WorldWideScience

Sample records for key steroidogenic enzymes

  1. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  2. Rooibos Flavonoids Inhibit the Activity of Key Adrenal Steroidogenic Enzymes, Modulating Steroid Hormone Levels in H295R Cells

    Directory of Open Access Journals (Sweden)

    Lindie Schloms

    2014-03-01

    Full Text Available Major rooibos flavonoids—dihydrochalcones, aspalathin and nothofagin, flavones—orientin and vitexin, and a flavonol, rutin, were investigated to determine their influence on the activity of adrenal steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase (3βHSD2 and cytochrome P450 (P450 enzymes, P450 17α-hydroxylase/17,20-lyase (CYP17A1, P450 21-hydroxylase (CYP21A2 and P450 11β-hydroxylase (CYP11B1. All the flavonoids inhibited 3βHSD2 and CYP17A1 significantly, while the inhibition of downstream enzymes, CYP21A2 and CYP11B1, was both substrate and flavonoid specific. The dihydrochalcones inhibited the activity of CYP21A2, but not that of CYP11B1. Although rutin, orientin and vitexin inhibited deoxycortisol conversion by CYP11B1 significantly, inhibition of deoxycorticosterone was <20%. These three flavonoids were unable to inhibit CYP21A2, with negligible inhibition of deoxycortisol biosynthesis only. Rooibos inhibited substrate conversion by CYP17A1 and CYP21A2, while the inhibition of other enzyme activities was <20%. In H295R cells, rutin had the greatest inhibitory effect on steroid production upon forskolin stimulation, reducing total steroid output 2.3-fold, while no effect was detected under basal conditions. Nothofagin and vitexin had a greater inhibitory effect on overall steroid production compared to aspalathin and orientin, respectively. The latter compounds contain two hydroxyl groups on the B ring, while nothofagin and vitexin contain a single hydroxyl group. In addition, all of the flavonoids are glycosylated, albeit at different positions—dihydrochalcones at C3' and flavones at C8 on ring A, while rutin, a larger molecule, has a rutinosyl moiety at C3 on ring C. Structural differences regarding the number and position of hydroxyl and glucose moieties as well as structural flexibility could indicate different mechanisms by which these flavonoids influence the activity of adrenal steroidogenic enzymes.

  3. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland.

    Science.gov (United States)

    Falvo, Sara; Chieffi Baccaria, Gabriella; Spaziano, Giuseppe; Rosati, Luigi; Venditti, Massimo; Di Fiore, Maria Maddalena; Santillo, Alessandra

    2018-03-01

    The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  4. Distribution of steroidogenic enzymes involved in androgen synthesis in polycystic ovaries: an immunohistochemical study

    NARCIS (Netherlands)

    Kaaijk, E. M.; Sasano, H.; Suzuki, T.; Beek, J. F.; van der Veen, F.

    2000-01-01

    To find an explanation for the possible working mechanism of laparoscopic ovarian electrocautery for the treatment of anovulation in polycystic ovarian syndrome (PCOS), we evaluated the distribution of steroidogenic enzymes involved in the synthesis of ovarian androgens in surgical pathology

  5. Expression of steroidogenic enzymes in porcine polycystic ovaries.

    Directory of Open Access Journals (Sweden)

    Mariusz Majewski

    2009-12-01

    Full Text Available In the present study the expression pattern of the cholesterol side-chain cleavage cytochrome (P450(scc, 3beta-hydroxysteroid dehydrogenase (3beta-HSD and aromatase (P450(arom was analyzed in the health and polycystic ovaries of gilts by means of the Western blot and immunohistochemistry. The polycystic status of ovaries was induced by i.m. dexamethasone (DXM injections on days 7-21 of the estrous cycle. Macroscopic observation of ovaries of DXM-treated gilts revealed the presence of cysts (1-2 cm in diameter, with a mean number of 7.0+/-1.2 per ovary, a decrease (P<0.05 in number of small follicles (1-3 mm in diameter, as well as the lack of medium-sized follicles (4-6 mm in diameter and corpora lutea, as compared to the control animals. The expression of P450(scc (P<0.01, 3beta-HSD (P<0.05 and P450(arom (P<0.001 proteins in the cysts was higher than in the medium-sized follicles of the control gilts. Moreover, DXM injections resulted also in an enhancement (P<0.05 in the level of P450(scc protein in the walls of small follicles as compared to the control gilts. Following DXM administration the immunoreactivity (IR of P450(scc in the primordial follicles was lower than in the control group. Comparing to the control gilts, the reaction for this enzyme in DXM-treated animals was observed in secondary follicles, while for 3beta-HSD, in primordial, primary, as well as secondary follicles. The immunostaining for P450(scc (theca cells and P450(arom (granulosa cells in the small follicles of the DXM-treated gilts were more prominent than those found in the gonads of control animals. However, IR for P450(scc was not found in the granulosa cells of small follicles in the gilts receiving DXM. The intensity of P450(scc and P450(arom labelling was distinctly enhanced in the cysts as compared to the medium follicles of the control animals. Furthermore, in contrary to the medium follicles of the control animals, faint IR for 3beta-HSD was found in the

  6. Selective Inhibition of Steroidogenic Enzymes by Ketoconazole in Rat Ovary Cells

    Directory of Open Access Journals (Sweden)

    Michael Gal

    2014-01-01

    Full Text Available Objective Ketoconazole (KCZ is an anti-fungal agent extensively used for clinical applications related to its inhibitory effects on adrenal and testicular steroidogenesis. Much less information is available on the effects of KCZ on synthesis of steroid hormones in the ovary. The present study aimed to characterize the in situ effects of KCZ on steroidogenic enzymes in primary rat ovary cells. Methods Following the induction of folliculogenesis in gonadotropin treated rats, freshly prepared ovarian cells were incubated in suspension for up to four hours while radiolabeled steroid substrates were added and time dependent generation of their metabolic products was analyzed by thin layer chromatography (TLC. Results KCZ inhibits the P450 steroidogenic enzymes in a selective and dose dependent manner, including cholesterol side-chain cleavage cytochrome P450 (CYP11A1/P450scc, the 17α-hydroxylase activity of CYP17A1/P450c17, and CYP19A1/P450arom, with IC 50 values of 0.3, 1.8, and 0.3 μg/mL (0.56, 3.36, and 0.56 μM, respectively. Unaffected by KCZ, at 10 μg/mL, were the 17,20 lyase activity of CYP17A1, as well as five non-cytochrome steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase-δ 5-4 isomerase type 1 (3βHSD1, 5α-reductase, 20α-hydroxysteroid dehydrogenase (20α-HSD, 3α-hydroxysteroid dehydrogenase (3α-HSD, and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1. Conclusion These findings map the effects of KCZ on the ovarian pathways of progestin, androgen, and estrogen synthesis. Hence, the drug may have a potential use as an acute and reversible modulator of ovarian steroidogenesis in pathological circumstances.

  7. Prenatal ethanol exposure alters steroidogenic enzyme activity in newborn rat testes.

    Science.gov (United States)

    Kelce, W R; Rudeen, P K; Ganjam, V K

    1989-10-01

    We have examined the in utero effects of ethanol exposure on testicular steroidogenesis in newborn male pups. Pregnant Sprague-Dawley rats were fed a liquid ethanol diet (35% ethanol-derived calories), a pair-fed isocaloric liquid diet, or a standard laboratory rat chow and water diet beginning on Day 12 of gestation and continuing through parturition. Although there were no significant differences in the enzymatic activity of 5-ene-3 beta-hydroxysteroid dehydrogenase/isomerase or C17,20-lyase, the enzymatic activity of 17 alpha-hydroxylase was significantly (p less than 0.01) reduced (i.e., approximately 36%) in the ethanol-exposed pups compared to those from the pair-fed and chow treatment groups. This lesion in testicular steroidogenic enzyme activity in newborn male pups exposed to alcohol in utero was transient as 17 alpha-hydroxylase activity from the ethanol-exposed animals returned to control levels by postnatal Day 20 and remained at control levels through adulthood (postnatal Day 60). These data suggest that the suppression of the perinatal testosterone surge in male rats exposed to alcohol in utero and the associated long term demasculinizing effects of prenatal ethanol exposure might be the result of reduced testicular steroidogenic enzyme activity in the perinatal animal.

  8. Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary.

    Science.gov (United States)

    Lombardi, Leonardo Augusto; Simões, Ricardo Santos; Maganhin, Carla Cristina; Baracat, Maria Cândida Pinheiro; Silva-Sasso, Gisela Rodrigues; Florencio-Silva, Rinaldo; Soares, José Maria; Baracat, Edmund Chada

    2014-07-01

    to evaluate the immunohistochemical expression of proliferative, apoptotic and steroidogenic enzyme markers in the ovaries of rats with polycystic ovary syndrome (PCOS). twenty rats were divided into two groups: GCtrl - estrous phase, and PCOS - with polycystic ovaries. The GCtrl animals were subjected to a lighting period from 7 am to 7 pm, while the animals with PCOS group remained with continuous lighting for 60 days. Subsequently, the animals were anesthetized, the ovaries were removed and fixed in 10% formaldehyde, prior to paraffin embedding. Sections were stained using H.E. or subjected to immunohistochemical methods for the detection of Ki-67, cleaved caspase-3, CYP11A1, CYP17A1 and CYP19A1. The results were analyzed using Student's t-test (p ovaries of rats with PCOS, responsible for the high levels of androgens and estradiol.

  9. Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep.

    Science.gov (United States)

    Padmanabhan, Vasantha; Salvetti, Natalia R; Matiller, Valentina; Ortega, Hugo H

    2014-09-01

    Prenatal testosterone (T) excess disrupts ovarian cyclicity and increases circulating estradiol levels as well as follicular recruitment and persistence culminating in multifollicular ovary similar to women with polycystic ovary syndrome. We tested whether prenatal T excess, by androgenic or estrogenic action, disrupts the steroid biosynthetic machinery in sheep in a cell-, follicle stage-, age-, and treatment-specific manner consistent with the ovarian disruptions and increased estradiol release. Impact of T/dihydrotestosterone (DHT) treatments from days 30-90 of gestation on steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, cytochrome P-450 17α-hydroxylase/C17, 20-lyase (CYP17A1), and cytochrome P-450 aromatase (CYP19A1) were examined on fetal day 90, 140 and 10 months (postpubertal), and 21 months (adult, no DHT group) of age by immunohistochemistry. All 4 markers changed in a cell-, follicle stage-, and age-specific manner. Both treatments increased steroidogenic acute regulatory protein expression in preantral follicles of postpubertal and adult females. Effects of prenatal T and DHT on 3β-hydroxysteroid dehydrogenase differed in a follicle- and age-specific manner. CYP17A1 was reduced in the theca interna of antral follicles by T, but not DHT, in 10- and 21-month-old females. CYP19A1 was reduced by both T and DHT at all ages barring an increase on fetal day 140. Reduced granulosa CYP19A1 and thecal CYP17A1 in adults likely disrupt the intrafollicular androgen/estrogen balance contributing to follicular persistence. The reduced thecal CYP17A1 expression suggests that the hyperandrogenic ovarian phenotype may originate from increased enzyme activity or alternatively via a different isoform of CYP17. The reduced CYP19A1 in antral follicles of adults indicates that the increased circulating estradiol release likely arises from the increased number of persisting follicles.

  10. Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis.

    Science.gov (United States)

    Kim, Suel-Kee; Kim, Jong-Hoon; Han, Jung Ho; Yoon, Yong-Dal

    2008-01-01

    Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17alpha -hydroxylase/C(17-20) lyase (P450(17alpha)), 3beta -hydroxysteroid-dehydrogenase (3beta -HSD), and 17beta -hydroxysteroid-dehydrogenase (17beta -HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.

  11. Gonadal function in males with autoimmune Addison's disease and autoantibodies to steroidogenic enzymes.

    Science.gov (United States)

    Dalla Costa, M; Bonanni, G; Masiero, S; Faggian, D; Chen, S; Furmaniak, J; Rees Smith, B; Perniola, R; Radetti, G; Garelli, S; Chiarelli, S; Albergoni, M P; Plebani, M; Betterle, C

    2014-06-01

    Steroidogenic enzyme autoantibodies (SEAbs) are frequently present and are markers of autoimmune premature ovarian failure (POF) in females with autoimmune Addison's disease (AAD). The prevalence and significance of SEAbs in males with AAD have not yet been defined. We studied the prevalence of SEAbs in a large cohort of males with AAD and assessed the relationship between SEAbs positivity and testicular function. A total of 154 males with AAD (mean age 34 years) were studied. SEAbs included autoantibodies to steroid-producing cells (StCA), detected by immunofluorescence, and steroid 17α-hydroxylase (17α-OHAbs) and side chain cleavage enzyme (SCCAbs) measured by immunoprecipitation assays. Gonadal function was evaluated by measuring follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHGB), anti-müllerian hormone (AMH) and inhibin-B (I-B). Twenty-six males, 10 SEAbs((+)) and 16 SEAbs((-)), were followed-up for a mean period of 7·6 years to assess the behaviour of SEAbs and testicular function. SEAbs were found in 24·7% of males with AAD, with the highest frequency in patients with autoimmune polyendocrine syndrome type 1 (APS-1). The levels of reproductive hormones in 30 SEAbs((+)) males were in the normal range according to age and were not significantly different compared to 55 SEAbs((-)) males (P > 0·05). During follow-up, both SEAbs((+)) and SEAbs((-)) patients maintained normal testicular function. SEAbs were found with high frequency in males with AAD; however, they were not associated with testicular failure. This study suggests that the diagnostic value of SEAbs in males with AAD differs compared to females, and this may be related to the immunoprivileged status of the testis. © 2014 British Society for Immunology.

  12. Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Lombardi

    2014-07-01

    Full Text Available Objective: to evaluate the immunohistochemical expression of proliferative, apoptotic and steroidogenic enzyme markers in the ovaries of rats with polycystic ovary syndrome (PCOS. Methods: twenty rats were divided into two groups: GCtrl - estrous phase, and PCOS - with polycystic ovaries. The GCtrl animals were subjected to a lighting period from 7 am to 7 pm, while the animals with PCOS group remained with continuous lighting for 60 days. Subsequently, the animals were anesthetized, the ovaries were removed and fixed in 10% formaldehyde, prior to paraffin embedding. Sections were stained using H.E. or subjected to immunohistochemical methods for the detection of Ki-67, cleaved caspase-3, CYP11A1, CYP17A1 and CYP19A1. The results were analyzed using Student's t-test (p < 0,05. Results: morphological results showed evidence of interstitial cells originating from the inner theca cells of degenerating ovarian cysts in PCOS. Immunoexpression of Ki-67 was higher in the granulosa cells in GCtrl, and the theca interna cells in PCOS, while cleaved caspase-3 was higher in granulosa cells of ovarian cysts from PCOS and in the theca interna cells of GCtrl. Immunoreactivity of CYP11A1 in the theca interna, granulosa and interstitial cells was similar between the two groups, while CYP17A1 and CYP19A1 were higher in the granulosa and interstitial cells in the PCOS group. Conclusion: the results indicate that the interstitial cells are derived from the theca interna and that enzymatic changes occur in the theca interna and interstitial cells in ovaries of rats with PCOS, responsible for the high levels of androgens and estradiol.

  13. 1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells.

    Science.gov (United States)

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong

    2014-07-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Immunolocalization of steroidogenic enzymes in the corpus luteum and placenta of the Japanese black bear, Ursus thibetanus japonicus, during pregnancy.

    Science.gov (United States)

    Tsubota, T; Taki, S; Nakayama, K; Mason, J I; Kominami, S; Harada, N; Kita, I

    2001-04-01

    The Japanese black bear, Ursus thibetanus japonicus, is a seasonal breeder and shows delayed implantation for several months during pregnancy. The objective of this study was to clarify the steroidogenic capability of the corpus luteum and placenta during pregnancy, including both delayed implantation and fetal development, by immunolocalization of steroidogenic enzymes in these organs of the Japanese black bear. Ovaries and placentae from 15 wild Japanese black bears, which had been killed legally by hunters and were thought to be pregnant, were used in an immunocytochemical study to localize the cholesterol side chain cleavage cytochrome P450 (P450scc), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 17alpha-hydroxylase cytochrome P450 (P450c17) and aromatase cytochrome P450 (P450arom) by the avidin-biotin-peroxidase complex method using polyclonal antisera raised in mammals against P450scc, 3betaHSD, P450c17 and P450arom. P450scc and 3betaHSD were localized in all luteal cells throughout pregnancy. P450c17 was present in a few luteal cells, especially in the outer area of the corpus luteum throughout pregnancy, but the number of positively immunostained cells decreased during the post-implantation period. Cells positively immunostained for P450c17 were significantly smaller than negatively immunostained cells (P black bear, corpora lutea are a source of progesterone which may play an important role in the maintenance of delayed implantation and fetal development during pregnancy. Corpora lutea have a minimum capability to synthesize androgen in small luteal cells and oestrogen in normal-sized luteal cells during pregnancy, and placentae have the ability to synthesize oestrogen during late pregnancy.

  15. Seasonal expression of arginine vasotocin mRNA and its correlations to gonadal steroidogenic enzymes and sexually dimorphic coloration during sex reversal in the gilthead seabream (Sparus aurata).

    Science.gov (United States)

    Reyes-Tomassini, José J; Wong, Ten-Tsao; Zohar, Yonathan

    2017-06-01

    Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.

  16. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  17. Curcumin and Quercetin Ameliorated Cypermethrin and Deltamethrin-Induced Reproductive System Impairment in Male Wistar Rats by Upregulating The Activity of Pituitary-Gonadal Hormones and Steroidogenic Enzymes

    Directory of Open Access Journals (Sweden)

    Poonam Sharma

    2018-01-01

    Full Text Available Background Dietary antioxidants protect tissues and organs against insecticides/xenobiotic-induced damage. In the present study, we evaluated the results of exposure to synthetic pyrethroid insecticides, cypermethrin (Cyp and deltamethrin (Del and possible protective effects of curcumin and quercetin on reproductive system in male Wistar rats. Materials and Methods In this controlled experimental study, 42 male Wistar rats were randomly divided into 7 groups of 6 animals. Group A served as control, group B was exposed to Cyp (2 mg/kg.bw, group C was exposed to Del (2 mg/kg.bw, group D was exposed to Cyp+Del (2 mg/kg.bw each, group E was exposed to Cyp+Del and treated with curcumin (100 mg/kg.bw, group F was exposed to Cyp+Del and treated with quercetin (100 mg/kg.bw and group G was exposed to Cyp+Del and treated with quercetin+curcumin for 45 days. Results Exposure to Cyp and Del caused decreases in reproductive organs weight, sperm count, sperm motility, level of sex hormones viz. testosterone (T, follicle stimulating hormone (FSH and luteinizing hormone (LH, steroidogenic enzymes viz. 3β-hydroxyl steroid dehydrogenase (3β-HSD and 17β-HSD, non-enzymatic antioxi- dant glutathione (GSH and enzymatic antioxidants viz. superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and glutathione reductase (GR activity and increases in sperm abnormalities and lipid peroxidation (LPO. The exposure also adversely affected the histo-achitecture of testes. Single and combined treatment with curcumin and quercetin significantly ameliorated Cyp and Del-induced damage in reproductive system. Conclusion Curcumin and quercetin protected against Cyp and Del-induced reproductive system toxicity and oxidative damage in rats. The increases in activities of 3β-HSD and 17β-HSD with concomitant increases in testosterone were mainly responsible for ameliorating effects of curcumin and quercetin. Curcumin showed slightly

  18. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis.

    Science.gov (United States)

    De Silva, Matharage S I; Dayton, Adam W; Rhoten, Lance R; Mallett, John W; Reese, Jared C; Squires, Mathieu D; Dalley, Andrew P; Porter, James P; Judd, Allan M

    2018-06-01

    In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Progesterone increases ex vivo testosterone production and decreases the expression of progestin receptors and steroidogenic enzymes in the fathead minnow (Pimephales promelas) ovary.

    Science.gov (United States)

    Chishti, Yasmin Z; Feswick, April; Martyniuk, Christopher J

    2014-04-01

    Progesterone (P4) is a metabolic precursor for a number of steroids, including estrogens and androgens. P4 also has diverse roles within the vertebrate ovary that include oocyte growth and development. The objectives of this study were to measure the effects of P4 on testosterone (T) and 17β-estradiol (E2) production in the fathead minnow (FHM) ovary and on the mRNA abundance of transcripts involved in steroidogenesis and steroid receptor signaling. Ovary explants were treated with P4 (10(-6)M) for 6 and 12h. P4 administration significantly increased T production ∼3-fold at both 6 and 12h, whereas E2 production was not affected, consistent with the hypothesis that excess P4 is not converted to terminal estrogens in the mature ovary. Nuclear progesterone receptor mRNA was decreased at 6h and membrane progesterone receptor gamma-2 mRNA was significantly down-regulated at both 6 and 12h; however there was no change in membrane progesterone receptor alpha or beta mRNA levels. Androgen receptor (ar) and estrogen receptor 2a (esr2a) mRNA were significantly reduced at 6h with P4 treatment, but there was no change in esr2b mRNA at either time point. Transcripts for enzymes in the steroid pathway (star, hsd11b2) were significantly lower at 6h compared to controls, whereas cyp17a and cyp19a mRNA abundance did not change with treatments at either time point. These data suggest that P4 incubation can lead to increased T production in the FHM ovary without a concomitant change in E2, and that the membrane bound progestin receptors are differentially regulated by P4 in the teleost ovary. As environmental progestins have received increased attention due to their suspected role as endocrine disruptors, mechanistic data on the role of exogenous P4 treatments in the male and female gonad is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity

    Directory of Open Access Journals (Sweden)

    Przemysław T. Kaczor

    2017-05-01

    Full Text Available GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC and astrocyte-neuronal co-culture (ANCC, where we chemically induced long-term potentiation at inhibitory synapses (iLTP. iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.

  1. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  2. Induction of phenolics, lignin and key defense enzymes in eggplant ...

    African Journals Online (AJOL)

    Elicitors are capable of mimicking the perception of a pathogen by a plant, thereby triggering induction of a sophisticated defense response in plants. In this study, we investigated an induced resistance in eggplant in respect to cell wall strengthening and defense enzyme activation affected by four elicitors such as, chitosan ...

  3. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J.

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  4. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    OpenAIRE

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectiv...

