Synchronization in Quantum Key Distribution Systems
Anton Pljonkin
2017-10-01
Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.
Security of practical quantum key distribution systems
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Walenta, N; Gisin, N; Guinnard, O; Houlmann, R; Korzh, B; Lim, C W; Lunghi, T; Portmann, C; Thew, R T; Burg, A; Constantin, J; Caselunghe, D; Kulesza, N; Legré, M; Monat, L; Soucarros, M; Trinkler, P; Junod, P; Trolliet, G; Vannel, F
2014-01-01
We present a compactly integrated, 625 MHz clocked coherent one-way quantum key distribution system which continuously distributes secret keys over an optical fibre link. To support high secret key rates, we implemented a fast hardware key distillation engine which allows for key distillation rates up to 4 Mbps in real time. The system employs wavelength multiplexing in order to run over only a single optical fibre. Using fast gated InGaAs single photon detectors, we reliably distribute secret keys with a rate above 21 kbps over 25 km of optical fibre. We optimized the system considering a security analysis that respects finite-key-size effects, authentication costs and system errors for a security parameter of ε QKD = 4 × 10 −9 . (paper)
Key issues and technical route of cyber physical distribution system
Zheng, P. X.; Chen, B.; Zheng, L. J.; Zhang, G. L.; Fan, Y. L.; Pei, T.
2017-01-01
Relying on the National High Technology Research and Development Program, this paper introduced the key issues in Cyber Physical Distribution System (CPDS), mainly includes: composite modelling method and interaction mechanism, system planning method, security defence technology, distributed control theory. Then on this basis, the corresponding technical route is proposed, and a more detailed research framework along with main schemes to be adopted is also presented.
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Method for adding nodes to a quantum key distribution system
Grice, Warren P
2015-02-24
An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.
Quantum key distribution for composite dimensional finite systems
Shalaby, Mohamed; Kamal, Yasser
2017-06-01
The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.
Securing quantum key distribution systems using fewer states
Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.
2018-04-01
Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.
Trojan-horse attacks on quantum-key-distribution systems
Gisin, N.; Fasel, S.; Kraus, B.; Zbinden, H.; Ribordy, G.
2006-01-01
General Trojan-horse attacks on quantum-key-distribution systems, i.e., attacks on Alice or Bob's system via the quantum channel, are analyzed. We illustrate the power of such attacks with today's technology and conclude that all systems must implement active counter measures. In particular, all systems must include an auxiliary detector that monitors any incoming light. We show that such counter measures can be efficient, provided that enough additional privacy amplification is applied to the data. We present a practical way to reduce the maximal information gain that an adversary can gain using Trojan-horse attacks. This does reduce the security analysis of the two-way plug-and-play implementation to those of the standard one-way systems
Experimental demonstration of subcarrier multiplexed quantum key distribution system.
Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José
2012-06-01
We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.
A System-Level Throughput Model for Quantum Key Distribution
2015-09-17
discrete logarithms in a finite field [35]. Arguably the most popular asymmetric encryption scheme is the RSA algorithm, published a year later in...Theory, vol. 22, no. 6, pp. 644-654, 1976. [36] G. Singh and S. Supriya, ’A Study of Encryption Algorithms ( RSA , DES, 3DES and AES) for Information...xv Dictionary QKD = Quantum Key Distribution OTP = One-Time Pad cryptographic algorithm DES = Data Encryption Standard 3DES
Distributed Generation in Power Systems: An Overview and Key Issues
Singh, Sri Niwas
2009-01-01
quality, etc. However, depending on the system configuration and management, these advantages may not be true. Moreover, due to structural and managerial changes in the electricity supply industry motivated with introduction of completion, the role of small generations distributed in the low...... issues in the DG integration in power systems...
Secure distributed key generation in attribute based encryption systems
Pletea, D.; Sedghi, S.; Veeningen, M.; Petkovic, M.
2016-01-01
Nowadays usage of cloud computing is increasing in popularity and this raises new data protection challenges. In such distributed systems it is unrealistic to assume that the servers are fully trusted in enforcing the access policies. Attribute Based Encryption (ABE) is one of the solutions proposed
Analysis of the differential-phase-shift-keying protocol in the quantum-key-distribution system
Rong-Zhen, Jiao; Chen-Xu, Feng; Hai-Qiang, Ma
2009-01-01
The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett–Brassard 1984, the Bennett–Brassard–Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photon-number splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates. (general)
Quantum dense key distribution
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.
2004-01-01
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility
Daylight operation of a free space, entanglement-based quantum key distribution system
Peloso, Matthew P; Gerhardt, Ilja; Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com
2009-04-15
Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.
Pan, Tianheng
2018-01-01
In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.
Intrinsically stable phase-modulated polarization encoding system for quantum key distribution
Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)
2008-12-22
We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.
A FPGA-based identity authority method in quantum key distribution system
Cui Ke; Luo Chunli; Zhang Hongfei; Lin Shengzhao; Jin Ge; Wang Jian
2012-01-01
In this article, an identity authority method realized in hardware is developed which is used in quantum key distribution (QKD) systems. This method is based on LFSR-Teoplitz hashing matrix. Its benefits relay on its easy implementation in hardware and high secure coefficient. It can gain very high security by means of splitting part of the final key generated from QKD systems as the seed where it is required in the identity authority method. We propose an specific flow of the identity authority method according to the problems and features of the hardware. The proposed method can satisfy many kinds of QKD systems. (authors)
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
Phase-remapping attack in practical quantum-key-distribution systems
Fung, Chi-Hang Fred; Qi, Bing; Lo, Hoi-Kwong; Tamaki, Kiyoshi
2007-01-01
Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the 'plug-and-play' system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem
Hacking on decoy-state quantum key distribution system with partial phase randomization
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-01
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Hacking on decoy-state quantum key distribution system with partial phase randomization.
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-23
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Practical long-distance quantum key distribution system using decoy levels
Rosenberg, D; Peterson, C G; Harrington, J W; Rice, P R; Dallmann, N; Tyagi, K T; McCabe, K P; Hughes, R J; Nordholt, J E; Nam, S; Baek, B; Hadfield, R H
2009-01-01
Quantum key distribution (QKD) has the potential for widespread real-world applications, but no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here, we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 (BB84) protocol with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels to produce a secret key with unconditional security over a record 140.6 km of optical fibre, an increase of more than a factor of five compared with the previous record for unconditionally secure key generation in a practical QKD system.
A practical two-way system of quantum key distribution with untrusted source
Chen Ming-Juan; Liu Xiang
2011-01-01
The most severe problem of a two-way 'plug-and-play' (p and p) quantum key distribution system is that the source can be controlled by the eavesdropper. This kind of source is defined as an “untrusted source . This paper discusses the effects of the fluctuation of internal transmittance on the final key generation rate and the transmission distance. The security of the standard BB84 protocol, one-decoy state protocol, and weak+vacuum decoy state protocol, with untrusted sources and the fluctuation of internal transmittance are studied. It is shown that the one-decoy state is sensitive to the statistical fluctuation but weak+vacuum decoy state is only slightly affected by the fluctuation. It is also shown that both the maximum secure transmission distance and final key generation rate are reduced when Alice's laboratory transmittance fluctuation is considered. (general)
A new design of pulsed laser diode driver system for multistate quantum key distribution
Abdullah, M. S.; Jamaludin, M. Z.; Witjaksono, G.; Mokhtar, M. H. H.
2011-07-01
In this paper, we describe a new design of laser diode driver system based on MOSFET current mirror and digital signal controller (DSC). The system is designed to emit stream pairs of photons from three semiconductor laser diodes. The DSC is able to switch between the three laser diodes at constant rate. The duty cycle is maintained at 1% in order to reduce its thermal effect and thus prolong the laser diodes' life cycles. The MOSFET current mirror circuits are capable of delivering constant modulation current with peak current up to 58 mA to each laser diode. This laser driver system will allow the generating biphotons automatically with qubit rate around 8-13% for μ less than or equal to 1, thus making it practical for six-states quantum key distribution implementation.
Countermeasure against probabilistic blinding attack in practical quantum key distribution systems
Qian Yong-Jun; Li Hong-Wei; He De-Yong; Yin Zhen-Qiang; Zhang Chun-Mei; Chen Wei; Wang Shuang; Han Zheng-Fu
2015-01-01
In a practical quantum key distribution (QKD) system, imperfect equipment, especially the single-photon detector, can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by directly detecting the current. In this paper, we propose a probabilistic blinding attack model, where Eve probabilistically applies a blinding attack without being caught by using only an existing intuitive countermeasure. More precisely, our countermeasure solves the problem of how to define the bound in the limitation of precision of current detection, and then we prove security of the practical system by considering the current parameter. Meanwhile, we discuss the bound of the quantum bit error rate (QBER) introduced by Eve, by which Eve can acquire information without the countermeasure. (paper)
Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan
2014-10-01
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
An autobias control system for the electro—optic modulator used in a quantum key distribution system
Chen Wen-Fen; Wei Zheng-Jun; Guo Li; Hou Li-Yan; Wang Geng; Wang Jin-Dong; Zhang Zhi-Ming; Guo Jian-Ping; Liu Song-Hao
2014-01-01
In a quantum key distribution system, it is crucial to keep the extinction ratio of the coherent pulses stable. This means that the direct current bias point of the electro—optic modulator (EOM) used for generating coherent pulses must be locked. In this paper, an autobias control system based on a lock-in-amplifier for the EOM is introduced. Its drift information extracting theory and control method are analyzed comprehensively. The long term drift of the extinction ratio of the coherent pulses is measured by a single photon detector, which indicates that the autobias control system is effective for stabilizing the bias point of the EOM. (general)
A Distributed Shared Key Generation Procedure Using Fractional Keys
Poovendran, Radha; Corson, M. S; Baras, J. S
1998-01-01
We present a new class of distributed key generation and recovery algorithms suitable for group communication systems where the group membership is either static or slowly time-varying, and must be tightly controlled...
Tysowski, Piotr K.; Ling, Xinhua; Lütkenhaus, Norbert; Mosca, Michele
2018-04-01
Quantum key distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service (KMS) for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterprise-level computing has been researched, to enable quantum-safe communication. A novel method for constructing a KMS is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The KMS operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.
Bent, John M.; Faibish, Sorin; Pedone, Jr., James M.; Tzelnic, Percy; Ting, Dennis P. J.; Ionkov, Latchesar A.; Grider, Gary
2017-12-26
A cluster file system is provided having a plurality of distributed metadata servers with shared access to one or more shared low latency persistent key-value metadata stores. A metadata server comprises an abstract storage interface comprising a software interface module that communicates with at least one shared persistent key-value metadata store providing a key-value interface for persistent storage of key-value metadata. The software interface module provides the key-value metadata to the at least one shared persistent key-value metadata store in a key-value format. The shared persistent key-value metadata store is accessed by a plurality of metadata servers. A metadata request can be processed by a given metadata server independently of other metadata servers in the cluster file system. A distributed metadata storage environment is also disclosed that comprises a plurality of metadata servers having an abstract storage interface to at least one shared persistent key-value metadata store.
Quantum key distribution network for multiple applications
Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.
2017-09-01
The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.
Decoy State Quantum Key Distribution
Lo, Hoi-Kwong
2005-10-01
Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution
Subcarrier multiplexing optical quantum key distribution
Ortigosa-Blanch, A.; Capmany, J.
2006-01-01
We present the physical principles of a quantum key distribution system that opens the possibility of parallel quantum key distribution and, therefore, of a substantial improvement in the bit rate of such systems. Quantum mechanics allows for multiple measurements at different frequencies and thus we exploit this concept by extending the concept of frequency coding to the case where more than one radio-frequency subcarrier is used for independently encoding the bits onto an optical carrier. Taking advantage of subcarrier multiplexing techniques we demonstrate that the bit rate can be greatly improved as parallel key distribution is enabled
Gaidash, A A; Egorov, V I; Gleim, A V
2016-01-01
Quantum cryptography allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source of quantum states. In order to prevent actions of an eavesdropper, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. In this paper, we describe an alternative method based on monitoring photon number statistics after detection. We provide a useful rule of thumb to estimate approximate order of difference of expected distribution and distribution in case of attack. Formula for calculating a minimum value of total pulses or time-gaps to resolve attack is shown. Also formulas for actual fraction of raw key known to Eve were derived. This method can therefore be used with any system and even combining with mentioned special protocols. (paper)
Research on Key Technologies of Network Centric System Distributed Target Track Fusion
Yi Mao
2017-01-01
Full Text Available To realize common tactical picture in network-centered system, this paper proposes a layered architecture for distributed information processing and a method for distributed track fusion on the basis of analyzing the characteristics of network-centered systems. Basing on the noncorrelation of three-dimensional measurement of surveillance and reconnaissance sensors under polar coordinates, it also puts forward an algorithm for evaluating track quality (TQ using statistical decision theory. According to simulation results, the TQ value is associated with the measurement accuracy of sensors and the motion state of targets, which is well matched with the convergence process of tracking filters. Besides, the proposed algorithm has good reliability and timeliness in track quality evaluation.
Quantum key distribution and cryptography
Alleaume, R.
2005-01-01
Full text: Originally proposed by classical cryptographers, the ideas behind Quantum Key Distribution (QKD) have attracted considerable interest among the quantum optics community, which has significantly helped bring these ideas to reality. Experimental realizations have quickly evolved from early lab demonstrations to QKD systems that are now deployed in real conditions and targeting commercial applications. Although QKD can be theoretically proven to rely on 'unconditional security proofs' and should thus be able to provide security levels unachievable through computationally-based cryptographic techniques, the debate on the cryptographic applications of QKD remains somehow controversial. It seems that a consensus on that matter cannot be reached without a careful analysis of assumptions and definitions related to security models used in classical or in quantum cryptography. In this talk, we will try to present a comprehensive synthesis on this topic. We have initiated this work as a contribution to the European IP SECOQC project, confronting views and knowledge among experimental and theoretical quantum physicists, as well as classical cryptographers. (author)
Li, Hong-Wei; Wang, Shuang; Huang, Jing-Zheng; Chen, Wei; Yin, Zhen-Qiang; Li, Fang-Yi; Zhou, Zheng; Liu, Dong; Zhang, Yang; Guo, Guang-Can; Han, Zheng-Fu; Bao, Wan-Su
2011-01-01
It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost of only increasing the quantum bit error rate from 1.3 to 1.4%.
Coherent one-way quantum key distribution
Stucki, Damien; Fasel, Sylvain; Gisin, Nicolas; Thoma, Yann; Zbinden, Hugo
2007-05-01
Quantum Key Distribution (QKD) consists in the exchange of a secrete key between two distant points [1]. Even if quantum key distribution systems exist and commercial systems are reaching the market [2], there are still improvements to be made: simplify the construction of the system; increase the secret key rate. To this end, we present a new protocol for QKD tailored to work with weak coherent pulses and at high bit rates [3]. The advantages of this system are that the setup is experimentally simple and it is tolerant to reduced interference visibility and to photon number splitting attacks, thus resulting in a high efficiency in terms of distilled secret bits per qubit. After having successfully tested the feasibility of the system [3], we are currently developing a fully integrated and automated prototype within the SECOQC project [4]. We present the latest results using the prototype. We also discuss the issue of the photon detection, which still remains the bottleneck for QKD.
Detector decoy quantum key distribution
Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos
2009-01-01
Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Jacak, Monika; Jacak, Janusz; Jóźwiak, Piotr; Jóźwiak, Ireneusz
2016-06-01
The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.
Secret key rates in quantum key distribution using Renyi entropies
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bratzik, Sylvia; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)
2010-07-01
The secret key rate r of a quantum key distribution protocol depends on the involved number of signals and the accepted ''failure probability''. We reconsider a method to calculate r focusing on the analysis of the privacy amplification given by R. Renner and R. Koenig (2005). This approach involves an optimization problem with an objective function depending on the Renyi entropy of the density operator describing the classical outcomes and the eavesdropper system. This problem is analyzed for a generic class of QKD protocols and the current research status is presented.
Parallel file system with metadata distributed across partitioned key-value store c
Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron
2017-09-19
Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).
2014-09-18
researcher discovered issues that affected the research. The most important of 19 these was the lack of advanced math functions in the DEVS- JAVA ...to install a comparative JAVA -language scientific library. This issue was reported to RTSync, but there was no fix to this issue during the research...and tracking systems necessary to deal with high relative angular motion. random motion of the platforms. and atmospheric turbulence that would be
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
Secure quantum key distribution using squeezed states
Gottesman, Daniel; Preskill, John
2001-01-01
We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e r =1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel
Metropolitan Quantum Key Distribution with Silicon Photonics
Darius Bunandar
2018-04-01
Full Text Available Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss. Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.
Metropolitan Quantum Key Distribution with Silicon Photonics
Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk
2018-04-01
Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.
Quantum key distribution using three basis states
Home; Journals; Pramana – Journal of Physics; Volume 54; Issue 5. Quantum key distribution using three ... This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum ...
Cryptographic Key Management System
No, author
2014-02-21
This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.
Tieyu Zhao
2015-01-01
Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.
Quantum key distribution without alternative measurements
Cabello, A
2000-01-01
Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator. (20 refs).
Quantum key distribution via quantum encryption
Yong Sheng Zhang; Guang Can Guo
2001-01-01
A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed. (21 refs).
Three state quantum key distribution for small keys
Batuwantudawe, J.; Boileau, J.-C.
2005-01-01
Full text: Quantum key distribution (QKD) protocols allow two parties, Alice and Bob, to establish secure keys. The most well-known protocol is BB84, using four distinct states. Recently, Phoenix et al. proposed a three state protocol. We explain the protocol and discuss its security proof. The three state protocol also has an interesting structure that allows for errors estimation from the inconclusive results (i.e.. where Alice and Bob choose different bases). This eliminates the need for sampling, potentially useful when qubits are limited. We discuss the effectiveness of this approach compared to BB84 for the case where a good error estimate is required. (author)
Interactive simulations for quantum key distribution
Kohnle, Antje; Rizzoli, Aluna
2017-01-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels. (paper)
Interactive simulations for quantum key distribution
Kohnle, Antje; Rizzoli, Aluna
2017-05-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.
