Functional genomic analyses enable biologists to study genetic events on a genome wide scale. Examples of applications are gene discovery, biomarker determination, disease classification, and drug target identification. Global expression profiles performed with microarrays enable a better understanding of molecular signature of human disease, including acute and chronic kidney disease. About 10 % of the population in western industrialized nations suffers from chronic kidney disease (CKD). Treatment of end stage renal disease, the final stage of CKD is performed by either hemo- or peritoneal dialysis or renal transplantation. The preferred treatment is renal transplantation, because of the higher quality of life. But the pathophysiology of the disease on a molecular level is not well enough understood and early biomarkers for acute and chronic kidney disease are missing. In my studies I focused on genomics of allograft biopsies, prevention of delayed graft function after renal transplantation, anemia after renal transplantation, biocompatibility of hemodialysis membranes and peritoneal dialysis fluids and cardiovascular diseases and bone disorders in CKD patients. Gene expression profiles, pathway analysis and protein-protein interaction networks were used to elucidate the underlying pathophysiological mechanism of the disease or phenomena, identifying early biomarkers or predictors of disease state and potentially drug targets. In summery my PhD thesis represents the application of functional genomic analyses in chronic kidney disease and renal transplantation. The results provide a deeper view into the molecular and cellular mechanisms of kidney disease. Nevertheless, future multicenter collaborative studies, meta-analyses of existing data, incorporation of functional genomics into large-scale prospective clinical trials are needed and will give biomedical

  11. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    DEFF Research Database (Denmark)

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase (PAH) and increased levels of phenylalanine. PAH requires the cofactor BH(4) to function and the rate-limiting step in the synthesis of BH(4) is GTP cyclohydrolase I (GTP-CH). The skin is a potential target tissue for PKU...

  12. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL...

  13. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density.

    Directory of Open Access Journals (Sweden)

    Claudia Coronnello

    Full Text Available MicroRNAs (miRNAs are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting, a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential

  14. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Lundgren, Jens D; Ross, Michael

    2016-01-01

    BACKGROUND: Whether or not the association between some antiretrovirals used in HIV infection and chronic kidney disease is cumulative is a controversial topic, especially in patients with initially normal renal function. In this study, we aimed to investigate the association between duration...... of exposure to antiretrovirals and the development of chronic kidney disease in people with initially normal renal function, as measured by estimated glomerular filtration rate (eGFR). METHODS: In this prospective international cohort study, HIV-positive adult participants (aged ≥16 years) from the D......:A:D study (based in Europe, the USA, and Australia) with first eGFR greater than 90 mL/min per 1·73 m(2) were followed from baseline (first eGFR measurement after Jan 1, 2004) until the occurrence of one of the following: chronic kidney disease; last eGFR measurement; Feb 1, 2014; or final visit plus 6...

  15. Functional recovery in the irradiated kidney following removal of the contralateral unirradiated kidney

    International Nuclear Information System (INIS)

    Robbins, M.E.C.; Hopewell, J.W.; Golding, S.J.

    1986-01-01

    Radiation-induced damage to one kidney in the pig causes a fall in total renal function; this would be recognised and lead to a compensatory response in the unirradiated kidney. The presence of the unirradiated contralateral kidney may effectively prevent the irradiated kidney from expressing any potential for repair and/or recovery of function. If this were true then the question would obviously arise, does the irradiated kidney retain some capacity for recovery? In order to answer this question, the contralateral unirradiated kidney was removed from pigs 26 weeks after the irradiation of the other kidney. The subsequent response of the irradiated kidney to nephrectomy was assessed in terms of the changes in renal size and haemodynamics, i.e. GFR and effective renal plasma flow (ERPF). (Auth.)

  16. Acute kidney failure

    Science.gov (United States)

    ... Renal failure - acute; ARF; Kidney injury - acute Images Kidney anatomy References Devarajan P. Biomarkers for assessment of renal function during acute kidney injury. In: Alpern RJ, Moe OW, Caplan M, ...

  17. Chronic Kidney Disease

    Science.gov (United States)

    You have two kidneys, each about the size of your fist. Their main job is to filter your blood. They remove wastes and ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  18. Diabetic Kidney Problems

    Science.gov (United States)

    ... too high. Over time, this can damage your kidneys. Your kidneys clean your blood. If they are damaged, waste ... in your blood instead of leaving your body. Kidney damage from diabetes is called diabetic nephropathy. It ...

  19. Medullary Sponge Kidney

    Science.gov (United States)

    ... UTI removing any kidney stones Curing an Existing Urinary Tract Infection To treat a UTI , the health care provider ... UTIs and kidney stones. Medications to Prevent Future Urinary Tract Infections and Kidney Stones Health care providers may prescribe ...

  20. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  1. The Spatial Distribution of Poverty in Vietnam and the Potential for Targeting

    OpenAIRE

    Minot, Nicholas; Baulch, Bob

    2002-01-01

    The authors combine household survey and census data to construct a provincial poverty map of Vietnam and evaluate the accuracy of geographically targeted antipoverty programs. First, they estimate per capita expenditure as a function of selected household and geographic characteristics using the 1998 Vietnam Living Standards Survey. Next, they combine the results with data on the same hou...