  5. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  6. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    Science.gov (United States)

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  7. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  8. Impact of androgenic/antiandrogenic compounds (AAC) on human sex steroid metabolizing key enzymes

    International Nuclear Information System (INIS)

    Allera, A.; Lo, S.; King, I.; Steglich, F.; Klingmueller, D.

    2004-01-01

    Various pesticides, industrial pollutants and synthetic compounds, to which human populations are exposed, are known or suspected to interfere with endogenous sex hormone functions. Such interference potentially affect the development and expression of the male and female reproductive system or both. Chemicals in this class are thus referred to as endocrine disruptors (ED). This emphazises on the relevance of screening ED for a wide range of sex hormone-mimicking effects. These compounds are believed to exert influence on hormonal actions predominantly by (i) interfering with endogenous steroids in that they functionally interact with plasma membrane-located receptors as well as with nuclear receptors both for estrogens and androgens or (ii) affecting the levels of sex hormones as a result of their impact on steroid metabolizing key enzymes. Essential sex hormone-related enzymes within the endocrine system of humans are aromatase, 5α-reductase 2 as well as specific sulfotransferases and sulfatases (so-called phase I and phase II enzymes, respectively). Using suitable human tissues and human cancer cell lines (placenta, prostate, liver and JEG-3, lymph node carcinoma of prostate (LnCaP) cells) we investigated the impact of 10 widely used chemicals suspected of acting as ED with androgenic or antiandrogenic activity (so-called AAC) on the activity of these sex hormone metabolizing key enzymes in humans. In addition, the respective effects of six substances were also studied as positive controls due to their well-known specific hormonal agonistic/antagonistic activities. The aim of this report and subsequent investigations is to improve human health risk assessment for AAC and other ED

  9. Progress on the Studies of the Key Enzymes of Ginsenoside Biosynthesis

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yang

    2018-03-01

    Full Text Available As the main bioactive constituents of Panax species, ginsenosides possess a wide range of notable medicinal effects such as anti-cancer, anti-oxidative, antiaging, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, the increasing medical demand for ginsenosides cannot be met due to the limited resource of Panax species and the low contents of ginsenosides. In recent years, biotechnological approaches have been utilized to increase the production of ginsenosides by regulating the key enzymes of ginsenoside biosynthesis, while synthetic biology strategies have been adopted to produce ginsenosides by introducing these genes into yeast. This review summarizes the latest research progress on cloning and functional characterization of key genes dedicated to the production of ginsenosides, which not only lays the foundation for their application in plant engineering, but also provides the building blocks for the production of ginsenosides by synthetic biology.

  10. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  11. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  12. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  13. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism

    Science.gov (United States)

    Christin, Pascal-Antoine; Arakaki, Monica; Osborne, Colin P.; Bräutigam, Andrea; Sage, Rowan F.; Hibberd, Julian M.; Kelly, Steven; Covshoff, Sarah; Wong, Gane Ka-Shu; Hancock, Lillian; Edwards, Erika J.

    2014-01-01

    CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes. PMID:24638902

  14. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  15. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Stanislav

    2014-01-01

    Roč. 63, Suppl.1 (2014), S133-S140 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 7AMB12SK158; GA ČR(CZ) GA304/08/0256 Institutional support: RVO:67985823 Keywords : enzyme * metabolism * radiometric assay * thyroid hormone Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.293, year: 2014

  16. Screening of ovarian steroidogenic pathway in Ciona intestinalis and its modulation after tributyltin exposure

    International Nuclear Information System (INIS)

    Cangialosi, Maria Vittoria; Puccia, Egidio; Mazzola, Antonio; Mansueto, Valentina; Arukwe, Augustine

    2010-01-01

    In this study, we have identified several ovarian steroids in Ciona with high similarity to vertebrate steroids and showed that cholesterol, corticosterone, dehydroepiandrosterone, estrone, estradiol-17β, testosterone, pregnenolone, progesterone, have identical molecular spectra with vertebrate steroids. In addition, we have studied the effects of an endocrine disruptor (tributyltin: TBT) on these sex hormones and their precursors, ovarian morphology, and gene expression of some key enzymes in steroidogenic pathway in the ovary of Ciona. Ovarian specimens were cultured in vitro using different concentrations of TBT (10 -5 , 10 -4 and 10 -3 M). Ethanol was used as solvent control. Gene expression analysis was performed for adrenodoxin (ADREN) and adrenodoxin reductase (ADOX) (mediators of acute steroidogenesis) and 17β-hydroxysteroid dehydrogenase (17β-HSD). These transcripts were detected and measured by quantitative (real-time) polymerase chain reaction (qPCR). Sex steroids and their precursors were identified and quantified by a gas chromatography-mass spectroscopy (GC-MS) method. Exposure of Ciona ovaries to TBT produced modulations (either increased or decreased) of sterols and sex steroid levels, whereas no significant differences in ADREN, ADOX or 17β-HSD mRNA expression patterns were observed. Histological analysis shows that TBT produced several modifications on Ciona ovarian morphology that includes irregular outline of nuclear membrane, less compacted cytoplasm, in addition to test and granulosa cells that were detached from the oocyte membrane. Given that the ascidians represent very simple experimental models for the study of endocrine disruption by environmental contaminants, our findings provide excellent models for multiple identification and quantification of sex steroid and their precursors in biological samples exposed to endocrine-disrupting chemicals and for direct extrapolation of such effects across taxonomic groups and phyla. In addition

  17. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  18. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  19. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period.

    Science.gov (United States)

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2 , and UGFT2 . Moreover, the transcript abundance of MYBA1-1 and MYB5-1 , the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.

  20. Levels of Key Enzymes of Methionine-Homocysteine Metabolism in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra Pérez-Sepúlveda

    2013-01-01

    Full Text Available Objective. To evaluate the role of key enzymes in the methionine-homocysteine metabolism (MHM in the physiopathology of preeclampsia (PE. Methods. Plasma and placenta from pregnant women (32 controls and 16 PE patients were analyzed after informed consent. Protein was quantified by western blot. RNA was obtained with RNA purification kit and was quantified by reverse transcritase followed by real-time PCR (RT-qPCR. Identification of the C677T and A1298C methylenetetrahydrofolate reductase (MTHFR single-nucleotide polymorphisms (SNPs and A2756G methionine synthase (MTR SNP was performed using PCR followed by a high-resolution melting (HRM analysis. S-adenosyl methionine (SAM and S-adenosyl homocysteine (SAH were measured in plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS. The SNP association analysis was carried out using Fisher’s exact test. Statistical analysis was performed using a Mann-Whitney test. Results. RNA expression of MTHFR and MTR was significantly higher in patients with PE as compared with controls. Protein, SAM, and SAH levels showed no significant difference between preeclamptic patients and controls. No statistical differences between controls and PE patients were observed with the different SNPs studied. Conclusion. The RNA expression of MTHFR and MTR is elevated in placentas of PE patients, highlighting a potential compensation mechanism of the methionine-homocysteine metabolism in the physiopathology of this disease.

  1. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis.

    Science.gov (United States)

    Roschek, Bill; Fink, Ryan C; McMichael, Matthew; Alberte, Randall S

    2009-07-01

    A nettle (Urtica dioica) extract shows in vitro inhibition of several key inflammatory events that cause the symptoms of seasonal allergies. These include the antagonist and negative agonist activity against the Histamine-1 (H(1)) receptor and the inhibition of mast cell tryptase preventing degranulation and release of a host of pro-inflammatory mediators that cause the symptoms of hay fevers. The nettle extract also inhibits prostaglandin formation through inhibition of Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), and Hematopoietic Prostaglandin D(2) synthase (HPGDS), central enzymes in pro-inflammatory pathways. The IC(50) value for histamine receptor antagonist activity was 251 (+/-13) microg mL(-1) and for the histamine receptor negative agonist activity was 193 (+/-71) microg mL(-1). The IC(50) values for inhibition of mast cell tryptase was 172 (+/-28) microg mL(-1), for COX-1 was 160 (+/-47) microg mL(-1), for COX-2 was 275 (+/-9) microg mL(-1), and for HPGDS was 295 (+/-51) microg mL(-1). Through the use of DART TOF-MS, which yields exact masses and relative abundances of compounds present in complex mixtures, bioactives have been identified in nettle that contribute to the inhibition of pro-inflammatory pathways related to allergic rhinitis. These results provide for the first time, a mechanistic understanding of the role of nettle extracts in reducing allergic and other inflammatory responses in vitro. Copyright 2009 John Wiley & Sons, Ltd.

  2. Metabolic enzymes: key modulators of functionality in cancer stem-like cells.

    Science.gov (United States)

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-02-21

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.

  3. Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase.

    Directory of Open Access Journals (Sweden)

    Anne eJunker

    2013-07-01

    Full Text Available Putrescine N-methyltransferases (PMTs are the first specific enzymes of the biosynthesis of nicotine and tropane alkaloids. PMTs transfer a methyl group onto the diamine putrescine from S-adenosyl-L-methionine (SAM as coenzyme. PMT proteins have presumably evolved from spermidine synthases (SPDSs, which are ubiquitous enzymes of polyamine metabolism. SPDS use decarboxylated SAM as coenzyme to transfer an aminopropyl group onto putrescine. In an attempt to identify possible and necessary steps in the evolution of PMT from SPDS, homology based modeling of Datura stramonium SPDS1 and PMT was employed to gain deeper insight in the preferred binding positions and conformations of the substrate and the alternative coenzymes. Based on predictions of amino acids responsible for the change of enzyme specificities, sites of mutagenesis were derived. PMT activity was generated in Datura stramonium SPDS1 after few amino acid exchanges. Concordantly, Arabidopsis thaliana SPDS1 was mutated and yielded enzymes with both, PMT and SPDS activities. Kinetic parameters were measured for enzymatic characterization. The switch from aminopropyl to methyl transfer depends on conformational changes of the methionine part of the coenzyme in the binding cavity of the enzyme. The rapid generation of PMT activity in SPDS proteins and the wide-spread occurrence of putative products of N-methylputrescine suggest that PMT activity is present frequently in the plant kingdom.

  4. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    Czech Academy of Sciences Publication Activity Database

    Convigton, E. D.; Roitsch, Thomas; Dernastia, M.

    2016-01-01

    Roč. 63, č. 4 (2016), s. 757-762 ISSN 1318-0207 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : AGPase * carbohydrates * invertases * sucrose synthase * panel of enzyme activity assays * phytoplasma Subject RIV: EH - Ecology, Behaviour Impact factor: 0.983, year: 2016

  5. Oxidative Copper-Enzymes are the Key for Unlocking Recalcitrant Biopolymers

    DEFF Research Database (Denmark)

    Johansen, Katja Salomon

    as the electron donating cofactor for the enzyme. The discovery of LPMOs and the understanding that they constitute the “first wave of attack” by microbial organisms on the most recalcitrant natural polysaccharides, highlights the need to reflect on the specific roles of LPMOs in biology. Many good and relevant...

  6. Stimulatory effect of repeated treatment with lipopolysaccharide on a key enzyme of the kynurenine pathway in both genders in rats

    Directory of Open Access Journals (Sweden)

    Csanova A.

    2016-09-01

    Full Text Available The neuroprotective or neurotoxic effects of the products of the kynurenine pathway of tryptophan metabolism highly depend on the action of kynurenine-3-monooxygenase (KMO. The present results show increased concentrations of the KMO in the plasma of rats repeatedly exposed to an immune challenge. Increased concentrations of this key enzyme are likely to cause a shift of kynurenine pathway towards enhanced production of neurotoxic metabolites.

  7. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  8. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  9. Fermentation, Respiration & Enzyme Specificity: A Simple Device & Key Experiments with Yeast.

    Science.gov (United States)

    Reinking, Larry N.; And Others

    1994-01-01

    Using graphs and diagrams, the authors describe a simple fermentation chamber and provide key experiments that can be used in the classroom to give students meaningful insight into metabolic processes. (ZWH)

  10. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  11. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  12. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Science.gov (United States)

    Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

    2014-01-01

    The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

  13. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes.

    Science.gov (United States)

    Lekshmi, P C; Arimboor, Ranjith; Indulekha, P S; Menon, A Nirmala

    2012-11-01

    Anti-diabetic capacity of Curcuma longa volatile oil in terms of its ability to inhibit glucosidase activities was evaluated. Turmeric volatile oils inhibited glucosidase enzymes more effectively than the reference standard drug acarbose. Drying of rhizomes was found to enhance α-glucosidase (IC₅₀ = 1.32-0.38 μg/ml) and α-amylase (IC₅₀ = 64.7-34.3 μg/ml) inhibitory capacities of volatile oils. Ar-Turmerone, the major volatile component in the rhizome also showed potent α-glucosidase (IC₅₀ = 0.28 μg) and α-amylase (IC₅₀ = 24.5 μg) inhibition.

  14. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    Science.gov (United States)

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Inhibition by Seeds of Phalaris canariensis Extracts of Key Enzymes Linked to Obesity.

    Science.gov (United States)

    Perez Gutierrez, Rosa Martha; Madrigales Ahuatzi, Diana; Cruz Victoria, Teresa

    2016-01-01

    Obesity and its associated diseases are an increasing problem around the world. One hyperglycemic remedy is reduction of glucose absorption performed by suppressing digestion of carbohydrates and lipids through the use of inhibitors. Phalaris canariensis (P canariensis) is a species belonging to the Graminaceae family and is used in traditional medicine in Mexico for treatment of diabetes and obesity. The aim of the study was to evaluate the effects of different extracts of the seeds of P canariensis on enzymes metabolizing fat and carbohydrates, obtained using 3 solvents. The seeds of P canariensis were extracted using hexane (ALH), chloroform (ALC), and methanol (ALM) and were investigated for their antiobesity potential. This research was conducted in the Laboratory of Research of Natural Products in the School of Chemical Engineering at the National Polytechnic Institute and in the Research Laboratory of Enzymology in the National School of Biological Sciences. Different concentrations of the extracts were used to study the inhibition of enzymatic activity by porcine pancreatic α-amylase, with carbose as a positive control. The inhibitory activity of α-glucosidase was determined using the standard method with bovine serum albumin (BSA). Pancreatic lipase (PL) activity was measured by absorbance at 412 nm, and the data obtained were compared with orlistat. The PL activity was assessed using a second method measuring the rate of release of oleic acid from triolein. Lipoprotein lipase (LPL) activity was measured by released (3H)-oleic acid. Lipolytic activity in cultured, mouse, 3T3-Ll adipocytes was used as a measure of hormone-sensitive lipase activity. The inhibitory activity of rat intestinal sucrase was determined by measuring the glucose released. A Caco-2 cell assay determined the content of free glucose. The ALH extract of P canariensis showed potent inhibitory activity with IC50 values of 2.13 and 1.25 mg/mL as compared with α-amylase and

  16. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Xiuhong Su

    2016-05-01

    Full Text Available Isodon rubescens is an important medicinal plant in China that has been shown to reduce tumour growth due to the presence of the compound oridonin. In an effort to facilitate molecular research on oridonin biosynthesis, we reported the use of next generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of I. rubescens transcriptome. In our study, a total of 50,934,276 clean reads, 101,640 transcripts and 44,626 unigenes were generated through de novo transcriptome assembly. A number of unigenes – 23,987, 10,263, 7359, 18,245, 17,683, 19,485, 9361 – were annotated in the National Center for Biotechnology Information (NCBI non-redundant protein (Nr, NCBI nucleotide sequences (Nt, Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology (KO, Swiss-Prot, protein family (Pfam, gene ontology (GO, eukaryotic ortholog groups (KOG databases, respectively. Furthermore, the annotated unigenes were functionally classified according to the GO, KOG and KEGG. Based on these results, candidate genes encoding enzymes involved in terpenoids backbone biosynthesis were detected. Our data provided the most comprehensive sequence resource available for the study on I. rubescens, as well as demonstrated the effective use of Illumina sequencing and de novo transcriptome assembly on a species lacking genomic information.

  17. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  19. The Presence of Amorpha-4, 11-Diene Synthase, a Key Enzyme in Artemisinin Production in Ten Artemisia Species

    Directory of Open Access Journals (Sweden)

    GA. Garoosi

    2011-12-01

    Full Text Available Background and the purpose of the study: Artemisinin is one of the most effective medicine against malaria, which is produced naturally by Artemisia annua in low yield. It is produced in a metabolic pathway, in which several genes and gene products are involved. One of the key genes in this pathway is am1, which encodes amorpha-4, 11-diene synthase (ADS, a key enzyme in artemisinin biosynthesis pathway. The aim of this study was to determine the presence of this gene in ten Artemisia species in order to increase the yield of production of Artemisinin. Methods : The experiments were carried out using PCR. Specific primers were designed based on the published am1 gene sequence obtained from A. annua (NCBI, accession number AF327527. Results: The amplification of this gene by the specific primers was considered as a positive sign for the potentiality of artemisinin production. Since the entire am1 gene was not amplified in any of the 10 species used, four parts of the gene, essential in ADS enzyme function, corresponding to a pair site of Arg10-Pro12 in the first 100 amino acids, b aspartate rich motif (DDXXD, c active site final lid and d active site including farnesyl diphosphate (FDP ionization sites and catalytic site in the ADS enzyme, were investigated. Major conclusion: The sequence corresponding to ADS active site was amplified only in A. annua, A. aucheri and A. chamaemelifolia. The negative results obtained with other species could be due to some sequence alteration, such as point mutations or INDELs. We propose A. aucheri and A. chamaemelifolia as two potential candidate species for further characterization, breeding and transferring am1 gene for artemisinin overproduction.

  20. β-d-Glucosidase as "key enzyme" for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring.

    Science.gov (United States)

    Tokpohozin, Sedjro Emile; Fischer, Susann; Sacher, Bertram; Becker, Thomas

    2016-11-01

    Sorghum malt used during African beer processing contains a high level of cyanogenic glucoside (dhurrin), up to 1375 ppm. In traditional sorghum malting and mashing, dhurrin is not sufficiently hydrolyzed due to uncontrolled germination and a high gelatinization temperature. The cyanide content of traditional African beers (11 ppm) is higher than the minimum dose (1 ppm) required to form carcinogenic ethyl carbamate during alcoholic fermentation. In the detoxification process, aryl-β-d-glucosidase (dhurrinase) is the "key component". For significant dhurrin hydrolysis during mashing, optimizing dhurrinase synthesis during malting is a good solution to reduce dhurrin completely to below the harmful dose in the sorghum wort. Lactic acid bacteria which exhibit aryl-β-d-glucosidase prior to alcoholic fermentation may help to reduce ethyl carbamate content in alcoholic beverages. Moreover, some specific β-d-glucosidases have a dual property, being able to cleave and synthesize glucosides bonds and thereby generating good precursors for beer bioflavouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. MOLECULAR MODELLING OF HUMAN ALDEHYDE OXIDASE AND IDENTIFICATION OF THE KEY INTERACTIONS IN THE ENZYME-SUBSTRATE COMPLEX

    Directory of Open Access Journals (Sweden)

    Siavoush Dastmalchi

    2005-05-01

    Full Text Available Aldehyde oxidase (EC 1.2.3.1, a cytosolic enzyme containing FAD, molybdenum and iron-sulphur cluster, is a member of non-cytochrome P-450 enzymes called molybdenum hydroxylases which is involved in the metabolism of a wide range of endogenous compounds and many drug substances. Drug metabolism is one of the important characteristics which influences many aspects of a therapeutic agent such as routes of administration, drug interaction and toxicity and therefore, characterisation of the key interactions between enzymes and substrates is very important from drug development point of view. The aim of this study was to generate a three-dimensional model of human aldehyde oxidase (AO in order to assist us to identify the mode of interaction between enzyme and a set of phethalazine/quinazoline derivatives. Both sequence-based (BLAST and inverse protein fold recognition methods (THREADER were used to identify the crystal structure of bovine xanthine dehydrogenase (pdb code of 1FO4 as the suitable template for comparative modelling of human AO. Model structure was generated by aligning and then threading the sequence of human AO onto the template structure, incorporating the associated cofactors, and molecular dynamics simulations and energy minimization using GROMACS program. Different criteria which were measured by the PROCHECK, QPACK, VERIFY-3D were indicative of a proper fold for the predicted structural model of human AO. For example, 97.9 percentages of phi and psi angles were in the favoured and most favoured regions in the ramachandran plot, and all residues in the model are assigned environmentally positive compatibility scores. Further evaluation on the model quality was performed by investigation of AO-mediated oxidation of a set of phthalazine/quinazoline derivatives to develop QSAR model capable of describing the extent of the oxidation. Substrates were aligned by docking onto the active site of the enzyme using GOLD technology and then

  2. The differential gene expression of key enzyme in the gibberellin pathway in the potato (solanum tuberosum) mutant

    International Nuclear Information System (INIS)

    Shi, J.B.; Ye, G.J.; Yang, Y.Z.; Wang, F.; Zhou, Y; Wang, J.

    2016-01-01

    In the present study, the expression patterns of the key genes in the gibberellin synthesis pathway in the potato dwarf mutant M4P-9 were detected using quantitative real-time PCR. Using Actin as an internal control, CPS1, KS, KO, GA20ox1, and GA2ox1, genes for key gibberellin synthesis enzymes, were evaluated, along with a gibberellin receptor gene. The standard curves were obtained from dilutions of PCR product; the correlation coefficient for Actin was 0.995, and those for the target genes varied from 0.994 to 1.000. The expression patterns of gibberellin pathway genes in different growth stages and tissues were calculated according to the method of Pfaffl. These genes showed expression patterns that varied based on growth stage and tissue type. The higher expression levels of CPS1 and GA2ox1 in roots, the lower expression levels of GA20ox1 in roots during tuber formation stage; as well as the increased expression of GA20ox1 and GA2ox1 genes in stems during the tuber formation stage, likely play key roles in the plant height phenotype in M4P-9 mutant materials. This article provides a basis for researching the mechanism of gibberellin synthesis in potato. (author)

  3. SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice.

    Science.gov (United States)

    Wang, Di; Wang, Yunlong; Long, Wuhua; Niu, Mei; Zhao, Zhigang; Teng, Xuan; Zhu, Xiaopin; Zhu, Jianping; Hao, Yuanyuan; Wang, Yongfei; Liu, Yi; Jiang, Ling; Wang, Yihua; Wan, Jianmin

    2017-07-01

    Tocopherols, a group of Vitamin E compounds, are essential components of the human diet. In contrast to well documented roles in animals, the functions of tocopherols in plants are less understood. In this study, we characterized two allelic rice dwarf mutant lines designated sgd1-1 and sgd1-2 (small grain and dwarf1). Histological observations showed that the dwarf phenotypes were mainly due to cell elongation defects. A map-based cloning strategy and subsequent complementation test showed that SGD1 encodes homogentisate phytyltransferase (HPT), a key enzyme in tocopherol biosynthesis. Mutation of SGD1 resulted in tocopherol deficiency in both sgd1mutants. No oxidant damage was detected in the sgd1 mutants. Further analysis showed that sgd1-2 was hypersensitive to cold stress. Our results indicate that SGD1 is essential for plant development and cold tolerance in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).