Secure key distribution by swapping quantum entanglement
Song, Daegene
2004-01-01
We report two key distribution schemes achieved by swapping quantum entanglement. Using two Bell states, two bits of secret key can be shared between two distant parties that play symmetric and equal roles. We also address eavesdropping attacks against the schemes
Quantum key distribution on Hannover Campus
Duhme, Joerg; Franz, Torsten; Werner, Reinhard F. [Leibniz Universitaet Hannover, Institut fuer Theoretische Physik, AG Quanteninformation (Germany); Haendchen, Vitus; Eberle, Tobias; Schnabel, Roman [Albert Einstein Institut, Quantum Interferometry (Germany)
2012-07-01
We report on the progress of the implementation of an entanglement-based quantum key distribution on Hannover campus using squeezed gaussian states (continuous variables). This poster focuses on the theoretical aspects of the project. Experimental data has been compared with the theoretical simulation of the experimental setup. We especially discuss effects of the homodyne detection and postprocessing in use on the measurement outcome.
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,
Diamanti, Eleni; Takesue, Hiroki; Honjo, Toshimori; Inoue, Kyo; Yamamoto, Yoshihisa
2005-01-01
We compare the performance of various quantum-key-distribution (QKD) systems using a single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984, the Bennett-Brassard-Mermin 1992, and the coherent differential-phase-shift keying protocols. We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all three QKD protocols
Parallel Device-Independent Quantum Key Distribution
Jain, Rahul; Miller, Carl A.; Shi, Yaoyun
2017-01-01
A prominent application of quantum cryptography is the distribution of cryptographic keys with unconditional security. Recently, such security was extended by Vazirani and Vidick (Physical Review Letters, 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of N multiplayer games, where N is the security parame...
Feasibility of satellite quantum key distribution
Bonato, Cristian; Tomaello, Andrea; Da Deppo, Vania; Naletto, Giampiero; Villoresi, Paolo
2009-01-01
In this paper we present a novel analysis of the feasibility of quantum key distribution between a LEO satellite and a ground station. First of all, we study signal propagation through a turbulent atmosphere for uplinks and downlinks, discussing the contribution of beam spreading and beam wandering. Then we introduce a model for the background noise of the channel during night-time and day-time, calculating the signal-to-noise ratio for different configurations. We also discuss the expected e...
Public/private key certification authority and key distribution. Draft
Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.
1995-09-25
Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.
Privacy amplification for quantum key distribution
Watanabe, Yodai
2007-01-01
This paper examines classical privacy amplification using a universal family of hash functions. In quantum key distribution, the adversary's measurement can wait until the choice of hash functions is announced, and so the adversary's information may depend on the choice. Therefore the existing result on classical privacy amplification, which assumes the independence of the choice from the other random variables, is not applicable to this case. This paper provides a security proof of privacy amplification which is valid even when the adversary's information may depend on the choice of hash functions. The compression rate of the proposed privacy amplification can be taken to be the same as that of the existing one with an exponentially small loss in secrecy of a final key. (fast track communication)
Short Review on Quantum Key Distribution Protocols.
Giampouris, Dimitris
2017-01-01
Cryptographic protocols and mechanisms are widely investigated under the notion of quantum computing. Quantum cryptography offers particular advantages over classical ones, whereas in some cases established protocols have to be revisited in order to maintain their functionality. The purpose of this paper is to provide the basic definitions and review the most important theoretical advancements concerning the BB84 and E91 protocols. It also aims to offer a summary on some key developments on the field of quantum key distribution, closely related with the two aforementioned protocols. The main goal of this study is to provide the necessary background information along with a thorough review on the theoretical aspects of QKD, concentrating on specific protocols. The BB84 and E91 protocols have been chosen because most other protocols are similar to these, a fact that makes them important for the general understanding of how the QKD mechanism functions.
Van Steen, Maarten
2017-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.
Application of quantum key distribution for mutual identification - experimental realization
Dusek, M.; Haderka, O.; Hendrych, M.
1998-01-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are 're fuelled' from a shared secret key transferred over a quantum channel. The question of authentication of information sent over a public channel is discussed. An apparatus using two unbalanced Mach-Zehnder interferometers has been built, and quantum key distribution and 'quantum identification' have been successfully tested through a single-mode optical fibre at 830 nm, employing low intensity coherent states (below 0,1 photons per pulse). (author)
Entangled quantum key distribution with a biased basis choice
Erven, Chris; Ma Xiongfeng; Laflamme, Raymond; Weihs, Gregor
2009-01-01
We investigate a quantum key distribution (QKD) scheme that utilizes a biased basis choice in order to increase the efficiency of the scheme. The optimal bias between the two measurement bases, a more refined error analysis and finite key size effects are all studied in order to assure the security of the final key generated with the system. We then implement the scheme in a local entangled QKD system that uses polarization entangled photon pairs to securely distribute the key. A 50/50 non-polarizing beamsplitter (BS) with different optical attenuators is used to simulate a variable BS in order to allow us to study the operation of the system for different biases. Over 6 h of continuous operation with a total bias of 0.9837/0.0163 (Z/X), we were able to generate 0.4567 secure key bits per raw key bit as compared to 0.2550 secure key bits per raw key bit for the unbiased case. This represents an increase in the efficiency of the key generation rate by 79%.
Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure
Woong Go
2014-01-01
Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.
Randomness determines practical security of BB84 quantum key distribution
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-11-01
Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.
Fully Device-Independent Quantum Key Distribution
Vazirani, Umesh; Vidick, Thomas
2014-10-01
Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.
Quantum key distribution with entangled photon sources
Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.
2007-01-01
A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses
Trojan horse attacks on counterfactual quantum key distribution
Yang, Xiuqing, E-mail: xqqyang@163.com [School of Science, Beijing Jiaotong University, Beijing 100044 (China); College of Science, Inner Mongolia University of Technology, 010051 Hohhot (China); Wei, Kejin; Ma, Haiqiang [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Sun, Shihai, E-mail: shsun@nudt.edu.cn [Department of Physics, National University of Defense Technology, Changsha 410073 (China); Du, Yungang [College of Science, Inner Mongolia University of Technology, 010051 Hohhot (China); Wu, Lingan [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)
2016-04-22
There has been much interest in “counterfactual quantum cryptography” (T.-G. Noh, 2009 [10]). It seems that the counterfactual quantum key distribution protocol without any photon carrier through the quantum channel provides practical security advantages. However, we show that it is easy to break counterfactual quantum key distribution systems in practical situations. We introduce the two types of Trojan horse attacks that are available for the two-way protocol and become possible for practical counterfactual systems with our eavesdropping schemes. - Highlights: • We find the attacks available for the two-way protocol become possible for the practical counterfactual systems. • It does not require the assumption that it works on the counterfactual systems only in a finite key scenario. • Compared to the other attack models, our scheme is relatively simple for an eavesdropper.
Practical quantum key distribution with polarization-entangled photons
Poppe, A.; Fedrizzi, A.; Boehm, H.; Ursin, R.; Loruenser, T.; Peev, M.; Maurhardt, O.; Suda, M.; Kurtsiefer, C.; Weinfurter, H.; Jennewein, T.; Zeilinger, A.
2005-01-01
Full text: We present an entangled-state quantum cryptography system that operated for the first time in a real-world application scenario. The full key generation protocol was performed in real-time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. A source for polarization-entangled photons delivered about 8200 entangled photon pairs per second. After transmission to the distant receivers, a mean value of 468 pairs per second remained for the generation of a raw key, which showed an average qubit error rate of 6.4 %. The raw key was sifted and subsequently processed by a classical protocol which included error correction and privacy amplification. The final secure key bit rate was about 76 bits per second. The generated quantum key was then handed over and used by a secure communication application. (author)
A Novel Key Distribution Solution for Combined Public/Secret Key ...
Moreover, an implementation over the new IPv6 Internet protocol is presented such that the system can be ported to both wired and wireless networking environments. Keywords: cryptography, key distribution, security server. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...
Sallam, A A
2010-01-01
"Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--
Simultaneous classical communication and quantum key distribution using continuous variables*
Qi, Bing
2016-10-01
Presently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters show that both deterministic classical communication with a bit error rate of 10-9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.
The University of Canberra quantum key distribution testbed
Ganeshkumar, G.; Edwards, P.J.; Cheung, W.N.; Barbopoulos, L.O.; Pham, H.; Hazel, J.C.
1999-01-01
Full text: We describe the design, operation and preliminary results obtained from a quantum key distribution (QKD) testbed constructed at the University of Canberra. Quantum cryptographic systems use shared secret keys exchanged in the form of sequences of polarisation coded or phase encoded single photons transmitted over an optical communications channel. Secrecy of this quantum key rests upon fundamental laws of quantum physics: measurements of linear or circular photon polarisation states introduce noise into the conjugate variable and so reveal eavesdropping. In its initial realisation reported here, pulsed light from a 650nm laser diode is attenuated by a factor of 10 6 , plane-polarised and then transmitted through a birefringent liquid crystal modulator (LCM) to a polarisation sensitive single photon receiver. This transmitted key sequence consists of a 1 kHz train of weak coherent 100ns wide light pulses, polarisation coded according to the BB84 protocol. Each pulse is randomly assigned one of four polarisation states (two orthogonal linear and two orthogonal circular) by computer PCA operated by the sender ('Alice'). This quaternary polarisation shift keyed photon stream is detected by the receiver ('Bob') whose computer (PCB) randomly chooses either a linear or a circular polarisation basis. Computer PCB is also used for final key selection, authentication, privacy amplification and eavesdropping. We briefly discuss the realisation of a mesoscopic single photon QKD source and the use of the testbed to simulate a global quantum key distribution system using earth satellites. Copyright (1999) Australian Optical Society
Quantum key distribution over multicore fiber based on silicon photonics
Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld
on quantum physics. In order to exchange secure information between users, quantum key distribution (QKD), a branch of Quantum Communications (QCs), provides good prospects for ultimate security based on the laws of quantum mechanics [2–7]. Most of QKD systems are implemented in a point-to-point link using...... generations, to HD-entanglement distribution. Furthermore, MCFs are expected as a good candidate for overcoming the capacity limit of a current optical communication system, as example the record capacity of 661 Tbits/s was obtained last year with a 30-cores fiber [8]. Proof of concept experiment has already...... requirements in terms of key generation are needed. A solution may be represented by new technologies applied to quantum world. In particular multicore fiber (MCF) open a new scenario for quantum communications, from high-dimensional (HD) spatial entanglement generation, to HD QKD and multi-user key...
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
Elezov M.S.
2017-01-01
Full Text Available Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
Quantum key distribution without sending a quantum signal
Ralph, T C; Walk, N
2015-01-01
Quantum Key Distribution is a quantum communication technique in which random numbers are encoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using the data sent via the quantum signals, supplemented by classical communication, it is possible for Alice and Bob to share an unconditionally secure secret key. This is not possible if only classical signals are sent. While this last statement is a long standing result from quantum information theory it turns out only to be true in a non-relativistic setting. If relativistic quantum field theory is considered we show it is possible to distribute an unconditionally secure secret key without sending a quantum signal, instead harnessing the intrinsic entanglement between different regions of space–time. The protocol is practical in free space given horizon technology and might be testable in principle in the near term using microwave technology. (paper)
China demonstrates intercontinental quantum key distribution
Johnston, Hamish
2017-11-01
A quantum cryptography key has been shared between Beijing and Vienna using a satellite - allowing the presidents of the Chinese Academy of Sciences and Austrian Academy of Sciences to communicate via a secure video link.
Spherical reconciliation for a continuous-variable quantum key distribution
Lu Zhao; Shi Jian-Hong; Li Feng-Guang
2017-01-01
Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. (paper)
Quantum hacking on quantum key distribution using homodyne detection
Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2014-03-01
Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.
Extensible router for a quantum key distribution network
Zhang Tao; Mo Xiaofan; Han Zhengfu; Guo Guangcan
2008-01-01
Building a quantum key distribution network is crucial for practical quantum cryptography. We present a scheme to build a star topology quantum key distribution network based on wavelength division multiplexing which, with current technology, can connect at least a hundred users. With the scheme, a 4-user demonstration network was built up and key exchanges were performed
Quantum key distribution with an entangled light emitting diode
Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2015-12-28
Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.
Long distance free-space quantum key distribution
Schmitt-Manderbach, T.
2007-01-01
The aim of the presented experiment was to investigate the feasibility of satellite-based global quantum key distribution. In this context, a free-space quantum key distribution experiment over a real distance of 144 km was performed. The transmitter and the receiver were situated in 2500 m altitude on the Canary Islands of La Palma and Tenerife, respectively. The small and compact transmitter unit generated attenuated laser pulses, that were sent to the receiver via a 15-cm optical telescope. The receiver unit for polarisation analysis and detection of the sent pulses was integrated into an existing mirror telescope designed for classical optical satellite communications. To ensure the required stability and efficiency of the optical link in the presence of atmospheric turbulence, the two telescopes were equipped with a bi-directional automatic tracking system. Still, due to stray light and high optical attenuation, secure key exchange would not be possible using attenuated pulses in connection with the standard BB84 protocol. The photon number statistics of attenuated pulses follows a Poissonian distribution. Hence, by removing a photon from all pulses containing two or more photons, an eavesdropper could measure its polarisation without disturbing the polarisation state of the remaining pulse. In this way, he can gain information about the key without introducing detectable errors. To protect against such attacks, the presented experiment employed the recently developed method of using additional ''decoy'' states, i.e., the the intensity of the pulses created by the transmitter were varied in a random manner. By analysing the detection probabilities of the different pulses individually, a photon-number-splitting attack can be detected. Thanks to the decoy-state analysis, the secrecy of the resulting quantum key could be ensured despite the Poissonian nature of the emitted pulses. For a channel attenuation as high as 35 dB, a secret key rate of up to 250 bit
Long distance free-space quantum key distribution
Schmitt-Manderbach, T.
2007-10-16
The aim of the presented experiment was to investigate the feasibility of satellite-based global quantum key distribution. In this context, a free-space quantum key distribution experiment over a real distance of 144 km was performed. The transmitter and the receiver were situated in 2500 m altitude on the Canary Islands of La Palma and Tenerife, respectively. The small and compact transmitter unit generated attenuated laser pulses, that were sent to the receiver via a 15-cm optical telescope. The receiver unit for polarisation analysis and detection of the sent pulses was integrated into an existing mirror telescope designed for classical optical satellite communications. To ensure the required stability and efficiency of the optical link in the presence of atmospheric turbulence, the two telescopes were equipped with a bi-directional automatic tracking system. Still, due to stray light and high optical attenuation, secure key exchange would not be possible using attenuated pulses in connection with the standard BB84 protocol. The photon number statistics of attenuated pulses follows a Poissonian distribution. Hence, by removing a photon from all pulses containing two or more photons, an eavesdropper could measure its polarisation without disturbing the polarisation state of the remaining pulse. In this way, he can gain information about the key without introducing detectable errors. To protect against such attacks, the presented experiment employed the recently developed method of using additional 'decoy' states, i.e., the the intensity of the pulses created by the transmitter were varied in a random manner. By analysing the detection probabilities of the different pulses individually, a photon-number-splitting attack can be detected. Thanks to the decoy-state analysis, the secrecy of the resulting quantum key could be ensured despite the Poissonian nature of the emitted pulses. For a channel attenuation as high as 35 dB, a secret key rate of up to 250
Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution
Bonior, Jason D [ORNL; Evans, Philip G [ORNL; Sheets, Gregory S [ORNL; Jones, John P [ORNL; Flynn, Toby H [ORNL; O' Neil, Lori Ross [Pacific Northwest National Laboratory (PNNL); Hutton, William [Pacific Northwest National Laboratory (PNNL); Pratt, Richard [Pacific Northwest National Laboratory (PNNL); Carroll, Thomas E. [Pacific Northwest National Laboratory (PNNL)
2017-01-01
Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.
Differential-phase-shift quantum key distribution using coherent light
Inoue, K.; Waks, E.; Yamamoto, Y.
2003-01-01
Differential-phase-shift quantum key distribution based on two nonorthogonal states is described. A weak coherent pulse train is sent from Alice to Bob, in which the phase of each pulse is randomly modulated by {0,π}. Bob measures the differential phase by a one-bit delay circuit. The system has a simple configuration without the need for an interferometer and a bright reference pulse in Alice's site, unlike the conventional QKD system based on two nonorthogonal states, and has an advantage of improved communication efficiency. The principle of the operation is successfully demonstrated in experiments
KeyWare: an open wireless distributed computing environment
Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir
1995-12-01
Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.
Key distribution in PKC through Quantas
Aditya Goel
2010-01-01
Cryptography literally means "The art & science of secret writing & sending a message between two parties in such a way that its contents cannot be understood by someone other than the intended recipient". and Quantum word is related with "Light". Thus, Quantum Cryptography is a way of descripting any information in the form of quantum particles. There are no classical cryptographic systems which are perfectly secure. In contrast to Classical cryptography which depends upon Mathematics, Quant...
Single-quadrature continuous-variable quantum key distribution
Gehring, Tobias; Jacobsen, Christian Scheffmann; Andersen, Ulrik Lund
2016-01-01
Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two...... commercialization of continuous-variable quantum key distribution, provided that the low noise requirement can be achieved....
Zacharov, B.
1976-01-01
In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)
Device calibration impacts security of quantum key distribution.