  2. Children of mothers being released from incarceration : Characteristics and potential targets for intervention

    NARCIS (Netherlands)

    Menting, Ankie T A; Orobio de Castro, Bram; Matthys, Walter

    2016-01-01

    Incarcerated mothers and their children may face a multitude of problems. To identify possible targets for intervention, more clarity is needed about characteristics of these children and their mothers. This study examined children’s life events, behaviour problems and social cognitions and mothers’

  3. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  4. Cadmium and the kidney.

    OpenAIRE

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; cha...

  5. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  6. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  7. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  8. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  9. Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network.

    Science.gov (United States)

    Melak, Tilahun; Gakkhar, Sunita

    2015-12-01

    In spite of the implementations of several strategies, tuberculosis (TB) is overwhelmingly a serious global public health problem causing millions of infections and deaths every year. This is mainly due to the emergence of drug-resistance varieties of TB. The current treatment strategies for the drug-resistance TB are of longer duration, more expensive and have side effects. This highlights the importance of identification and prioritization of targets for new drugs. This study has been carried out to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv based on their flow to resistance genes. The weighted proteome interaction network of the pathogen was constructed using a dataset from STRING database. Only a subset of the dataset with interactions that have a combined score value ≥770 was considered. Maximum flow approach has been used to prioritize potential drug targets. The potential drug targets were obtained through comparative genome and network centrality analysis. The curated set of resistance genes was retrieved from literatures. Detail literature review and additional assessment of the method were also carried out for validation. A list of 537 proteins which are essential to the pathogen and non-homologous with human was obtained from the comparative genome analysis. Through network centrality measures, 131 of them were found within the close neighborhood of the centre of gravity of the proteome network. These proteins were further prioritized based on their maximum flow value to resistance genes and they are proposed as reliable drug targets of the pathogen. Proteins which interact with the host were also identified in order to understand the infection mechanism. Potential drug targets of Mycobacterium tuberculosis H37Rv were successfully prioritized based on their flow to resistance genes of existing drugs which is believed to increase the druggability of the targets since inhibition of a protein that has a maximum flow to

  10. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  11. Chronic Kidney Disease and Kidney Failure

    Science.gov (United States)

    ... death rates limited life expectancy. Some patients were lucky enough to get a kidney transplant, which greatly ... epidemic rates. Through the 1980s and 1990s, the number of patients developing end-stage kidney failure nearly ...

  12. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2018-02-01

    Full Text Available Sortase A (SrtA-catalyzed anchorage of surface proteins in most Gram-positive bacteria is indispensable for their virulence, suggesting that this transpeptidase is a promising target for antivirulence therapy. Here, an oligopeptide, LPRDA, was identified as an effective inhibitor of SrtA via virtual screening based on the LPXTG substrate sequence, and it was found to inhibit SrtA activity in vitro and in vivo (IC50 = 10.61 μM by competitively occupying the active site of SrtA. Further, the oligopeptide treatment had no anti-Staphylococcus aureus activity, but it provided protection against S. aureus-induced mastitis in a mouse model. These findings indicate that the oligopeptide could be used as an effective anti-infective agent for the treatment of infection caused by S. aureus or other Gram-positive bacteria via the targeting of SrtA.

  13. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  14. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Metcalfe, Dean D; Gilfillan, Alasdair M

    2007-01-01

    The prevalence of allergic diseases is increasing worldwide. Hence, there is continued need for novel pharmacological therapies for the treatment of these disorders. As the mast cell is one of the essential cells that contributes to the inflammation associated with allergic diseases, this cell type......E-receptor) on the cell surface. These mediators also contribute to the late and chronic stages of allergic inflammation. Thus, the IgE/antigen response has been a major focus in the development of new drugs targeting mast cells. The essential role that stem cell factor (SCF) and its receptor, Kit, play in mast cell...... remains an attractive target for such pharmacological intervention. Mast cells are major players in the early phase of the allergic response since they generate and release a variety of inflammatory mediators following antigen-dependent aggregation of IgE-bound FcepsilonRI (high affinity Ig...

  15. Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy.

    Science.gov (United States)

    Jung, Yeonjoo; Park, Jinah; Kim, Tai Young; Park, Jung-Hyun; Jong, Hyun-Soon; Im, Seock-Ah; Robertson, Keith D; Bang, Yung-Jue; Kim, Tae-You

    2007-10-01

    The deoxyribonucleic acid (DNA) methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) has been used as a drug in a part of cancer therapy. However, because of its incorporation into DNA during DNA synthesis, 5-aza-dC can cause DNA damage, mutagenesis, and cytotoxicity. In view of the adverse effects of 5-aza-dC, DNMT-targeted inhibition may be a more effective approach than treatment with 5-aza-dC. To address the possibility of DNMT-targeted cancer therapy, we compared the effects of treatment with small interfering ribonucleic acids (siRNAs) specific for DNMT1 or DNMT3b and treatment with 5-aza-dC on transcription, cell growth, and DNA damage in gastric cancer cells. We found that DNMT1-targeted inhibition induced the re-expression and reversed DNA methylation of five (CDKN2A, RASSF1A, HTLF, RUNX3, and AKAP12B) out of seven genes examined, and 5-aza-dC reactivated and demethylated all seven genes. In contrast, DNMT3b siRNAs did not show any effect. Furthermore, the double knockdown of DNMT1 and DNMT3b did not show a synergistic effect on gene re-expression and demethylation. In addition, DNMT1 siRNAs showed an inhibitory effect of cell proliferation in the cancer cells and the induction of cell death without evidence of DNA damage, whereas treatment with 5-aza-dC caused DNA damage as demonstrated by the comet assay. These results provide a rationale for the development of a DNMT1-targeted strategy as an effective epigenetic cancer therapy.