    Science.gov (United States)

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

    2014-03-05

    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Abir Nachar

    2013-01-01

    Full Text Available We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase and glycogen synthase (GS activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK, Akt, and Glycogen synthase kinase-3 (GSK-3 were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.

  6. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Directory of Open Access Journals (Sweden)

    Masaki Muto

    Full Text Available Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9 desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9 acyl-CoA desaturases in the endoplasmic reticulum (ER showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9 desaturase. Furthermore, the function of these Δ(9 desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1. All the putative Δ(9 acyl-CoA desaturases showed Δ(9 desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9 desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  7. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Science.gov (United States)

    Muto, Masaki; Kubota, Chihiro; Tanaka, Masayoshi; Satoh, Akira; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9) desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD) from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9) acyl-CoA desaturases in the endoplasmic reticulum (ER) showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9) desaturase. Furthermore, the function of these Δ(9) desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1). All the putative Δ(9) acyl-CoA desaturases showed Δ(9) desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9) desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  8. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    Science.gov (United States)

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  9. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro

    Directory of Open Access Journals (Sweden)

    Zaahira Aumeeruddy-Elalfi

    2018-01-01

    Full Text Available Essential oils (EOs extracted from six medicinal herbs and food plants [Cinnamomum zeylanicum (CZ, Psiadia arguta (PA, Psiadia terebinthina (PT, Citrus grandis (CGp, Citrus hystrix (CH, and Citrus reticulata (CR] were studied for any inhibitory potential against key physiological enzymes involved in diabetes (α-glucosidase, skin aging (collagenase and elastase, and neurodegenerative disorders (acetylcholinesterase. Kinetic studies of the active EOs on the aforementioned enzymes were determined using Lineweaver–Burk plots. The intracellular and extracellular antimelanogenic potential of the EOs were evaluated on B16F10 mouse melanocytes. CH and CR were found to significantly inhibit (2.476 ± 0.13 μg/mL and 3.636 ± 0.10 μg/mL, respectively acetylcholinesterase, compared with galantamine (3.989 ± 0.16 μg/mL. CH inhibited collagenase (50% inhibitory concentration 28.71 ± 0.16 μg/mL compared with the control (24.45 ± 0.19 μg/mL. The percentage inhibition in the elastase assay of CH was 63.21% compared to the positive control (75.09%. In addition, CH, CR, CGp, CZ, and PT were found to significantly inhibit α-glucosidase (276.70 ± 0.73 μg/mL, 169.90 ± 0.58 μg/mL, 240.60 ± 6.50 μg/mL, 64.52 ± 0.69 μg/mL, and 313.0 ± 5.0 μg/mL, respectively, compared to acarbose (448.80 ± 0.81 μg/mL. Active EOs showed both uncompetitive and competitive types of inhibition. The EOs also inhibited intracellular (50% inhibitory concentration 15.92 ± 1.06 μg/mL, 23.75 ± 4.47 μg/mL, and 28.99 ± 5.70 μg/mL for CH, CR, and CGp, respectively and extracellular (< 15.625 μg/mL for CH, CR, CGp, and PT melanin production when tested against B16F10 mouse melanocytes. Results from the present study tend to show that EOs extracted from these medicinal plants can inhibit key enzymes and may be potential candidates for cosmetic and pharmaceutical industries.

  10. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  11. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine.

    Science.gov (United States)

    Galeano, Belinda; Klootwijk, Riko; Manoli, Irini; Sun, MaoSen; Ciccone, Carla; Darvish, Daniel; Starost, Matthew F; Zerfas, Patricia M; Hoffmann, Victoria J; Hoogstraten-Miller, Shelley; Krasnewich, Donna M; Gahl, William A; Huizing, Marjan

    2007-06-01

    Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.

  12. An Intron 9 CYP19 Gene Variant (IVS9+5G>A), Present in an Aromatase-Deficient Girl, Affects Normal Splicing and Is Also Present in Normal Human Steroidogenic Tissues.

    Science.gov (United States)

    Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia

    2015-01-01

    Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.

  13. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    Science.gov (United States)

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  14. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  15. Dioxin exposure reduces the steroidogenic capacity of mouse antral follicles mainly at the level of HSD17B1 without altering atresia

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Hannon, Patrick, E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent ovarian toxicant. Previously, we demonstrated that in vitro TCDD (1 nM) exposure decreases production/secretion of the sex steroid hormones progesterone (P4), androstenedione (A4), testosterone (T), and 17β-estradiol (E2) in mouse antral follicles. The purpose of this study was to determine the mechanism by which TCDD inhibits steroidogenesis. Specifically, we examined the effects of TCDD on the steroidogenic enzymes, atresia, and the aryl hydrocarbon receptor (AHR) protein. TCDD exposure for 48 h increased levels of A4, without changing HSD3B1 protein, HSD17B1 protein, estrone (E1), T or E2 levels. Further, TCDD did not alter atresia ratings compared to vehicle at 48 h. TCDD, however, did down regulate the AHR protein at 48 h. TCDD exposure for 96 h decreased transcript levels for Cyp11a1, Cyp17a1, Hsd17b1, and Cyp19a1, but increased Hsd3b1 transcript. TCDD exposure particularly lowered both Hsd17b1 transcript and HSD17B1 protein. However, TCDD exposure did not affect levels of E1 in the media nor atresia ratings at 96 h. TCDD, however, decreased levels of the proapoptotic factor Bax. Collectively, these data suggest that TCDD exposure causes a major block in the steroidogenic enzyme conversion of A4 to T and E1 to E2 and that it regulates apoptotic pathways, favoring survival over death in antral follicles. Finally, the down‐regulation of the AHR protein in TCDD exposed follicles persisted at 96 h, indicating that the activation and proteasomal degradation of this receptor likely plays a central role in the impaired steroidogenic capacity and altered apoptotic pathway of exposed antral follicles. -- Highlights: ► TCDD disrupts steroidogenic enzymes in mouse antral follicles. ► TCDD particularly affects the HSD17B1 enzyme in mouse antral follicles. ► TCDD does not affect atresia ratings in mouse antral follicles. ► TCDD decreases levels of the proapoptitic factor Bax in mouse antral follicles.

  16. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    DEFF Research Database (Denmark)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora

    2015-01-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been...... shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic...

  17. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  18. Steroidogenic activity of high molecular weight forms of ACTH

    International Nuclear Information System (INIS)

    Gasson, J.C.

    1979-01-01

    The relative steroidogenic potencies of high molecular weight forms of adrenocorticotropic hormone (ACTH) were investigated using in vitro bioassays. In order to prepare pools of separated pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH (1-39), the protein present in serum-free tissue culture medium obtained from cultured AtT-20/D-16v mouse pituitary tumor cells was concentrated and fractionated by gel filtration. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, over 97% of the immunoactive ACTH in each pool had the appropriate molecular weight. Suspensions of isolated rat and guinea pig adrenal cortical cells were prepared by enzymatic dissociation and mechanical dispersion. Cells were incubated in complete tissue culture medium overnight then used in a 2 hour steroid production assay. Synthetic hACTH(1-39) was used as a bioassay and immunoassay standard. The amounts of pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH(1-39) bioassayed were estimated by ACTH(17-24) radioimmunoassay. All three high molecular weight forms of ACTH were capable of stimulating the same maximal level of steroidogenesis, by both isolated rat and guinea pig adrenal cells, as hACTH(1-39). Glycosylated ACTH(1-39) was equipotent with hACTH(1-39); pro-ACTH/endorphin and ACTH biosynthetic intermediate were two orders of magnitude less potent than hACTH(1-39) in both bioassay systems

  19. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Stefanie Berger

    2012-01-01

    Full Text Available The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM=0.27±0.05 mM that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell.

  20. Assessment of Mercaptopurine (6MP) Metabolites and 6MP Metabolic Key-Enzymes in Childhood Acute Lymphoblastic Leukemia

    NARCIS (Netherlands)

    Wojtuszkiewicz, A.; Barcelos, A.; Dubbelman, B.; Abreu, R.A. de; Brouwer, C.; Bökkerink, J.P.M.; Haas, V. de; Groot-Kruseman, H. de; Jansen, G.; Kaspers, G.L.; Cloos, J.; Peters, G.J.

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this

  1. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

    Science.gov (United States)

    Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

    2014-01-01

    Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

  2. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming.

    Science.gov (United States)

    Paiardini, Alessandro; Tramonti, Angela; Schirch, Doug; Guiducci, Giulia; di Salvo, Martino Luigi; Fiascarelli, Alessio; Giorgi, Alessandra; Maras, Bruno; Cutruzzolà, Francesca; Contestabile, Roberto

    2016-11-01

    The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  4. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT, a key enzyme in neutral lipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Margis-Pinheiro Marcia

    2011-09-01

    Full Text Available Abstract Background Triacylglycerides (TAGs are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20 is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2

  5. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis.

    Science.gov (United States)

    Turchetto-Zolet, Andreia C; Maraschin, Felipe S; de Morais, Guilherme L; Cagliari, Alexandro; Andrade, Cláudia M B; Margis-Pinheiro, Marcia; Margis, Rogerio

    2011-09-20

    Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that

  6. Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generation

    International Nuclear Information System (INIS)

    Bianco, A.C.; Silva, J.E.

    1987-01-01

    The authors have examined the activity of three lipogenic enzymes [malic enzyme (ME), glucose-6-phosphate dehydrogenase (G-6-PD), and acetyl coenzyme A (CoA) carboxylase], the activity of the mitochondrial FAD-dependent α-glycerolphosphate dehydrogenase (α-GPD), and the mitochondrial concentration of uncoupling protein (UCP) in brown adipose tissue (BAT) of euthyroid and hypothyroid rats, both at room temperature and in response to acute cold stress. These enzymes and UCP are important for the thermogenic response of BAT in adaptation to cold. The basal level of the lipogenic enzymes was normal or slightly elevated in hypothyroid rats maintained at 23 0 C, but the levels of α-GPD and UCP were markedly reduced. Forty-eight hours at 4 0 C resulted in an increase in the activity of G-6-PD, acetyl-CoA carboxylase, and α-GPD and in the concentration of UCP both in euthyroid and hypothyroid animals, but the levels reached were invariably less in hypothyroid animals, indicating that thyroid hormone is necessary for a full metabolic response of BAT under maximal demands. Of all variables measured, the most affected was UCP followed by α-GDP. Dose-response relationship analysis of the UCP response to T 3 indicated that the normalization of the response to cold requires saturation of the nuclear T 3 receptors. They concluded, therefore, that the activation of the BAT 5'-deiodinase induced by cold exposure is essential to provide the high levels of nuclear T 3 required for the full expression of BAT thermogenic potential

  7. Histochemical location of key enzyme activities involved in receptivity and self-incompatibility in the olive tree (Olea europaea L.).

    Science.gov (United States)

    Serrano, Irene; Olmedilla, Adela

    2012-12-01

    Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Steroidogenic alterations and adrenal androgen excess in PCOS.

    Science.gov (United States)

    Doi, Suhail A R; Al-Zaid, Mona; Towers, Philip A; Scott, Christopher J; Al-Shoumer, Kamal A S

    2006-09-01

    This cross-sectional study was undertaken to improve our understanding of the steroidogenic alterations leading to adrenal hyperandrogenism in polycystic ovarian syndrome (PCOS). Two-hundred and thirty-four women with clinical and biochemical features suggestive of PCOS underwent metabolic and hormonal evaluation. We used the androstenedione/DHEAS ratio as a surrogate for the level of ovarian 3betaHSD activity. We then selected the 90th percentile for the ratio in those with elevated DHEAS (>9 micromol/l) as the cut-off level beyond which excess DHEAS production will be minimized by excess ovarian 3betaHSD activity. This cut-off level was at a ratio of 1.5 and all PCOS women were then divided into two groups, the higher (>1.5) being the group with excess ovarian 3betaHSD activity. We hypothesized that women with a high ratio would be unlikely to have DHEAS excess due to the rapid conversion of DHEA to androstenedione. Those with a low ratio (concordant ovarian and adrenal steroidogenesis) could then either have high DHEAS or normal DHEAS, depending on whether CYP17 activity was higher or lower respectively. Insulin resistance was found to be associated with decreased CYP17 activity while irregular cycles and neuroendocrine dysfunction were determined to be associated with higher ovarian 3betaHSD activity. Adrenal androgen excess in PCOS seems to be related to insulin sensitivity as well as decreased activity of 3betaHSD, the latter being preferentially present in those women with regular cycles or without neuroendocrine dysfunction.

  9. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  10. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  11. Screening of Missense SNPs in Coding Regions of COX-2 as a Key Enzyme Involved in Cancer

    Directory of Open Access Journals (Sweden)

    Sodabeh Jahanbakhsh-Godehkahriz

    2013-09-01

    Full Text Available Background & Objectives: Non-synonymous single nucleotide polymorphism (nsSNPs which results in disruption of protein function are used as markers in linkage and association of human proteins that might be involved in diseases and cancers .   Methods: To study the functional effect of nsSNP in cyclooxygenase-2 (COX2 amino acids, the nucleotide sequences encoding COX-2 gene in cancers were extracted from the NCBI (gi|223941909 data bank (283 cases and analyzed by SIFT, I-Mutant 2.0, SNP and GO, PANTHER and FASTSNP servers. These servers involve programs that predict the effects of amino acid substitution on protein function, stability and missense .   Results: COX-2 is an essential enzyme for the production of pro-inflammatory prostaglandins which are relevant to cancer development and progression. The substitutions in some positions such as R228H and S428A of COX-2 in most of cancers linked to reformed protein function through disruption in enzyme active site.   Conclusion: Amino acid substitutions as a consequence of COX-2 nsSNPs have important role in human disease. Substitutions which are located in catalytic domain are important for the enzymatic function of COX-2 and associated with higher expression of COX-2.

  12. KINETICS OF MODULATORY ROLE OF Cyperus esculentus L. ON THE SPECIFIC ACTIVITY OF KEY CARBOHYDRATE METABOLIZING ENZYMES.

    Science.gov (United States)

    Sabiu, Saheed; Ajani, Emmanuel Oladipo; Sunmonu, Taofik Olatunde; Ashafa, Anofi Omotayo Tom

    2017-01-01

    The continuous search for new lead compounds as viable inhibitors of specific enzymes linked to carbohydrate metabolism has intensified. Cyperus esculentus L. is one of the therapeutically implicated botanicals against several degenerative diseases including diabetes mellitus. This study evaluated the antioxidant and mechanism(s) of inhibitory potential of aqueous extract of C. esculentus on α-amylase and α-glucosidase in vitro . The extract was investigated for its radical scavenging and hypoglycaemic potentials using standard experimental procedures. Lineweaver-Burke plot was used to predict the manner in which the enzymes were inhibited. The data obtained revealed that the extract moderately and potently inhibited the specific activities of α -amylase and α -glucosidase, respectively. The inhibition was concentration-related with respective IC 50 values of 5.19 and 0.78 mg/mL relative to that of the control (3.72 and 3.55 mg/mL). The extract also significantly scavenged free radicals and the effects elicited could be ascribed to its phytoconstituents. The respective competitive and non-competitive mode of action of the extract is due to its inhibitory potentials on the activities of α -amylase and α -glucosidase. Going forward, in addition to completely characterize the exact compound(s) responsible for the elicited activity in this study, pertinent attention will be given to the in vivo evaluation of the identified constituents.

  13. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    Science.gov (United States)

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  15. Structural and Biochemical Characterization of BdsA from Bacillus subtilis WU-S2B, a Key Enzyme in the “4S” Desulfurization Pathway

    Directory of Open Access Journals (Sweden)

    Tiantian Su

    2018-02-01

    Full Text Available Dibenzothiophene (DBT and their derivatives, accounting for the major part of the sulfur components in crude oil, make one of the most significant pollution sources. The DBT sulfone monooxygenase BdsA, one of the key enzymes in the “4S” desulfurization pathway, catalyzes the oxidation of DBT sulfone to 2′-hydroxybiphenyl 2-sulfonic acid (HBPSi. Here, we determined the crystal structure of BdsA from Bacillus subtilis WU-S2B, at the resolution of 2.2 Å, and the structure of the BdsA-FMN complex at 2.4 Å. BdsA and the BdsA-FMN complex exist as tetramers. DBT sulfone was placed into the active site by molecular docking. Seven residues (Phe12, His20, Phe56, Phe246, Val248, His316, and Val372 are found to be involved in the binding of DBT sulfone. The importance of these residues is supported by the study of the catalytic activity of the active site variants. Structural analysis and enzyme activity assay confirmed the importance of the right position and orientation of FMN and DBT sulfone, as well as the involvement of Ser139 as a nucleophile in catalysis. This work combined with our previous structure of DszC provides a systematic structural basis for the development of engineered desulfurization enzymes with higher efficiency and stability.

  16. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  17. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population.

    Science.gov (United States)

    Yun, Lin; Xu, Rui; Li, Guohua; Yao, Yucai; Li, Jiamin; Cong, Dehong; Xu, Xingshun; Zhang, Lihua

    2015-12-01

    The combined hyperhomocysteinemia condition is a feature of the Chinese hypertensive population. This study used the case-control method to investigate the association between plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme, 5, 10-methylenetetrahydrofolate reductase (MTHFR), and early renal damage in a hypertensive Chinese Han population.A total of 379 adult essential hypertensive patients were selected as the study subjects. The personal information, clinical indicators, and the C677T gene polymorphism of MTHFR were texted. This study used the urine microalbumin/urine creatinine ratio (UACR) as a grouping basis: the hypertension without renal damage group (NRD group) and the hypertension combined with early renal damage group (ERD group).Early renal damage in the Chinese hypertensive population was associated with body weight, systolic pressure, diastolic pressure, urea nitrogen, serum creatinine, cystatin C, uric acid, aldosterone, and glomerular filtration rate. The homocysteine level and the UACR in the TT genotype group were higher than those in the CC genotype group. The binary logistic regression analysis results showed that after sex and age were adjusted, the MTHFR C677T gene polymorphism was correlated with early renal damage in hypertension in both the recessive model and in the additive model.Plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR might be independent risk factors of early renal damage in the hypertensive Chinese Han population.

  18. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus *

    Science.gov (United States)

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-01-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (PLactobacillus bulgaricus at the transcription level. PMID:25845365

  19. The Fatty Acid Biosynthesis Enzyme FabI Plays a Key Role In the Development of Liver Stage Malarial Parasites

    Science.gov (United States)

    Yu, Min; Santha Kumar, T. R.; Nkrumah, Louis J.; Coppi, Alida; Retzlaff, Silke; Li, Celeste D.; Kelly, Brendan J.; Moura, Pedro A.; Lakshmanan, Viswanathan; Freundlich, Joel S.; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H.-C.; Falkard, Brie; Sidhu, Amar bir Singh; Purcell, Lisa A.; Gratraud, Paul; Kremer, Laurent; Waters, Andy P.; Schiehser, Guy; Jacobus, David P.; Janse, Chris J.; Ager, Arba; Jacobs, William R.; Sacchettini, James C.; Heussler, Volker; Sinnis, Photini; Fidock, David A.

    2008-01-01

    SUMMARY Fatty acid biosynthesis has been viewed as an important biological function of and therapeutic target for Plasmodium falciparum asexual blood stage infection. This apicoplast-resident type II pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of the bacterial FabI inhibitor triclosan. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood stage growth. In contrast, mosquito-derived fabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver stage development in vitro. This is characterized by an inability to form intra-hepatic merosomes that normally initiate blood stage infections. These data illuminate key differences between liver and blood stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions. PMID:19064257

  20. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus.

    Science.gov (United States)

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-04-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (Pproteolytic system genes in Lactobacillus bulgaricus at the transcription level.

  1. Growth differentiation factor 9 reverses activin A suppression of steroidogenic acute regulatory protein expression and progesterone production in human granulosa-lutein cells.

    Science.gov (United States)

    Shi, Feng-Tao; Cheung, Anthony P; Klausen, Christian; Huang, He-Feng; Leung, Peter C K

    2010-10-01

    We have reported that growth differentiation factor 9 (GDF9) can enhance activin A (β(A)β(A))-induced inhibin B (αβ(B)) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey's test. Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of α-subunit siRNA, activin A level increased (P progesterone production were attenuated (P progesterone secretion than those observed with activin A treatment alone. GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.

  2. [Effect of polymorphisms on key enzymes in homocysteine metabolism, on plasma homocysteine level and on coronary artery-disease risk in a Tunisian population].

    Science.gov (United States)

    Belkahla, R; Omezzine, A; Kchok, K; Rebhi, L; Ben Hadj Mbarek, I; Rejeb, J; Ben Rejeb, N; Slimane, N; Nabli, N; Ben Abdelaziz, A; Boughzala, E; Bouslama, A

    2008-08-01

    Hyperhomocysteinemia is known as an independent-risk factor for coronary-artery disease (CAD). However, the effect of homocystein metabolic enzymes polymorphisms on CAD is still controversed. We investigated the relation between homocystein metabolic key enzymes polymorphisms, homocystenemia and coronary stenosis in a Tunisian population. Samples were collected from 251 CAD patients documented by angiography. Genotyping were performed for C677T methylene-tetrahydrofolate reductase (MTHFR), A2756G methionine-synthase (MS) and 844ins 68 cystathionine-beta-synthase (CBS). We measured fasting plasma tHcy, folate and vitamin B12. There was significant increase in homocysteinemia for homozygous genotypes of C677T MTHFR (p<0.001) and A2756G MS (p=0.01), but not for 844ins68 CBS (p=0.105). Potential confounders adjusted odds-ratios for significant coronary stenosis, associated with MTHFR TT, MS GG and CBS insertion, were respectively 1.78 (p=0.041); 2.33 (p=0.036) and 0.87 (p=0.823). The effect of mutated MTHFR genotype was more pronounced on homocysteinemia (21.4+/-9.1 micromol/L; p<0.001) and coronary stenosis (OR=2.73; p=0.033) at low folatemia (< or =6.1 ng/mL). MTHFR TT and MS GG genotypes increase tHcy concentration and coronary stenosis risk, especially with low folatemia.