Jain, Nitin; Wittmann, Christoffer; Lydersen, Lars; Wiechers, Carlos; Elser, Dominique; Marquardt, Christoph; Makarov, Vadim; Leuchs, Gerd
2011-09-09
Characterizing the physical channel and calibrating the cryptosystem hardware are prerequisites for establishing a quantum channel for quantum key distribution (QKD). Moreover, an inappropriately implemented calibration routine can open a fatal security loophole. We propose and experimentally demonstrate a method to induce a large temporal detector efficiency mismatch in a commercial QKD system by deceiving a channel length calibration routine. We then devise an optimal and realistic strategy using faked states to break the security of the cryptosystem. A fix for this loophole is also suggested.
Continuous Variable Quantum Key Distribution with a Noisy Laser
Jacobsen, Christian Scheffmann; Gehring, Tobias; Andersen, Ulrik Lund
2015-01-01
Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement...... a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances...
Partial Key Grouping: Load-Balanced Partitioning of Distributed Streams
Nasir, Muhammad Anis Uddin; Morales, Gianmarco De Francisci; Garcia-Soriano, David; Kourtellis, Nicolas; Serafini, Marco
2015-01-01
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce PARTIAL KEY GROUPING (PKG), a new stream partitioning scheme that adapts the classical “power of two choices” to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on severa...
Quantum key distribution session with 16-dimensional photonic states
Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.
2013-01-01
The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033
Distributed public key schemes secure against continual leakage
Akavia, Adi; Goldwasser, Shafi; Hazay, Carmit
2012-01-01
-secure against continual memory leakage. Our DPKE scheme also implies a secure storage system on leaky devices, where a value s can be secretely stored on devices that continually leak information about their internal state to an external attacker. The devices go through a periodic refresh protocol......In this work we study distributed public key schemes secure against continual memory leakage. The secret key will be shared among two computing devices communicating over a public channel, and the decryption operation will be computed by a simple 2-party protocol between the devices. Similarly...... against continual memory leakage, under the Bilinear Decisional Diffie-Hellman and $2$-linear assumptions. Our schemes have the following properties: 1. Our DPKE and DIBE schemes tolerate leakage at all times, including during refresh. During refresh the tolerated leakage is a (1/2-o (1),1)-fraction...
Continuous variable quantum key distribution with modulated entangled states
Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael
2012-01-01
Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...
Memory-assisted measurement-device-independent quantum key distribution
Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert
2014-04-01
A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.
Device-independent quantum key distribution secure against collective attacks
Pironio, Stefano; Gisin, Nicolas; AcIn, Antonio; Brunner, Nicolas; Massar, Serge; Scarani, Valerio
2009-01-01
Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. In this paper, we present in detail the security proof for a DIQKD protocol introduced in AcIn et al (2008 Phys. Rev. Lett. 98 230501). This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit only the no-signaling principle), but only holds against collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically in each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.
Adaptive spatial filtering for daytime satellite quantum key distribution
Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.
2014-11-01
The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.
One Step Quantum Key Distribution Based on EPR Entanglement.
Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao
2016-06-30
A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.
Quantum cryptography to satellites for global secure key distribution
Rarity, John G.; Gorman, Philip M.; Knight, Paul; Wallace, Kotska; Tapster, Paul R.
2017-11-01
We have designed and built a free space secure key exchange system using weak laser pulses with polarisation modulation by acousto-optic switching. We have used this system to exchange keys over a 1.2km ground range with absolute security. Building from this initial result we analyse the feasibility of exchanging keys to a low earth orbit satellite.
Electronic Nicotine Delivery Systems Key Facts Infographic
U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...
Mitigation of Control Channel Jamming via Combinatorial Key Distribution
Falahati, Abolfazl; Azarafrooz, Mahdi
The problem of countering control channel jamming against internal adversaries in wireless ad hoc networks is addressed. Using combinatorial key distribution, a new method to secure the control channel access is introduced. This method, utilizes the established keys in the key establishment phase to hide the location of control channels without the need for a secure BS. This is in obtained by combination of a collision free one-way function and a combinatorial key establishment method. The proposed scheme can be considered as a special case of the ALOHA random access schemes which uses the common established keys as its seeds to generate the pattern of transmission.
One-sided measurement-device-independent quantum key distribution
Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2018-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
Reply to 'Comment on 'Quantum dense key distribution''
Degiovanni, I.P.; Berchera, I. Ruo; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.
2005-01-01
In this Reply we propose a modified security proof of the quantum dense key distribution protocol, detecting also the eavesdropping attack proposed by Wojcik in his Comment [Wojcik, Phys. Rev. A 71, 016301 (2005)
Multi-client quantum key distribution using wavelength division multiplexing
Grice, Warren P.; Bennink, Ryan S.; Earl, Dennis Duncan; Evans, Philip G.; Humble, Travis S.; Pooser, Raphael C.; Schaake, Jason; Williams, Brian P.
2011-01-01
Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons are emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.
The SECOQC quantum key distribution network in Vienna
Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.
2009-07-01
In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic
The SECOQC quantum key distribution network in Vienna
Peev, M; Pacher, C; Boxleitner, W; Happe, A; Hasani, Y; Alleaume, R; Diamanti, E; Barreiro, C; Fasel, S; Gautier, J-D; Gisin, N; Bouda, J; Debuisschert, T; Fossier, S; Dianati, M; Dynes, J F; Fuerst, M; Gay, O; Grangier, P; Hentschel, M
2009-01-01
In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARC ), an entangled photons system by University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Universite Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent-the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar [Institute for Theoretical Physics III, Heinrich-Heine-universitaet Duesseldorf, D-40225 Duesseldorf (Germany)
2011-09-15
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar
2011-01-01
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Toward Designing a Quantum Key Distribution Network Simulation Model
Miralem Mehic; Peppino Fazio; Miroslav Voznak; Erik Chromy
2016-01-01
As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several ...
Quantum key distribution with an unknown and untrusted source
Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong
2009-03-01
The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).
Space division multiplexing chip-to-chip quantum key distribution
Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld
2017-01-01
nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum...
Quantum Key Distribution Using Four-Qubit W State
Cai Haijing; Song Heshan
2006-01-01
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.
Key figures for the regional- and distribution grid
Vikingstad, S.
1996-02-01
In Norway, improving the efficiency of the hydroelectric grid operation is a stated goal of the Energy Act. Several studies have identified potential profits of such improvement. This publication focuses on costs and improvement potentials. Publication of key figures may stimulate grid owners, boards and administrations to improve the operating efficiency of their grids. The publication shows key figures for the regional- and distribution grid and is based on accounting data for 1994. The key figures are divided into: (1) Cost structure: The key figures express the relative contributions of each cost component to the total income of the grid, (2) Costs and physical quantities: The key figures show the cost of delivering the transport services, (3) Physical quantities: The key figures describe the working conditions of the energy utility. It appears that the cost structure of the sector varies considerably. The same is true of the cost related to the delivery of grid services. 30 figs., 6 tabs
Managing Distributed Knowledge Systems
Sørensen, Brian Vejrum; Gelbuda, Modestas
2005-01-01
. This paper contributes to the research on organizations as distributed knowledge systems by addressing two weaknesses of the social practice literature. Firstly, it downplays the importance of formal structure and organizational design and intervention efforts by key organizational members. Secondly, it does......The article argues that the growth of de novo knowledge-based organization depends on managing and coordinating increasingly growing and, therefore, distributed knowledge. Moreover, the growth in knowledge is often accompanied by an increasing organizational complexity, which is a result...... of integrating new people, building new units and adding activities to the existing organization. It is argued that knowledge is not a stable capacity that belongs to any actor alone, but that it is rather an ongoing social accomplishment, which is created and recreated as actors engage in mutual activities...
Key rate of quantum key distribution with hashed two-way classical communication
Watanabe, Shun; Matsumoto, Ryutaroh; Uyematsu, Tomohiko; Kawano, Yasuhito
2007-01-01
We propose an information reconciliation protocol that uses two-way classical communication. The key rates of quantum key distribution (QKD) protocols that use our protocol are higher than those using previously known protocols for a wide range of error rates for the Bennett-Brassard 1984 and six-state protocols. We also clarify the relation between the proposed and known QKD protocols, and the relation between the proposed protocol and entanglement distillation protocols
Quantum key distribution using card, base station and trusted authority
Nordholt, Jane E.; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T.; Dallmann, Nicholas
2017-06-14
Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trust authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.
Experimental aspects of deterministic secure quantum key distribution
Walenta, Nino; Korn, Dietmar; Puhlmann, Dirk; Felbinger, Timo; Hoffmann, Holger; Ostermeyer, Martin [Universitaet Potsdam (Germany). Institut fuer Physik; Bostroem, Kim [Universitaet Muenster (Germany)
2008-07-01
Most common protocols for quantum key distribution (QKD) use non-deterministic algorithms to establish a shared key. But deterministic implementations can allow for higher net key transfer rates and eavesdropping detection rates. The Ping-Pong coding scheme by Bostroem and Felbinger[1] employs deterministic information encoding in entangled states with its characteristic quantum channel from Bob to Alice and back to Bob. Based on a table-top implementation of this protocol with polarization-entangled photons fundamental advantages as well as practical issues like transmission losses, photon storage and requirements for progress towards longer transmission distances are discussed and compared to non-deterministic protocols. Modifications of common protocols towards a deterministic quantum key distribution are addressed.
Quantum key distribution using card, base station and trusted authority
Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas
2015-04-07
Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.
Two-dimensional distributed-phase-reference protocol for quantum key distribution
Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2016-12-01
Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.
Two-dimensional distributed-phase-reference protocol for quantum key distribution
Bacco, Davide; Christensen, Jesper Bjerge; Usuga Castaneda, Mario A.
2016-01-01
10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak......Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last...... coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable....
Unconditional security of quantum key distribution and the uncertainty principle
Koashi, Masato
2006-01-01
An approach to the unconditional security of quantum key distribution protocols is presented, which is based on the uncertainty principle. The approach applies to every case that has been treated via the argument by Shor and Preskill, but it is not necessary to find quantum error correcting codes. It can also treat the cases with uncharacterized apparatuses. The proof can be applied to cases where the secret key rate is larger than the distillable entanglement
Efficient, Robust and Constant-Round Distributed RSA Key Generation
Damgård, Ivan Bjerre; Mikkelsen, Gert Læssøe
2010-01-01
We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number.......We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number....
Toward Designing a Quantum Key Distribution Network Simulation Model
Miralem Mehic
2016-01-01
Full Text Available As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator.
Memory-assisted measurement-device-independent quantum key distribution
Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert
2014-01-01
A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations. (paper)
Two-way quantum key distribution at telecommunication wavelength
Kumar, Rupesh; Lucamarini, Marco; Di Giuseppe, Giovanni; Natali, Riccardo; Mancini, Giorgio; Tombesi, Paolo
2008-01-01
We report on a quantum key distribution effected with a two-way deterministic protocol over a standard telecommunication fiber. Despite the common belief of a prohibitive loss rate for such a scheme, our results show its feasibility on distances of few tenths of kilometers
Authenticated multi-user quantum key distribution with single particles
Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen
2016-03-01
Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.
Drinking Water Distribution Systems
Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.
Nikov, V.S.; Nikova, S.I.; Preneel, B.; Vandewalle, J.; Menezes, A.; Sarkar, P.
2002-01-01
A Key Distribution Center of a network is a server enabling private communications within groups of users. A Distributed Key Distribution Center is a set of servers that jointly realizes a Key Distribution Center. In this paper we build a robust Distributed Key Distribution Center Scheme secure
Simple security proof of quantum key distribution based on complementarity
Koashi, M
2009-01-01
We present an approach to the unconditional security of quantum key distribution protocols based on a complementarity argument. The approach is applicable to, but not limited to, every case that has been treated via the argument by Shor and Preskill based on entanglement distillation, with a benefit of decoupling of the error correction from the privacy amplification. It can also treat cases with uncharacterized apparatuses. We derive a secure key rate for the Bennett-Brassard-1984 protocol with an arbitrary source characterized only by a single parameter representing the basis dependence.
Secure networking quantum key distribution schemes with Greenberger-Horne-Zeilinger states
Guo, Ying; Shi, Ronghua [School of Information Science and Engineering, Central South University, Changsha 410083 (China); Zeng, Guihua [Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)], E-mail: sdguoying@gmail.com, E-mail: rhshi@mail.edu.com, E-mail: ghzeng@sjtu.edu.cn
2010-04-15
A novel approach to quantum cryptography to be called NQKD, networking quantum key distribution, has been developed for secure quantum communication schemes on the basis of the complementary relations of entanglement Greenberger-Horne-Zeilinger (GHZ) triplet states. One scheme distributes the private key among legal participants in a probabilistic manner, while another transmits the deterministic message with some certainty. Some decoy photons are employed for preventing a potential eavesdropper from attacking quantum channels. The present schemes are efficient as there exists an elegant method for key distributions. The security of the proposed schemes is exactly guaranteed by the entanglement of the GHZ quantum system, which is illustrated in security analysis.
Secure networking quantum key distribution schemes with Greenberger-Horne-Zeilinger states
Guo, Ying; Shi, Ronghua; Zeng, Guihua
2010-01-01
A novel approach to quantum cryptography to be called NQKD, networking quantum key distribution, has been developed for secure quantum communication schemes on the basis of the complementary relations of entanglement Greenberger-Horne-Zeilinger (GHZ) triplet states. One scheme distributes the private key among legal participants in a probabilistic manner, while another transmits the deterministic message with some certainty. Some decoy photons are employed for preventing a potential eavesdropper from attacking quantum channels. The present schemes are efficient as there exists an elegant method for key distributions. The security of the proposed schemes is exactly guaranteed by the entanglement of the GHZ quantum system, which is illustrated in security analysis.
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
One-way quantum key distribution: Simple upper bound on the secret key rate
Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos
2006-01-01
We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol
Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution
Liang Wen-Ye; Yin Zhen-Qiang; Chen Hua; Li Hong-Wei; Chen Wei; Han Zheng-Fu; Wen Hao
2015-01-01
At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. (paper)
Long-distance quantum key distribution with imperfect devices
Lo Piparo, Nicoló; Razavi, Mohsen
2014-01-01
Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R QKD . The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols
Continuous Variable Quantum Key Distribution Using Polarized Coherent States
Vidiella-Barranco, A.; Borelli, L. F. M.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
Continuous-variable quantum key distribution with Gaussian source noise
Shen Yujie; Peng Xiang; Yang Jian; Guo Hong
2011-01-01
Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.
Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)
2015-11-12
polarization control and the CV state and the LO state are separated at a polarizing beam splitter . The CV state is delayed relative to the LO state, and... splitter or loss imperfections. We have identified a number of risks associated with implementing this design . The two most critical risks are: • The...Contractor Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY
Semiquantum-key distribution using less than four quantum states
Zou Xiangfu; Qiu Daowen; Li Lvzhou; Wu Lihua; Li Lvjun
2009-01-01
Recently Boyer et al. [Phys. Rev. Lett. 99, 140501 (2007)] suggested the idea of semiquantum key distribution (SQKD) in which Bob is classical and they also proposed a semiquantum key distribution protocol (BKM2007). To discuss the security of the BKM2007 protocol, they proved that their protocol is completely robust. This means that nonzero information acquired by Eve on the information string implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. The BKM2007 protocol uses four quantum states to distribute a secret key. In this paper, we simplify their protocol by using less than four quantum states. In detail, we present five different SQKD protocols in which Alice sends three quantum states, two quantum states, and one quantum state, respectively. Also, we prove that all the five protocols are completely robust. In particular, we invent two completely robust SQKD protocols in which Alice sends only one quantum state. Alice uses a register in one SQKD protocol, but she does not use any register in the other. The information bit proportion of the SQKD protocol in which Alice sends only one quantum state but uses a register is the double as that in the BKM2007 protocol. Furthermore, the information bit rate of the SQKD protocol in which Alice sends only one quantum state and does not use any register is not lower than that of the BKM2007 protocol.
Robustness bounds and practical limitations of quantum key distribution
Khalique, Aeysha
2008-01-01
Quantum information theory is a modern branch of theoretical physics. One of its main goals is to interpret concepts of quantum physics. This leads to a deeper understanding of quantum theory. The most common examples of practical applications of basic quantum theory are quantum computation and quantum cryptography. Quantum cryptography provides secure communication between legitimate users even in the presence of an adversary by making possible the distribution of a secret key. It then allows error correction and privacy amplification, which is elimination of adversary information, through classical communication. In this thesis two important aspects of quantum key distribution are covered, namely robustness bounds with respect to provable entanglement for ideal protocols and practical quantum key distribution using two-way classical communication. In part one of the thesis, ideal quantum key distribution protocols and their robustness in terms of provable entanglement are discussed. The robustness bounds are proved for most general coherent attacks. These bounds for provable entanglement are already known to be 25% for the four-state protocol and 33% for the six-state protocol. We anticipate to provide a region in which the legitimate users share entanglement. This region is large for the four-state protocol and is reduced to a smaller region for the six-state protocol because of additional constraint on it. We also investigate the information cost which the adversary has to pay in order to reach these bounds. In part two we adopt a more practical approach. We investigate the limitation on distance of secure communication because of practical restrictions. In particular we investigate the restrictions due to the lack of single photon sources, the lossy channel and faulty detectors. These practical limitations have already been observed using one-way classical communication between legitimate users. It has been observed that it is actually the dark count rate that
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
The ultimate security bounds of quantum key distribution protocols
Nikolopoulos, G.M.; Alber, G.
2005-01-01
Full text: Quantum key distribution (QKD) protocols exploit quantum correlations in order to establish a secure key between two legitimate users. Recent work on QKD has revealed a remarkable link between quantum and secret correlations. In this talk we report on recent results concerning the ultimate upper security bounds of various QKD schemes (i.e., the maximal disturbance up to which the two legitimate users share quantum correlations) under the assumption of general coherent attacks. In particular, we derive an analytic expression for the ultimate upper security bound of QKD schemes that use two mutually unbiased bases. As long as the two legitimate users focus on the sifted key and treat each pair of data independently during the post processing, our results are valid for arbitrary dimensions of the information carriers. The bound we have derived is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is also discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions, however, such equivalence is generally no longer valid. (author)
Quantum-key-distribution protocol with pseudorandom bases
Trushechkin, A. S.; Tregubov, P. A.; Kiktenko, E. O.; Kurochkin, Y. V.; Fedorov, A. K.