  16. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets.

    Science.gov (United States)

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C; Marrs, James A

    2013-06-19

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  17. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  18. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Fiona Kerr

    2017-03-01

    Full Text Available Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD. Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo.

  19. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    Science.gov (United States)

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets

    Directory of Open Access Journals (Sweden)

    Wengel Jesper

    2006-06-01

    Full Text Available Abstract Background DNAzymes cleave at predetermined sequences within RNA. A prerequisite for cleavage is that the DNAzyme can gain access to its target, and thus the DNAzyme must be capable of unfolding higher-order structures that are present in the RNA substrate. However, in many cases the RNA target sequence is hidden in a region that is too tightly structured to be accessed under physiological conditions by DNAzymes. Results We investigated how incorporation of LNA (locked nucleic acid monomers into DNAzymes improves their ability to gain access and cleave at highly-structured RNA targets. The binding arms of DNAzymes were varied in length and were substituted with up to three LNA and α-L-LNA monomers (forming LNAzymes. For one DNAzyme, the overall cleavage reaction proceeded fifty times faster after incorporation of two α-L-LNA monomers per binding arm (kobs increased from 0.014 min-1 to 0.78 min-1. Conclusion The data demonstrate how hydrolytic performance can be enhanced by design of LNAzymes, and indicate that there are optimal lengths for the binding arms and for the number of modified LNA monomers.

  1. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  2. Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma.

    Science.gov (United States)

    Sekido, Yoshitaka

    2018-03-22

    Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF , NF2 , and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF , have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.

  3. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo Orchioides in the Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan

    2017-10-27

    BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.

  4. Evaluation of plasma membrane calcium/calmodulin-dependent ATPase isoform 4 as a potential target for fertility control.

    Science.gov (United States)

    Cartwright, Elizabeth J; Neyses, Ludwig

    2010-01-01

    The array of contraceptives currently available is clearly inadequate and does not meet consumer demands since it is estimated that up to a quarter of all pregnancies worldwide are unintended. There is, therefore, an overwhelming global need to develop new effective, safe, ideally non-hormonal contraceptives for both male and female use. The contraceptive field, unlike other areas such as cancer, has a dearth of new targets. We have addressed this issue and propose that isoform 4 of the plasma membrane calcium ATPase is a potentially exciting novel target for fertility control. The plasma membrane calcium ATPase is a ubiquitously expressed calcium pump whose primary function in the majority of cells is to extrude calcium to the extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are expressed in spermatozoa, with PMCA4 being the predominant isoform. Although this gene is ubiquitously expressed, its function is highly tissue-specific. Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility specifically in the male mutant mice due to a selective defect in sperm motility. It is important to note that the gene deletion did not affect normal mating characteristics in these mice. This phenotype was mimicked in wild-type sperm treated with the non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester; a proof-of-principle that inhibition of PMCA4 has potential importance in the control of fertility. This review outlines the potential for PMCA4 to be a novel target for fertility control by acting to inhibit sperm motility. It will outline the characteristics that make this target drugable and will describe methodologies to identify and validate novel inhibitors of this target.

  5. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane

    Science.gov (United States)

    Kucher, Volodymyr; Li, Emily Y.; Conforti, Laura; Zahedi, Kamyar A.

    2012-01-01

    The NH2 terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH2-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH2 terminus of NBCe1A are important in its accurate targeting to the plasma membrane. PMID:22442137

  6. Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target.

    Directory of Open Access Journals (Sweden)

    Thomas C Eadsforth

    Full Text Available The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.

  7. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    Science.gov (United States)

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  8. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    International Nuclear Information System (INIS)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-01-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm 3 before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm 3 subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon α) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm 3 . More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice

  9. Potential efficacy of therapies targeting intrahepatic lesions after sorafenib treatment of patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Terashima, Takeshi; Yamashita, Tatsuya; Horii, Rika; Arai, Kuniaki; Kawaguchi, Kazunori; Kitamura, Kazuya; Yamashita, Taro; Sakai, Yoshio; Mizukoshi, Eishiro; Honda, Masao; Kaneko, Shuichi