  3. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  4. The steroidogenic response and corpus luteum expression of the steroidogenic acute regulatory protein after human chorionic gonadotropin administration at different times in the human luteal phase.

    Science.gov (United States)

    Kohen, Paulina; Castro, Olga; Palomino, Alberto; Muñoz, Alex; Christenson, Lane K; Sierralta, Walter; Carvallo, Pilar; Strauss, Jerome F; Devoto, Luigi

    2003-07-01

    This study was designed 1) to assess corpus luteum (CL) steroidogenesis in response to exogenous human chorionic gonadotropin (hCG) at different times during the luteal phase, 2) to examine the effect of hCG on steroidogenic acute regulatory protein (StAR) expression within the CL, 3) to correlate StAR expression and luteal steroidogenic responses to hCG, and 4) to determine whether endogenous LH regulates ovarian steroidogenesis in the early luteal phase. Blood was collected before and after hCG treatment for steroid and hCGbeta determinations. CL were obtained at the time of surgery to assess StAR gene and protein expression. During the early luteal phase various women received the GnRH antagonist for 24-48 h; some of them also received hCG 24 h after the GnRH antagonist. A slight steroidogenic response to hCG was observed in early luteal phase; 17alpha-hydroxyprogesterone, but not progesterone (P4), levels were significantly increased 8 h post-hCG, indicating a differential response by the granulosa and theca-lutein cells. The 1.6- and 4.4-kb StAR transcripts and the 37-kDa preprotein and 30-kDa mature StAR protein did not change post-hCG administration in early luteal phase CL. In contrast, the StAR 4.4- and 1.6-kb transcripts diminished significantly (P < 0.05) after the antagonist treatment. Immunohistochemical staining for StAR protein was weak, particularly in granulosa-lutein cells. Treatment with hCG restored StAR mRNA and protein and plasma P4 levels within 24 h in antagonist-treated women. hCG stimulated the highest plasma concentrations of P4 and estradiol in the midluteal phase, indicating its greatest steroidogenic capacity. Midluteal tissue StAR gene and protein expression increased by 1.6- and 1.4-fold after 24 h of hCG treatment, respectively. Administration of hCG resulted in the greatest increment in plasma P4 (4-fold) and 17alpha-hydroxyprogesterone (3-fold) levels over baseline in the late luteal phase. This was associated with an increase in

  5. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  6. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  7. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    Science.gov (United States)

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  8. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    Science.gov (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  9. Steroidogenic disruptive effects of the serotonin-noradrenaline reuptake inhibitors duloxetine, venlafaxine and tramadol in the H295R cell assay and in a recombinant CYP17 assay

    DEFF Research Database (Denmark)

    Islin, Julie; Munkboel, Cecilie Hurup; Styrishave, Bjarne

    2018-01-01

    The aim of this study was to determine the steroidogenic endocrine disrupting effect of the three most widely used serotonin-noradrenaline reuptake inhibitors duloxetine, venlafaxine and tramadol, using two in vitro models, the H295R assay and a recombinant CYP17 enzyme assay. Steroid hormones were...... quantified using LC-MS/MS. Duloxetine showed endocrine disrupting effects at 5-20μM with CYP17 being the main target. Venlafaxine also affected the steroidogenesis, mainly by affecting the CYP17 lyase reaction, although at much higher concentrations i.e. 100μM. Tramadol only exerted minor effects...... on the steroidogenesis with the lowest observed effect at 314μM. Based on the H295R results, the inhibition of CYP17 by duloxetine and venlafaxine was investigated in a recombinant CYP17 assay with the use of the 4 major CYP17 substrates pregnenolone, progesterone, 17α-hydroxypregnenolone and 17α...

  10. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    International Nuclear Information System (INIS)

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-01-01

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17β and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17βHSD1, 17βHSD4, CYP21, 3βHSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10 -7 to 10 -5 M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17β levels and increased progesterone secretion. At 10 -5 M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17βHSD4 and significantly suppressed expression of 3βHSD2. In comparison, 10 -7 to 2 x 10 -5 M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17β, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols

  11. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro

    Directory of Open Access Journals (Sweden)

    Emmanuel Anyachukwu Irondi

    2016-12-01

    Full Text Available Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum (O. basilicum and Ocimum gratissimum (O. gratissimum on two key enzymes [pancreatic lipase (PL and angiotensin 1-converting enzyme (ACE] involved in obesity and hypertension in vitro. Methods: The phenolics (flavonoids and phenolic acids were quantified using high performance liquid chromatrography coupled with diode array detection (HPLC-DAD. PL and ACE inhibitory effects; and DPPH* and ABTS*+ scavenging activities of the extracts were tested using Spectrophotometric methods. Results: O. basilicum had the following major phenolics: rutin, quercetin and quercitrin (flavonoids; caffeic, chlorogenic and gallic acids (phenolic acids; while O. gratissimum had the following major phenolics: rutin, quercitrin and luteolin (flavonoids; ellagic and chlorogenic acids (phenolic acids. Extracts of both plants inhibited PL and ACE; and scavenged DPPH* in a dose-dependent manner. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 μg/mL and ACE (IC50: 29.44 μg/mL than O. basilicum (IC50: 52.14 μg/mL and IC50: 64.99 μg/mL, against PL and ACE, respectively. O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. [J Complement Med Res 2016; 5(4.000: 396-402

  12. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  13. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    Science.gov (United States)

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  14. Traditional Medicinal Herbs and Food Plants Have the Potential to Inhibit Key Carbohydrate Hydrolyzing Enzymes In Vitro and Reduce Postprandial Blood Glucose Peaks In Vivo

    Directory of Open Access Journals (Sweden)

    M. Fawzi Mahomoodally

    2012-01-01

    Full Text Available We hypothesized that some medicinal herbs and food plants commonly used in the management of diabetes can reduce glucose peaks by inhibiting key carbohydrate hydrolyzing enzymes. To this effect, extracts of Antidesma madagascariense (AM, Erythroxylum macrocarpum (EM, Pittosporum senacia (PS, and Faujasiopsis flexuosa (FF, Momordica charantia (MC, and Ocimum tenuiflorum (OT were evaluated for α-amylase and α-glucosidase inhibitory effects based on starch-iodine colour changes and PNP-G as substrate, respectively. Only FF and AM extracts/fractions were found to inhibit α-amylase activity significantly (P<0.05 and coparable to the drug acarbose. Amylase bioassay on isolated mouse plasma confirmed the inhibitory potential of AM and FF extracts with the ethyl acetate fraction of FF being more potent (P<0.05 than acarbose. Extracts/fractions of AM and MC were found to inhibit significantly (P<0.05 α-glucosidase activity, with IC50 comparable to the drug 1-deoxynojirimycin. In vivo studies on glycogen-loaded mice showed significant (P<0.05 depressive effect on elevation of postprandial blood glucose following ingestion of AM and MC extracts. Our findings tend to provide a possible explanation for the hypoglycemic action of MC fruits and AM leaf extracts as alternative nutritional therapy in the management of diabetes.

  15. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  16. HPLC-DAD fingerprinting analysis, antioxidant activities of Tithonia diversifolia (Hemsl.) A. Gray leaves and its inhibition of key enzymes linked to Alzheimer's disease.

    Science.gov (United States)

    Ojo, Oluwafemi Adeleke; Ojo, Adebola Busola; Ajiboye, Basiru Olaitan; Olaiya, Oluranti; Okesola, Mary Abiola; Boligon, Aline Augusti; de Campos, Marli Matiko Anraku; Oyinloye, Babatunji Emmanuel; Kappo, Abidemi Paul

    2018-01-01

    Tithonia diversifolia (Hemsl.) A. Gray leaves have long been used to manage neurodegenerative diseases without scientific basis. This study characterized the phenolic constituents, evaluated the antioxidant properties of phenolic extracts from T. diversifolia leaves used as traditional medicine in Africa and its inhibition of key enzymes linked to Alzheimer's disease. The extract was rich in phenolic acids (gallic acid, chlorogenic acid, caffeic acid and p -coumaric acid) and flavonoids (apigenin) and had 1,1-diphenyl-2-picryl-hydrazil radical scavenging abilities (IC 50  = 41.05 μg. mL -1 ), 2,2-Azino-bis3-ethylbenthiazoline-6sulphonic acid radical scavenging ability (IC 50  = 33.51 μg. mL -1 ), iron chelation (IC 50  = 38.50 μg. mL -1 ), reducing power (Fe 3+ - Fe 2+ ) (7.34 AAEmg/100 g), inhibited acetylcholinesterase (IC 50  = 39.27 μg mL -1 ) and butyrylcholinesterase (IC 50  = 35.01 μg mL -1 ) activities. These results reveal the leaf as a rich source of phenolic compounds with antioxidant and cholinesterase inhibitory activity.

  17. DNA-dependent protein kinase (DAN-PK), a key enzyme in the re-ligation of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Hennequin, C.; Averbeck, D.

    1999-01-01

    Repair pathways of DNA are now defined and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEH) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEj implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridization in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catalytic subunit (DNA-PK cs ) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immuno-deficient (scid) mice are deficient in DNA-PK cs : this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylate Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival. (authors)

  18. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    Science.gov (United States)

    Mnafgui, Kais; Hamden, Khaled; Ben Salah, Hichem; Kchaou, Mouna; Nasri, Mbarek; Slama, Sadok; Derbali, Fatma; Allouche, Noureddine; Elfeki, Abdelfattah

    2012-01-01

    Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension. PMID:23258993

  19. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  20. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.

    Science.gov (United States)

    Lafaye, Céline; Van Molle, Inge; Tamu Dufe, Veronica; Wahni, Khadija; Boudier, Ariane; Leroy, Pierre; Collet, Jean-François; Messens, Joris

    2016-07-15

    Exposure of bacteria to NO results in the nitrosylation of cysteine thiols in proteins and low molecular weight thiols such as GSH. The cells possess enzymatic systems that catalyze the denitrosylation of these modified sulfurs. An important player in these systems is thioredoxin (Trx), a ubiquitous, cytoplasmic oxidoreductase that can denitrosylate proteins in vivo and S-nitrosoglutathione (GSNO) in vitro However, a periplasmic or extracellular denitrosylase has not been identified, raising the question of how extracytoplasmic proteins are repaired after nitrosative damage. In this study, we tested whether DsbG and DsbC, two Trx family proteins that function in reducing pathways in the Escherichia coli periplasm, also possess denitrosylating activity. Both DsbG and DsbC are poorly reactive toward GSNO. Moreover, DsbG is unable to denitrosylate its specific substrate protein, YbiS. Remarkably, by borrowing the CGPC active site of E. coli Trx-1 in combination with a T200M point mutation, we transformed DsbG into an enzyme highly reactive toward GSNO and YbiS. The pKa of the nucleophilic cysteine, as well as the redox and thermodynamic properties of the engineered DsbG are dramatically changed and become similar to those of E. coli Trx-1. X-ray structural insights suggest that this results from a loss of two direct hydrogen bonds to the nucleophilic cysteine sulfur in the DsbG mutant. Our results highlight the plasticity of the Trx structural fold and reveal that the subtle change of the number of hydrogen bonds in the active site of Trx-like proteins is the key factor that thermodynamically controls reactivity toward nitrosylated compounds. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats.

    Science.gov (United States)

    Sun, Dong; Wang, Kexin; Yan, Zhibo; Zhang, Guangyong; Liu, Shaozhuang; Liu, Fengjun; Hu, Chunxiao; Hu, Sanyuan

    2013-11-01

    Duodenal-jejunal bypass (DJB), which is not routinely applied in metabolic surgery, is an effective surgical procedure in terms of type 2 diabetes mellitus resolution. However, the underlying mechanisms are still undefined. Our aim was to investigate the diabetic improvement by DJB and to explore the changes in hepatic insulin signaling proteins and regulatory enzymes of gluconeogenesis after DJB in a non-obese diabetic rat model. Sixteen adult male Goto-Kakizaki rats were randomly divided into DJB and sham-operated groups. The body weight, food intake, hormone levels, and glucose metabolism were measured. The levels of protein expression and phosphorylation of insulin receptor-beta (IR-β) and insulin receptor substrate 2 (IRS-2) were evaluated in the liver. We also detected the expression of key regulatory enzymes of gluconeogenesis [phosphoenoylpyruvate carboxykinase-1 (PCK1), glucose-6-phosphatase-alpha (G6Pase-α)] in small intestine and liver. DJB induced significant diabetic improvement with higher postprandial glucagons-like peptide 1, peptide YY, and insulin levels, but without weight loss. The DJB group exhibited increased expression and phosphorylation of IR-β and IRS-2 in liver, up-regulated the expression of PCK1 and G6Pase-α in small intestine, and down-regulated the expression of these enzymes in liver. DJB is effective in up-regulating the expression of the key proteins in the hepatic insulin signaling pathway and the key regulatory enzymes of intestinal gluconeogenesis and down-regulating the expression of the key regulatory enzymes of hepatic gluconeogenesis without weight loss. Our study helps to reveal the potential role of hepatic insulin signaling pathway and intestinal gluconeogenesis in ameliorating insulin resistance after metabolic surgery.

  2. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    Science.gov (United States)

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  3. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus

    Science.gov (United States)

    The transcription factor steroidogenic factor 1 (SF-1) is exclusively expressed in the brain in the ventral medial hypothalamic nucleus (VMH) and is required for the development of this nucleus. However, the physiological importance of transcriptional programs regulated by SF-1 in the VMH is not wel...

  4. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Nasr Esfahani

    2015-06-01

    Full Text Available Drought stress is one of the major constraints for production and yield of soybean (Glycine max. For this reason, identifying mechanisms associated with drought tolerance in soybean is very impotent for improving and increasing drought resistance by genetic engineering methods. In this study, the effect of drought on growth traits (plant height, fresh and dry weight of shoot and also fresh and dry weight of root and enzyme activities of isocitrate dehydrogenase (ICDH, phosphoenolpyruvate carboxylase (PEPC, malate dehydrogenase (MDH, glutamine synthetase (GS and nitrate reductase (NR were assessed in drought sensitive and tolerant cultivars of soybean. The results showed that growth indicators are higher in drought tolerant cultivar under water availability (control and water deficient when compared with those of drought sensitive cultivar. An increase in the activity of ICDH was observed in both the cultivars under drought stress as compared with their respective control plants but this activity was higher in tolerant cultivar. The activities of PEPC, MDH, GS and NR were significantly decreased in drought sensitive cultivar whereas the activities of these enzymes were higher in another cultivar. In general, the results of this study showed different behavior in the activities of assayed enzymes in two sets of soybean cultivars differing in drought tolerance and also decline of the activities of these enzymes in drought sensitive cultivar due to water deficit stress may be one of the possible reasons for decreased growth of the soybean plants under drought.

  5. Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen.

    Science.gov (United States)

    Husserl, Johana; Hughes, Joseph B; Spain, Jim C

    2012-05-01

    Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.

  6. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    Science.gov (United States)

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660

  7. Enhancement of ligninolytic enzyme activities in a Trametes maxima–Paecilomyces carneus co-culture: Key factors revealed after screening using a Plackett–Burman experimental design

    Directory of Open Access Journals (Sweden)

    Wilberth Chan Cupul

    2014-05-01

    Conclusions: Interaction between indigenous fungi: T. maxima–P. carneus improves laccase and MnP activities. The inoculation time of P. carneus on T. maxima plays an important role in the laccase and MnP enhancement. The nutritional requirements for enzyme improvement in a co-culture system are different from those required for a monoculture system.

  8. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus.

    Science.gov (United States)

    Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R

    1998-11-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.

  9. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Jammer, A.; Gapserl, A.; Luschin-Ebengreuth, N.; Heyneke, E.; Chu, H.; Cantero-Navarro, E.; Grosskinsky, D. K.; Albacete, A.; Stabentheiner, E.; Franzaring, J.; Fangmeier, A.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5531-5542 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Carbohydrate metabolism * dialysis * enzyme activities * kinetic assay * physiological phenotyping * physiological state * protein extraction * signatures Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  10. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  11. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  12. Key enzymes of gluconeogenesis are dose-dependently reduced in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.W.D.; Rozman, K. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF), Neuherberg (Germany, F.R.). Inst. fuer Toxikologie); Lebofsky, M. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics); Greim, H. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF), Neuherberg (Germany, F.R.). Inst. fuer Toxikologie)

    1991-02-01

    Male Sprague-Dawley rats (240-245 g) were dosed ip with 5, 15, 25, or 125 {mu}g/kg -,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in corn oil. Ad libitum-fed and pair-fed controls received vehicle (4 ml/kg) alone. Two or 8 days after dosing five rats of each group were sacrificed, their livers removed and assayed for the activities of three gluconeogenic enzymes, (phosphoenol-pyruvate carboxykinase (PEPCK; EC 4.1.1.32), pyruvate carboxylase (PC; EC 6.4.1.1.), and glucose-6-phosphatase (G-6-Pase, EC 3.1.3.9)), and one glycolytic enzyme (pyruvate kinase (PK; EC 2.7.1.40)) by established procedures. The activity of PK was not affected by TCDD at either time point. The activity of G-6-Phase tended to be decreased in TCDD-treated animals, as compared to pair-fed controls, but the decrease was variable without an apparent dose-response. The activity of PEPCK was significantly decreased 2 days after dosing, but a clear dose-response was apparent only at the 8-day time point. Maximum loss of activity at the highest dose was 56% below pair-fed control levels. PC activity was slightly decreased 2 days after TCDD treatment and displayed statistically significant, dose-dependent reduction by 8 days after dosing with a 49% loss of enzyme activity after the highest dose. It is concluded that inhibition of gluconeogenesis by TCDD previously demonstrated in vivo is probably due to decreased activities of PEPCK and PC. The data also support the prevailing view that PEPCK and PC are rate-determining enzymes in gluconeogenesis. (orig.).

  13. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  14. Fumonisin exposure in women linked to inhibition of an enzyme that is a key event in farm and laboratory animal diseases.

    Science.gov (United States)

    Fumonisin B1 (FB1) is a toxic chemical produced by molds. The molds that produce fumonisin are common in corn. Consumption of contaminated corn by farm animals has been shown to be the cause of animal disease. The proximate cause (key event) in the induction of diseases in animals is inhibition of t...

  15. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT; a key enzyme for physiological and behavioral switch in arthropods

    Directory of Open Access Journals (Sweden)

    Susumu eHiragaki

    2015-04-01

    Full Text Available The evolution of N-acetyltransfeases (NATs seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT has been extensively studied since it Leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT, and also xenobiotic reactions (arylamine NAT or simply NAT. NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the

  16. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    Science.gov (United States)

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step.

  17. Effect of x-irradiation on the activity of the key enzymes of the synthesis and degradation of heme in rat liver

    International Nuclear Information System (INIS)

    Deev, L.I.; Topchishvili, G.I.; Akhalaya, M.Ya.; Platonov, A.G.

    1985-01-01

    For Wistar rat males the effect of X radiation on the activity of delta-aminolevuminatesynthase and chemoxygenase - the rate of limiting enzymes of synthesis and catabolism of heme, as well as the level of ''free'' (non-utilized) heme in the rat liver are studied. The animals were irradiated using the X-ray device with the dose rate 0.5 Gy/min. X irradiation in the minimum lethal dose (7 Gy) caused evident changes in the activity of delta-aminolevuminatesynthase and chemoxygenase in the rat liver. Already one day after irradiation a noticeable decrease in the activity of delta-aminoleviminatesynthase (up to 81% of the normal one) was observed, and the maximum decrease took place on the third day (49% of the norm). On the 5-7-th day partial normalization of the activity of delta-aminoleviminatesynthase occurred. The chemoxygenase activity at the initial period after irradiation (1 day after) increased, after that (on the 5-7-th day), the phase of more than twofold and prolonged increase in the enzyme activity followed. Irradiation of animals by the dose of 5 Gy did not induce reliable changes in the activity of chemoxygenase and caused a considerably lower decrease in the activity of delta-aminolevunatesynthase. The observed suppression of synthesis and increase in heme catabolism do not result in the decrease in the level of ''free'' heme in the liver of irradiated animals. The conclusion is made on the presence of considerable violations of heme metabolism in the liver of irradiated animals, however, there is no final answer to the question on the role of detected effects in the decrease of microsomal level of cytochrome R-450

  18. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  19. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    International Nuclear Information System (INIS)

    Yan, You-e; Liu, Lian; Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan; Wang, Hui

    2014-01-01

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  20. Effects of concanavalin A on the progesterone production by bovine steroidogenic luteal cells in vitro.

    Science.gov (United States)

    Destro, F C; Martin, I; Landim-Alvarenga, Fdc; Ferreira, Jcp; Pate, J L

    2016-10-01

    The aim of this study was to evaluate the effects of concanavalin A (CONA) on the progesterone (P4) production by bovine steroidogenic luteal cells (LCs) in vitro. Luteal cells were collected during the mid-luteal stage (at 10-12 days following ovulation) and processed in the laboratory. Luteal cells were grown for 7 days in a humid atmosphere with 5% CO2 , with or without 10% foetal bovine serum, and were subjected to the following treatments: control: no treatment; CONA (10 μg/ml); LH (100 μg/ml); CONA + LH; LH (100 μg/ml) + prostaglandin F2α (PGF2α) (10 ng/ml); CONA + LH + PGF2α. Samples of the culture media were collected on days 1 (D1) and 7 (D7) for P4 quantification. The cells were counted on D7 of culture. Differences between treatments were considered statistically significant at p < .05. Culture in the presence of CONA decreased the P4-secreting capacity of LCs on D7 of culture, particularly in the absence of serum. The cell numbers did not change between treatments. © 2016 Blackwell Verlag GmbH.

  1. Dipeptidylpeptidase-­IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

    Directory of Open Access Journals (Sweden)

    E. Tarantola

    2012-10-01

    Full Text Available Given the scarcity of donors, moderately fatty livers (FLs are currently being considered as possible grafts for orthotopic liver transplantation (OLT, notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille’s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV, was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa, using as controls lean Zucker (fa/+ and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8. In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver

  2. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2017-11-01

    Full Text Available Haemonchus contortus (H. contortus is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans (C. elegans has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22. In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant (ok693 from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22. Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  3. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  4. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders.

    Science.gov (United States)

    Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman

    2015-08-01

    This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.

  5. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus.