2018-01-01
Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications. An important part of QKD technology is a high-quality random number generator for the quantum-state preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols. However, the protocol strongly requires single-photon sources.
Authenticated Quantum Key Distribution with Collective Detection using Single Photons
Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue
2016-10-01
We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.
Symmetric Blind Information Reconciliation for Quantum Key Distribution
Kiktenko, Evgeniy O.
2017-01-01
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.
Yazhou Jiang
2016-04-01
Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.
Quantum election scheme based on anonymous quantum key distribution
Zhou Rui-Rui; Yang Li
2012-01-01
An unconditionally secure authority-certified anonymous quantum key distribution scheme using conjugate coding is presented, based on which we construct a quantum election scheme without the help of an entanglement state. We show that this election scheme ensures the completeness, soundness, privacy, eligibility, unreusability, fairness, and verifiability of a large-scale election in which the administrator and counter are semi-honest. This election scheme can work even if there exist loss and errors in quantum channels. In addition, any irregularity in this scheme is sensible. (general)
Mullender, Sape J.
1987-01-01
In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups. In this paper, an overview of recent research in distributed systems is given. In turn, the
Pervasive Electricity Distribution System
Muhammad Usman Tahir
2017-06-01
Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.
Quantum key distribution with two-segment quantum repeaters
Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)
2014-07-01
Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.
Metering; Accurate, fast response the key. [In gas distribution companies
Johnson, J. (Atlanta Gas Light Co. of Georgia (US))
1990-06-01
Automated meter reading systems are quickly becoming a necessity for local gas distribution companies in the United States, especially as end-users involve themselves in the energy business. With open-access transportation available from the pipelines, balancing on the various systems has become critical, not only from a contractual standpoint but for billing purposes as well. Improved accuracy and decreased time period for accessing gas consumption data are the major motivators in the decision to install a remote data acquisition system. The Metretek system which is one source of this new technology described. (author).
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena
2015-11-02
Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.
High speed and adaptable error correction for megabit/s rate quantum key distribution.
Dixon, A R; Sato, H
2014-12-02
Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.
Analysis of Faraday Mirror in Auto-Compensating Quantum Key Distribution
Wei Ke-Jin; Ma Hai-Qiang; Li Rui-Xue; Zhu Wu; Liu Hong-Wei; Zhang Yong; Jiao Rong-Zhen
2015-01-01
The ‘plug and play’ quantum key distribution system is the most stable and the earliest commercial system in the quantum communication field. Jones matrix and Jones calculus are widely used in the analysis of this system and the improved version, which is called the auto-compensating quantum key distribution system. Unfortunately, existing analysis has two drawbacks: only the auto-compensating process is analyzed and existing systems do not fully consider laser phase affected by a Faraday mirror (FM). In this work, we present a detailed analysis of the output of light pulse transmitting in a plug and play quantum key distribution system that contains only an FM, by Jones calculus. A similar analysis is made to a home-made auto-compensating system which contains two FMs to compensate for environmental effects. More importantly, we show that theoretical and experimental results are different in the plug and play interferometric setup due to the fact that a conventional Jones matrix of FM neglected an additional phase π on alternative polarization direction. To resolve the above problem, we give a new Jones matrix of an FM according to the coordinate rotation. This new Jones matrix not only resolves the above contradiction in the plug and play interferometric setup, but also is suitable for the previous analyses about auto-compensating quantum key distribution. (paper)
Advanced Distribution Management System
Avazov, Artur; Sobinova, Lubov Anatolievna
2016-01-01
This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Advanced Distribution Management System
Avazov, Artur R.; Sobinova, Liubov A.
2016-02-01
This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Advanced Distribution Management System
Avazov Artur R.
2016-01-01
Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.
Demonstration Of The Violation Of Bell Inequality In Quantum Key Distribution
Dermez, R.
2010-01-01
Today, the data privacy has become very important. Quantum Key Distribution (QKD) system is developed in this area. QKD, coding technique with single-use method of encoding used keys (information and messages) security guarantees. The system is based on Quantum Mechanics (The Certainty Principle). However, in some cases for quantum communication, QKD are limited. In determining this limit Bell Inequality (CHSH Inequality, 1969) is used. Bell inequality shows a violation of Quantum Key Distribution. In this study, using the program of Matematica 6, QKD through bilateral quantum system (system with two qubits) has been investigating the leak case and the violations. We showed leakage and violations in these figures via the calculations results in Matematica program.
A distribution management system
Verho, P.; Jaerventausta, P.; Kaerenlampi, M.; Paulasaari, H. [Tampere Univ. of Technology (Finland); Partanen, J. [Lappeenranta Univ. of Technology (Finland)
1996-12-31
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system
A distribution management system
Verho, P; Jaerventausta, P; Kaerenlampi, M; Paulasaari, H [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)
1997-12-31
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system
A distribution management system
Jaerventausta, P; Verho, P; Kaerenlampi, M; Pitkaenen, M [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)
1998-08-01
The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion to the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. Nowadays the SCADA is the main computer system (and often the only) in the control center. However, the information displayed by the SCADA is often inadequate, and several tasks cannot be solved by a conventional SCADA system. A need for new computer applications in control center arises from the insufficiency of the SCADA and some other trends. The latter means that the overall importance of the distribution networks is increasing. The slowing down of load-growth has often made network reinforcements unprofitable. Thus the existing network must be operated more efficiently. At the same time larger distribution areas are for economical reasons being monitored at one control center and the size of the operation staff is decreasing. The quality of supply requirements are also becoming stricter. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the
Field test of a continuous-variable quantum key distribution prototype
Fossier, S; Debuisschert, T; Diamanti, E; Villing, A; Tualle-Brouri, R; Grangier, P
2009-01-01
We have designed and realized a prototype that implements a continuous-variable quantum key distribution (QKD) protocol based on coherent states and reverse reconciliation. The system uses time and polarization multiplexing for optimal transmission and detection of the signal and phase reference, and employs sophisticated error-correction codes for reconciliation. The security of the system is guaranteed against general coherent eavesdropping attacks. The performance of the prototype was tested over preinstalled optical fibres as part of a quantum cryptography network combining different QKD technologies. The stable and automatic operation of the prototype over 57 h yielded an average secret key distribution rate of 8 kbit s -1 over a 3 dB loss optical fibre, including the key extraction process and all quantum and classical communication. This system is therefore ideal for securing communications in metropolitan size networks with high-speed requirements.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
Molotkov, S. N.
2008-01-01
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ∼ 20%) and dark count probability (p dark ∼ 10 -7 )
Distributed Treatment Systems.
Zgonc, David; Plante, Luke
2017-10-01
This section presents a review of the literature published in 2016 on topics relating to distributed treatment systems. This review is divided into the following sections with multiple subsections under each: constituent removal; treatment technologies; and planning and treatment system management.
Detector dead-time effects and paralyzability in high-speed quantum key distribution
Rogers, Daniel J; Bienfang, Joshua C; Nakassis, Anastase; Xu Hai; Clark, Charles W
2007-01-01
Recent advances in quantum key distribution (QKD) have given rise to systems that operate at transmission periods significantly shorter than the dead times of their component single-photon detectors. As systems continue to increase in transmission rate, security concerns associated with detector dead times can limit the production rate of sifted bits. We present a model of high-speed QKD in this limit that identifies an optimum transmission rate for a system with given link loss and detector response characteristics
Distributed Computerized Catalog System
Borgen, Richard L.; Wagner, David A.
1995-01-01
DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.
Experimental multiplexing of quantum key distribution with classical optical communication
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei
2015-01-01
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users
Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun
2018-07-01
In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.
Fast implementation of length-adaptive privacy amplification in quantum key distribution
Zhang Chun-Mei; Li Mo; Huang Jing-Zheng; Li Hong-Wei; Li Fang-Yi; Wang Chuan; Yin Zhen-Qiang; Chen Wei; Han Zhen-Fu; Treeviriyanupab Patcharapong; Sripimanwat Keattisak
2014-01-01
Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems. (general)
David M. Makori
2017-02-01
Full Text Available Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data to improve the reliability of pest ecological niche (EN models to attain reliable pest distribution maps. Occurrence data on four pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor were collected from apiaries within four main agro-ecological regions responsible for over 80% of Kenya’s bee keeping. Africlim bioclimatic and derived normalized difference vegetation index (NDVI variables were used to model their ecological niches using Maximum Entropy (MaxEnt. Combined precipitation variables had a high positive logit influence on all remotely sensed and biotic models’ performance. Remotely sensed vegetation variables had a substantial effect on the model, contributing up to 40.8% for G. mellonella and regions with high rainfall seasonality were predicted to be high-risk areas. Projections (to 2055 indicated that, with the current climate change trend, these regions will experience increased honeybee pest risk. We conclude that honeybee pests could be modelled using bioclimatic data and remotely sensed variables in MaxEnt. Although the bioclimatic data were most relevant in all model results, incorporating vegetation seasonality variables to improve mapping the ‘actual’ habitat of key honeybee pests and to identify risk and containment zones needs to be further investigated.
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS
Popescu V.S.
2012-04-01
Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.
Optimizing electrical distribution systems
Scott, W.G.
1990-01-01
Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs
Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.
Miroshnichenko, G P; Kozubov, A V; Gaidash, A A; Gleim, A V; Horoshko, D B
2018-04-30
We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.
Tanenbaum, A.S.; van Steen, M.R.
2016-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A
Distributed protocols for digital signatures and public key encryption.
Kuchta, Veronika
2016-01-01
Distributed protocols allow a cryptographic scheme to distribute its operation among a group of participants (servers). This new concept of cryptosystems was introduced by Desmedt [56]. We consider two different flavours of distributed protocols. One of them considers a distributed model with n parties where all of these parties are honest. The other allows up to t − 1 parties to be faulty. Such cryptosystems are called threshold cryptosystems. The distribution of cryptographic process is ...
Zhang Sheng; Wang Jian; Tang Chaojing; Zhang Quan
2011-01-01
It is established that a single quantum cryptography protocol usually cooperates with other cryptographic systems, such as an authentication system, in the real world. However, few protocols have been proposed on how to combine two or more quantum protocols. To fill this gap, we propose a composed quantum protocol, containing both quantum identity authentication and quantum key distribution, using squeezed states. Hence, not only the identity can be verified, but also a new private key can be generated by our new protocol. We also analyze the security under an optimal attack, and the efficiency, which is defined by the threshold of the tolerant error rate, using Gaussian error function. (general)
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.
Distributed Data Management and Distributed File Systems
Girone, Maria
2015-01-01
The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.
High performance reconciliation for continuous-variable quantum key distribution with LDPC code
Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua
2015-03-01
Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.
Distributed generation of shared RSA keys in mobile ad hoc networks
Liu, Yi-Liang; Huang, Qin; Shen, Ying
2005-12-01
Mobile Ad Hoc Networks is a totally new concept in which mobile nodes are able to communicate together over wireless links in an independent manner, independent of fixed physical infrastructure and centralized administrative infrastructure. However, the nature of Ad Hoc Networks makes them very vulnerable to security threats. Generation and distribution of shared keys for CA (Certification Authority) is challenging for security solution based on distributed PKI(Public-Key Infrastructure)/CA. The solutions that have been proposed in the literature and some related issues are discussed in this paper. The solution of a distributed generation of shared threshold RSA keys for CA is proposed in the present paper. During the process of creating an RSA private key share, every CA node only has its own private security. Distributed arithmetic is used to create the CA's private share locally, and that the requirement of centralized management institution is eliminated. Based on fully considering the Mobile Ad Hoc network's characteristic of self-organization, it avoids the security hidden trouble that comes by holding an all private security share of CA, with which the security and robustness of system is enhanced.
Distributed System Design Checklist
Hall, Brendan; Driscoll, Kevin
2014-01-01
This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.
Robust shot-noise measurement for continuous-variable quantum key distribution
Kunz-Jacques, Sébastien; Jouguet, Paul
2015-02-01
We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.
Electrical distribution system management
Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.
1990-01-01
This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers
Planning Systems for Distributed Operations
Maxwell, Theresa G.
2002-01-01
This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.
Implementation of continuous-variable quantum key distribution with discrete modulation
Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2017-06-01
We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.
Quantum key distribution with hacking countermeasures and long term field trial.
Dixon, A R; Dynes, J F; Lucamarini, M; Fröhlich, B; Sharpe, A W; Plews, A; Tam, W; Yuan, Z L; Tanizawa, Y; Sato, H; Kawamura, S; Fujiwara, M; Sasaki, M; Shields, A J
2017-05-16
Quantum key distribution's (QKD's) central and unique claim is information theoretic security. However there is an increasing understanding that the security of a QKD system relies not only on theoretical security proofs, but also on how closely the physical system matches the theoretical models and prevents attacks due to discrepancies. These side channel or hacking attacks exploit physical devices which do not necessarily behave precisely as the theory expects. As such there is a need for QKD systems to be demonstrated to provide security both in the theoretical and physical implementation. We report here a QKD system designed with this goal in mind, providing a more resilient target against possible hacking attacks including Trojan horse, detector blinding, phase randomisation and photon number splitting attacks. The QKD system was installed into a 45 km link of a metropolitan telecom network for a 2.5 month period, during which time the system operated continuously and distributed 1.33 Tbits of secure key data with a stable secure key rate over 200 kbit/s. In addition security is demonstrated against coherent attacks that are more general than the collective class of attacks usually considered.
Cross correlations of quantum key distribution based on single-photon sources
Dong Shuangli; Wang Xiaobo; Zhang Guofeng; Sun Jianhu; Zhang Fang; Xiao Liantuan; Jia Suotang
2009-01-01
We theoretically analyze the second-order correlation function in a quantum key distribution system with real single-photon sources. Based on single-event photon statistics, the influence of the modification caused by an eavesdropper's intervention and the effects of background signals on the cross correlations between authorized partners are presented. On this basis, we have shown a secure range of correlation against the intercept-resend attacks.
The Impact of Connecting Distributed Generation to the Distribution System
E. V. Mgaya
2007-01-01
Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could improve the effective capacity of the system.
Distributed road assessment system
Beer, N. Reginald; Paglieroni, David W
2014-03-25
A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.
Communication Facilities for Distributed Systems
V. Barladeanu
1997-01-01
Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.
A continuous variable quantum deterministic key distribution based on two-mode squeezed states
Gong, Li-Hua; Song, Han-Chong; Liu, Ye; Zhou, Nan-Run; He, Chao-Sheng
2014-01-01
The distribution of deterministic keys is of significance in personal communications, but the existing continuous variable quantum key distribution protocols can only generate random keys. By exploiting the entanglement properties of two-mode squeezed states, a continuous variable quantum deterministic key distribution (CVQDKD) scheme is presented for handing over the pre-determined key to the intended receiver. The security of the CVQDKD scheme is analyzed in detail from the perspective of information theory. It shows that the scheme can securely and effectively transfer pre-determined keys under ideal conditions. The proposed scheme can resist both the entanglement and beam splitter attacks under a relatively high channel transmission efficiency. (paper)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Optimizing queries in distributed systems
Ion LUNGU
2006-01-01
Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.
No-signaling quantum key distribution: solution by linear programming
Hwang, Won-Young; Bae, Joonwoo; Killoran, Nathan
2015-02-01
We outline a straightforward approach for obtaining a secret key rate using only no-signaling constraints and linear programming. Assuming an individual attack, we consider all possible joint probabilities. Initially, we study only the case where Eve has binary outcomes, and we impose constraints due to the no-signaling principle and given measurement outcomes. Within the remaining space of joint probabilities, by using linear programming, we get bound on the probability of Eve correctly guessing Bob's bit. We then make use of an inequality that relates this guessing probability to the mutual information between Bob and a more general Eve, who is not binary-restricted. Putting our computed bound together with the Csiszár-Körner formula, we obtain a positive key generation rate. The optimal value of this rate agrees with known results, but was calculated in a more straightforward way, offering the potential of generalization to different scenarios.
Security by quantum key distribution and IPSEC (SEQKEIP): feasibility
Sfaxi, M.A.; Ghernaouti-Helie, S.; Ribordy, G; Gay, O.
2005-01-01
Full text: Classical cryptography algorithms are based on mathematical functions. The robustness of a given cryptosystem is based essentially on the secrecy of its (private) key and the difficulty with which the inverse of its one-way function(s) can be calculated. Unfortunately, there is no mathematical proof that will establish whether it is not possible to find the inverse of a given one-way function. On the contrary, quantum cryptography is a method for sharing secret keys, whose security can be formally demonstrated. It is based on the laws of physics. The possible applications of quantum cryptography are mainly linked to telecommunication services that require very high level of security. Quantum cryptography could be integrated in various existing concepts and protocols. One of the possible use of quantum cryptography is within IPSEC. The aim of this paper is to analyse the feasibility of using quantum cryptography in IPSEC and to present the estimated performances of this solution. (author)
Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).
Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie
2017-10-30
Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.
Quality monitored distributed voting system
Skogmo, David
1997-01-01
A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.
Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M
2017-10-13
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
Takeoka, Masahiro; Seshadreesan, Kaushik P.; Wilde, Mark M.
2017-10-01
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
Process evaluation distributed system
Moffatt, Christopher L. (Inventor)
2006-01-01
The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.
Quantum deterministic key distribution protocols based on the authenticated entanglement channel
Zhou Nanrun; Wang Lijun; Ding Jie; Gong Lihua
2010-01-01
Based on the quantum entanglement channel, two secure quantum deterministic key distribution (QDKD) protocols are proposed. Unlike quantum random key distribution (QRKD) protocols, the proposed QDKD protocols can distribute the deterministic key securely, which is of significant importance in the field of key management. The security of the proposed QDKD protocols is analyzed in detail using information theory. It is shown that the proposed QDKD protocols can safely and effectively hand over the deterministic key to the specific receiver and their physical implementation is feasible with current technology.