    2016-01-01

    We investigated the contribution of subsequent therapy for advanced hepatocellular carcinoma refractory or intolerant to sorafenib. Further, we investigated the impact of sorafenib on overall survival using individual data. We reviewed the medical records of patients with advanced hepatocellular carcinoma treated with sorafenib. Survival after sorafenib treatment and overall survival were defined as the time when we discovered that patients were either refractory or intolerant to sorafenib and the period from the start of sorafenib treatment, respectively, until death during the study. We compared patients’ prognoses according to their subsequent treatment as follows: group A, therapies targeting intrahepatic lesions; group B, systemic therapies alone; group C, no subsequent therapy. We used linear regression analysis to determine whether there was an association with survival after sorafenib treatment and with overall survival. Of 79 patients, 63 (79.7 %) received one or more subsequent therapies (44 and 19 patients in groups A and B, respectively). The five patients who survived more than two years after sorafenib treatment was discontinued responded to therapies targeting intrahepatic lesions. The median survival times of groups A, B, and C were 11.9 months, 5.8 months, and 3.6 months, respectively. Multivariate analysis revealed that group A, Child-Pugh score, serum α-fetoprotein level, and cause of failure of sorafenib treatment were independent prognostic factors for survival after sorafenib treatment. Individual survival after sorafenib treatment correlated highly with overall survival. Targeting intrahepatic lesions may be useful for treating patients with advanced hepatocellular carcinoma patients after sorafenib treatment is discontinued. The online version of this article (doi:10.1186/s12885-016-2380-4) contains supplementary material, which is available to authorized users

  10. Analyzing a potential drug target N-myristoyltransferase of Plasmodium falciparum through in silico approaches

    Directory of Open Access Journals (Sweden)

    Amit Kumar Banerjee

    2012-01-01

    Full Text Available Background: Despite concerted global efforts to combat malaria, malaria elimination is still a remote dream. Fast evolution rate of malarial parasite along with its ability to respond quickly to any drug resulting in partial or complete resistance has been a cause of concern among researcher communities. Materials and Methods: Molecular modeling approach was adopted to gain insight about the structure and various analyses were performed. Modeller 9v3, Protparam, Protscale, MEME, NAMD and other tools were employed for this study. PROCHECK and other tools were used for stereo-chemical quality evaluation. Results and Conclusion: It was observed during the course of study that this protein contains 32.2% of aliphatic amino acids among which Leucine (9.5% is predominant. Theoretical pI of 8.39 identified the protein as basic in nature and most of the amino acids present in N-Myristoyltransferase are hydrophobic (46.1%. Secondary structure analysis shows predominance of alpha helices and random coils. Motif analyses revealed that this target protein contains 2 signature motifs, i.e., EVNFLCVHK and KFGEGDG. Apart from motif search, three-dimensional model was generated and validated and the stereo-chemical quality check confirmed that 97.7% amino acid residues fall in the core region of Ramachandran plot. Molecular dynamics simulation resulted in maximum 1.3 Å Root Mean Square Deviation (RMSD between the initial structure and the trajectories obtained later on. The template and the target molecule has shown 1.5 Å RMSD for the C alpha trace. A docking study was also conducted with various ligand molecules among which specific benzofuran compounds turned out to be effective. This derived information will help in designing new inhibitor molecules for this target protein as well in better understanding the parasite protein.

  11. ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS

    International Nuclear Information System (INIS)

    Mueller, Michael; Delbo', M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Trilling, D. E.; Thomas, C. A.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Mainzer, A.; Emery, J. P.; Harris, A. W.; Mommert, M.; Penprase, B.; Stansberry, J. A.

    2011-01-01

    Space missions to near-Earth objects (NEOs) are being planned at all major space agencies, and recently a manned mission to an NEO was announced as a NASA goal. Efforts to find and select suitable targets (plus backup targets) are severely hampered by our lack of knowledge of the physical properties of dynamically favorable NEOs. In particular, current mission scenarios tend to favor primitive low-albedo objects. For the vast majority of NEOs, the albedo is unknown. Here we report new constraints on the size and albedo of 65 NEOs with rendezvous Δv -1 . Our results are based on thermal-IR flux data obtained in the framework of our ongoing (2009-2011) ExploreNEOs survey using NASA's 'Warm-Spitzer' space telescope. As of 2010 July 14, we have results for 293 objects in hand (including the 65 low-Δv NEOs presented here); before the end of 2011, we expect to have measured the size and albedo of ∼700 NEOs (including probably ∼160 low-Δv NEOs). While there are reasons to believe that primitive volatile-rich materials are universally low in albedo, the converse need not be true: the orbital evolution of some dark objects likely has caused them to lose their volatiles by coming too close to the Sun. For all our targets, we give the closest perihelion distance they are likely to have reached (using orbital integrations from Marchi et al. 2009) and corresponding upper limits on the past surface temperature. Low-Δv objects for which both albedo and thermal history may suggest a primitive composition include (162998) 2001 SK162, (68372) 2001 PM9, and (100085) 1992 UY4.

  12. Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides

    Directory of Open Access Journals (Sweden)

    M.V. Kurashvili

    2016-09-01

    Full Text Available The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of specially selected plants and microorganisms. Initial degradation of pesticides carry out by microorganisms; the forming dehalogenated products easily uptake by the plants and undergo oxidative degradation via plant detoxification enzymes. This approach can complete degradation of toxicants and their mineralization into nontoxic compounds. In the presented work the results of using selected strains from genera Pseudomonas and plants phytoremediators in the model experiments are given. It has been shown that the using developed technological approach effectively decreased degree of pollution in artificially polluted soil samples.

  13. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  14. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  15. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  16. Identification of treatment response predictors and potential molecular targets for chemo preventive and antiangiogenic therapies

    International Nuclear Information System (INIS)

    Pfeffer, U.; Albini, A.