    Science.gov (United States)

    Huang, Yan; Zheng, Xiuping; Zhang, Hongli; Ding, Haojie; Guo, Xiaolu; Yang, Yi; Chen, Xueqiu; Zhou, Qianjin; Du, Aifang

    2017-01-01

    Haemonchus contortus ( H. contortus ) is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans ( C. elegans ) has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22 . In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi) experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant ( ok693 ) from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22 . Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  6. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites.

    Science.gov (United States)

    Yu, Min; Kumar, T R Santha; Nkrumah, Louis J; Coppi, Alida; Retzlaff, Silke; Li, Celeste D; Kelly, Brendan J; Moura, Pedro A; Lakshmanan, Viswanathan; Freundlich, Joel S; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H-C; Falkard, Brie; Sidhu, Amar Bir Singh; Purcell, Lisa A; Gratraud, Paul; Kremer, Laurent; Waters, Andrew P; Schiehser, Guy; Jacobus, David P; Janse, Chris J; Ager, Arba; Jacobs, William R; Sacchettini, James C; Heussler, Volker; Sinnis, Photini; Fidock, David A

    2008-12-11

    The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.

  7. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  8. Reproductive gonadal steroidogenic activity in the fishing cat (Prionailurus viverrinus) assessed by fecal steroid analyses.

    Science.gov (United States)

    Santymire, Rachel M; Brown, Janine L; Stewart, Rosemary A; Santymire, Robb C; Wildt, David E; Howard, JoGayle

    2011-10-01

    Non-invasive fecal steroid analyses were used to characterize gonadal activity in the fishing cat (Prionailurus viverrinus). Estrogen, progestagen and androgen metabolites were quantified in fecal samples collected for 12 months from four males and 10 females housed at seven North American zoological institutions. Male reproductive hormone concentrations did not vary (P>0.05) among season, and estrogen cycles were observed year-round in females and averaged (±SEM) 19.9±1.0 days. Mean peak estrogen concentration during estrus (460.0±72.6ng/g feces) was five-fold higher than baseline (87.3±14.0ng/g feces). Five of seven females (71.4%) housed alone or with another female demonstrated spontaneous luteal activity (apparent ovulation without copulation), with mean progestagen concentration (20.3±4.7μg/g feces), increasing nearly five-fold above baseline (4.1±0.8μg/g feces). The non-pregnant luteal phase averaged 32.9±2.5 days (n=13). One female delivered kittens 70 days after natural mating with fecal progestagen concentrations averaging 51.2±5.2μg/g feces. Two additional females were administered exogenous gonadotropins (150IU eCG; 100IU hCG), which caused hyper-elevated concentrations of fecal estrogen and progestagen (plus ovulation). Results indicate that: (1) male and female fishing cats managed in North American zoos are reproductively active year round; (2) 71.4% of females experienced spontaneous ovulation; and (3) females are responsive to exogenous gonadotropins for ovulation induction, but a regimen that produces a normative ovarian steroidogenic response needs to be identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  10. Steroidogenic acute regulatory protein (StAR) gene expression construct: Development, nanodelivery and effect on reproduction in air-breathing catfish, Clarias batrachus.

    Science.gov (United States)

    Rathor, Pravesh Kumar; Bhat, Irfan Ahmad; Rather, Mohd Ashraf; Gireesh-Babu, Pathakota; Kumar, Kundan; Purayil, Suresh Babu Padinhate; Sharma, Rupam

    2017-11-01

    Steroidogenic acute regulatory protein (StAR) is responsible for the relocation of cholesterol across mitochondrial membrane in vertebrates and is, therefore, a key factor in regulating the rate and timing of steroidogenesis. In the present study, we developed chitosan nanoparticle (CNP) conjugated StAR gene construct (CNP-pcDNA4-StAR) in a eukaryotic expression vector, pcDNA4/HisMax A. CNPs of 135.4nm diameter, 26.7mV zeta potential and 0.381 polydispersity index were used for conjugation. The loading efficiency (LE) of pcDNA4-StAR construct with CNPs was found to be 86%. After the 24h of intramuscular injection, the CNP-pcDNA4-StAR plasmid could be detected from testis, brain, kidney and muscle tissues of Clarias batrachus. The transcript levels of important reproductive genes viz. cyp11a1, cyp17a1, 3β-hsd, 17β-hsd and cyp19a1 in CNP-pcDNA4-StAR treated group were initially low up to 24h, but significantly increased subsequently up to 120h. In naked pcDNA4-StAR treated group, the mRNA level of 3β-hsd, 17β-hsd and cyp19a1 increased initially up to 24h, while cyp11a1 and cyp17a1 increased up to 48h and then started declining. Similar results were obtained for 11-Ketotestosterone and 17β-estradiol. The results indicate relatively long lasting effects of nano-conjugated construct compared to the construct alone. Furthermore, the histopathology of gonads and liver authenticates its possible role in the gonadal development in fish without any adverse effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    Science.gov (United States)

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional

  12. Infantile 4-tert-octylphenol exposure transiently inhibits rat ovarian steroidogenesis and steroidogenic acute regulatory protein (StAR) expression

    International Nuclear Information System (INIS)

    Myllymaeki, S.A.; Karjalainen, M.; Haavisto, T.E.; Toppari, J.; Paranko, J.

    2005-01-01

    Phenolic compounds, such as 4-tert-octylphenol (OP), have been shown to interfere with rat ovarian steroidogenesis. However, little is known about steroidogenic effects of infantile OP exposure on immature ovary. The aim of the present study was to investigate the effects of infantile OP exposure on plasma FSH, LH, estradiol, and progesterone levels in 14-day-old female rats. The effect on ovarian steroidogenic acute regulatory protein (StAR) and FSH receptor (FSHr) expression was analyzed by Western blotting. Ex vivo analysis was carried out for follicular estradiol, progesterone, testosterone, and cAMP production. Sprague-Dawley rats were given OP (0, 10, 50, or 100 mg/kg) subcutaneously on postnatal days 6, 8, 10, and 12. On postnatal day 14, plasma FSH was decreased and progesterone increased significantly at a dose of 100 mg OP/kg. In addition, the highest OP dose advanced the time of vaginal opening in puberty. OP had no effect on infantile LH and estradiol levels or ovarian FSHr content. Ovarian StAR protein content and ex vivo hormone and cAMP production were decreased at all OP doses compared to controls. However, hormone levels recovered independent on FSH and even increased above the control level during a prolonged culture. On postnatal day 35, no statistically significant differences were seen between control and OP-exposed animals in plasma FSH, LH, estradiol, and progesterone levels, or in ovarian StAR protein content. The results indicate that the effect of OP on the infantile ovary is reversible, while more permanent effects in the hypothalamus and pituitary, as described earlier, are involved in the reduction of circulating FSH levels and premature vaginal opening

  13. The hemodynamically-regulated vascular microenvironment promotes migration of the steroidogenic tissue during its interaction with chromaffin cells in the zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chou

    Full Text Available BACKGROUND: While the endothelium-organ interaction is critical for regulating cellular behaviors during development and disease, the role of blood flow in these processes is only partially understood. The dorsal aorta performs paracrine functions for the timely migration and differentiation of the sympatho-adrenal system. However, it is unclear how the adrenal cortex and medulla achieve and maintain specific integration and whether hemodynamic forces play a role. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, the possible modulation of steroidogenic and chromaffin cell integration by blood flow was investigated in the teleostean counterpart of the adrenal gland, the interrenal gland, in the zebrafish (Danio rerio. Steroidogenic tissue migration and angiogenesis were suppressed by genetic or pharmacologic inhibition of blood flow, and enhanced by acceleration of blood flow upon norepinephrine treatment. Repressed steroidogenic tissue migration and angiogenesis due to flow deficiency were recoverable following restoration of flow. The regulation of interrenal morphogenesis by blood flow was found to be mediated through the vascular microenvironment and the Fibronectin-phosphorylated Focal Adhesion Kinase (Fn-pFak signaling. Moreover, the knockdown of krüppel-like factor 2a (klf2a or matrix metalloproteinase 2 (mmp2, two genes regulated by the hemodynamic force, phenocopied the defects in migration, angiogenesis, the vascular microenvironment, and pFak signaling of the steroidogenic tissue observed in flow-deficient embryos, indicating a direct requirement of mechanotransduction in these processes. Interestingly, epithelial-type steroidogenic cells assumed a mesenchymal-like character and downregulated β-Catenin at cell-cell junctions during interaction with chromaffin cells, which was reversed by inhibiting blood flow or Fn-pFak signaling. Blood flow obstruction also affected the migration of chromaffin cells, but not through

  14. Fundulus heteroclitus gonadotropins.5: Small scale chromatographic fractionation of pituitary extracts into components with different steroidogenic activities using homologous bioassays

    Directory of Open Access Journals (Sweden)

    Petrino Teresa R

    2004-03-01

    Full Text Available Abstract Fractionation and characterization of gonadotropins (GtH from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system. Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr ~ 30,000. Anion-exchange and hydrophobic-interaction chromatography (HIC yielded two distinct peaks of 17beta-estradiol (E2- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic activities: an E2-promoting gonadotropin (GtH I-like and a DHP-promoting gonadotropin (GtH II-like, which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost.

  15. Modulation of Steroidogenic Pathway in Rat Granulosa Cells with Subclinical Cd Exposure and Insulin Resistance: An Impact on Female Fertility

    Directory of Open Access Journals (Sweden)

    Muskaan Belani

    2014-01-01

    Full Text Available Changes in lifestyle lead to insulin resistance (IR in females ultimately predisposing them towards infertility. In addition, cadmium (Cd, an environmental endocrine disruptor, is reported for detrimental effects on granulosa cells, thus leading to ovarian dysfunction. A combination of these factors, lifestyle and environment, seems to play a role in etiology of idiopathic infertility that accounts for 50% amongst the total infertility cases. To address this issue, we made an attempt to investigate the extent of Cd impact on insulin-resistant (IR granulosa cells. We exposed adult female Charles Foster rats to dexamethasone and confirmed IR condition by fasting insulin resistance index (FIRI. On treatment of IR rats with Cd, the preliminary studies demonstrated prolonged estrous cyclicity, decrease in serum estradiol concentrations, abnormal histology of ovary, and increased granulosa cell death. Further gene and protein expression studies of steroidogenic acute regulatory (StAR protein, 17β-hydroxysteroid dehydrogenase (17β-HSD, and cytochrome P450 aromatase (CYP19A1 were performed. Protein expression studies demonstrated significant decrease in treated groups when compared with control. Study revealed that, in spite of the molecular parameters being affected at varied level, overall ovarian physiology is maximally affected in IR and Cd coexposed group, thus mimicking the condition similar to those prevailing in infertile females.

  16. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Thiramanas, Raweewan; Laocharoensuk, Rawiwan

    2016-01-01

    The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL −1 , and the linear range extends from 10 6 to 10 8 cfu·mL −1 . The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL −1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination. (author)

  17. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    International Nuclear Information System (INIS)

    Gracia, Tannia; Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-01-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3βHSD2, CYP11β1, CYP11β2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11β2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11β2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The β-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different

  18. No relationship between most polymorphisms of steroidogenic acute regulatory (StAR gene with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Azadeh-Sadat Nazouri

    2015-12-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is one of the most common endocrine women’s disorders in reproductive age. Hyperandrogenism has a critical role in the etiology of PCOS and it can cause fault in Steroidogenesis process. During steroidogenesis, steroidogenic acute regulatory protein (StAR seems to increase the delivery of cholesterol through mitochondrial membrane. Therefore, polymorphisms of StAR might effect on this protein and play a role in the etiology of PCOS. Objective: The aim of this study was to investigate the association between StAR SNPs with PCOS. Thus, seven polymorphisms in this gene: rs104894086, rs104894089, rs104894090, rs137852689, rs10489487, rs104894085 were detected. Materials and Methods: In this case control study, 45 PCOS women, 40 male factor/unexplained infertile women, and 40 fertile women as two control groups were participated from 2008-2012. Polymorphisms were detected using restriction fragment length polymorphism (PCR-RFLP method. Results: Heterozygote genotyping for rs137852689 SNP (amino acid 218 C > T was only seen in seven PCOS patients, one in normal ovulatory women, and five in male factor/unexplained infertile women (15.5%, 2.5%, 12.5%, respectively (p= 0.12. While, it has shown no association between other SNPS with PCOs. Conclusion: The RFLP results for seven chosen SNPs, which located in exon 5 and 7 showed normal status in three groups, it means no heterozygous or homozygous forms of selected SNPs were observed. So, it seems evaluation of the active amino acid sites should be investigated and also the study population should be increased.

  19. Effects of methomyl on steroidogenic gene transcription of the hypothalamic-pituitary-gonad-liver axis in male tilapia.

    Science.gov (United States)

    Meng, ShunLong; Qiu, LiPing; Hu, GengDong; Fan, LiMin; Song, Chao; Zheng, Yao; Wu, Wei; Qu, JianHong; Li, DanDan; Chen, JiaZhang; Xu, Pao

    2016-12-01

    Male tilapia were exposed to sub-lethal methomyl concentrations of 0, 0.2, 2, 20 or 200 μg/L for 30 d, and were subsequently cultured in methomyl-free water for 18 d. Relative transcript abundance of steroidogenic genes involved in the HPGL axis of male tilapia was examined at 30 d in the exposure test and at 18 d in the recovery test. The results revealed that low concentrations of methomyl (0.2 and 2 μg/L) did not cause significant changes in gene mRNA levels in the HPGL axis of male tilapia; thus, we considered 2 μg/L concentrations as the level that showed no apparent adverse endocrine disruption effects. However, higher concentrations of methomyl (20 and 200 μg/L) disrupted the endocrine system and caused significant increase in the levels of GnRH2, GnRH3, ERα, and ERβ genes in the hypothalamus, GnRHR and FSHβ genes in the pituitary, CYP19a, FSHR, and ERα genes in the testis, and VTG and ERα genes in the liver, and significantly decreased the levels of LHR, StAR, 3β-HSD, and ARα genes in the testis and LHβ gene in the pituitary, leading to changes in sex steroid hormone and vitellogenin levels in the serum and ultimately resulting in reproductive dysfunction in male tilapia. The recovery tests showed that the toxicity effect caused by 20 μg/L methomyl was reversible; however, the toxicity effect at 200 μg/L of methomyl was irreversible after 18 d. Therefore, we concluded that 200 μg/L was the threshold concentration for methomyl-induced irreversible endocrine disruption in male tilapia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of novel StAR (steroidogenic acute regulatory protein mutations causing non-classic lipoid adrenal hyperplasia.

    Directory of Open Access Journals (Sweden)

    Christa E Flück

    Full Text Available CONTEXT: Steroidogenic acute regulatory protein (StAR is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH. OBJECTIVE: StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. DESIGN: To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. SETTING: Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. PATIENTS: Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. RESULTS: StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30% and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. CONCLUSIONS: StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.

  1. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    International Nuclear Information System (INIS)

    Roelofs, Maarke J.E.; Piersma, Aldert H.; Berg, Martin van den; Duursen, Majorie B.M. van

    2013-01-01

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2 nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  2. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands); Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands); Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Berg, Martin van den; Duursen, Majorie B.M. van [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands)

    2013-05-01

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2 nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  3. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    Science.gov (United States)

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  4. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells.

    Science.gov (United States)

    Sierralta, Walter D; Kohen, Paulina; Castro, Olga; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2005-10-20

    The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase.

  6. Waterborne fluoride exposure changed the structure and the expressions of steroidogenic-related genes in gonads of adult zebrafish (Danio rerio).

    Science.gov (United States)

    Li, MeiYan; Cao, Jinling; Chen, Jianjie; Song, Jie; Zhou, Bingrui; Feng, Cuiping; Wang, Jundong

    2016-02-01

    Excessive fluoride in natural water ecosystem has been demonstrated to have adverse effects on reproductive system in humans and mammals, while the most vulnerable aquatic organisms were ignored. In this study, the effects of waterborne fluoride on growth performance, sex steroid hormone, histological structure, and the transcriptional profiles of sex steroid related genes were examined in both female and male zebrafish exposed to different concentrations of 0.79, 18.60, 36.83 mg L(-1) of fluoride for 30 and 60 d to investigate the effects of fluoride on reproductive system and the underlying toxic mechanisms caused by fluoride. The results showed that the body weight was remarkably decreased, the structure of ovary and testis were serious injured, and the T and E2 levels were significantly reduced in male zebrafish. The transcriptional profiles of steroidogenic related genes displayed phenomenal alterations, the expressions of pgr and cyp19a1a were significantly up-regulated, while the transcriptional levels of er, ar and hsd3β were decreased both in the ovary and testis, and hsd17β8 were down-regulated just in males. Taken together, these results demonstrated that fluoride could significantly inhibit the growth of zebrafish, and notably affect the reproductive system in both sex zebrafish by impairing the structure of ovary and testis, altering steroid hormone levels and steroidogenic genes expression related to the synthesis of sex hormones in zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cistanche tubulosa ethanol extract mediates rat sex hormone levels by induction of testicular steroidgenic enzymes.

    Science.gov (United States)

    Wang, Tian; Chen, Chen; Yang, Man; Deng, Baiwan; Kirby, Gordon Michael; Zhang, Xiaoying

    2016-01-01

    Plants of the genus Cistanche Hoffmg. et Link (Orobanchaceae) are usually used as ethno-medicine in Eastern Asia. Pharmacology studies have shown that Cistanche possesses an androgen-like effect; however, the exact mechanism is unclear. The present study determines the effect of ethanol extract of Cistanche tubulosa (Schenk) R. Wight stem (CTE) on hormone levels and testicular steroidogenic enzymes in rats. Phenylethanoid glycoside content of CTE was detected by UV spectrophotometry. Rats were fed with different doses of CTE (0.2, 0.4, and 0.8 g/kg) by intragastric administration for 20 d. Sperm parameters were measured by staining and counting method. The level of progesterone and testosterone in serum was quantified by radioimmunoassay. The expression levels of cholesterol side-chain cleavage enzyme (CYP11A1), 17α-hydroxylase/17, 20-lyase (CYP17A1), and a liver metabolic enzyme (CYP3A4) in the microsome were assessed by immunohistochemical staining or/and western blot analysis. The study illustrates that the administration of CTE (0.4 and 0.8 g/kg) increased sperm count (2.3- and 2.7-folds) and sperm motility (1.3- and 1.4-folds) and decreased the abnormal sperm (0.76- and 0.6-folds). The serum level of progesterone and testosterone in rats was also increased by CTE administration (p blot analysis confirmed that the expression of CYP11A1, CYP17A1, and CYP3A4 was enhanced by CTE (p < 0.05). It was also found that high-dose of CTE can cause mild hepatic edema. Our results suggest that the increase in sex hormone levels could be mediated by the induction of testicular steroidogenic enzymes.

  8. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    Science.gov (United States)

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  11. Essential Oil from Clove Bud (Eugenia aromatica Kuntze) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro.

    Science.gov (United States)

    Oboh, Ganiyu; Akinbola, Ifeoluwa A; Ademosun, Ayokunle O; Sanni, David M; Odubanjo, Oluwatoyin V; Olasehinde, Tosin A; Oyeleye, Sunday I

    2015-01-01

    The inhibition of enzymes involved in the breakdown of carbohydrates is considered a therapeutic approach to the management of type-2 diabetes. This study sought to investigate the effects of essential oil from clove bud on α-amylase and α-glucosidase activities. Essential oil from clove bud was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography-mass spectrometry (GC-MS). The effects of the essential oil on α-amylase and α-glucosidase activities were investigated. The antioxidant properties of the oil and the inhibition of Fe(2+) and sodium nitroprusside-induced malondialdehyde (MDA) production in rats pancreas homogenate were also carried out. The essential oil inhibited α-amylase (EC50=88.9 μl/L) and α-glucosidase (EC50=71.94 μl/L) activities in a dose-dependent manner. Furthermore, the essential oil inhibited Fe(2+) and SNP-induced MDA production and exhibited antioxidant activities through their NO*, OH*, scavenging and Fe(2+)- chelating abilities. The total phenolic and flavonoid contents of the essential oil were 12.95 mg/g and 6.62 mg/g respectively. GC-MS analysis revealed the presence of α-pinene, β-pinene, neral, geranial, gamma terpinene, cis-ocimene, allo ocimene, 1,8-cineole, linalool, borneol, myrcene and pinene-2-ol in significant amounts. Furthermore, the essential oils exhibited antioxidant activities as typified by hydroxyl (OH) and nitric oxide (NO)] radicals scavenging and Fe(2+)-chelating abilities. The inhibition of α-amylase and α-glucosidase activities, inhibition of pro-oxidant induced lipid peroxidation in rat pancreas and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress induced type-2 diabetes.

  12. Selected soil enzymes: Examples of their potential roles in the ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In ... A better understanding of the role of these soil enzyme- es activity ..... measure of any disruption caused by pesticides, trace.

  13. Key issues

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1980-01-01

    Successful modeling of the thermo-mechanical and hydrochemical behavior of radioactive waste repositories in hard rock is possible in principle. Because such predictions lie outside the realm of experience, their adequacy depends entirely upon a thorough understanding of three fundamental questions: an understanding of the chemical and physical processess that determine the behavior of rock and all its complexities; accurate and realistic numerical models of the geologic media within which a repository may be built; and sufficient in-situ data covering the entire geologic region affected by, or effecting the behavior of a repository. At present sufficient is known to be able to identify most of those areas which require further attention. These areas extend all the way from a complete understanding of the chemical and physical processes determining the behavior of rock through to the exploration mapping and testing that must be done during the development of any potential repository. Many of the techniques, laboratory equipment, field instrumentation, and numerical methods needed to accomplish this do not exist at present. Therefore it is necessary to accept that a major investment in scientific research is required to generate this information over the next few years. The spectrum of scientific and engineering activities is wide extending from laboratory measurements through the development of numerical models to the measurement of data in-situ, but there is every prospect that sufficient can be done to resolve these key issues. However, to do so requires overt recognition of the many gaps which exist in our knowledge and abilities today, and of the need to bridge these gaps and of the significant costs involved in doing so

  14. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  16. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  17. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  18. Mixture Effects of 3 Mechanistically Different Steroidogenic Disruptors (Prochloraz, Genistein, and Ketoconazole) in the H295R Cell Assay

    DEFF Research Database (Denmark)

    Nielsen, Frederik Knud; Hansen, Cecilie Hurup; Fey, Jennifer Anna

    2015-01-01

    Mixture effects of 3 model endocrine disruptors, prochloraz, ketoconazole, and genistein, on steroidogenesis were tested in the adrenocortical H295R cell line. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone, and 17β-estradiol......Mixture effects of 3 model endocrine disruptors, prochloraz, ketoconazole, and genistein, on steroidogenesis were tested in the adrenocortical H295R cell line. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone, and 17β...