Quantum deterministic key distribution protocols based on the authenticated entanglement channel
Zhou Nanrun; Wang Lijun; Ding Jie; Gong Lihua [Department of Electronic Information Engineering, Nanchang University, Nanchang 330031 (China)], E-mail: znr21@163.com, E-mail: znr21@hotmail.com
2010-04-15
Based on the quantum entanglement channel, two secure quantum deterministic key distribution (QDKD) protocols are proposed. Unlike quantum random key distribution (QRKD) protocols, the proposed QDKD protocols can distribute the deterministic key securely, which is of significant importance in the field of key management. The security of the proposed QDKD protocols is analyzed in detail using information theory. It is shown that the proposed QDKD protocols can safely and effectively hand over the deterministic key to the specific receiver and their physical implementation is feasible with current technology.
Distributed security in closed distributed systems
Hernandez, Alejandro Mario
properties. This is also restricted to distributed systems in which the set of locations is known a priori. All this follows techniques borrowed from both the model checking and the static analysis communities. In the end, we reach a step towards solving the problem of enforcing security in distributed...... systems. We achieve the goal of showing how this can be done, though we restrict ourselves to closed systems and with a limited set of enforceable security policies. In this setting, our approach proves to be efficient. Finally, we achieve all this by bringing together several fields of Computer Science......The goal of the present thesis is to discuss, argue and conclude about ways to provide security to the information travelling around computer systems consisting of several known locations. When developing software systems, security of the information managed by these plays an important role...
Upconversion-based receivers for quantum hacking-resistant quantum key distribution
Jain, Nitin; Kanter, Gregory S.
2016-07-01
We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.
Transceivers and receivers for quantum key distribution and methods pertaining thereto
DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.; Lentine, Anthony; Davids, Paul; Camacho, Ryan
2018-02-27
Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa
2018-03-01
Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.
Garrett K. Simon
2018-04-01
Full Text Available Measurement-Device-Independent Quantum Key Distribution (MDI-QKD is a two-photon protocol devised to eliminate eavesdropping attacks that interrogate or control the detector in realized quantum key distribution systems. In MDI-QKD, the measurements are carried out by an untrusted third party, and the measurement results are announced openly. Knowledge or control of the measurement results gives the third party no information about the secret key. Error-free implementation of the MDI-QKD protocol requires the crypto-communicating parties, Alice and Bob, to independently prepare and transmit single photons that are physically indistinguishable, with the possible exception of their polarization states. In this paper, we apply the formalism of quantum optics and Monte Carlo simulations to quantify the impact of small errors in wavelength, bandwidth, polarization and timing between Alice’s photons and Bob’s photons on the MDI-QKD quantum bit error rate (QBER. Using published single-photon source characteristics from two-photon interference experiments as a test case, our simulations predict that the finite tolerances of these sources contribute ( 4.04 ± 20 / N sifted % to the QBER in an MDI-QKD implementation generating an N sifted -bit sifted key.
Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas
2015-11-01
Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.
Secret-key rates and privacy leakage in biometric systems
Ignatenko, T.
2009-01-01
In this thesis both the generation of secret keys from biometric data and the binding of secret keys to biometric data are investigated. These secret keys can be used to regulate access to sensitive data, services, and environments. In a biometric secrecy system a secret key is generated or chosen
Intelligent Control and Operation of Distribution System
Bhattarai, Bishnu Prasad
methodology to ensure efficient control and operation of the future distribution networks. The major scientific challenge is thus to develop control models and strategies to coordinate responses from widely distributed controllable loads and local generations. Detailed models of key Smart Grid (SG) elements...... in this direction but also benefit distribution system operators in the planning and development of the distribution network. The major contributions of this work are described in the following four stages: In the first stage, an intelligent Demand Response (DR) control architecture is developed for coordinating...... the key SG actors, namely consumers, network operators, aggregators, and electricity market entities. A key intent of the architecture is to facilitate market participation of residential consumers and prosumers. A Hierarchical Control Architecture (HCA) having primary, secondary, and tertiary control...
Distribution System Pricing with Distributed Energy Resources
Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-08-16
Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.
Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure
Woong Go; Jin Kawk
2014-01-01
A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI) is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted in...
Drug quality in South Africa: perceptions of key players involved in medicines distribution.
Patel, Aarti; Norris, Pauline; Gauld, Robin; Rades, Thomas
2009-01-01
Substandard medicines contribute to poor public health and affect development, especially in the developing world. However knowledge of how manufacturers, distributors and providers understand the concept of drug quality and what strategies they adopt to ensure drug quality is limited, particularly in the developing world. The purpose of this paper is to explore pharmaceutical manufacturers', distributors' and providers' perceptions of drug quality in South Africa and how they ensure the quality of drugs during the distribution process. The approach taken was qualitative data collection through key informant interviews using a semi-structured interview guide. Transcripts were analysed thematically in Johannesburg, Pretoria and Durban, South Africa. Participants were recruited purposefully from a South African pharmaceutical manufacturer, SA subsidiaries of international manufacturers, national distribution companies, national wholesaler, public and private sector pharmacists, and a dispensing doctor. In total, ten interviews were conducted. Participants described drug quality in terms of the product and the processes involved in manufacturing and handling the product. Participants identified purchasing registered medicines from licensed suppliers, use of standard operating procedures, and audits between manufacturer and distributor and/or provider as key strategies employed to protect medicine quality. Effective communication amongst all stakeholders, especially in terms of providing feedback regarding complaints about medicine quality, appears as a potential area of concern, which would benefit from further research. The paper hightlights that ensuring medicine quality should be a shared responsibility amongst all involved in the distribution process to prevent medicines moving from one distribution system (public) into another (private).
Study on the security of discrete-variable quantum key distribution over non-Markovian channels
Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua
2012-01-01
The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)
Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung
2011-10-01
Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN.
Secured Session-key Distribution using control Vector Encryption / Decryption Process
Ismail Jabiullah, M.; Abdullah Al-Shamim; Khaleqdad Khan, ANM; Lutfar Rahman, M.
2006-01-01
Frequent key changes are very much desirable for the secret communications and are thus in high demand. A session-key distribution technique has been designed and implemented using the programming language C on which the communication between the end-users is encrypted is used for the duration of a logical connection. Each session-key is obtained from the key distribution center (KDC) over the same networking facilities used for end-user communication. The control vector is cryptographically coupled with the session-key at the time of key generation in the KDC. For this, the generated hash function, master key and the session-key are used for producing the encrypted session-key, which has to be transferred. All the operations have been performed using the C programming language. This process can be widely applicable to all sorts of electronic transactions online or offline; commercially and academically.(authors)
Quantum key distribution with finite resources: calculating the min-entropy
Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Heinrich-Heine-Universitaet, Duesseldorf (Germany)
2010-07-01
The min-entropy is an important quantity in quantum key distribution. Recently, a connection between the min- entropy and the minimal-error discrimination problem was found. We use this connection to evaluate the min-entropy for different quantum key distribution setups.
Security of quantum key distributions with entangled qudits
Durt, Thomas; Kaszlikowski, Dagomir; Chen, Jing-Ling; Kwek, L. C.
2004-03-01
We consider a generalization of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by N - or d -dimensional systems (qudits). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf’s formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of qudit generalizations of the Ekert’s protocol for qubits.
Secure multi-party communication with quantum key distribution managed by trusted authority
Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen
2013-07-09
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
Secure multi-party communication with quantum key distribution managed by trusted authority
Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen
2017-06-14
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
RBAC Administration in Distributed Systems
Dekker, M.A.C.; Crampton, J.; Etalle, Sandro
2007-01-01
Despite a large body of literature on the administration of RBAC policies in centralized systems, the problem of the administration of a distributed system has hardly been addressed. We present a formal system for modelling a distributed RBAC system and its administration. We define two basic
Wang, Tianyi; Gong, Feng; Lu, Anjiang; Zhang, Damin; Zhang, Zhengping
2017-12-01
In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.
Determining influence of four-wave mixing effect on quantum key distribution
Vavulin, D N; Egorov, V I; Gleim, A V; Chivilikhin, S A
2014-01-01
We consider the possibility of multiplexing the classical and quantum signals in a quantum cryptography system with optical fiber used as a transmission medium. If the quantum signal is located at a frequency close to the frequency of classical signals, a set of nonlinear effects such as FWM (four-wave mixing) and Raman scattering is observed. The impact of four-wave mixing (FWM) effect on error level is described and analyzed in this work in case of large frequency diversity between classical and quantum signals. It is shown that the influence of FWM is negligible for convenient quantum key distribution
High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution
2016-10-12
count rate of Bob’s detectors. In this detector-limited regime , it is advantageous to increase M to encode as much information as possible in each...High- rate field demonstration of large-alphabet quantum key distribution Catherine Lee,1, 2 Darius Bunandar,1 Zheshen Zhang,1 Gregory R. Steinbrecher...October 12, 2016) 2 Quantum key distribution (QKD) enables secure symmetric key exchange for information-theoretically secure com- munication via one-time
A New Quantum Key Distribution Scheme Based on Frequency and Time Coding
Chang-Hua, Zhu; Chang-Xing, Pei; Dong-Xiao, Quan; Jing-Liang, Gao; Nan, Chen; Yun-Hui, Yi
2010-01-01
A new scheme of quantum key distribution (QKD) using frequency and time coding is proposed, in which the security is based on the frequency-time uncertainty relation. In this scheme, the binary information sequence is encoded randomly on either the central frequency or the time delay of the optical pulse at the sender. The central frequency of the single photon pulse is set as ω 1 for bit 0 and set as ω 2 for bit 1 when frequency coding is selected. However, the single photon pulse is not delayed for bit 0 and is delayed in τ for 1 when time coding is selected. At the receiver, either the frequency or the time delay of the pulse is measured randomly, and the final key is obtained after basis comparison, data reconciliation and privacy amplification. With the proposed method, the effect of the noise in the fiber channel and environment on the QKD system can be reduced effectively
Security bound of two-basis quantum-key-distribution protocols using qudits
Nikolopoulos, Georgios M.; Alber, Gernot
2005-01-01
We investigate the security bounds of quantum-cryptographic protocols using d-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the Bennett-Brassard 1984 quantum-key-distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum-cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid
Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus
Anne Hillebrand
2012-10-01
Full Text Available Quantum entanglement is a key resource in many quantum protocols, such as quantum teleportation and quantum cryptography. Yet entanglement makes protocols presented in Dirac notation difficult to verify. This is why Coecke and Duncan have introduced a diagrammatic language for quantum protocols, called the ZX-calculus. This diagrammatic notation is both intuitive and formally rigorous. It is a simple, graphical, high level language that emphasises the composition of systems and naturally captures the essentials of quantum mechanics. In the author's MSc thesis it has been shown for over 25 quantum protocols that the ZX-calculus provides a relatively easy and more intuitive presentation. Moreover, the author embarked on the task to apply categorical quantum mechanics on quantum security; earlier works did not touch anything but Bennett and Brassard's quantum key distribution protocol, BB84. Superdense coding with the Greenberger-Horne-Zeilinger state and quantum key distribution with the W-state are presented in the ZX-calculus in this paper.
Key ecological challenges for closed systems facilities
Nelson, Mark; Dempster, William F.; Allen, John P.
2013-07-01
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.
High-capacity quantum key distribution via hyperentangled degrees of freedom
Simon, David S; Sergienko, Alexander V
2014-01-01
Quantum key distribution (QKD) has long been a promising area for the application of quantum effects in solving real-world problems. However, two major obstacles have stood in the way of its widespread application: low secure key generation rates and short achievable operating distances. In this paper, a new physical mechanism for dealing with the first of these problems is proposed: the interplay between different degrees of freedom in a hyperentangled system (parametric down-conversion) is used to increase the Hilbert space dimension available for key generation while maintaining security. Polarization-based Bell tests provide security checking, while orbital angular momentum (OAM) and total angular momentum (TAM) provide a higher key generation rate. Whether to measure TAM or OAM is decided randomly in each trial. The concurrent noncommutativity of TAM with OAM and polarization provides the physical basis for quantum security. TAM measurements link polarization to OAM, so that if the legitimate participants measure OAM while the eavesdropper measures TAM (or vice-versa), then polarization entanglement is lost, revealing the eavesdropper. In contrast to other OAM-based QKD methods, complex active switching between OAM bases is not required; instead, passive switching by beam splitters combined with much simpler active switching between polarization bases makes implementation at high OAM more practical. (paper)
Distribution system modeling and analysis
Kersting, William H
2001-01-01
For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...
Experimental integration of quantum key distribution and gigabit-capable passive optical network
Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei
2018-01-01
Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.
Three-dimensional quantum key distribution in the presence of several eavesdroppers
Daoud, M; Ez-zahraouy, H
2011-01-01
Quantum key distribution based on encoding in three-dimensional systems in the presence of several eavesdroppers is proposed. This extends the BB84 protocol in the presence of many eavesdroppers where two-level quantum systems (qubits) are replaced by three-level systems (qutrits). We discuss the scenarios involving two, three and four complementary bases. We derive the explicit form of Alice and Bob mutual information and the information gained by each eavesdropper. In particular, we show that, in the presence of only one eavesdropper, the protocol involving four bases is safer than the other ones. However, for two eavesdroppers, the security is strongly dependent on the attack probabilities. The effect of a large number of eavesdroppers is also investigated.
Three-dimensional quantum key distribution in the presence of several eavesdroppers
Daoud, M [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Ez-zahraouy, H, E-mail: daoud@pks.mpg.de, E-mail: ezahamid@fsr.ac.m [LMPHE (URAC), Faculty of Sciences, University Mohammed V-Agdal, Rabat (Morocco)
2011-10-15
Quantum key distribution based on encoding in three-dimensional systems in the presence of several eavesdroppers is proposed. This extends the BB84 protocol in the presence of many eavesdroppers where two-level quantum systems (qubits) are replaced by three-level systems (qutrits). We discuss the scenarios involving two, three and four complementary bases. We derive the explicit form of Alice and Bob mutual information and the information gained by each eavesdropper. In particular, we show that, in the presence of only one eavesdropper, the protocol involving four bases is safer than the other ones. However, for two eavesdroppers, the security is strongly dependent on the attack probabilities. The effect of a large number of eavesdroppers is also investigated.
Xie, Cailang; Guo, Ying; Liao, Qin; Zhao, Wei; Huang, Duan; Zhang, Ling; Zeng, Guihua
2018-03-01
How to narrow the gap of security between theory and practice has been a notoriously urgent problem in quantum cryptography. Here, we analyze and provide experimental evidence of the clock jitter effect on the practical continuous-variable quantum key distribution (CV-QKD) system. The clock jitter is a random noise which exists permanently in the clock synchronization in the practical CV-QKD system, it may compromise the system security because of its impact on data sampling and parameters estimation. In particular, the practical security of CV-QKD with different clock jitter against collective attack is analyzed theoretically based on different repetition frequencies, the numerical simulations indicate that the clock jitter has more impact on a high-speed scenario. Furthermore, a simplified experiment is designed to investigate the influence of the clock jitter.
Infrared: A Key Technology for Security Systems
Corsi, Carlo
2012-01-01
Infrared science and technology has been, since the first applications, mainly dedicated to security and surveillance especially in military field, besides specialized techniques in thermal imaging for medical diagnostic and building structures and recently in energy savings and aerospace context. Till recently the security applications were mainly based on thermal imaging as surveillance and warning military systems. In all these applications the advent of room temperature, more reliable due...
An Architecture for a Wide Area Distributed System
Homburg, P.; Steen, M.R. van; Tanenbaum, A.S.
1996-01-01
Distributed systems provide sharing of resources and information over a computer network. A key design issue that makes these systems attractive is that all aspects related to distribution are transparent to users. Unfortunately, general-purpose wide area distributed systems that allow users to
Confederation: a key idea of Artigas’ "system"
María Luisa Aguerre
2015-10-01
Full Text Available The books of Prof. Arturo Ardao dedicated to Confederacy as one of the fundamental aspects of Artigas´s ideology have triggered the analysis, from a political point of view, of Artigas´s texts, and those of some of his followers who supported his “system” (as Artigas , in his letters, called the institutional form he was hoping to introduce during the revolutionary process in the territories of the Río de la Plata. That system was directed to the achievement of sovereignty and independence for the Eastern Province (Provincia Oriental within the framework of confederal agreements similar to those that had led in the United States to the Confederation and Perpetual Union of 1781.Against the opinion of many historians, publicists and jurists who postulate that Artigas’ ideas were of a federalist persuasion, we will argue, through a brief review of some basic fundamental documents, that he adhered to a confederal system.
Distributed systems status and control
Kreidler, David; Vickers, David
1990-01-01
Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.
BDNF - A key player in cardiovascular system.
Pius-Sadowska, Ewa; Machaliński, Bogusław
2017-09-01
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water Treatment Technology - Distribution Systems.