    2009-01-01

    The aims of the project were: To evaluate the cellular responses to anti-inflammatory and anti-angiogenic natural or synthetic compounds (chemo preventives, inhibitors of cell survival and inflammation related signal transduction). To identify bio markers for treatment response through the selection of targets that are common to or specific for anti-inflammatory and anti-angiogenic activities. To analyze the regulation of the key tumor-promotion pathways Akt, HIF1α, NFκB. We focused our studies on the antiapoptotic role of the AKT survival pathway, which is involved in prostate tumor progression to an androgen-independent phenotype

  17. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  18. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants

    Science.gov (United States)

    Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.

    2016-01-01

    Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585

  19. Prediction of host-derived miRNAs with the potential to target PVY in potato plants

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Iqbal

    2016-09-01

    Full Text Available Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe PVY reduces the yield and quality of potato cultivars. During last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in PVY genome. PVY genome is about 9 thousand nucleotides approximately which transcribes 6 genes CI, NIa, NIb-Pro, HC-Pro, CP and VPg. A total of 343 mature miRNAs were retrieved from miRbase database and searched for their target sequences in PVY genes using minimum free energy (mfe, minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. Identified Potato miRNAs against viral mRNA targets have antiviral activities leading to either translational inhibition by mRNA cleavage/mRNA blockage or both. We have found 86 miRNAs targeting PVY genome at 151 different sites on PVY genome. Moreover, only 36 miRNA potentially targeted the PVY genome at 101 loci. CI gene of PVY genome was targeted by 32 miRNAs followed by complementarity by 26, 19, 18, 16 and 13 miRNAs respectively. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h and miR5303d could target CI, NIa, NIb-Pro, HC-Pro, CP and VPg genes of PVY. The predicted miRNAs can be used for development of PVY resistant potato crops in future.

  20. Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets.

    Directory of Open Access Journals (Sweden)

    Peter B McGarvey

    2009-09-01

    Full Text Available The NIAID (National Institute for Allergy and Infectious Diseases Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1 The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells infected by different bacterial (Bacillus anthracis and Salmonella typhimurium and viral (orthopox pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2 The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3 Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and

  1. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    Science.gov (United States)

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  2. Using Market Research to Characterize College Students and Identify Potential Targets for Influencing Health Behaviors

    Science.gov (United States)

    Berg, Carla J.; Ling, Pamela M.; Guo, Hongfei; Windle, Michael; Thomas, Janet L.; Ahluwalia, Jasjit S.; An, Lawrence C.

    2013-01-01

    Marketing campaigns, such as those developed by the tobacco industry, are based on market research, which defines segments of a population by assessing psychographic characteristics (i.e., attitudes, interests). This study uses a similar approach to define market segments of college smokers, to examine differences in their health behaviors (smoking, drinking, binge drinking, exercise, diet), and to determine the validity of these segments. A total of 2,265 undergraduate students aged 18–25 years completed a 108-item online survey in fall 2008 assessing demographic, psychographic (i.e., attitudes, interests), and health-related variables. Among the 753 students reporting past 30-day smoking, cluster analysis was conducted using 21 psychographic questions and identified three market segments – Stoic Individualists, Responsible Traditionalists, and Thrill-Seeking Socializers. We found that segment membership was related to frequency of alcohol use, binge drinking, and limiting dietary fat. We then developed three messages targeting each segment and conducted message testing to validate the segments on a subset of 73 smokers representing each segment in spring 2009. As hypothesized, each segment indicated greater relevance and salience for their respective message. These findings indicate that identifying qualitatively different subgroups of young adults through market research may inform the development of engaging interventions and health campaigns targeting college students. PMID:25264429

  3. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  4. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  5. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  6. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Mikhaylova

    2018-01-01

    Full Text Available The main goal of treatment for rheumatoid arthritis (RA is to suppress inflammation using basic and symptomatic therapies. At the same time, the above strategy does not significantly stop joint  destruction that leads to disability in patients. The review analyzes  publications dealing with a search for intercellular interaction  regulators among the main effector cells in the pannus – fibroblast- like synoviocytes (FLSs. It assesses the influence of FLS aggression  factors on invasive pannus behavior, the possibility of their targeted deactivation during biological therapy, and the preliminary  results of similar treatment by the examples of animal models. It is  shown that the most promising targets for biological therapy may be FLS adhesion molecules, such as transmembrane receptor cadherin  11, integrins α5/β1, and VCAM1, ICAM1, which actively participate in the attachment of FLSs to the cartilage surface and activate their production of cytokines, growth factors and aggression factors.