  19. Analysis of the gene coding for steroidogenic factor 1 (SF1, NR5A1) in a cohort of 50 Egyptian patients with 46,XY disorders of sex development.

    Science.gov (United States)

    Tantawy, Sally; Mazen, Inas; Soliman, Hala; Anwar, Ghada; Atef, Abeer; El-Gammal, Mona; El-Kotoury, Ahmed; Mekkawy, Mona; Torky, Ahmad; Rudolf, Agnes; Schrumpf, Pamela; Grüters, Annette; Krude, Heiko; Dumargne, Marie-Charlotte; Astudillo, Rebekka; Bashamboo, Anu; Biebermann, Heike; Köhler, Birgit

    2014-05-01

    Steroidogenic factor 1 (SF1, NR5A1) is a key transcriptional regulator of genes involved in the hypothalamic-pituitary-gonadal axis. Recently, SF1 mutations were found to be a frequent cause of 46,XY disorders of sex development (DSD) in humans. We investigate the frequency of NR5A1 mutations in an Egyptian cohort of XY DSD. Clinical assessment, endocrine evaluation and genetic analysis of 50 Egyptian XY DSD patients (without adrenal insufficiency) with a wide phenotypic spectrum. Molecular analysis of NR5A1 gene by direct sequencing followed by in vitro functional analysis of the two novel missense mutations detected. Three novel heterozygous mutations of the coding region in patients with hypospadias were detected. p.Glu121AlafsX25 results in severely truncated protein, p.Arg62Cys lies in DNA-binding zinc finger, whereas p.Ala154Thr lies in the hinge region of SF1 protein. Transactivation assays using reporter constructs carrying promoters of anti-Müllerian hormone (AMH), CYP11A1 and TESCO core enhancer of Sox9 showed that p.Ala154Thr and p.Arg62Cys mutations result in aberrant biological activity of NR5A1. A total of 17 patients (34%) harboured the p.Gly146Ala polymorphism. We identified two novel NR5A1 mutations showing impaired function in 23 Egyptian XY DSD patients with hypospadias (8.5%). This is the first study searching for NR5A1 mutations in oriental patients from the Middle East and Arab region with XY DSD and no adrenal insufficiency, revealing a frequency similar to that in European patients (6.5-15%). We recommend screening of NR5A1 in patients with hypospadias and gonadal dysgenesis. Yearly follow-ups of gonadal function and early cryoconservation of sperms should be performed in XY DSD patients with NR5A1 mutations given the risk of future fertility problems due to early gonadal failure.

  20. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  1. Long-term feeding of hydroalcoholic extract powder of Lepidium meyenii (maca) enhances the steroidogenic ability of Leydig cells to alleviate its decline with ageing in male rats.

    Science.gov (United States)

    Yoshida, K; Ohta, Y; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Tamada, H

    2018-02-01

    This study examined whether feeding hydroalcoholic extract of Lepidium meyenii (maca) to 8-week-old (sexually maturing) or 18-week-old (mature) male rats for more than a half year affects serum testosterone concentration and testosterone production by Leydig cells cultured with hCG, 22R-hydroxycholesterol or pregnenolone. Testosterone concentration was determined in the serum samples obtained before and 6, 12, 18 and 24 weeks after the feeding, and it was significantly increased only at the 6 weeks in the group fed with the maca extract to maturing rats when it was compared with controls. Testosterone production by Leydig cells significantly increased when cultured with hCG by feeding the maca extract to maturing rats for 27 weeks (35 weeks of age) and when cultured with 22R-hydroxycholesterol by feeding it to mature rats for 30 weeks (48 weeks of age). Overall testosterone production by cultured Leydig cells decreased to about a half from 35 to 48 weeks of age. These results suggest that feeding the maca extract for a long time to male rats may enhance the steroidogenic ability of Leydig cells to alleviate its decline with ageing, whereas it may cause only a transient increase in blood testosterone concentration in sexually maturing male rats. © 2017 Blackwell Verlag GmbH.

  2. Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells.

    Science.gov (United States)

    Zhang, Jin-You; Wu, Yi; Zhao, Shuan; Liu, Zhen-Xing; Zeng, Shen-Ming; Zhang, Gui-Xue

    2015-09-15

    Progesterone is an important steroid hormone in the regulation of the bovine estrous cycle. The steroidogenic acute regulatory protein (StAR) is an indispensable component for transporting cholesterol to the inner mitochondrial membrane, which is one of the rate-limiting steps for progesterone synthesis. Low-density lipoprotein (LDL) supplies cholesterol precursors for progesterone formation, and the lysosomal degradation pathway of LDL is essential for progesterone biosynthesis in granulosa cells after ovulation. However, it is currently unknown how LDL and lysosomes coordinate the expression of the StAR gene and progesterone production in bovine granulosa cells. Here, we investigated the role of lysosomes in LDL-treated bovine granulosa cells. Our results reported that LDL induced expression of StAR messenger RNA and protein as well as expression of cholesterol side-chain cleavage cytochrome P-450 (CYP11A1) messenger RNA and progesterone production in cultured bovine granulosa cells. The number of lysosomes in the granulosa cells was also significantly increased by LDL; whereas the lysosomal inhibitor, chloroquine, strikingly abolished these LDL-induced effects. Our results indicate that LDL promotes StAR expression, synthesis of progesterone, and formation of lysosomes in bovine granulosa cells, and lysosomes participate in the process by releasing free cholesterol from hydrolyzed LDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  4. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  5. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  6. Adrenal Oncocytic Neoplasm with Paradoxical Loss of Important Mitochondrial Steroidogenic Protein: The 18 kDA Translocator Protein

    Directory of Open Access Journals (Sweden)

    Roberto Ruiz-Cordero

    2017-01-01

    Full Text Available The adrenal glands produce a variety of hormones that play a key role in the regulation of blood pressure, electrolyte homeostasis, metabolism, immune system suppression, and the body’s physiologic response to stress. Adrenal neoplasms can be asymptomatic or can overproduce certain hormones that lead to different clinical manifestations. Oncocytic adrenal neoplasms are infrequent tumors that arise from cells in the adrenal cortex and display a characteristic increase in the number of cytoplasmic mitochondria. Since the rate-limiting step in steroidogenesis includes the transport of cholesterol across the mitochondrial membranes, in part carried out by the 18-kDa translocator protein (TSPO, we assessed the expression of TSPO in a case of adrenal oncocytic neoplasm using residual adrenal gland of the patient as internal control. We observed a significant loss of TSPO immunofluorescence expression in the adrenal oncocytic tumor cells when compared to adjacent normal adrenal tissue. We further confirmed this finding by employing Western blot analysis to semiquantify TSPO expression in tumor and normal adrenal cells. Our findings could suggest a potential role of TSPO in the tumorigenesis of this case of adrenocortical oncocytic neoplasm.

  7. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  8. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  9. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  10. Effects of tributyltin chloride(TBTCl) on seroid hormone and seroidogenic enzymes in Sprague-Dawley male rat

    Energy Technology Data Exchange (ETDEWEB)

    Kang, T.S.; Lee, S.J.; Shin, J.H.; Kim, T.S.; Moon, H.J.; Ki, H.Y.; Bae, H.; Han, S.Y. [Endocrine Toxicology Div., National Inst. of Toxicological Research, Korea FDA, Seoul (Korea); Dong, M.S. [Korea Univ., Seoul (Korea); Yoon, Y.D. [Hanyang Univ., Seoul (Korea)

    2004-09-15

    Tributyltin (TBT), organotin compound is used a wood preservative, a stabilizer of poly-vinyl chloride (PVC), a bactericide, a vermicide, and antifouling agent in maritime paint. TBTCl has been known to bioaccumulate through the food chain and induce imposex in female gastropods. Testosterone was synthesized from cholesterol in Leydig cell. In male rat testes, cholesterol in in the inner membrane of mitochondria is converted to prognenolone by cytochrome P450 side-chain cleavage (P450scc), and prognenolone is consequently converted to progesterone by 3{beta}-hydroxysteroid dehydrogenase (3{beta}a-HSD). Progesterone is converted to testosterone by cytochrome P450 17{alpha}-hydroxylase/C17-20 lyase (P450c17), and 17{beta}-hydroxysteroid dehydrogenase (17{beta}-HSD). Testosterone is converted to estradiol by P450 aromatase. Some studies have been reported that steroidogenic enzyme and steroid hormone were affected by TBT. In a two-generation study of tributyltin chloride, serum estradiol was decreased in F1 and F2 male rats. But serum concentration of testosterone and luteinizing hormone (LH) were not changed in F1 and F2 male rats. When pregnant rats were orally administrated by TBTCl, serum progesterone was decreased and serum estradiol was increased in female litters. Also litters were affected on development of reproductive organs and sexual of differentiation by TBTCl.3 Tributyltin increased serum progesterone in granulosa cells, but serum testosterone and estradiol were diminished.4 TBT has been known that it repressed P450 aromatase activity. In this study, we investigated effect of tributyltin chloride (TBTCl) on the mRNA expression of steroidogenic enzymes and steroid hormone in male rat.

  11. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  12. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  13. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  14. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  15. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  16. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  17. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  18. Quantum key management

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  19. Group key management

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  20. Modular Connector Keying Concept

    Science.gov (United States)

    Ishman, Scott; Dukes, Scott; Warnica, Gary; Conrad, Guy; Senigla, Steven

    2013-01-01

    For panel-mount-type connectors, keying is usually "built-in" to the connector body, necessitating different part numbers for each key arrangement. This is costly for jobs that require small quantities. This invention was driven to provide a cost savings and to reduce documentation of individual parts. The keys are removable and configurable in up to 16 combinations. Since the key parts are separate from the connector body, a common design can be used for the plug, receptacle, and key parts. The keying can then be set at the next higher assembly.

  1. Rational and combinatorial engineering of the glucan synthesizing enzyme amylosucrase

    DEFF Research Database (Denmark)

    Albenne, C.; Van Der Veen, B.A.; Potocki-Véronèse, G.

    2003-01-01

    Rational engineering of amylosucrase required detailed investigations of the molecular basis of catalysis. Biochemical characterization of the enzyme coupled to structural analyses enabled the polymerization mechanism to be elucidated. This provided key information for successfully changing amylo...

  2. Changes in activities of tissues enzymes in rats administered Ficus ...

    African Journals Online (AJOL)

    This study evaluates the effects of methanolic extract of Ficus exasperata leaf on the ... measuring the levels of some key enzymes in ... powder using an electrical blender. .... of the cells at these doses. .... activities and acute toxicity of a stem.

  3. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  4. Enzyme immobilisation in biocatalysis : Why, what and how

    NARCIS (Netherlands)

    Sheldon, R.A.; Van Pelt, S.

    2013-01-01

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling

  5. Selected soil enzymes: Examples of their potential roles in the ...

    African Journals Online (AJOL)

    Soil enzymes regulate ecosystem functioning and in particular play a key role in nutrient cycling. In this review we briefly summarise potential roles of selected enzymes such as amylase, arylsulphatases, -glucosidase, cellulose, chitinase, dehydrogenase, phosphatase, protease and urease in the ecosystem. We also ...

  6. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  7. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  8. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  9. Biometry, the safe key

    Directory of Open Access Journals (Sweden)

    María Fraile-Hurtado

    2010-12-01

    Full Text Available Biometry is the next step in authentication, why do not we take this stepforward in our communication security systems? Keys are the main disadvantage in the cryptography, what if we were our own key?

  10. Financial Key Ratios

    OpenAIRE

    Tănase Alin-Eliodor

    2014-01-01

    This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  11. Public Key Cryptography.

    Science.gov (United States)

    Tapson, Frank

    1996-01-01

    Describes public key cryptography, also known as RSA, which is a system using two keys, one used to put a message into cipher and another used to decipher the message. Presents examples using small prime numbers. (MKR)

  12. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  13. Public Key Infrastructure Study

    National Research Council Canada - National Science Library

    Berkovits, Shimshon

    1994-01-01

    The National Institute of Standards and Technology (NIST) has tasked The MITRE Corporation to study the alternatives for automated management of public keys and of the associated public key certificates for the Federal Government...

  14. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  15. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  16. LOCKS AND KEYS SERVICE

    CERN Multimedia

    Locks and Keys Service

    2002-01-01

    The Locks and Keys service (ST/FM) will move from building 55 to building 570 from the 2nd August to the 9th August 2002 included. During this period the service will be closed. Only in case of extreme urgency please call the 164550. Starting from Monday, 12th August, the Locks and Keys Service will continue to follow the activities related to office keys (keys and locks) and will provide the keys for furniture. The service is open from 8h30 to 12h00 and from 13h00 to 17h30. We remind you that your divisional correspondents can help you in the execution of the procedures. We thank you for your comprehension and we remain at your service to help you in solving all the matters related to keys for offices and furniture. Locks and Keys Service - ST Division - FM Group

  17. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  18. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    Science.gov (United States)

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  19. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  20. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  1. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  2. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  3. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland--involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1.

    Science.gov (United States)

    Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana

    2012-05-01

    The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.

  4. Key improvements to XTR

    NARCIS (Netherlands)

    Lenstra, A.K.; Verheul, E.R.; Okamoto, T.

    2000-01-01

    This paper describes improved methods for XTR key representation and parameter generation (cf. [4]). If the field characteristic is properly chosen, the size of the XTR public key for signature applications can be reduced by a factor of three at the cost of a small one time computation for the

  5. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  6. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  7. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  9. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  10. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  11. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  12. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  13. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  14. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  15. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  16. Key Facts about Tularemia

    Science.gov (United States)

    ... Submit What's this? Submit Button Key Facts About Tularemia Recommend on Facebook Tweet Share Compartir This fact ... and Prevention (CDC) Tularemia Web site . What is Tularemia? Tularemia is a potentially serious illness that occurs ...

  17. Key technologies book

    International Nuclear Information System (INIS)

    1997-01-01

    In this book can be found all the useful information on the French industry key technologies of the years 2000-2005. 136 technologies at the junction of the science advances and of the markets expectations are divided into 9 sectors. Among them, only 4 are interesting here: the environment, the transports, the materials and the energy. In 1995, the secretary's office of State for industry has published a first synthesis book on these key technologies. This 1997 new key technologies book extends and completes the initial study. For each key technology, an encyclopedic sheet is given. Each sheet combines thus some exact and practical information on: advance state of the technology, market characteristics, development forecasts, occupation and involved sectors, technology acquisition cost, research programs but also contacts of the main concerned efficiency poles. (O.M.)

  18. The Key Lake project

    International Nuclear Information System (INIS)

    Glattes, G.

    1985-01-01

    Aspects of project financing for the share of the Canadian subsidiary of Uranerzbergbau-GmbH, Bonn, in the uranium mining and milling facility at Key Lake, Saskatchewan, by a Canadian bank syndicate. (orig.) [de

  19. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  20. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  1. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  2. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    Science.gov (United States)

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  3. Comparison is key.

    Science.gov (United States)

    Stone, Mark H; Stenner, A Jackson

    2014-01-01

    Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.

  4. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  5. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  6. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  7. Cryptographic Key Management System

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  8. Turn key contracts

    International Nuclear Information System (INIS)

    Feretic, D.

    1975-01-01

    The aim of this summary is to point out some specific areas which have to be covered in a turn-key contract and which are of primarily interest to the buyer of a nuclear plant. It will be assumed that the buyer is utility company in a developing country and a plant supplier a company in an industrial country. (orig./FW) [de

  9. Key numbers: Energy

    International Nuclear Information System (INIS)

    1994-01-01

    The key numbers of energy give statistical data related to production, consumption, and to foreign trade of each energy in the World and in France. A chapter is dedicated to environment and brings quantitative elements on pollutant emissions connected to energy uses

  10. Key performance indicators

    NARCIS (Netherlands)

    Zwetsloot, G.I.J.M.

    2014-01-01

    This paper addresses how organisations can use OSH performance indicators. This is an important way to mainstream OSH into business management. Key performance indicators (KPIs) should provide objective data on the OSH situation. It is often said that ‘what gets measured gets managed’. Without

  11. Locks and Keys Service

    CERN Multimedia

    Claude Ducastel

    The GS-LS-SEM section is pleased to inform you that as from Monday 30 November 2009, the opening hours of the Locks and Keys service will be the following: 08h30 - 12h30 / 13h30 - 16:30, Mondays to Fridays. GS-SEM-LS 73333

  12. Semantic Keys and Reading

    Directory of Open Access Journals (Sweden)

    Zev bar-Lev

    2016-12-01

    Full Text Available Semantic Keys are elements (word-parts of written language that give an iconic, general representation of the whole word’s meaning. In written Sino-Japanese the “radical” or semantic components play this role. For example, the character meaning ‘woman, female’ is the Semantic Key of the character for Ma ‘Mama’ (alongside the phonetic component Ma, which means ‘horse’ as a separate character. The theory of semantic Keys in both graphic and phonemic aspects is called qTheory or nanosemantics. The most innovative aspect of the present article is the hypothesis that, in languages using alphabetic writing systems, the role of Semantic Key is played by consonants, more specifically the first consonant. Thus, L meaning ‘LIFT’ is the Semantic Key of English Lift, Ladle, Lofty, aLps, eLevator, oLympus; Spanish Leva, Lecantarse, aLto, Lengua; Arabic aLLah, and Hebrew① ªeL-ºaL ‘upto-above’ (the Israeli airline, Polish Lot ‘flight’ (the Polish airline; Hebrew ªeL, ªeLohim ‘God’, and haLLeluyah ‘praise-ye God’ (using Parallels, ‘Lift up God’. Evidence for the universality of the theory is shown by many examples drawn from various languages, including Indo-European Semitic, Chinese and Japanese. The theory reveals hundreds of relationships within and between languages, related and unrelated, that have been “Hiding in Plain Sight”, to mention just one example: the Parallel between Spanish Pan ‘bread’ and Mandarin Fan ‘rice’.

  13. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  14. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  15. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen

    2011-04-01

    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  16. In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles

    International Nuclear Information System (INIS)

    Myllymaeki, Sari; Haavisto, Tapio; Vainio, Minna; Toppari, Jorma; Paranko, Jorma

    2005-01-01

    Isolated rat ovarian follicles grow and produce steroid hormones in vitro and so provide a good model for studying the effects of hormonally active compounds on follicular steroidogenesis. We have evaluated the effects of diethylstilbestrol (DES), genistein (GEN) and two alkylphenols, 4-tert-butylphenol (BP) and 4-tert-octylphenol (OP) on the growth, survival, and steroid hormone and cAMP production by isolated 14-day-old rat (Sprague-Dawley) ovarian follicles. During a 5-day culture, FSH was obligatory for follicle growth and increased estradiol and testosterone secretion in a dose-dependent manner. DES (10 -6 M) caused the strongest decline in estradiol and testosterone levels but did not have detectable effects on either cAMP production or aromatase enzyme activity. GEN caused a prominent decrease in cAMP and testosterone levels without significant changes in secreted estradiol. The latter, apparently, was due to a dose-dependent stimulation of aromatase enzyme activity in the presence of genistein. Both BP and OP decreased estradiol and testosterone secretion in a dose-dependent manner while no effect on aromatase activity was observed. OP, unlike BP, decreased forskolin-induced cAMP levels. Xenoestrogens at the used concentrations did not interfere with the growth and survival of the follicles. The results indicate that isolated ovarian follicles representing intact morphological and functional units offer a sensitive model system for elucidating the female-specific reproductive effects of environmental chemicals

  17. Ancel Keys: a tribute

    Directory of Open Access Journals (Sweden)

    VanItallie Theodore B

    2005-02-01

    Full Text Available Abstract Ancel Keys, Ph.D., who died in November, 2004, at the age of 100, was among the first scientists to recognize that human atherosclerosis is not an inevitable consequence of aging, and that a high-fat diet can be a major risk factor for coronary heart disease. During World War II, he and a group of talented co-workers at the University of Minnesota conducted a large-scale study of experimentally-induced human starvation. The data generated by this study – which was immediately recognized to be a classic – continue to be of inestimable value to nutrition scientists. In his later years, Keys spent more time at his home in Naples, Italy, where he had the opportunity to continue his personal study of the beneficial effects on health and longevity of a Mediterranean diet.

  18. Physician Appraisals: Key Challenges

    Directory of Open Access Journals (Sweden)

    Klich Jacek

    2017-06-01

    Full Text Available The main purpose of the article is to identify key criteria being used for physician appraisals and to find how communication skills of physicians are valued in those appraisals. ScienceDirect and EBSCOhost databases were used for this search. The results show that a physician appraisal is underestimated both theoretically and empirically. The particular gap exists with respect to the communication skills of physicians, which are rarely present in medical training syllabi and physician assessments. The article contributes to the theoretical discourse on physician appraisals and points out at the inconsistency between the high status of physicians as a key hospital resource on the one hand and, on the other hand, at inadequate and poorly researched assessment of their performance with a special emphasis on communication skills. The article may inspire health managers to develop and implement up-to-date assessment forms for physicians and good managerial practices in this respect in hospitals and other health care units.

  19. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  20. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  1. Manet key management via Mobile Ficlke Key protocol (MFK ...

    African Journals Online (AJOL)

    Manet key management via Mobile Ficlke Key protocol (MFK) ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS JOURNAL ... No Abstract. Keywords: MANET; key management scheme; simulation environment ...

  2. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  3. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  4. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  5. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen [Univ. of California, Davis, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-01-01

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  6. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  7. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  9. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  10. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  11. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  12. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  13. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  14. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  15. Key aspects congenital infection

    Directory of Open Access Journals (Sweden)

    Yu. V. Lobzin

    2014-01-01

    Full Text Available The key questions to solve the problem of congenital infection in the Russian Federation are: using in national practice over world accepted terminology adapted to the recommendations of the World Health Organization; representation of the modern concepts of an infectious process in the classification of congenital infections; scientific development and introducing in clinical practice the «standard case definitions», applied to different congenital infections; optimization of protocols and clinical guidelines for diagnosis, treatment and prevention of congenital infections; improvement a knowledge in the infectious disease for all  pecialists involved in the risk assessment of congenital infections, manage pregnancy and children. Based on our experience and analysis of publications, the authors suggest possible solutions.