Ross-Harrington, Melinda; Kincaid, G. David
One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…
Physical control of the distributions of a key Arctic copepod in the Northeast Chukchi Sea
Elliott, Stephen M.; Ashjian, Carin J.; Feng, Zhixuan; Jones, Benjamin; Chen, Changsheng; Zhang, Yu
2017-10-01
The Chukchi Sea is a highly advective regime dominated by a barotropically driven northward flow modulated by wind driven currents that reach the bottom boundary layer of this shallow environment. A general northward gradient of decreasing temperature and food concentration leads to geographically divergent copepod growth and development rates between north and south. The physics of this system establish the biological connection potential between specific regions. The copepod Calanus glacialis is a key grazer, predator, and food source in Arctic shelf seas. Its summer distribution and abundance have direct effects on much of the food web, from phytoplankton to migrating bowhead whales. In August 2012 and 2013, C. glacialis distributions were quantified over Hanna Shoal in the northeast Chukchi Sea. Here an individual-based model with Lagrangian tracking and copepod life stage development capabilities is used to advect and develop these distributions forward and backward in time to determine the source (production locations) and sink (potential overwintering locations) regions of the transient Hanna Shoal C. glacialis population. Hanna Shoal supplies diapause competent C. glacialis to both the Beaufort Slope and the Chukchi Cap, mainly receives juveniles from the broad slope between Hanna Shoal and Herald Valley and receives second year adults from as far south as the Anadyr Gulf and as near as the broad slope between Hanna Shoal and Herald Valley. The 2013 sink region was shifted west relative to the 2012 region and the 2013 adult source region was shifted north relative to the 2012 adult source region. These connection potentials were not sensitive to precise times and locations of release, but were quite sensitive to depth of release. These patterns demonstrate how interannual differences in the physical conditions well south of Hanna Shoal play a critical role in determining the abundance and distribution of a key food source over Hanna Shoal and in the
Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.
Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua
2016-09-05
In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.
Mafu, M
2013-09-01
Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...
Comment on ''Semiquantum-key distribution using less than four quantum states''
Boyer, Michel; Mor, Tal
2011-01-01
For several decades it was believed that information-secure key distribution requires both the sender and receiver to have the ability to generate and/or manipulate quantum states. Earlier, we showed that quantum key distribution in which one party is classical is possible [Boyer, Kenigsberg, and Mor, Phys. Rev. Lett. 99, 140501 (2007)]. A surprising and very nice extension of that result was suggested by Zou, Qiu, Li, Wu, and Li [Phys. Rev. A 79, 052312 (2009)]. Their paper suggests that it is sufficient for the originator of the states (the person holding the quantum technology) to generate just one state. The resulting semiquantum key distribution, which we call here 'quantum key distribution with classical Alice' is indeed completely robust against eavesdropping. However, their proof (that no eavesdropper can get information without being possibly detected) is faulty. We provide here a fully detailed and direct proof of their very important result.
Memory-assisted quantum key distribution resilient against multiple-excitation effects
Lo Piparo, Nicolò; Sinclair, Neil; Razavi, Mohsen
2018-01-01
Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a technique to improve the rate-versus-distance behavior of QKD systems by using existing, or nearly-achievable, quantum technologies. The promise is that MA-MDI-QKD would require less demanding quantum memories than the ones needed for probabilistic quantum repeaters. Nevertheless, early investigations suggest that, in order to beat the conventional memory-less QKD schemes, the quantum memories used in the MA-MDI-QKD protocols must have high bandwidth-storage products and short interaction times. Among different types of quantum memories, ensemble-based memories offer some of the required specifications, but they typically suffer from multiple excitation effects. To avoid the latter issue, in this paper, we propose two new variants of MA-MDI-QKD both relying on single-photon sources for entangling purposes. One is based on known techniques for entanglement distribution in quantum repeaters. This scheme turns out to offer no advantage even if one uses ideal single-photon sources. By finding the root cause of the problem, we then propose another setup, which can outperform single memory-less setups even if we allow for some imperfections in our single-photon sources. For such a scheme, we compare the key rate for different types of ensemble-based memories and show that certain classes of atomic ensembles can improve the rate-versus-distance behavior.
Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution
Qin, Hao; Kumar, Rupesh; Alléaume, Romain
2016-07-01
We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.
Fast optical source for quantum key distribution based on semiconductor optical amplifiers.
Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V
2011-02-28
A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.
Proof-of-concept of real-world quantum key distribution with quantum frames
Lucio-Martinez, I; Mo, X; Tittel, W; Chan, P; Hosier, S
2009-01-01
We propose a fibre-based quantum key distribution system, which employs polarization qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical framing information via sequences of strong laser pulses that precede the quantum data. This allows synchronization, sender and receiver identification and compensation of time-varying birefringence in the communication channel. In addition, this method also provides a platform to communicate implementation specific information such as encoding and protocol in view of future optical quantum networks. We demonstrate in a long-term (37 h) proof-of-principle study that polarization information encoded in the classical control frames can indeed be used to stabilize unwanted qubit transformation in the quantum channel. All optical elements in our setup can be operated at Gbps rates, which is a first requirement for a future system delivering secret keys at Mbps. In order to remove another bottleneck towards a high rate system, we investigate forward error correction based on low-density parity-check codes.
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
A dynamic re-partitioning strategy based on the distribution of key in Spark
Zhang, Tianyu; Lian, Xin
2018-05-01
Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2017-04-25
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei
2017-01-01
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.
Finite-key-size effect in a commercial plug-and-play QKD system
Chaiwongkhot, Poompong; Sajeed, Shihan; Lydersen, Lars; Makarov, Vadim
2017-12-01
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturer’s software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
Key-value Storage Systems (and Beyond with Python
2010-09-01
Full Text Available Web application developers often use RDBMS systems such as MySql or PostgreSql but there are many other types of databases out there. Key-value storage, schema and schema-less document storage, and column-oriented DBMS systems abound. These kind of database systems are becoming more popular when developing scalable web applications but many developers are unsure how to integrate them into their projects. This talk will focus on the key-value class of data storage systems, weigh the strengths and drawbacks of each and discuss typical use cases for key value storage.
Multi-user quantum key distribution based on Bell states with mutual authentication
Lin Song; Huang Chuan; Liu Xiaofen
2013-01-01
A new multi-user quantum key distribution protocol with mutual authentication is proposed on a star network. Here, two arbitrary users are able to perform key distribution with the assistance of a semi-trusted center. Bell states are used as information carriers and transmitted in a quantum channel between the center and one user. A keyed hash function is utilized to ensure the identities of three parties. Finally, the security of this protocol with respect to various kinds of attacks is discussed. (paper)
Gao Gan
2015-01-01
Song [Song D 2004 Phys. Rev. A 69 034301] first proposed two key distribution schemes with the symmetry feature. We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization. Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states. (paper)
Wang Yang; Bao Wan-Su; Li Hong-Wei; Zhou Chun; Li Yuan
2014-01-01
Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribution (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices. The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a one-way prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD. (general)
L. Bouchoucha
2018-03-01
Full Text Available In this work, we represent the principle of quantum cryptography (QC that is based on fundamental laws of quantum physics. QC or Quantum Key Distribution (QKD uses various protocols to exchange a secret key between two communicating parties. This research paper focuses and examines the quantum key distribution by using the protocol BB84 in the case of encoding on the single-photon polarization and shows the influence of optical components parameters on the quantum key distribution. We also introduce Quantum Bit Error Rate (QBER to better interpret our results and show its relationship with the intrusion of the eavesdropper called Eve on the optical channel to exploit these vulnerabilities.
Semi-device-independent security of one-way quantum key distribution
Pawlowski, Marcin; Brunner, Nicolas
2011-01-01
By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.
Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing
2018-04-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.
Adaptive intelligent power systems: Active distribution networks
McDonald, Jim
2008-01-01
Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack
Ma Hong-Xin; Bao Wan-Su; Li Hong-Wei; Chou Chun
2016-01-01
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. (paper)
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack
Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun
2016-08-01
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).
The ATLAS Distributed Data Management System & Databases
Garonne, V; The ATLAS collaboration; Barisits, M; Beermann, T; Vigne, R; Serfon, C
2013-01-01
The ATLAS Distributed Data Management (DDM) System is responsible for the global management of petabytes of high energy physics data. The current system, DQ2, has a critical dependency on Relational Database Management Systems (RDBMS), like Oracle. RDBMS are well-suited to enforcing data integrity in online transaction processing applications, however, concerns have been raised about the scalability of its data warehouse-like workload. In particular, analysis of archived data or aggregation of transactional data for summary purposes is problematic. Therefore, we have evaluated new approaches to handle vast amounts of data. We have investigated a class of database technologies commonly referred to as NoSQL databases. This includes distributed filesystems, like HDFS, that support parallel execution of computational tasks on distributed data, as well as schema-less approaches via key-value stores, like HBase. In this talk we will describe our use cases in ATLAS, share our experiences with various databases used ...
The THUDSOS Distributed Operating System
廖先Zhi; 刘旭峰; 等
1991-01-01
The THUDSOS is a distributed operating system modeled as an abstract machine which provides decentralized control,transparency,availability,and reliability,as welol as a good degree of autonomy at each node,that makes our distributed system usable.Our operating system supports transparent access to data through network wide filesystem.The simultaneous access to any device is discussed for the case when the peripherals are treated as files.This operating system allows spawning of parallel application programs to solve problems in the fields,such as numerical analysis and artificial intelligence.
Energy efficient distributed computing systems
Lee, Young-Choon
2012-01-01
The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems. This book brings together a group of outsta
Key instruments of improving the export marketing system effectiveness
Yu.I. Prodius; V.Yu. Kolomiets
2014-01-01
There were considered the essence and definition of the marketing mix, marketing system in international business activity and defined the key tools to improve its performance on foreign markets in this article.
Coordination control of distributed systems
Villa, Tiziano
2015-01-01
This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to increasing degrees of cooperation of local controllers: fully distributed or decentralized control, control with communication between controllers, coordination control, and multilevel control. The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...
Detector-device-independent quantum key distribution: Security analysis and fast implementation
Boaron, Alberto; Korzh, Boris; Boso, Gianluca; Martin, Anthony; Zbinden, Hugo; Houlmann, Raphael; Lim, Charles Ci Wen
2016-01-01
One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.
Research on key technology of planning and design for AC/DC hybrid distribution network
Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia
2018-04-01
With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.
Time–energy high-dimensional one-side device-independent quantum key distribution
Bao Hai-Ze; Bao Wan-Su; Wang Yang; Chen Rui-Ke; Ma Hong-Xin; Zhou Chun; Li Hong-Wei
2017-01-01
Compared with full device-independent quantum key distribution (DI-QKD), one-side device-independent QKD (1sDI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution (HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice’s different detection efficiencies. The results show that our protocol can performance much better than the original 1sDI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice’s detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel. (paper)
A Key Event Path Analysis Approach for Integrated Systems
Jingjing Liao
2012-01-01
Full Text Available By studying the key event paths of probabilistic event structure graphs (PESGs, a key event path analysis approach for integrated system models is proposed. According to translation rules concluded from integrated system architecture descriptions, the corresponding PESGs are constructed from the colored Petri Net (CPN models. Then the definitions of cycle event paths, sequence event paths, and key event paths are given. Whereafter based on the statistic results after the simulation of CPN models, key event paths are found out by the sensitive analysis approach. This approach focuses on the logic structures of CPN models, which is reliable and could be the basis of structured analysis for discrete event systems. An example of radar model is given to characterize the application of this approach, and the results are worthy of trust.
Security of differential-phase-shift quantum key distribution against individual attacks
Waks, Edo; Takesue, Hiroki; Yamamoto, Yoshihisa
2006-01-01
We derive a proof of security for the differential-phase-shift quantum key distribution protocol under the assumption that Eve is restricted to individual attacks. The security proof is derived by bounding the average collision probability, which leads directly to a bound on Eve's mutual information on the final key. The security proof applies to realistic sources based on pulsed coherent light. We then compare individual attacks to sequential attacks and show that individual attacks are more powerful
Security of a single-state semi-quantum key distribution protocol
Zhang, Wei; Qiu, Daowen; Mateus, Paulo
2018-06-01
Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.
RBAC administration in distributed systems
Dekker, M.A.C.; Crampton, J.; Etalle, Sandro; Li, N.
Large and distributed access control systems are increasingly common, for example in health care. In such settings, access control policies may become very complex, thus complicating correct and efficient adminstration of the access control system. Despite being one of the most widely used access
An SSH key management system: easing the pain of managing key/user/account associations
Arkhipkin, D.; Betts, W.; Lauret, J.; Shiryaev, A.
2008-07-01
Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins.
An SSH key management system: easing the pain of managing key/user/account associations
Arkhipkin, D; Shiryaev, A; Betts, W; Lauret, J
2008-01-01
Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins
Post-quantum attacks on key distribution schemes in the presence of weakly stochastic sources
Al–Safi, S W; Wilmott, C M
2015-01-01
It has been established that the security of quantum key distribution protocols can be severely compromised were one to permit an eavesdropper to possess a very limited knowledge of the random sources used between the communicating parties. While such knowledge should always be expected in realistic experimental conditions, the result itself opened a new line of research to fully account for real-world weak randomness threats to quantum cryptography. Here we expand of this novel idea by describing a key distribution scheme that is provably secure against general attacks by a post-quantum adversary. We then discuss possible security consequences for such schemes under the assumption of weak randomness. (paper)
Elimination of mode coupling in multimode continuous-variable key distribution
Filip, Radim; Mista, Ladislav; Marek, Petr
2005-01-01
A multimode channel can be utilized to substantially increase the capacity of quantum continuous-variable key distribution. Beyond losses in the channel, an uncontrollable coupling between the modes of the channel typically degrades the capacity of multimode channels. For the key distribution protocol with simultaneous measurement of both complementary quadratures we propose a feasible method to eliminate any undesirable mode coupling by only the receiver's appropriate measurement and data manipulation. It can be used to substantially increase the capacity of the channel, which has an important application in practical continuous-variable quantum cryptography
Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld
2017-01-01
is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...
Stomata: key players in the earth system, past and present.
Berry, Joseph A; Beerling, David J; Franks, Peter J
2010-06-01
Stomata have played a key role in the Earth System for at least 400 million years. By enabling plants to control the rate of evaporation from their photosynthetic organs, stomata helped to set in motion non-linear processes that led to an acceleration of the hydrologic cycle over the continents and an expansion of climate zones favorable for plant life. Global scale modeling of land-atmosphere interactions provides a way to explore parallels between the influence of vegetation on climate over time, and the influence of spatial and temporal variation in the activities of vegetation in the current Earth System on climate and weather. We use the logic in models that simulate land-atmosphere interactions to illustrate the central role played by stomatal conductance in the Earth System. In the modeling context, most of the activities of plants and their manifold interactions with their genomes and with the environment are communicated to the atmosphere through a single property: the aperture or conductance of their stomata. We tend to think of the controls on vegetation responses in the real world as being distributed among factors such as seasonal patterns of growth, the changing availability of soil water, or changes in light intensity and leaf water potential over a day. However, the impact of these controls on crucial exchanges of energy and water vapor with the atmosphere are also largely mediated by stomata. The decisions 'made by' stomata emerge as an important and inadequately understood component of these models. At the present time we lack effective ways to link advances in the biology of stomata to this decision making process. While not unusual, this failure to connect between disciplines, introduces uncertainty in modeling studies being used to predict weather and climate change and ultimately to inform policy decisions. This problem is also an opportunity.
Systems Measures of Water Distribution System Resilience
Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.
Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks
Patel, K. A.; Dynes, J. F.; Lucamarini, M.; Choi, I.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.
2014-01-01
We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70 km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25 km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment
THE FRANCHISE SYSTEM OF DISTRIBUTION.
The working relationships between franchise companies and their franchised dealers are analyzed. The benefits derived from the use of a franchisesise...system of distribution for both the franchisor and franchisee are determined. The principal problems encountered by the parties to the franchise ...agreement are isolated, and this method of distribution is evaluated from the standpoint of both the franchise company and franchised dealers and to assess its impact on the marketing economy of the nation.
Maintaining consistency in distributed systems
Birman, Kenneth P.
1991-01-01
In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.
Distribution network strengthens sales systems
Janoska, J.
2003-01-01
Liberalisation of the electricity market pushes Slovak distribution companies to upgrade their sale technologies. The first one to invest into a complex electronic sales system will be Stredoslovenska energetika, a.s., Zilina. The system worth 200 million Sk (4,83 million Euro) will be supplied by Polish software company Winuel. The company should also supply a software that would allow forecasting and planning of sales. The system should be fully operational by 2006. TREND has not managed to obtain information regarding plans Zapadoslovenska energetika - the largest and most active distribution company - might have in this area. In eastern Slovakia distribution company Vychodoslovenska energetika, a.s., Kosice has also started addressing this issue. (Author)
Linkage Mechanisms among key Actors in Rice Innovation System ...
In assessment of linkage mechanisms among key actors in rice innovation system in southeast Nigeria, actors were classified into six major groups according to their main activity in the system namely research agency, policy personnel, technology transfer agencies, farmers, marketers and consumers. These constituted the ...
Massively Parallel Polar Decomposition on Distributed-Memory Systems
Ltaief, Hatem; Sukkari, Dalal E.; Esposito, Aniello; Nakatsukasa, Yuji; Keyes, David E.
2018-01-01
We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory systems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies in finding the best rational approximation
Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD
Laenger, Thomas; Lenhart, Gaby
2009-01-01
In recent years, quantum key distribution (QKD) has been the object of intensive research activities and of rapid progress, and it is now developing into a competitive industry with commercial products. Once QKD systems are transferred from the controlled environment of physical laboratories into a real-world environment for practical use, a number of practical security, compatibility and connectivity issues need to be resolved. In particular, comprehensive security evaluation and watertight security proofs need to be addressed to increase trust in QKD. System interoperability with existing infrastructures and applications as well as conformance with specific user requirements have to be assured. Finding common solutions to these problems involving all actors can provide an advantage for the commercialization of QKD as well as for further technological development. The ETSI industry specification group for QKD (ISG-QKD) offers a forum for creating such universally accepted standards and will promote significant leverage effects on coordination, cooperation and convergence in research, technical development and business application of QKD.
Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing
Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim
2015-03-01
The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD
Länger, Thomas; Lenhart, Gaby
2009-05-01
In recent years, quantum key distribution (QKD) has been the object of intensive research activities and of rapid progress, and it is now developing into a competitive industry with commercial products. Once QKD systems are transferred from the controlled environment of physical laboratories into a real-world environment for practical use, a number of practical security, compatibility and connectivity issues need to be resolved. In particular, comprehensive security evaluation and watertight security proofs need to be addressed to increase trust in QKD. System interoperability with existing infrastructures and applications as well as conformance with specific user requirements have to be assured. Finding common solutions to these problems involving all actors can provide an advantage for the commercialization of QKD as well as for further technological development. The ETSI industry specification group for QKD (ISG-QKD) offers a forum for creating such universally accepted standards and will promote significant leverage effects on coordination, cooperation and convergence in research, technical development and business application of QKD.