  8. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  9. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    Science.gov (United States)

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  10. Polo-like Kinase 1 as a potential therapeutic target in Diffuse Intrinsic Pontine Glioma

    International Nuclear Information System (INIS)

    Amani, Vladimir; Prince, Eric W; Alimova, Irina; Balakrishnan, Ilango; Birks, Diane; Donson, Andrew M.; Harris, Peter; Levy, Jean M. Mulcahy; Handler, Michael; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease. New therapeutic targets are needed to develop novel therapy for DIPG. We examined the expression of PLK1 mRNA in DIPG tumor samples through microarray analysis and found it to be up regulated versus normal pons. Using the DIPG tumor cells, we inhibited PLK1 using a clinically relevant specific inhibitor BI 6727 and evaluated the effects on, proliferation, apoptosis, induction of DNA damage and radio sensitization of the DIPG tumor cells. Treatment of DIPG cell lines with BI 6727, a new generation, highly selective inhibitor of PLK1, resulted in decreased cell proliferation and a marked increase in cellular apoptosis. Cell cycle analysis showed a significant arrest in G2-M phase and a substantial increase in cell death. Treatment also resulted in an increased γH2AX expression, indicating induction of DNA damage. PLK1 inhibition resulted in radiosensitization of DIPG cells. These findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with radiation therapy, will hold a novel strategy in the treatment of DIPG that warrants further investigation

  11. The Mechanisms to Consolidate Staff Efforts in the Targeting of Increasing the Competitive Potential of Enterprise

    Directory of Open Access Journals (Sweden)

    Legominova Svitlana V.

    2017-10-01

    Full Text Available The topicality of focusing efforts to improve the competitive potential of enterprise through intellectualization of its staff, using continuous training in accordance with technological regimes and modern trends, has been rationalized. The author has analyzed the structural features of intellectual capital, determining the need for their efficient interaction to gain competitive value. A combination of behavioristic and cognitive approaches has been proposed, using a holistic model of human resources management in order to ensure efficient management and consideration of specific characteristics of cognitive behavior. It has been proven that the competitive potential of enterprise is directly dependent on the accumulation and diffusion of knowledge, should be of permanent nature, ensuring a stable increase in the competitive potential of enterprise and creating the ground for the formation of leadership positions, thus determining the basic mainstreams of development.

  12. Kidneys and Urinary Tract

    Science.gov (United States)

    ... Videos for Educators Search English Español Kidneys and Urinary Tract KidsHealth / For Teens / Kidneys and Urinary Tract What's ... a sign of diabetes . What the Kidneys and Urinary Tract Do Although the two kidneys work together to ...

  13. [Acute kidney injury

    NARCIS (Netherlands)

    Hageman, D.; Kooman, J.P.; Lance, M.D.; van Heurn, L.W.; Snoeijs, M.G.

    2012-01-01

    - 'Acute kidney injury' is modern terminology for a sudden decline in kidney function, and is defined by the RIFLE classification (RIFLE is an acronym for Risk, Injury, Failure, Loss and End-stage kidney disease).- Acute kidney injury occurs as a result of the combination of reduced perfusion in the

  14. Ultrasonography of the Kidney

    DEFF Research Database (Denmark)

    Lindskov Hansen, Kristoffer; Nielsen, Michael Bachmann; Ewertsen, Caroline

    2016-01-01

    Ultrasonography of the kidneys is essential in the diagnosis and management of kidney-related diseases. The kidneys are easily examined, and most pathological changes in the kidneys are distinguishable with ultrasound. In this pictorial review, the most common findings in renal ultrasound...

  15. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  16. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.

    Science.gov (United States)

    Hassuna, Noha; Monk, Peter N; Moseley, Gregory W; Partridge, Lynda J

    2009-01-01

    The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining 'signature' motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as 'molecular organizers' involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a 'gateway' to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting

  17. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Directory of Open Access Journals (Sweden)

    Chowdhury MRH

    2014-11-01

    Full Text Available Md Rabiul Hossain Chowdhury,1 Md IqbalKaiser Bhuiyan,2 Ayan Saha,2 Ivan MHAI Mosleh,2 Sobuj Mondol,2 C M Sabbir Ahmed3 1Department of Pharmacy, University of Science and Technology Chittagong, Chittagong, Bangladesh; 2Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh; 3Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Purpose: Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods: In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results: In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic

  18. The way forward in biochar research: targeting trade-offs between the potential wins

    NARCIS (Netherlands)

    Jeffery, S.; Bezemer, T.M.; Cornelissen, G.; Kuyper, T.W.; Lehmann, J.; Mommer, Liesje; Sohi, S.; Van de Voorde, T.F.J.; Wardle, D.A.; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typically, soil amelioration with biochar is presented as a multiple-‘win’ strategy, although it is also associated with potential risks such as environmental contamination. The most often

  19. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    Science.gov (United States)

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Regulation of DDAH1 as a Potential Therapeutic Target for Treating Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    2013-01-01

    Full Text Available Asymmetric dimethylarginine (ADMA is an endogenous nitric oxide synthase inhibitor that blocks nitric oxide production, while congestive heart failure is associated with increased plasma and tissue ADMA content. Increased plasma ADMA is a strong and independent predictor of all-cause mortality in the community and the strongest predictor of mortality in patients after myocardial infarction. Recent studies demonstrated that dimethylarginine dimethylaminohydrolase-1 (DDAH1 is the critical enzyme for ADMA degradation and thereby plays an important role in maintaining cardiovascular nitric oxide bioavailability. Interestingly, activation of the farnesoid X receptor (FXR through the bile acid ursodeoxycholic acid (UDCA or synthetic FXR agonists, such as GW4064, can increase DDAH1 expression. Thus, modulating DDAH1 activity through FXR receptor agonists such as UDCA could be a therapeutic target for treating reduced nitric oxide bioavailability in congestive heart failure and other cardiovascular diseases.