  16. Key figures. Year 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This document summarizes in a series of tables the key data of the petroleum industry and of the other energies for the year 2006. Data of the two previous years are given for comparison: 1 - petroleum, France: exploration, reserves, production, transports (tankers, pipelines, crude and refined products), storage capacities, status of resources and uses, foreign trade (imports, prices, exports), refining (capacities, facilities), evolution of supplies, automotive fuels consumption; 2 - energies, France: production, consumption and trade data for coal, natural gas, electricity; total production and consumption of primary energy; consumption per sector of use; 3 - petroleum, world: crude production and reserves per geographical area, OPEC production, imports/exports and refining/consumption per geographical area, international quotation for crudes and refined products; 4 - energies, world: reserves, production and consumption data for coal, natural gas and electricity; uranium production and resources; total primary energy production and consumption per energy source and geographical area. (J.S.)

  17. Key figures. Year 2005

    International Nuclear Information System (INIS)

    2005-01-01

    This document summarizes in a series of tables the key data of the petroleum industry and of the other energies for the year 2005. Data of the two previous years are given for comparison: 1 - petroleum, France: exploration, reserves, production, transports (tankers, pipelines, crude and refined products), storage capacities, status of resources and uses, foreign trade (imports, prices, exports), refining (capacities, facilities), evolution of supplies, automotive fuels consumption; 2 - energies, France: production, consumption and trade data for coal, natural gas, electricity; total production and consumption of primary energy; consumption per sector of use; 3 - petroleum, world: crude production and reserves per geographical area, OPEC production, imports/exports and refining/consumption per geographical area, international quotation for crudes and refined products; 4 - energies, world: reserves, production and consumption data for coal, natural gas and electricity; uranium production and resources; total primary energy production and consumption per energy source and geographical area. (J.S.)

  18. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  19. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  20. Inducible secretion of phytate-degrading enzymes from bacteria ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-02-04

    Feb 4, 2015 ... Key words: Bacillus sp., phytase activities, soil bacteria, Bacillus broth, Bacillus broth. INTRODUCTION ... Penicillium) enzymes conquered many applications in ... U/(g×h)] than in (SSF) Solid State Fermentation [1.2. U/(g×h)] ... mM (from Loba Chemie Pvt. Ltd, Mumbai), and liquid nitrogen (from. Air liquid ...

  1. Biosynthesis of cellulolytic enzymes by Tricothecium roseum with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... good inducer for extracellular cellulolytic enzyme production by the fungus. Key words: Tricothecium ... feasible for the conversion of cellulose into fermentable sugars and fuel ... Biomass of the culture was dried at 70°C in an ...

  2. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  3. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  4. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  5. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  6. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    Science.gov (United States)

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  7. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  8. A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily

    Science.gov (United States)

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik

    2013-01-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. During investigation of a Tn5::mob-induced mutant defective in growth on 3,3′-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO32−). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min−1 mg−1, an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s−1 mM−1 for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for

  9. Mechanism-based Categorization of Aromatase Inhibitors: A Potential Discovery and Screening Tool

    Science.gov (United States)

    Cytochrome P450 aromatase is a key steroidogenic enzyme that converts androgens to estrogens in vertebrates. There is much interest in aromatase inhibitors (AIs) because a number of environmental contaminants can act as AIs, thereby disrupting endocrine function in humans and wil...

  10. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  11. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  12. Key to good fit: body measurement problems specific to key ...

    African Journals Online (AJOL)

    Key to good fit: body measurement problems specific to key dimensions. ... to explore and describe the problems that the South African Clothing Industry currently ... A postal survey was conducted among South African apparel and footwear ...

  13. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Department of Water Resources Development and Management, Indian Institute ... on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). ... nature of flows is clearly understood with the help of advanced instrumentation.

  14. Biogenesis of ER subdomains containing DGAT2, an enzyme involved in industrial oil biosynthesis

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the committed step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl group from the acyl-CoA pool to the sn-3 position of diacylglycerol. The substrate specificity and overall activity of these enzymes play a key role...

  15. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  16. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Science.gov (United States)

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  17. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  19. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  20. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  1. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  2. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  3. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  4. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  5. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  7. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  8. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  9. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  10. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  11. CLINICAL USE OF ENZYMES IN PEDIATRIC GASTROENTEROLOGY

    Directory of Open Access Journals (Sweden)

    А.N. Surkov

    2011-01-01

    Full Text Available High incidence of various pediatric gastroenterologic diseases including congenital still remains an important issue for a Russian healthcare. The latter may be attended by relative or total excretory pancreatic failure with the following symptoms: stool abnormalities, abdominal pain, meteorism, weakness, low appetite and physical exercise, weight reduction and growth retardation. Pancreatic enzymes that contribute to protein, lipids and carbohydrates digestion are often used as a replacement therapy in pediatric care. Nowadays there is a plenty of choice among enzymatic medications. However, not all aforesaid medications can ensure adequate replacement treatment especially in children with chronic pancreatic failure. That is why among agents of choice are modern and highly effective microgranulated encapsulated pancreatines. For example Micrazim.Key words: children, pancreas, pancreatic failure, enzymotherapy.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (3: 114–118

  12. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  13. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  14. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  15. Identifying tier one key suppliers.

    Science.gov (United States)

    Wicks, Steve

    2013-01-01

    In today's global marketplace, businesses are becoming increasingly reliant on suppliers for the provision of key processes, activities, products and services in support of their strategic business goals. The result is that now, more than ever, the failure of a key supplier has potential to damage reputation, productivity, compliance and financial performance seriously. Yet despite this, there is no recognised standard or guidance for identifying a tier one key supplier base and, up to now, there has been little or no research on how to do so effectively. This paper outlines the key findings of a BCI-sponsored research project to investigate good practice in identifying tier one key suppliers, and suggests a scalable framework process model and risk matrix tool to help businesses effectively identify their tier one key supplier base.

  16. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  17. Security for Key Management Interfaces

    OpenAIRE

    Kremer , Steve; Steel , Graham; Warinschi , Bogdan

    2011-01-01

    International audience; We propose a much-needed formal definition of security for cryptographic key management APIs. The advantages of our definition are that it is general, intuitive, and applicable to security proofs in both symbolic and computational models of cryptography. Our definition relies on an idealized API which allows only the most essential functions for generating, exporting and importing keys, and takes into account dynamic corruption of keys. Based on this we can define the ...

  18. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  20. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  1. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  2. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  3. Model plant Key Measurement Points

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    For IAEA safeguards a Key Measurement Point is defined as the location where nuclear material appears in such a form that it may be measured to determine material flow or inventory. This presentation describes in an introductory manner the key measurement points and associated measurements for the model plant used in this training course

  4. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.

    Science.gov (United States)

    Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M

    2002-03-16

    Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.

  5. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle

    OpenAIRE

    Sears, Avery E.; Palczewski, Krzysztof

    2016-01-01

    Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established ...

  6. Bioinformatics Evaluation of Plant Chlorophyllase, the Key Enzyme in Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Ebrahim Sharafi

    2017-06-01

    Full Text Available Background and Objective: Chlorophyllase catalyzes the hydrolysis of chlorophylls to chlorophyllide and phytol. Recently, several applications including removal of chlorophylls from vegetable oils, use in laundry detergents and production of chlorophyllides have been described for chlorophyllase. However, there is little information about the biochemical characteristics of chlorophyllases.Material and Methods: 35 chlorophyllase protein sequences were obtained from the National Centre for Biotechnology Information database. All of the sequences were analyzed using bioinformatics tools for their conserved domain, phylogenetic relationships and biochemical characteristics.Results and Conclusion: The overall domain architecture of chlorophyllases consisted of the esterases/lipases superfamily domain over their full length and the alpha/beta hydrolase family domain over the middle part of their sequences. Plant chlorophyllases could be classified into 4 clades. Molecular weight and pI of the chlorophyllases ranged 32.65-37.77 kDa and 4.80-8.97, respectively. The most stable chlorophyllase is probably obtained from Malus domestica. Chlorophyllases form Solanum pennellii, Triticum aestivum, Triticum urartu, Arabidopsis lyrata, Pachira macrocarpa, Prunus mume and Malus domestica were predicted to be soluble upon overexpression in Escherichia coli, Beta vulgaris and Chenopodium album chlorophyllases were predicted to form no disulfide bond. Chlorophyllases from Jatropha curcas, Amborella trichopod, Setaria italica, Piper betle, Triticum urartu and Arabidopsis thaliana were predicted to be in non-N-glycosylated form.Conflict of interest: The authors declare no conflict of interest.

  7. Detection of novel key residues of MnSOD enzyme and its role in ...

    Indian Academy of Sciences (India)

    avoidance mechanism and morphological changes (Flowers ... The MnSOD proteins of different species available in salinity condition with their uniprot IDs and domain information ...... relative Lycopersicon pennellii to salt-dependent oxidative.

  8. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    OpenAIRE

    Przemysław eKaczor; Dariusz eRakus; Jerzy Władysław Mozrzymas; Jerzy Władysław Mozrzymas

    2015-01-01

    GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocy...

  9. Breaking chaotic shift key communication via adaptive key identification

    International Nuclear Information System (INIS)

    Ren Haipeng; Han Chongzhao; Liu Ding

    2008-01-01

    This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise

  10. Spatial distribution of enzyme driven reactions at micro-scales

    Science.gov (United States)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  11. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    Science.gov (United States)

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  12. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  13. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  14. A Distributed Shared Key Generation Procedure Using Fractional Keys

    National Research Council Canada - National Science Library

    Poovendran, Radha; Corson, M. S; Baras, J. S

    1998-01-01

    We present a new class of distributed key generation and recovery algorithms suitable for group communication systems where the group membership is either static or slowly time-varying, and must be tightly controlled...

  15. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  16. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Key parameters controlling radiology departments

    International Nuclear Information System (INIS)

    Busch, Hans-Peter

    2011-01-01

    For radiology departments and outstanding practises control and optimization of processes demand an efficient management based on key data. Systems of key data deliver indicators for control of medical quality, service quality and economics. For practices effectiveness (productivity), for hospitals effectiveness and efficiency are in the focus of economical optimization strategies. Task of daily key data is continuous monitoring of activities and workflow, task of weekly/monthly key data is control of data quality, process quality and achievement of objectives, task of yearly key data is determination of long term strategies (marketing) and comparison with competitors (benchmarking). Key parameters have to be defined clearly and have to be available directly. For generation, evaluation and control of key parameters suitable forms of organization and processes are necessary. Strategies for the future will be directed more to the total processes of treatment. To think in total processes and to steer and optimize with suitable parameters is the challenge for participants in the healthcare market of the future. (orig.)

  18. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    , covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic

  19. Key economic sectors and services

    NARCIS (Netherlands)

    Arent, Douglas J.; Tol, Richard S.J.; Faust, Eberhard; Hella, Joseph P.; Kumar, Surender; Strzepek, Kenneth M.; Tóth, Ferenc L.; Yan, Denghua; Abdulla, Amjad; Kheshgi, Haroon; Xu, He; Ngeh, Julius

    2015-01-01

    Introduction and Context This chapter discusses the implications of climate change on key economic sectors and services, for example, economic activity. Other chapters discuss impacts from a physical, chemical, biological, or social perspective. Economic impacts cannot be isolated; therefore, there

  20. Algorithms for Lightweight Key Exchange.

    Science.gov (United States)

    Alvarez, Rafael; Caballero-Gil, Cándido; Santonja, Juan; Zamora, Antonio

    2017-06-27

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.

  1. Key Injury and Violence Data

    Science.gov (United States)

    ... Traumatic Brain Injury Violence Prevention Key Injury and Violence Data Recommend on Facebook Tweet Share Compartir Injuries ... of death among persons 1-44. Injury- and violence-related deaths are only part of the problem ...

  2. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  3. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  4. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  5. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  6. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  7. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  8. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  9. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  10. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  11. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  12. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  13. Secret key rates in quantum key distribution using Renyi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bratzik, Sylvia; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2010-07-01

    The secret key rate r of a quantum key distribution protocol depends on the involved number of signals and the accepted ''failure probability''. We reconsider a method to calculate r focusing on the analysis of the privacy amplification given by R. Renner and R. Koenig (2005). This approach involves an optimization problem with an objective function depending on the Renyi entropy of the density operator describing the classical outcomes and the eavesdropper system. This problem is analyzed for a generic class of QKD protocols and the current research status is presented.

  14. Three state quantum key distribution for small keys

    International Nuclear Information System (INIS)

    Batuwantudawe, J.; Boileau, J.-C.

    2005-01-01

    Full text: Quantum key distribution (QKD) protocols allow two parties, Alice and Bob, to establish secure keys. The most well-known protocol is BB84, using four distinct states. Recently, Phoenix et al. proposed a three state protocol. We explain the protocol and discuss its security proof. The three state protocol also has an interesting structure that allows for errors estimation from the inconclusive results (i.e.. where Alice and Bob choose different bases). This eliminates the need for sampling, potentially useful when qubits are limited. We discuss the effectiveness of this approach compared to BB84 for the case where a good error estimate is required. (author)

  15. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  16. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  17. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  18. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  19. Decoy State Quantum Key Distribution

    Science.gov (United States)

    Lo, Hoi-Kwong

    2005-10-01

    Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution

  20. Screening the ToxCast Phase I Chemical Library for inhibition of Deiodinase Type I enzyme activity

    Science.gov (United States)

    Thyroid hormone (TH) signaling in vertebrates is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper homeostasis of the hormones. Deiodinase enzymes interconvert THs between less active and...

  1. Key distillation in quantum cryptography

    Science.gov (United States)

    Slutsky, Boris Aron

    1998-11-01

    Quantum cryptography is a technique which permits two parties to communicate over an open channel and establish a shared sequence of bits known only to themselves. This task, provably impossible in classical cryptography, is accomplished by encoding the data on quantum particles and harnessing their unique properties. It is believed that no eavesdropping attack consistent with the laws of quantum theory can compromise the secret data unknowingly to the legitimate users of the channel. Any attempt by a hostile actor to monitor the data carrying particles while in transit reveals itself through transmission errors it must inevitably introduce. Unfortunately, in practice a communication is not free of errors even when no eavesdropping is present. Key distillation is a technique that permits the parties to overcome this difficulty and establish a secret key despite channel defects, under the assumption that every particle is handled independently from other particles by the enemy. In the present work, key distillation is described and its various aspects are studied. A relationship is derived between the average error rate resulting from an eavesdropping attack and the amount of information obtained by the attacker. Formal definition is developed of the security of the final key. The net throughput of secret bits in a quantum cryptosystem employing key distillation is assessed. An overview of quantum cryptographic protocols and related information theoretical results is also given.

  2. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  3. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  4. Transcription of key genes regulating gonadal steroidogenesis in control and ketoconazole- or vinclozolin-exposed fathead minnows

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, Daniel L.; Blake, Lindsey S.; Brodin, Jeffrey; Greene, Katie J.; Knoebl, Iris; Miracle, Ann L.; Martinovic, Dalma; Ankley, Gerald T.

    2007-08-01

    This study evaluated changes in the expression of steroidogenesis-related genes in male fathead minnows exposed to ketoconazole (KTC) or vinclozolin (VZ) for 21 days. The aim was to evaluate links between molecular changes and higher level outcomes after exposure to endocrine-active chemicals (EACs) with different modes of action. To aid our analysis and interpretation of EAC-related effects, we first examined variation in the relative abundance of steroidogenesis-related gene transcripts in the gonads of male and female fathead minnows as a function of age, gonad development, and spawning status, independent of EAC exposure. Gonadal expression of several genes varied with age and/or gonadal somatic index in either males or females. However, with the exception of aromatase, steroidogenesis-related gene expression did not vary with spawning status. Following the baseline experiments, expression of the selected genes in male fathead minnows exposed to KTC or VZ was evaluated in the context of effects observed at higher levels of organization. Exposure to KTC elicited changes in gene transcription that were consistent with an apparent compensatory response to the chemical's anticipated direct inhibition of steroidogenic enzyme activity. Exposure to VZ, an antiandrogen expected to indirectly impact steroidogenesis, increased pituitary expression of follicle-stimulating hormone beta-subunit as well as testis expression of 20beta-hydroxysteroid dehydrogenase and luteinizing hormone receptor transcripts. Results of this study contribute to ongoing research aimed at understanding responses of the teleost hypothalamic-pituitary-gonadal axis to different types of EACs and how changes in molecular endpoints translate into apical outcomes reflective of either adverse effect or compensation.

  5. Evaluation of Myceliopthora thermophila as an Enzyme Factory for the Production of Thermophilic Cellulolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2015-07-01

    Full Text Available Enzymatic hydrolysis is a key step in bioethanol production. Efficient hydrolysis requires a consortium of different enzymes that are able to hydrolyze cellulose and hemicellulose into fermentable sugars. Myceliopthora thermophila is a promising candidate for the production of thermophilic cellulolytic enzymes, the use of which could reduce the cost of ethanol production. The growth conditions of the fungus were optimized in order to achieve increased secretion of extracellular cellulases. Optimal conditions were found to be 7.0% w/v brewer’s spent grain as the carbon source and 0.4% w/v ammonium sulfate as the nitrogen source. The cellulases obtained were characterized for their optimum activity. The optimum temperature and pH for cellulase activity are 65 °C and pH 5.5, respectively. Studies on thermal inactivation of the crude extract showed that the cellulases of M. thermophila are stable for temperatures up to 60 °C. At this temperature the half-life was found to be as high as 27 h. Enzymatic hydrolysis of cellulose resulted in 31.4% hydrolysis yield at 60 °C after 24 h of incubation. Finally, the recalcitrance constant for cellulose and cellulose pretreated with ionic liquids was calculated to be 5.46 and 2.69, respectively.

  6. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  7. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  8. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  9. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  10. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  11. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  12. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  13. Key World Energy Statistics 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997 and every year since then it has been more and more successful. Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  14. Key China Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  15. Key China Energy Statistics 2011

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  16. Pectin-modifying enzymes and pectin-derived materials: applications and impacts.

    Science.gov (United States)

    Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine

    2014-01-01

    Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.

  17. Enzymes in therapy of biofilm-related oral diseases.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Bachanek, Teresa; Szczodrak, Janusz

    2017-05-01

    Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  19. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.

    Science.gov (United States)

    Bhat, Javaid Y; Thieulin-Pardo, Gabriel; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO 2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO 2 molecule and binding of a Mg 2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

  20. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  1. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  2. Key to marine arthropod larvae

    Directory of Open Access Journals (Sweden)

    John A. Fornshell

    2012-03-01

    Full Text Available The scope of this key is restricted to the larvae of marine arthropods. The key is based solely on their morphology, patterns of body segmentation, numbers of appendages, and mode of locomotion. An effort has been made to treat all traditionally named larval forms, both planktonic and benthic. It is intended that this key be useful for a researcher working with archived museum specimens and therefore, does not include habitat information as a identifying trait, even though this information is usually available in the archived records. Within the phylum Arthropoda there are two sub-phyla and eleven classes having larval stages in the marineenvironment. Where feasible the original names of the various larval types have been used. Because this nomenclature is less commonly used today compared to the past, the more recent taxonomic affinities are included in parentheses after the original larval name. The key includes the following thirty-four larvae: Branchhiopoda nauplii; Cephalocarida nauplii; Mystacocarida nauplii; trilobite larva; protonymphon; hexapod larvae; Remipedia nauplii; nauplius - Y larvae; Cirripedia nauplii; Ascothoracida nauplii; Ostracoda nauplii; Euphausiacea nauplii; Penaeidea nauplii; Cyclopoida nauplii; Calanoida nauplii; Harpacticoida nauplii;Polyarthra nauplii; cypris larva; eryonecius larva; cypris-Y larva; elapthocaris larvae; mysis larvae; lucifer zoea; acetes zoea; acanthosoma larva; phyllosoma; antizoea larva; anomuran zoea; brachyuran zoea; calyptopis larvae; furcilia larva; crytopia larva; puerulus larva; alima larva.

  3. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  4. Key World Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  5. [Key informers. When and How?].

    Science.gov (United States)

    Martín González, R

    2009-03-01

    When information obtained through duly designed and developed studies is not available, the solution to certain problems that affect the population or that respond to certain questions may be approached by using the information and experience provided by the so-called key informer. The key informer is defined as a person who is in contact with the community or with the problem to be studied, who is considered to have good knowledge of the situation and therefore who is considered an expert. The search for consensus is the basis to obtain information through the key informers. The techniques used have different characteristics based on whether the experts chosen meet together or not, whether they are guided or not, whether they interact with each other or not. These techniques include the survey, the Delphi technique, the nominal group technique, brainwriting, brainstorming, the Phillips 66 technique, the 6-3-5 technique, the community forum and the community impressions technique. Information provided by key informers through the search for consensus is relevant when this is not available or cannot be obtained by other methods. It has permitted the analysis of the existing neurological care model, elaboration of recommendations on visit times for the out-patient neurological care, and the elaboration of guidelines and recommendations for the management of prevalent neurological problems.

  6. The Key to School Security.

    Science.gov (United States)

    Hotle, Dan

    1993-01-01

    In addition to legislative accessibility requirements, other security issues facing school administrators who select a security system include the following: access control; user friendliness; durability or serviceability; life safety precautions; possibility of vandalism, theft, and tampering; and key control. Offers steps to take in considering…

  7. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes

    DEFF Research Database (Denmark)

    Albertsen, Line; Chen, Yun; Bach, Lars Stougaard

    2011-01-01

    be limited by the inability of the heterologous enzymes to collaborate with the native yeast enzymes. This may cause loss of intermediates by diffusion or degradation or due to conversion of the intermediate through competitive pathways. To bypass this problem, we have pursued a strategy in which key enzymes...... increased the production of patchoulol, the main sesquiterpene produced by PTS, up to 2-fold. Moreover, we have demonstrated that the fusion strategy can be used in combination with traditional metabolic engineering to further increase the production of patchoulol. This simple test case of synthetic biology...

  8. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  9. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  10. Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis.