Independent attacks in imperfect settings: A case for a two-way quantum key distribution scheme
Shaari, J.S.; Bahari, Iskandar
2010-01-01
We review the study on a two-way quantum key distribution protocol given imperfect settings through a simple analysis of a toy model and show that it can outperform a BB84 setup. We provide the sufficient condition for this as a ratio of optimal intensities for the protocols.
Comment on ``Semiquantum-key distribution using less than four quantum states''
Boyer, Michel; Mor, Tal
2011-04-01
For several decades it was believed that information-secure key distribution requires both the sender and receiver to have the ability to generate and/or manipulate quantum states. Earlier, we showed that quantum key distribution in which one party is classical is possible [Boyer, Kenigsberg, and Mor, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.140501 99, 140501 (2007)]. A surprising and very nice extension of that result was suggested by Zou, Qiu, Li, Wu, and Li [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.79.052312 79, 052312 (2009)]. Their paper suggests that it is sufficient for the originator of the states (the person holding the quantum technology) to generate just one state. The resulting semiquantum key distribution, which we call here “quantum key distribution with classical Alice” is indeed completely robust against eavesdropping. However, their proof (that no eavesdropper can get information without being possibly detected) is faulty. We provide here a fully detailed and direct proof of their very important result.
Bartkiewicz, K.; Černoch, Antonín; Lemr, K.; Miranowicz, A.; Nori, F.
2016-01-01
Roč. 93, č. 6 (2016), 1-7, č. článku 062345. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum key distribution * Einstein-Podolsky-Rosen steering * temporal quantum correlations Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016
Compressed sensing for distributed systems
Coluccia, Giulio; Magli, Enrico
2015-01-01
This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...
Asynchronous Group Key Distribution on top of the CC2420 Security Mechanisms for Sensor Networks
Hansen, Morten Tranberg
2009-01-01
scheme with no time synchronization requirements. The scheme decreases the number of key updates by providing them on an as needed basis according to the amount of network traffic. We evaluate the CC2420 radio security mechanism and show how to use it as a basis to implement secure group communication......A sensor network is a network consisting of small, inexpensive, low-powered sensor nodes that communicate to complete a common task. Sensor nodes are characterized by having limited communication and computation capabilities, energy, and storage. They often are deployed in hostile environments...... creating a demand for encryption and authentication of the messages sent between them. Due to severe resource constraints on the sensor nodes, efficient key distribution schemes and secure communication protocols with low overhead are desired. In this paper we present an asynchronous group key distribution...
Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States
Pan, Ziwen; Cai, Jiarui; Wang, Chuan
2017-08-01
The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.
Quantum key distribution using basis encoding of Gaussian-modulated coherent states
Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua
2018-04-01
The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.
Practical private database queries based on a quantum-key-distribution protocol
Jakobi, Markus; Simon, Christoph; Gisin, Nicolas; Bancal, Jean-Daniel; Branciard, Cyril; Walenta, Nino; Zbinden, Hugo
2011-01-01
Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions in order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.
DC Distribution Systems and Microgrids
Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez
2017-01-01
summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... challenges such as protection issues will be effectively resolved in the near future due to fast progress of semiconductor technology which is a key enabler cheap and reliable future DC solid-state protection systems. Therefore, it is the view of the author that more and more DC systems will appear...
Enhanced distributed energy resource system
Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM
2007-07-03
A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.
Distributed Supervisory Protection Interlock System
Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.
1989-03-01
The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs
Interpretation of some geochemical distributions in Key and Seahorse Lakes, Saskatchewan
Parslow, G.R.
1979-04-01
U, Fe, Mn, Ni, Cu, Zn and Co data for the sediment in both Key and Seahorse lakes, which overlie portions of known economic uranium deposits in the region, are presented. With the exception of U, Fe and Mn, the elemental distributions can be considered anomalous, in a statistical sense, in both lakes. The U values are of particular interest in that Key Lake is not anomalous, whereas Seahorse Lake is markedly anomalous. Tentative correlations made with background data from other surveys in attempt to differentiate between anomalous and background values indicate that deviations from linearity in a distribution, and not absolute mean or maximum values, are indicative of anomalous samples within the distribution.
Shor-Preskill-type security proof for quantum key distribution without public announcement of bases
Hwang, Won-Young; Wang Xiangbin; Matsumoto, Keiji; Kim, Jaewan; Lee, Hai-Woong
2003-01-01
We give a Shor-Preskill-type security proof to quantum key distribution without public announcement of bases [W.Y. Hwang et al., Phys. Lett. A 244, 489 (1998)]. First, we modify the Lo-Chau protocol once more so that it finally reduces to the quantum key distribution without public announcement of bases. Then we show how we can estimate the error rate in the code bits based on that in the checked bits in the proposed protocol, which is the central point of the proof. We discuss the problem of imperfect sources and that of large deviation in the error rate distributions. We discuss when the bases sequence must be discarded
Distributed Systems: The Hard Problems
CERN. Geneva
2015-01-01
**Nicholas Bellerophon** works as a client services engineer at Basho Technologies, helping customers setup and run distributed systems at scale in the wild. He has also worked in massively multiplayer games, and recently completed a live scalable simulation engine. He is an avid TED-watcher with interests in many areas of the arts, science, and engineering, including of course high-energy physics.
Distribution system analysis and automation
Gers, Juan
2013-01-01
A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.
Turboelectric Distributed Propulsion System Modelling
Liu, Chengyuan
2013-01-01
The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...
A Distributed User Information System
1990-03-01
NOE08 Department of Computer Science NOVO 8 1990 University of Maryland S College Park, MD 20742 D Abstract Current user information database technology ...Transactions on Computer Systems, May 1988. [So189] K. Sollins. A plan for internet directory services. Technical report, DDN Network Information Center...2424 A Distributed User Information System DTiC Steven D. Miller, Scott Carson, and Leo Mark DELECTE Institute for Advanced Computer Studies and
Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States
Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing
2018-03-01
We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.
Improved two-way six-state protocol for quantum key distribution
Shaari, J.S., E-mail: jesni_shamsul@yahoo.com [Faculty of Science, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang (Malaysia); Bahari, Asma' Ahmad [Faculty of Science, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang (Malaysia)
2012-10-01
A generalized version for a qubit based two-way quantum key distribution scheme was first proposed in the paper [Phys. Lett. A 358 (2006) 85] capitalizing on the six quantum states derived from three mutually unbiased bases. While boasting of a higher level of security, the protocol was not designed for ease of practical implementation. In this work, we propose modifications to the protocol, resulting not only in improved security but also in a more efficient and practical setup. We provide comparisons for calculated secure key rates for the protocols in noisy and lossy channels. -- Highlights: ► Modification for efficient generalized two-way QKD is proposed. ► Calculations include secure key rates in noisy and lossy channels for selected attack scenario. ► Resulting proposal provides for higher secure key rate in selected attack scheme.
Improved two-way six-state protocol for quantum key distribution
Shaari, J.S.; Bahari, Asma' Ahmad
2012-01-01
A generalized version for a qubit based two-way quantum key distribution scheme was first proposed in the paper [Phys. Lett. A 358 (2006) 85] capitalizing on the six quantum states derived from three mutually unbiased bases. While boasting of a higher level of security, the protocol was not designed for ease of practical implementation. In this work, we propose modifications to the protocol, resulting not only in improved security but also in a more efficient and practical setup. We provide comparisons for calculated secure key rates for the protocols in noisy and lossy channels. -- Highlights: ► Modification for efficient generalized two-way QKD is proposed. ► Calculations include secure key rates in noisy and lossy channels for selected attack scenario. ► Resulting proposal provides for higher secure key rate in selected attack scheme.
Distributed Factorization Computation on Multiple Volunteered Mobile Resource to Break RSA Key
Jaya, I.; Hardi, S. M.; Tarigan, J. T.; Zamzami, E. M.; Sihombing, P.
2017-01-01
Similar to common asymmeric encryption, RSA can be cracked by usmg a series mathematical calculation. The private key used to decrypt the massage can be computed using the public key. However, finding the private key may require a massive amount of calculation. In this paper, we propose a method to perform a distributed computing to calculate RSA’s private key. The proposed method uses multiple volunteered mobile devices to contribute during the calculation process. Our objective is to demonstrate how the use of volunteered computing on mobile devices may be a feasible option to reduce the time required to break a weak RSA encryption and observe the behavior and running time of the application on mobile devices.
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver's side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.
Zhang, Hang; Mao, Yu; Huang, Duan; Li, Jiawei; Zhang, Ling; Guo, Ying
2018-05-01
We introduce a reliable scheme for continuous-variable quantum key distribution (CV-QKD) by using orthogonal frequency division multiplexing (OFDM). As a spectrally efficient multiplexing technique, OFDM allows a large number of closely spaced orthogonal subcarrier signals used to carry data on several parallel data streams or channels. We place emphasis on modulator impairments which would inevitably arise in the OFDM system and analyze how these impairments affect the OFDM-based CV-QKD system. Moreover, we also evaluate the security in the asymptotic limit and the Pirandola-Laurenza-Ottaviani-Banchi upper bound. Results indicate that although the emergence of imperfect modulation would bring about a slight decrease in the secret key bit rate of each subcarrier, the multiplexing technique combined with CV-QKD results in a desirable improvement on the total secret key bit rate which can raise the numerical value about an order of magnitude.
The ATLAS distributed analysis system
Legger, F
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.
The ATLAS distributed analysis system
Legger, F.; Atlas Collaboration
2014-06-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.
World Key Information Service System Designed For EPCOT Center
Kelsey, J. A.
1984-03-01
An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution
Hamada, Mitsuru
2004-01-01
After Mayers (1996 Advances in Cryptography: Proc. Crypto'96 pp 343-57; 2001 J. Assoc. Comput. Mach. 48 351-406) gave a proof of the security of the Bennett-Brassard (1984 Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing (Bangalore, India) pp 175-9) (BB84) quantum key distribution protocol, Shor and Preskill (2000 Phys. Rev. Lett. 85 441-4) made a remarkable observation that a Calderbank-Shor-Steane (CSS) code had been implicitly used in the BB84 protocol, and suggested its security could be proved by bounding the fidelity, say F n , of the incorporated CSS code of length n in the form 1-F n ≤ exp[-nE + o(n)] for some positive number E. This work presents such a number E = E(R) as a function of the rate of codes R, and a threshold R 0 such that E(R) > 0 whenever R 0 , which is larger than the achievable rate based on the Gilbert-Varshamov bound that is essentially given by Shor and Preskill. The codes in the present work are robust against fluctuations of channel parameters, which fact is needed to establish the security rigorously and was not proved for rates above the Gilbert-Varshamov rate before in the literature. As a byproduct, the security of a modified BB84 protocol against any joint (coherent) attacks is proved quantitatively
Shapiro, Jeffrey H. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-09-15
The effect of scintillation, arising from propagation through atmospheric turbulence, on the sift and error probabilities of a quantum key distribution (QKD) system that uses the weak-laser-pulse version of the Bennett-Brassard 1984 (BB84) protocol is evaluated. Two earth-space scenarios are examined: satellite-to-ground and ground-to-satellite transmission. Both lie in the far-field power-transfer regime. This work complements previous analysis of turbulence effects in near-field terrestrial BB84 QKD [J. H. Shapiro, Phys. Rev. A 67, 022309 (2003)]. More importantly, it shows that scintillation has virtually no impact on the sift and error probabilities in earth-space BB84 QKD, something that has been implicitly assumed in prior analyses for that application. This result contrasts rather sharply with what is known for high-speed laser communications over such paths, in which deep, long-lived scintillation fades present a major challenge to high-reliability operation.
Field and long-term demonstration of a wide area quantum key distribution network.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu
2014-09-08
A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes.
World-wide distribution automation systems
Devaney, T.M.
1994-01-01
A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems
Shen Yong; Yang Jian; Guo Hong
2009-01-01
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)
2009-12-14
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Distributed Persistent Identifiers System Design
Pavel Golodoniuc
2017-06-01
Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity
Building Successful Information Systems – a Key for Successful Organization
Doina ROSCA
2010-12-01
Full Text Available Building Successful Information Systems – a Key for Successful OrganizationAbstract: An Information System (IS can have a major impact on corporate strategy and organizational success. The involvement of managers and decision makers in all aspects of information systems is a major factor for organizational success, including higher profits and lower costs. Some of the benefits business organization seek to achieve through information systems include: better safety, competitive advantage, fewer errors, greater accuracy, higher quality products, improved communications, increased efficiency and productivity, more efficient administration, superior financial and managerial decision making.
Distributed hierarchical radiation monitoring system
Barak, D.
1985-01-01
A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)
Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution
Yichen Zhang
2015-06-01
Full Text Available We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.
Kochen-Specker theorem as a precondition for secure quantum key distribution
Nagata, Koji
2005-01-01
We show that (1) the violation of the Ekert 1991 inequality is a sufficient condition for certification of the Kochen-Specker (KS) theorem, and (2) the violation of the Bennett-Brassard-Mermin 1992 (BBM92) inequality is, also, a sufficient condition for certification of the KS theorem. Therefore the success in each quantum key distribution protocol reveals the nonclassical feature of quantum theory, in the sense that the KS realism is violated. Further, it turned out that the Ekert inequality and the BBM inequality are depictured by distillable entanglement witness inequalities. Here, we connect the success in these two key distribution processes into the no-hidden-variables theorem and into witness on distillable entanglement. We also discuss the explicit difference between the KS realism and Bell's local realism in the Hilbert space formalism of quantum theory
Quantum key distribution with a single photon from a squeezed coherent state
Matsuoka, Masahiro; Hirano, Takuya
2003-01-01
Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation
Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao
2018-03-01
Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.
Security proof of continuous-variable quantum key distribution using three coherent states
Brádler, Kamil; Weedbrook, Christian
2018-02-01
We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.
Quantum key distribution using continuous-variable non-Gaussian states
Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.
2016-02-01
In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.
Extended analysis of the Trojan-horse attack in quantum key distribution
Vinay, Scott E.; Kok, Pieter
2018-04-01
The discrete-variable quantum key distribution protocols based on the 1984 protocol of Bennett and Brassard (BB84) are known to be secure against an eavesdropper, Eve, intercepting the flying qubits and performing any quantum operation on them. However, these protocols may still be vulnerable to side-channel attacks. We investigate the Trojan-horse side-channel attack where Eve sends her own state into Alice's apparatus and measures the reflected state to estimate the key. We prove that the separable coherent state is optimal for Eve among the class of multimode Gaussian attack states, even in the presence of thermal noise. We then provide a bound on the secret key rate in the case where Eve may use any separable state.
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Russian Federation Academy of Cryptography (Russian Federation)
2012-05-15
The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Three protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.
Zhou, Xing-Yu; Zhang, Chun-Hui; Zhang, Chun-Mei; Wang, Qin
2017-11-01
Measurement-device-independent quantum key distribution (MDI-QKD) has been widely investigated due to its remarkable advantages on the achievable transmission distance and practical security. However, the relative low key generation rate limits its real-life implementations. In this work, we adopt the newly proposed four-intensity decoy-state scheme [Phys. Rev. A 93, 042324 (2016), 10.1103/PhysRevA.93.042324] to study the performance of MDI-QKD with heralded single-photon sources (HSPS). Corresponding simulation results demonstrate that the four-intensity decoy-state scheme combining HSPS can drastically improve both the key generation rate and transmission distance in MDI-QKD, which may be very promising in future MDI-QKD systems.
Huber, Marcus; Pawlowski, Marcin
2013-01-01
We show that in device independent quantum key distribution protocols the privacy of randomness is of crucial importance. For sublinear test sample sizes even the slightest guessing probability by an eavesdropper will completely compromise security. We show that a combined attack exploiting test sample and measurement choices compromises the security even with a linear size test sample and otherwise device independent security considerations. We explicitly derive the sample size needed to ret...
Experimental investigation of quantum key distribution with position and momentum of photon pairs
Almeida, M.P.; Walborn, S.P.; Souto Ribeiro, P.H.
2005-01-01
We investigate the utility of Einstein-Podolsky-Rosen correlations of the position and momentum of photon pairs from parametric down-conversion in the implementation of a secure quantum key distribution protocol. We show that security is guaranteed by the entanglement between down-converted pairs, and can be checked by either direct comparison of Alice and Bob's measurement results or evaluation of an inequality of the sort proposed by Mancini et al. [Phys. Rev. Lett. 88, 120401 (2002)
Boosting up quantum key distribution by learning statistics of practical single-photon sources
Adachi, Yoritoshi; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2009-01-01
We propose a simple quantum-key-distribution (QKD) scheme for practical single-photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g (2) of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon-number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon-number distribution of the source, rather than with actual suppression of the multiphoton emission events. We present an example of the secure key generation rate in the case of a poor SPS with g (2) =0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same distance as that of an ideal SPS.
The ATLAS Distributed Analysis System
Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A
2013-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...
The ATLAS Distributed Analysis System
Legger, F; The ATLAS collaboration
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...
Distributed optimal coordination for distributed energy resources in power systems
Wu, Di; Yang, Tao; Stoorvogel, A.
2017-01-01
Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...
Small Aircraft Data Distribution System
Chazanoff, Seth L.; Dinardo, Steven J.
2012-01-01
The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.
Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.
Lucamarini, M; Yuan, Z L; Dynes, J F; Shields, A J
2018-05-01
Quantum key distribution (QKD) 1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre 3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration 4 . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters 5-7 , is overcoming the fundamental rate-distance limit of QKD 8 . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel 9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.