  2. Claudins Overexpression in Ovarian Cancer: Potential Targets for Clostridium Perfringens Enterotoxin (CPE Based Diagnosis and Therapy

    Directory of Open Access Journals (Sweden)

    Diana P. English

    2013-05-01

    Full Text Available Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE, a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents.

  3. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Olwyn R. Mahon

    2018-05-01

    Full Text Available It is now well established that intra-articular deposition of endogenous particulates, such as osteoarthritis-associated basic calcium phosphate crystals, gout-associated monosodium urate crystals, and calcium deposition disease-associated calcium pyrophosphate crystals, contributes to joint destruction through the production of cartilage-degrading enzymes and pro-inflammatory cytokines. Furthermore, exogenous wear-debris particles, generated from prosthetic implants, drive periprosthetic osteolysis which impacts on the longevity of total joint replacements. Over the last few years, significant insight has been gained into the mechanisms through which these particulates exert their effects. Not only has this increased our understanding of the pathological processes associated with crystal deposition but it has also led to the identification of a number of therapeutic targets to treat particulate-associated disease. In this review, we discuss recent developments regarding the cellular events triggered by joint-associated particulates, as well as future directions in therapy for particulate-related arthropathies.

  4. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Tadayoshi Kagiya

    2016-08-01

    Full Text Available Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described.

  5. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lindi; Tweddle, Deborah A., E-mail: deborah.tweddle@ncl.ac.uk [Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle (United Kingdom)

    2012-11-28

    Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.

  6. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders.

    Science.gov (United States)

    Singh, Abhijeet; Chokriwal, Ankit; Sharma, Madan Mohan; Jain, Devendra; Saxena, Juhi; Stephen, Bjorn John

    2017-08-16

    Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.

  7. Potential proteins targeted by let-7f-5p in HeLa cells.

    Science.gov (United States)

    Wang, Yu; Chen, Xiujuan; Zhang, Yi; Song, Jiandong

    2017-07-24

    MicroRNAs are a class of small, endogenous, non-coding RNAs mediating posttranscriptional gene silencing. The current authors hypothesized that let-7f-5p is likely involved in cell invasion and proliferation by regulating the expression of target genes. The current study combined let-7f-5p with iTRAQ to assess its effect on gene expression in HeLa cells. Results indicated that 164 proteins were expressed at different levels in HeLa cells overexpressing let-7f-5p and negative controls and that 172 proteins were expressed at different levels in let-7f-5p-silenced HeLa cells and negative controls. Results indicated that let-7f-5p may suppress insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in HeLa cells.

  8. Assessing potential targets of calcium action in light-modulated gravitropism

    Science.gov (United States)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  9. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    Science.gov (United States)

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  10. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific

  11. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  12. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    Directory of Open Access Journals (Sweden)

    Andrey R Nikolaev

    2013-06-01

    Full Text Available In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short scrutinizing but not for long explorative saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades moving up in temperature were preceded by presaccadic activity of higher amplitude than those moving down. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene.

  13. Role of Saudi universities in achieving the solar potential 2030 target

    International Nuclear Information System (INIS)

    Alyahya, Sulaiman; Irfan, Mohammad A.

    2016-01-01

    In Saudi Arabia, domestic consumption of fossil fuel is expected to grow from 3.4 MBOE (Million Barrels of Oil Equivalent) to 8.3 MBOE by 2028; peak power demand from 55 GW to 121 GW by 2030. About 61 GW of demand appears unmet by the output of planned projects. In response, KACARE (King Abdullah City for Atomic and Renewable Energy, the nation’s energy policy maker) has announced the target of installing 41 GW of solar capacity by 2030 (24 GW by 2020). Deployment of so much solar power requires a substantial, locally trained, technical workforce. A lower bound estimate of 8.9 persons/MW of Solar PV and 3.04 persons/MW of Solar Thermal can be taken for manufacturing, operations and maintenance. This conservative figure would mean employment for 218,650 workers by 2030. This would require the 24 local universities to graduate 14,577 technically qualified workers annually for the next 15 years (607 graduates per year per university). Even assuming a 50% import of technical manpower, the above estimate can be revised as 303 graduates per university per year. The need for so many technical workers makes it imperative for local universities to immediately ramp up their capacity to graduate technical workforce. - Highlights: •A review was made for manpower requirement of solar projects. •Manpower requirement was suggested for the Solar Target 2030 of 41 GW for Saudi Arabia. •Role of universities was elaborated in achieving tis manpower requirement.

  14. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.

    Science.gov (United States)

    Lu, Victor M; McDonald, Kerrie L; Townley, Helen E

    2017-10-01

    The prognosis of brain cancer glioblastoma (GBM) is poor, and despite intense research, there have been no significant improvements within the last decade. This stasis implicates the need for more novel therapeutic investigation. One such option is the use of nanoparticles (NPs), which can be beneficial due to their ability to penetrate the brain, overcome the blood-brain barrier and take advantage of the enhanced permeation and retention effect of GBM to improve specificity. Rare earth elements possess a number of interesting natural properties due to their unique electronic configuration, which may prove therapeutically advantageous in an NP formulation. The underexplored exciting potential for rare earth elements to augment the therapeutic potential of NPs in GBM treatment is discussed in this review.