    Science.gov (United States)

    Lousse, J-C; Defrère, S; Colette, S; Van Langendonckt, A; Donnez, J

    2010-03-01

    Increased peritoneal eicosanoid concentrations have been reported in endometriosis patients and might be important in disease-associated pain and inflammation. Here, we evaluated the expression of key biosynthetic and catabolic enzymes involved in this abnormal eicosanoid production in peritoneal macrophages and endometriotic lesions. Peritoneal macrophages, endometriotic lesions and matched eutopic endometrium were collected from endometriosis patients (n = 40). Peritoneal macrophages and eutopic endometrium samples were also collected from disease-free women (n = 25). Expression of type IIA secretory phospholipase A(2) (sPLA(2)-IIA), cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and 5-lipoxygenase (5-LO) was quantified by real-time PCR, and these five key enzymes were localized by immunohistochemistry. sPLA(2)-IIA, COX-2 and mPGES-1 mRNA was significantly increased in peritoneal macrophages of endometriosis patients compared with controls (P = 0.006, P = 0.016 and P = 0.025, respectively). In endometriosis patients, sPLA(2)-IIA, mPGES-1 and 15-PGDH mRNA was significantly enhanced in peritoneal lesions compared with matched eutopic endometrium (P endometriosis group compared with controls (P = 0.023). Finally, sPLA(2)-IIA, COX-2, mPGES-1 and 15-PGDH immunostaining was found mainly in endometrial glands, whereas 5-LO was distributed throughout the glands and stroma. Our study highlights an imbalance between eicosanoid biosynthesis and degradation in endometriosis patients. Both peritoneal macrophages and endometriotic lesions may be involved. Research into new molecules inhibiting biosynthetic enzymes (such as sPLA(2)-IIA and mPGES-1) and/or activating catabolic enzymes (such as 15-PGDH) may prove to be a major field of investigation in the development of targeted medical therapies.

  11. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  12. Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe.

    Science.gov (United States)

    Lu, Zheng; Sethu, Ramakrishnan; Imlay, James A

    2018-04-03

    It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron , a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron , they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.

  13. Key drivers of airline loyalty.

    Science.gov (United States)

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-10-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty.

  14. Key papers in prostate cancer.

    Science.gov (United States)

    Rodney, Simon; Shah, Taimur Tariq; Patel, Hitendra R H; Arya, Manit

    2014-11-01

    Prostate cancer is the most common cancer and second leading cause of death in men. The evidence base for the diagnosis and treatment of prostate cancer is continually changing. We aim to review and discuss past and contemporary papers on these topics to provoke debate and highlight key dilemmas faced by the urological community. We review key papers on prostate-specific antigen screening, radical prostatectomy versus surveillance strategies, targeted therapies, timing of radiotherapy and alternative anti-androgen therapeutics. Previously, the majority of patients, irrespective of risk, underwent radical open surgical procedures associated with considerable morbidity and mortality. Evidence is emerging that not all prostate cancers are alike and that low-grade disease can be safely managed by surveillance strategies and localized treatment to the prostate. The question remains as to how to accurately stage the disease and ultimately choose which treatment pathway to follow.

  15. Key Topics in Sports Medicine

    OpenAIRE

    2006-01-01

    Key Topics in Sports Medicine is a single quick reference source for sports and exercise medicine. It presents the essential information from across relevant topic areas, and includes both the core and emerging issues in this rapidly developing field. It covers: 1) Sports injuries, rehabilitation and injury prevention, 2) Exercise physiology, fitness testing and training, 3) Drugs in sport, 4) Exercise and health promotion, 5) Sport and exercise for special and clinical populations, 6) The ps...

  16. Key issues for passive safety

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1996-01-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ''review paper'' as such and only record the highlights. (author)

  17. Human Resources Key Performance Indicators

    Directory of Open Access Journals (Sweden)

    Gabčanová Iveta

    2012-03-01

    Full Text Available The article brings out a proposed strategy map and respective key performance indicators (KPIs in human resources (HR. The article provides an overview of how HR activities are supported in order to reach the partial goals of HR as defined in the strategic map. Overall the aim of the paper is to show the possibilities of using the modern Balanced Scorecard method in human capital.

  18. Key issues for passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hayns, M R [AEA Technology, Harwell, Didcot (United Kingdom). European Institutions; Hicken, E F [Forschungszentrum Juelich GmbH (Germany)

    1996-12-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ``review paper`` as such and only record the highlights. (author).

  19. Low carbon development. Key issues

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Frauke; Nordensvaard, Johan (eds.)

    2013-03-07

    This comprehensive textbook addresses the interface between international development and climate change in a carbon constrained world. It discusses the key conceptual, empirical and policy-related issues of low carbon development and takes an international and interdisciplinary approach to the subject by drawing on insights from across the natural sciences and social sciences whilst embedding the discussion in a global context. The first part explores the concept of low carbon development and explains the need for low carbon development in a carbon constrained world. The book then discusses the key issues of socio-economic, political and technological nature for low carbon development, exploring topics such as the political economy, social justice, financing and carbon markets, and technologies and innovation for low carbon development. This is followed by key issues for low carbon development in policy and practice, which is presented based on cross-cutting issues such as low carbon energy, forestry, agriculture and transportation. Afterwards, practical case studies are discussed from low carbon development in low income countries in Africa, middle income countries in Asia and Latin America and high income countries in Europe and North America.

  20. Detector decoy quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2009-01-01

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  1. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  2. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  3. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    Science.gov (United States)

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  4. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  5. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  6. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  7. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  11. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  12. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  13. Fibre Optic Communication Key Devices

    CERN Document Server

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  14. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  15. Key energy technologies for Europe

    DEFF Research Database (Denmark)

    Jørgensen, B.H.

    2005-01-01

    This report on key energy technologies is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. Senior Scientist BirteHolst Jørgensen, Risø National Laboratory...... contributed by Scientific Officer Edgar Thielmann, DG TREN, Head of Department Hans Larsen, RisøNational Laboratory, Senior Asset Manager Aksel Hauge Pedersen, DONG VE, Consultant Timon Wehnert, IZT-Berlin, and Senior Scientist Martine Uyterlinde, ECN...

  16. Key concepts in social pedagogy

    DEFF Research Database (Denmark)

    Harbo, Lotte Junker

    2011-01-01

    and activities around key social pedagogical concepts, such as the Common Third, the 3 P’s, the Zone of Proximal Development and the Learning Zone model. In the article we explore how a joint activity, for example playing soccer, can be seen as a pedagogical activity and with what intentions it is undertaken......“Now I can actually play soccer with the young people without fearing that my colleagues think I am escaping the paper work.” These were the words from a participant in a social pedagogy training course in England a few years ago. This understanding emerged through in-depth discussions...

  17. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  18. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  19. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  20. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  1. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  2. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  3. Public/private key certification authority and key distribution. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.

    1995-09-25

    Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.

  4. INDUCTION OF ENZYME COCKTAILS BY LOW COST CARBON SOURCES FOR PRODUCTION OF MONOSACCHARIDE-RICH SYRUPS FROM PLANT MATERIALS

    Directory of Open Access Journals (Sweden)

    Caroline T. Gilleran

    2010-05-01

    Full Text Available The production of cellulases, hemicellulases, and starch-degrading enzymes by the thermophilic aerobic fungus Talaromyces emersonii under liquid state culture on various food wastes was investigated. A comprehensive enzyme screening was conducted, which resulted in the identification of spent tea leaves as a potential substrate for hydrolytic enzyme production. The potent, polysaccharide-degrading enzyme-rich cocktail produced when tea leaves were utilised as sole carbon source was analysed at a protein and mRNA level and shown to exhibit high level production of key cellulose and hemicellulose degrading enzymes. As presented in this paper, the crude enzyme preparation produced after 120 h growth of Talaromyces emersonii on used tea leaves is capable of hydrolysing other lignocellulosic materials into their component monosaccharides, generating high value sugar syrups with a host of industrial applications including conversion to fuels and chemicals.

  5. Three key affordances for serendipity

    DEFF Research Database (Denmark)

    Björneborn, Lennart

    2017-01-01

    Purpose Serendipity is an interesting phenomenon to study in information science as it plays a fundamental – but perhaps underestimated – role in how we discover, explore, and learn in all fields of life. The purpose of this paper is to operationalize the concept of serendipity by providing termi...... terminological “building blocks” for understanding connections between environmental and personal factors in serendipitous encounters. Understanding these connections is essential when designing affordances in physical and digital environments that can facilitate serendipity. Design....../methodology/approach In this paper, serendipity is defined as what happens when we, in unplanned ways, encounter resources (information, things, people, etc.) that we find interesting. In the outlined framework, serendipity is understood as an affordance, i.e., a usage potential when environmental and personal factors correspond...... the three key affordances and three key personal serendipity factors: curiosity, mobility, and sensitivity. Ten sub-affordances for serendipity and ten coupled personal sub-factors are also briefly outlined. Related research is compared with and mapped into the framework aiming at a theoretical validation...

  6. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  7. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  8. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  9. Key to Language Learning Success

    Directory of Open Access Journals (Sweden)

    Oktavian Mantiri

    2015-01-01

    Full Text Available This paper looks at the important elements of language learning and teaching i.e. the role of teachers as well as the attitude and motivation of learners. Teachers undoubtedly play crucial roles in students’ language learning outcome which could ignite or diminish students’ motivation. Positive attitudes and motivation – instrumental or integrative and intrinsic or extrinsic – are key to successful learning. Therefore it is paramount for language teachers as well as learners to know these roles and nurture the best possible ways where language teaching and learning will thrive. This paper also suggested that both stake-holders should be open to holistic approach of language learning and that other factors such as the environment could play an important part in language teaching and learning success.

  10. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  11. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  12. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  13. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  15. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  16. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  17. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  18. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  19. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  20. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  1. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  2. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  3. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  4. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  5. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  6. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  7. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  8. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  9. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate...... dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited...... by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide...

  10. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  11. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of

  12. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning

    Science.gov (United States)

    2016-01-01

    7.3mM/mg). Key words Coaxial electrospinning, DFPase, Enzyme, chemical warfare , nanofiber, decontamination . Introduction Chemical warfare ...Krile, R.; Nishioka, M.; Taylor, M.; Riggs, K.; Stone, H. Decontamination of Toxic Industrial Chemicals and Chemical Warfare Agents On Building...298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 MATS COATINGS ELECTROSPINNING CHEMICAL WARFARE

  13. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  14. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  15. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  16. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  17. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  18. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  19. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  20. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  1. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.

  2. 25 CFR 502.14 - Key employee.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Key employee. 502.14 Section 502.14 Indians NATIONAL....14 Key employee. Key employee means: (a) A person who performs one or more of the following functions... gaming operation. (d) Any other person designated by the tribe as a key employee. [57 FR 12392, Apr. 9...

  3. VICKEY: Mining Conditional Keys on Knowledge Bases

    DEFF Research Database (Denmark)

    Symeonidou, Danai; Prado, Luis Antonio Galarraga Del; Pernelle, Nathalie

    2017-01-01

    A conditional key is a key constraint that is valid in only a part of the data. In this paper, we show how such keys can be mined automatically on large knowledge bases (KBs). For this, we combine techniques from key mining with techniques from rule mining. We show that our method can scale to KBs...

  4. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  5. Quantum key distribution and cryptography

    International Nuclear Information System (INIS)

    Alleaume, R.

    2005-01-01

    Full text: Originally proposed by classical cryptographers, the ideas behind Quantum Key Distribution (QKD) have attracted considerable interest among the quantum optics community, which has significantly helped bring these ideas to reality. Experimental realizations have quickly evolved from early lab demonstrations to QKD systems that are now deployed in real conditions and targeting commercial applications. Although QKD can be theoretically proven to rely on 'unconditional security proofs' and should thus be able to provide security levels unachievable through computationally-based cryptographic techniques, the debate on the cryptographic applications of QKD remains somehow controversial. It seems that a consensus on that matter cannot be reached without a careful analysis of assumptions and definitions related to security models used in classical or in quantum cryptography. In this talk, we will try to present a comprehensive synthesis on this topic. We have initiated this work as a contribution to the European IP SECOQC project, confronting views and knowledge among experimental and theoretical quantum physicists, as well as classical cryptographers. (author)

  6. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    Science.gov (United States)

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  7. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  9. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  10. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  11. KEY TOPICS IN SPORTS MEDICINE

    Directory of Open Access Journals (Sweden)

    Amir Ali Narvani

    2006-12-01

    Full Text Available Key Topics in Sports Medicine is a single quick reference source for sports and exercise medicine. It presents the essential information from across relevant topic areas, and includes both the core and emerging issues in this rapidly developing field. It covers: 1 Sports injuries, rehabilitation and injury prevention, 2 Exercise physiology, fitness testing and training, 3 Drugs in sport, 4 Exercise and health promotion, 5 Sport and exercise for special and clinical populations, 6 The psychology of performance and injury. PURPOSE The Key Topics format provides extensive, concise information in an accessible, easy-to-follow manner. AUDIENCE The book is targeted the students and specialists in sports medicine and rehabilitation, athletic training, physiotherapy and orthopaedic surgery. The editors are authorities in their respective fields and this handbook depends on their extensive experience and knowledge accumulated over the years. FEATURES The book contains the information for clinical guidance, rapid access to concise details and facts. It is composed of 99 topics which present the information in an order that is considered logical and progressive as in most texts. Chapter headings are: 1. Functional Anatomy, 2. Training Principles / Development of Strength and Power, 3. Biomechanical Principles, 4. Biomechanical Analysis, 5. Physiology of Training, 6. Monitoring of Training Progress, 7. Nutrition, 8. Hot and Cold Climates, 9. Altitude, 10. Sport and Travelling, 11. Principles of Sport Injury Diagnosis, 12. Principles of Sport and Soft Tissue Management, 13. Principles of Physical Therapy and Rehabilitation, 14. Principles of Sport Injury Prevention, 15. Sports Psychology, 16. Team Sports, 17. Psychological Aspects of Injury in Sport, 18. Injury Repair Process, 19. Basic Biomechanics of Tissue Injury, 20. Plain Film Radiography in Sport, 21. Nuclear Medicine, 22. Diagnostic Ultrasound, 23. MRI Scan, 24. Other Imaging, 5. Head Injury, 26. Eye

  12. Introduction strategies raise key questions.

    Science.gov (United States)

    Finger, W R; Keller, S

    1995-09-01

    Key issues that must be considered before a new contraceptive is introduced center on the need for a trained provider to begin or terminate the method, its side effects, duration of use, method's ability to meet users' needs and preferences, and extra training or staff requirements. Logistics and economic issues to consider are identifying a dependable way of effectively supplying commodities, planning extra services needed for the method, and cost of providing the method. Each contraceptive method presents a different side effect pattern and burdens the service delivery setting differently. The strategy developed to introduce or expand the 3-month injectable Depo-Provera (DMPA) can be used for any method. It includes a needs assessment and addresses regulatory issues, service delivery policies and procedures, information and training, evaluation, and other concerns. Viet Nam's needs assessment showed that Norplant should not be introduced until the service delivery system becomes stronger. Any needs assessment for expansion of contraceptive services should cover sexually transmitted disease/HIV issues. A World Health Organization strategy helps officials identify the best method mix for local situations. Introductory strategies must aim to improve the quality of family planning programs and expand choices. Many begin by examining existing data and conducting interviews with policymakers, users, providers, and women's health advocates. Introductory programs for Norplant focus on provider training, adequate counseling and informed consent for users, and ready access to removal. They need a well-prepared service delivery infrastructure. The first phase of the DMPA introductory strategy for the Philippines comprised a social marketing campaign and DMPA introduction at public clinics in 10 pilot areas with strong service delivery. Successful AIDS prevention programs show that people tend to use barrier methods when they are available. USAID is currently studying

  13. Key issues in transplant tourism.

    Science.gov (United States)

    Akoh, Jacob A

    2012-02-24

    Access to organ transplantation depends on national circumstances, and is partly determined by the cost of health care, availability of transplant services, the level of technical capacity and the availability of organs. Commercial transplantation is estimated to account for 5%-10% (3500-7000) of kidney transplants performed annually throughout the world. This review is to determine the state and outcome of renal transplantation associated with transplant tourism (TT) and the key challenges with such transplantation. The stakeholders of commercial transplantation include: patients on the waiting lists in developed countries or not on any list in developing countries; dialysis funding bodies; middlemen, hosting transplant centres; organ-exporting countries; and organ vendors. TT and commercial kidney transplants are associated with a high incidence of surgical complications, acute rejection and invasive infection which cause major morbidity and mortality. There are ethical and medical concerns regarding the management of recipients of organs from vendors. The growing demand for transplantation, the perceived failure of altruistic donation in providing enough organs has led to calls for a legalised market in organ procurement or regulated trial in incentives for donation. Developing transplant services worldwide has many benefits - improving results of transplantation as they would be performed legally, increasing the donor pool and making TT unnecessary. Meanwhile there is a need to re-examine intrinsic attitudes to TT bearing in mind the cultural and economic realities of globalisation. Perhaps the World Health Organization in conjunction with The Transplantation Society would set up a working party of stakeholders to study this matter in greater detail and make recommendations.

  14. Immobilized enzyme studies in a microscale bioreactor.

    Science.gov (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  15. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  16. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  17. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  18. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...... appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied...

  19. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  20. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

    Directory of Open Access Journals (Sweden)

    McClendon Shara D

    2012-07-01

    Full Text Available Abstract Background Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Results Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. Conclusions T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for

  1. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions.

    Science.gov (United States)

    McClendon, Shara D; Batth, Tanveer; Petzold, Christopher J; Adams, Paul D; Simmons, Blake A; Singer, Steven W

    2012-07-28

    Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or

  2. Screening the ToxCast Phase I, II, and e1K Chemical Libraries for Inhibition of Deiodinase Type 1,2 and 3 Enzyme Activity

    Science.gov (United States)

    Thyroid hormone (TH) signaling and homeostasis is dependent upon coordination of multiple key events including thyroidal iodide uptake and hormone synthesis, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting the pro-hormone thyroxi...

  3. Key Distribution and Changing Key Cryptosystem Based on Phase Retrieval Algorithm and RSA Public-Key Algorithm

    Directory of Open Access Journals (Sweden)

    Tieyu Zhao

    2015-01-01

    Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.

  4. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.

    Science.gov (United States)

    Bruijnincx, Pieter C A; van Koten, Gerard; Klein Gebbink, Robertus J M

    2008-12-01

    Iron-containing enzymes are one of Nature's main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the stunningly diverse oxidative transformations that these enzymes catalyze. The wealth of available structural data has furthermore established the so-called 2-His-1-carboxylate facial triad as a new common structural motif for the activation of dioxygen. This superfamily of mononuclear iron(ii) enzymes catalyzes a wide range of oxidative transformations, ranging from the cis-dihydroxylation of arenes to the biosynthesis of antibiotics such as isopenicillin and fosfomycin. The remarkable scope of oxidative transformations seems to be even broader than that associated with oxidative heme enzymes. Not only are many of these oxidative transformations of key biological importance, many of these selective oxidations are also unprecedented in synthetic organic chemistry. In this critical review, we wish to provide a concise background on the chemistry of the mononuclear non-heme iron enzymes characterized by the 2-His-1-carboxylate facial triad and to discuss the many recent developments in the field. New examples of enzymes with unique reactivities belonging to the superfamily have been reported. Furthermore, key insights into the intricate mechanistic details and reactive intermediates have been obtained from both enzyme and modeling studies. Sections of this review are devoted to each of these subjects, i.e. the enzymes, biomimetic models, and reactive intermediates (225 references).

  5. Dietary modulation of thymic enzymes.

    Science.gov (United States)

    Susana, Feliu María; Paula, Perris; Slobodianik, Nora

    2014-01-01

    Malnutrition is a complex syndrome caused by an inadequate intake of energy, protein, minerals and vitamins which affects the immune system. Nutritional imbalances, present in children with energy-protein malnutrition and infections, make defining the specific effects of each of them on the thymus difficult. For this reason, it is necessary to design an experimental model in animals that could define a single variable. As the thymus atrophy described in humans is similar to that observed in murines, a rat experimental model makes the extrapolation to man possible. Some authors suggest that the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP)--involved in purine metabolism--have an influence on T lymphocyte development and the immune system, due to intracellular accumulation of toxic levels of deoxynucleotides. Studies in our group, performed in an experimental model on Wistar growing rats, have demonstrated that protein deficiency or imbalance in the profile of essential amino acids in the diet, produce loss of thymus weight, reduction in the number of thymocytes, a diminished proportion of T cells presenting the W3/13 antigenic determinant and DNA content with concomitant increase in cell size, and the proportion of immature T cells and activity of ADA and PNP, without modifying the activity of 5´Nucleotidase in the thymus. It is important to point out that there were neither differences in energy intake between experimental groups and their controls, nor clinical symptoms of deficiency of other nutrients. The increase in these thymic enzyme activities was an alternative mechanism to avoid the accumulation of high levels of deoxynucleotides, which would be toxic for T lymphocytes. On the other hand, the administration of a recovery diet, with a high amount of high quality protein, was able to reverse the mentioned effects. The quick reply of Adenosine Deaminase to nutritional disorders and the following nutritional recovery, points

  6. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    Science.gov (United States)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  7. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  8. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  9. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... peroxidase are two important antioxidant scavenging enzymes involved in ... Catalase was assayed using the method of Beers and Sizer. (1951) with .... yeast dextrose calcium carbonate agar (YDC) medium. Catalase and ...

  10. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  11. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  12. Optimizing culture medium for debittering constitutive enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-08-02

    Aug 2, 2010 ... enzyme naringinase production by Aspergillus oryzae. JMU316. Dong-xiao .... even though industrial applications of naringinase are becoming more and ... guidance for industry. MATERIALS AND ..... For economic reasons,.

  13. distribution, abundance and properties of restriction enzymes

    African Journals Online (AJOL)

    DNA of granule-bound starch synthase (GBSS) I and II with a view to ... properties for manipulation of the genes for production of modified starch. .... procurement, storage and handling of the ..... been made on restriction enzymes of potato,.

  14. Enzymes in Poultry and Swine Nutrition

    International Development Research Centre (IDRC) Digital Library (Canada)

    Poultry production in China and the potential for using enzyme preparations .... The feed manufacturers produce about 310 × 106t of high-quality feed, saving about 30%, ...... Chickens and experimental designs used in the three experiments.

  15. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  16. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  17. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  18. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  19. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  20. Enzyme-driven mechanisms in biocorrosion

    OpenAIRE

    Basséguy, Régine

    2007-01-01

    Objectives (abstract of presentation): Recent works carried out in our team concerning enzymes and biocorrosion are presented at the meeting. For aerobic conditions, the direct catalysis of the reduction of oxygen on steel by enzymes or porphyrin was proved and a local electrochemical analysis technique (SVET) was developed to visualize the localization of the catalysis. On anaerobic conditions, the influence of phosphate species and other weak acids on the water reduction on steel was shown....