  15. Synaptic neurochemistry: Potential targets for the development of new tracer imaging methods

    International Nuclear Information System (INIS)

    Frey, K.A.

    1991-01-01

    Radiotracer techniques for measuring biochemical and pharmacologic processes unique to the synapse and to chemically defined neuronal populations are now under investigation. These methods make use of neuronal biochemical specializations determined by invasive animal experiments and confirmed by human biopsy and autopsy. Early investigators focused on determination of neurotransmitter receptors. More recently, attention has turned to evaluation of presynaptic markers such as steps in neurotransmitter synthesis, storage and degradation, and to the potential evaluation of new postsynaptic markers, including chemical second-messenger activities and receptor-grated ion channel distributions. In this review, synaptic neurochemistry is presented with attention to potential radiotracer imaging methods. Strategies for selecting and applying neuropharmacologic methods to disorders of the human brain are outlined. The methodological requirements of new radiotracer imaging techniques are summarized according to their desired application. Finally, distinctions between in vitro and in vivo measurements of these processes are outlined, along with strategies for detecting such differences

  16. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fabliha Ahmed Chowdhury

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ, the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

  17. Anatomic and Radiologic Study of Renal Avascular Plane (Brödel's Line) and Its Potential Relevance on Percutaneous and Surgical Approaches to the Kidney.

    Science.gov (United States)

    Macchi, Veronica; Picardi, Edgardo; Inferrera, Antonino; Porzionato, Andrea; Crestani, Alessandro; Novara, Giacomo; De Caro, Raffaele; Ficarra, Vincenzo

    2018-02-01

    The aim of the present anatomic and radiologic study was to evaluate the location, extension, and characteristics of the Brödel's plane and eventually define its different patterns. We evaluated 15 human normal kidneys sampled from unembalmed cadavers without clinical history or anatomical evidence of renal diseases. Kidneys with the surrounding perirenal fat tissue were removed en bloc with the abdominal segment of the aorta. The renal artery was injected with acrylic and radiopaque resins. A CT examination of the injected kidneys was performed. After the imaging acquisition, the specimens were treated with sodium hydroxide for removal of the parenchyma to obtain the vascular casts. All the CT images were elaborated using dedicated three-dimensional (3D) software with the aim to improve the possibility to identify the Brödel's plane. The avascular plane was identified directly on the vascular casts and confirmed on the corresponding 3D images. The avascular plane was located in all cases medially to the lateral convex border of the kidneys. The recorded mean distance was 2.04 cm (range 1.8-2.4 cm). Three patterns of distribution of the Brödel's line were identified. In five (33.3%) cases the avascular plane was extended from the apical to the inferior segment of the kidneys (type 1); in six (40%) from the superior to the inferior segment (type 2); and in four (26.7%) from the apical to the middle segment (type 3). Fourth and fifth order vessels crossing the Brödel's line were detected in all the analyzed cases. The renal avascular plane showed a different extension allowing us to cluster three different patterns. Preoperative identification of the Brödel's line patterns could help surgeons to minimize hemorrhagic complications during percutaneous and surgical procedures requiring an incision of the renal parenchyma such as traditional or robot-assisted nephrolithotomy or partial nephrectomy for endophytic renal tumors. Radiologic studies validated that

  18. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics.

    Science.gov (United States)

    Islam, Md Soriful; Ciavattini, Andrea; Petraglia, Felice; Castellucci, Mario; Ciarmela, Pasquapina

    2018-01-01

    Uterine leiomyoma (also known as fibroid or myoma) is the most common benign tumor of the uterus found in women of reproductive age. It is not usually fatal but can produce serious clinical symptoms, including excessive uterine bleeding, pelvic pain or pressure, infertility and pregnancy complications. Due to lack of effective medical treatments surgery has been a definitive choice for the management of this tumor. Extracellular matrix (ECM) accumulation and remodeling are thought to be crucial for fibrotic diseases such as uterine leiomyoma. Indeed, ECM plays important role in forming the bulk structure of leiomyoma, and the ECM-rich rigid structure within these tumors is thought to be a cause of abnormal bleeding and pelvic pain. Therefore, a better understanding of ECM accumulation and remodeling is critical for developing new therapeutics for uterine leiomyoma. PubMed and Google Scholar were searched for all original and review articles/book chapters related to ECM and medical treatments of uterine leiomyoma published in English until May 2017. This review discusses the involvement of ECM in leiomyoma pathogenesis as well as current and future medical treatments that target ECM directly or indirectly. Uterine leiomyoma is characterized by elevated levels of collagens, fibronectin, laminins and proteoglycans. They can induce the mechanotransduction process, such as activation of the integrin-Rho/p38 MAPK/ERK pathway, resulting in cellular responses that are involved in pathogenesis and altered bidirectional signaling between leiomyoma cells and the ECM. ECM accumulation is affected by growth factors (TGF-β, activin-A and PDGF), cytokines (TNF-α), steroid hormones (estrogen and progesterone) and microRNAs (miR-29 family, miR-200c and miR-93/106b). Among these, TGF-βs (1 and 3) and activin-A have been suggested as key players in the accumulation of excessive ECM (fibrosis) in leiomyoma. The presence of elevated levels of ECM and myofibroblasts in leiomyoma

  19. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target