Continuous-variable quantum key distribution in uniform fast-fading channels
Papanastasiou, Panagiotis; Weedbrook, Christian; Pirandola, Stefano
2018-03-01
We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration, and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper (control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values for the variance of the probability distribution associated with the fading process.
Optimal energy management of urban rail systems: Key performance indicators
González-Gil, A.; Palacin, R.; Batty, P.
2015-01-01
Highlights: • An overall picture of urban rail energy use is provided. • Performance indicators are developed for urban rail system energy optimisation. • A multi-level methodology for assessing energy efficiency measures is presented. - Abstract: Urban rail systems are facing increasing pressure to minimise their energy consumption and thusly reduce their operational costs and environmental impact. However, given the complexity of such systems, this can only be effectively achieved through a holistic approach which considers the numerous interdependences between subsystems (i.e. vehicles, operations and infrastructure). Such an approach requires a comprehensive set of energy consumption-related Key Performance Indicators (KEPIs) that enable: a multilevel analysis of the actual energy performance of the system; an assessment of potential energy saving strategies; and the monitoring of the results of implemented measures. This paper proposes an original, complete list of KEPIs developed through a scientific approach validated by different stakeholders. It consists of a hierarchical list of 22 indicators divided into two levels: 10 key performance indicators, to ascertain the performance of the whole system and complete subsystems; and 12 performance indicators, to evaluate the performance of single units within subsystems, for example, a single rail vehicle or station. Additionally, the paper gives a brief insight into urban rail energy usage by providing an adequate context in which to understand the proposed KEPIs, together with a methodology describing their application when optimising the energy consumption of urban rail systems
Building a generalized distributed system model
Mukkamala, R.
1993-01-01
The key elements in the 1992-93 period of the project are the following: (1) extensive use of the simulator to implement and test - concurrency control algorithms, interactive user interface, and replica control algorithms; and (2) investigations into the applicability of data and process replication in real-time systems. In the 1993-94 period of the project, we intend to accomplish the following: (1) concentrate on efforts to investigate the effects of data and process replication on hard and soft real-time systems - especially we will concentrate on the impact of semantic-based consistency control schemes on a distributed real-time system in terms of improved reliability, improved availability, better resource utilization, and reduced missed task deadlines; and (2) use the prototype to verify the theoretically predicted performance of locking protocols, etc.
Video distribution system cost model
Gershkoff, I.; Haspert, J. K.; Morgenstern, B.
1980-01-01
A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.
Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong
2018-04-01
The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.
Usenko, Vladyslav C; Filip, Radim; Heim, Bettina; Peuntinger, Christian; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd
2012-01-01
Entanglement properties of Gaussian states of light as well as the security of continuous variable quantum key distribution with Gaussian states in free-space fading channels are studied. These qualities are shown to be sensitive to the statistical properties of the transmittance distribution in the cases when entanglement is strong or when channel excess noise is present. Fading, i.e. transmission fluctuations, caused by beam wandering due to atmospheric turbulence, is a frequent challenge in free-space communication. We introduce a method of fading discrimination and subsequent post-selection of the corresponding sub-states and show that it can improve the entanglement resource and restore the security of the key distribution over a realistic fading link. Furthermore, the optimal post-selection strategy in combination with an optimized entangled resource is shown to drastically increase the protocol's robustness to excess noise, which is confirmed for experimentally measured fading channel characteristics. The stability of the result against finite data ensemble size and imperfect channel estimation is also addressed. (paper)
Practical round-robin differential-phase-shift quantum key distribution
Zhang, Zhen; Yuan, Xiao; Cao, Zhu; Ma, Xiongfeng
2017-01-01
The security of quantum key distribution (QKD) relies on the Heisenberg uncertainty principle, with which legitimate users are able to estimate information leakage by monitoring the disturbance of the transmitted quantum signals. Normally, the disturbance is reflected as bit flip errors in the sifted key; thus, privacy amplification, which removes any leaked information from the key, generally depends on the bit error rate. Recently, a round-robin differential-phase-shift QKD protocol for which privacy amplification does not rely on the bit error rate (Sasaki et al 2014 Nature 509 475) was proposed. The amount of leaked information can be bounded by the sender during the state-preparation stage and hence, is independent of the behavior of the unreliable quantum channel. In our work, we apply the tagging technique to the protocol and present a tight bound on the key rate and employ a decoy-state method. The effects of background noise and misalignment are taken into account under practical conditions. Our simulation results show that the protocol can tolerate channel error rates close to 50% within a typical experiment setting. That is, there is a negligible restriction on the error rate in practice. (paper)
General framework and key technologies of national nuclear emergency system
Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng
2014-01-01
Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)
Two-party secret key distribution via a modified quantum secret sharing protocol.
Grice, W P; Evans, P G; Lawrie, B; Legré, M; Lougovski, P; Ray, W; Williams, B P; Qi, B; Smith, A M
2015-03-23
We present and demonstrate a novel protocol for distributing secret keys between two and only two parties based on N-party single-qubit Quantum Secret Sharing (QSS). We demonstrate our new protocol with N = 3 parties using phase-encoded photons. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N - 2 parties. Our implementation allows for an accessible transition between N-party QSS and arbitrary two party QKD without modification of hardware. In addition, our approach significantly reduces the number of resources such as single photon detectors, lasers and dark fiber connections needed to implement QKD.
Koehler-Sidki, Alexander; Dynes, James F.; Lucamarini, Marco; Roberts, George L.; Sharpe, Andrew W.; Savory, Seb J.; Yuan, Zhiliang; Shields, Andrew J.
2017-10-01
In recent years, the security of avalanche photodiodes as single photon detectors for quantum key distribution has been subjected to much scrutiny. The most prominent example of this surrounds the vulnerability of such devices to blinding under strong illumination. We focus on self-differencing avalanche photodiodes, single photon detectors that have demonstrated count rates exceeding 1 GCounts/s resulting in secure key rates over 1 MBit/s. These detectors use a passive electronic circuit to cancel any periodic signals thereby enhancing detection sensitivity. However this intrinsic feature can be exploited by adversaries to gain control of the devices using illumination of a moderate intensity. Through careful experimental examinations, we define here a set of criteria for these detectors to avoid such attacks.
Decoy-state quantum key distribution with two-way classical postprocessing
Ma Xiongfeng; Fung, C.-H.F.; Chen Kai; Lo, H.-K.; Dupuis, Frederic; Tamaki, Kiyoshi
2006-01-01
Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD) protocols when a coherent-state source is used. Previously, data postprocessing schemes based on one-way classical communications were considered for use with decoy states. In this paper, we develop two data postprocessing schemes for the decoy-state method using two-way classical communications. Our numerical simulation (using parameters from a specific QKD experiment as an example) results show that our scheme is able to extend the maximal secure distance from 142 km (using only one-way classical communications with decoy states) to 181 km. The second scheme is able to achieve a 10% greater key generation rate in the whole regime of distances. We conclude that decoy-state QKD with two-way classical postprocessing is of practical interest
Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.
2018-05-01
One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.
Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution
Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong
2017-10-01
We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.
Fast and secure key distribution using mesoscopic coherent states of light
Barbosa, Geraldo A.
2003-01-01
This work shows how two parties A and B can securely share unlimited sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as a one-time-pad unlimited extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the M-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the Bennett-Brassard 1984 protocol for key distribution
Distribution system protection with communication technologies
Wei, Mu; Chen, Zhe
2010-01-01
Due to the communication technologies’ involvement in the distribution power system, the time-critical protection function may be implemented more accurately, therefore distribution power systems’ stability, reliability and security could be improved. This paper presents an active distribution...
Attacking quantum key distribution with single-photon two-qubit quantum logic
Shapiro, Jeffrey H.; Wong, Franco N. C.
2006-01-01
The Fuchs-Peres-Brandt (FPB) probe realizes the most powerful individual attack on Bennett-Brassard 1984 quantum key distribution (BB84 QKD) by means of a single controlled-NOT (CNOT) gate. This paper describes a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a deterministic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum nondemolition measurements of photon number to this configuration converts the physical simulation into a true deterministic realization of the FPB attack
Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L
2017-05-29
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
Semi-device-independent security of one-way quantum key distribution
Pawlowski, Marcin; Brunner, Nicolas
2011-01-01
By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being 'device-independent'. Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are non-characterized, but t...
Tamaki, K
2005-01-01
In this presentation, we show some counter-examples to a naive belief that the security of QKD is based on no-cloning theorem. One example is shown by explicitly proving that one can indeed generate an unconditionally secure key from Alice's two-photon emission part in "SARG04 protocol" proposed by V. Scarani et al, in Phys. Rev. Lett. 92, 057901 (2004). This protocol differs from BB84 only in the classical communication. It is, thus, interesting to see how only the classical communication of QKD protocol might qualitatively change its security. We also show that one can generate an unconditionally secure key from the single to the four-photon part in a generalized SARG04 that uses six states. Finally, we also compare the bit error rate threshold of these protocols with the one in BB84 and the original six-state protocol assuming a depolarizing channel.
Loss Allocation in a Distribution System with Distributed Generation Units
Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar
2007-01-01
In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
Li Chun-Yan; Li Yan-Song
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)
Quantum distribution function of nonequilibrium system
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs
Friedman, N. R.
2002-09-01
Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.
The Planetary Data System Distributed Inventory System
Hughes, J. Steven; McMahon, Susan K.
1996-01-01
The advent of the World Wide Web (Web) and the ability to easily put data repositories on-line has resulted in a proliferation of digital libraries. The heterogeneity of the underlying systems, the autonomy of the individual sites, and distributed nature of the technology has made both interoperability across the sites and the search for resources within a site major research topics. This article will describe a system that addresses both issues using standard Web protocols and meta-data labels to implement an inventory of on-line resources across a group of sites. The success of this system is strongly dependent on the existence of and adherence to a standards architecture that guides the management of meta-data within participating sites.
Energy Management of Smart Distribution Systems
Ansari, Bananeh
Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
Device-dependent and device-independent quantum key distribution without a shared reference frame
Slater, Joshua A; Tittel, Wolfgang; Branciard, Cyril; Brunner, Nicolas
2014-01-01
Standard quantum key distribution (QKD) protocols typically assume that the distant parties share a common reference frame. In practice, however, establishing and maintaining a good alignment between distant observers is rarely a trivial issue, which may significantly restrain the implementation of long-distance quantum communication protocols. Here we propose simple QKD protocols that do not require the parties to share any reference frame, and study their security and feasibility in both the usual device-dependent (DD) case—in which the two parties use well characterized measurement devices—as well as in the device-independent (DI) case—in which the measurement devices can be untrusted, and the security relies on the violation of a Bell inequality. To illustrate the practical relevance of these ideas, we present a proof-of-principle demonstration of our protocols using polarization entangled photons distributed over a coiled 10-km long optical fiber. We consider two situations, in which either the fiber spool's polarization transformation freely drifts, or randomly chosen polarization transformations are applied. The correlations obtained from measurements allow, with high probability, to generate positive asymptotic secret key rates in both the DD and DI scenarios (under the fair-sampling assumption for the latter case). (paper)
Integrating security in a group oriented distributed system
Reiter, Michael; Birman, Kenneth; Gong, LI
1992-01-01
A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized.
Attacks on quantum key distribution protocols that employ non-ITS authentication
Pacher, C.; Abidin, A.; Lorünser, T.; Peev, M.; Ursin, R.; Zeilinger, A.; Larsson, J.-Å.
2016-01-01
We demonstrate how adversaries with large computing resources can break quantum key distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not information-theoretically secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced, it was shown to prevent straightforward man-in-the-middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact, we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols, we describe every single action taken by the adversary. For all protocols, the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD post-processing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.
Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.
How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss
Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Huebel, Hannes; Jennewein, Thomas
2011-01-01
Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.
How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss
Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Hübel, Hannes; Jennewein, Thomas
2011-12-01
Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.
Comparative Analysis of Possible Designs for Flexible Distribution System Operation
Lin, Jeremy; Knezovic, Katarina
2016-01-01
for achieving the most efficient utilization of these resources while meeting the forecasted load. In this paper, we present possible system design frameworks proposed for flexible distribution system operation. Critical evaluations and comparison of these models are made based on a number of key attributes...
Review of Key Technologies of 5G Wireless Communication System
Shi Sha
2015-01-01
Full Text Available The 5th generation mobile communication system (5G is oriented towards a new generation of mobile communication system to the year of 2020 and beyond, and its development is still at the exploratory stage. Combining the latest trends in mobile communication development at home and abroad, in this article, we describe the key technologies of driving the 5G research direction. Furthermore, the technical innovation of 5G comes from both wireless and network technologies. In the field of wireless technologies, massive multiple-input multiple-output (MIMO, ultra-wideband spectral, ultra-dense heterogeneous networks, have already become the focus of global industry. In the field of network technologies, a new network architecture based on software-defined networking (SDN becomes the prevailing view worldwide. Additionally, there are some other potential technologies for 5G, such as NOMA, FBMC, mm Waves, and Multi-carrier technology aggregation.
Interference competition as a key determinant for spatial distribution of mangrove crabs
Cannicci, Stefano
2018-02-15
The spatial distribution of mangrove crabs has been commonly associated with tree zonation and abiotic factors such as ground temperature and soil granulometry. Conversely, no studies were designed to investigate the role of competition for resources and predation in shaping crab distribution in mangroves, despite these biotic factors are recognised as key determinants for spatial patterns observed in the communities colonising rocky and sandy intertidal habitats.We studied floral and faunal assemblages in two zones of a Sri Lankan mangrove, a man-made upper intertidal level and a natural eulittoral, mid-shore one. Leaf choice experiments were designed to study both feeding rate and intra and inter-specific interactions for food of sesarmid crabs in the two habitats in order to better understand crab spatial distribution.The two intertidal belts differed in terms of floral composition and crab species abundance. The eulittoral zone was strongly dominated by Neosarmatium smithi, while within the elevated littoral fringe four sesarmids (N. smithi, N. asiaticum, N. malabaricum and Muradium tetragonum) were more evenly distributed. At both levels, all sesarmids showed to collect significantly more Bruguiera spp. and Rhizophora apiculata leaves than Excoecaria agallocha ones. There was no temporal segregation in feeding activity among the four species, resulting in a high interference competition for leaves. Regardless of the habitat, N. smithi was always successful in winning inter-specific fights.Our results showed that the elevated littoral fringe was more crowded with crabs, but was less favourable in terms of food availability and environmental conditions. The dominance of N. smithi in gathering mangrove leaves suggests that this species may segregate the other sesarmids into less favourable habitats. The present data strongly suggest for the first time that interference competition for food can contribute to shape mangrove crab spatial distribution.
Interference competition as a key determinant for spatial distribution of mangrove crabs
Cannicci, Stefano; Fusi, Marco; Cimó , Filippo; Dahdouh-Guebas, Farid; Fratini, Sara
2018-01-01
The spatial distribution of mangrove crabs has been commonly associated with tree zonation and abiotic factors such as ground temperature and soil granulometry. Conversely, no studies were designed to investigate the role of competition for resources and predation in shaping crab distribution in mangroves, despite these biotic factors are recognised as key determinants for spatial patterns observed in the communities colonising rocky and sandy intertidal habitats.We studied floral and faunal assemblages in two zones of a Sri Lankan mangrove, a man-made upper intertidal level and a natural eulittoral, mid-shore one. Leaf choice experiments were designed to study both feeding rate and intra and inter-specific interactions for food of sesarmid crabs in the two habitats in order to better understand crab spatial distribution.The two intertidal belts differed in terms of floral composition and crab species abundance. The eulittoral zone was strongly dominated by Neosarmatium smithi, while within the elevated littoral fringe four sesarmids (N. smithi, N. asiaticum, N. malabaricum and Muradium tetragonum) were more evenly distributed. At both levels, all sesarmids showed to collect significantly more Bruguiera spp. and Rhizophora apiculata leaves than Excoecaria agallocha ones. There was no temporal segregation in feeding activity among the four species, resulting in a high interference competition for leaves. Regardless of the habitat, N. smithi was always successful in winning inter-specific fights.Our results showed that the elevated littoral fringe was more crowded with crabs, but was less favourable in terms of food availability and environmental conditions. The dominance of N. smithi in gathering mangrove leaves suggests that this species may segregate the other sesarmids into less favourable habitats. The present data strongly suggest for the first time that interference competition for food can contribute to shape mangrove crab spatial distribution.
Power electronics - The key technology for Renewable Energy Systems
Blaabjerg, Frede; Ma, Ke; Yang, Yongheng
2014-01-01
The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...
Sommanustweechai, Angkana; Chanvatik, Sunicha; Sermsinsiri, Varavoot; Sivilaikul, Somsajee; Patcharanarumol, Walaiporn; Yeung, Shunmay; Tangcharoensathien, Viroj
2018-02-01
To analyse how antibiotics are imported, manufactured, distributed and regulated in Thailand. We gathered information, on antibiotic distribution in Thailand, in in-depth interviews - with 43 key informants from farms, health facilities, pharmaceutical and animal feed industries, private pharmacies and regulators- and in database and literature searches. In 2016-2017, licensed antibiotic distribution in Thailand involves over 700 importers and about 24 000 distributors - e.g. retail pharmacies and wholesalers. Thailand imports antibiotics and active pharmaceutical ingredients. There is no system for monitoring the distribution of active ingredients, some of which are used directly on farms, without being processed. Most antibiotics can be bought from pharmacies, for home or farm use, without a prescription. Although the 1987 Drug Act classified most antibiotics as "dangerous drugs", it only classified a few of them as prescription-only medicines and placed no restrictions on the quantities of antibiotics that could be sold to any individual. Pharmacists working in pharmacies are covered by some of the Act's regulations, but the quality of their dispensing and prescribing appears to be largely reliant on their competences. In Thailand, most antibiotics are easily and widely available from retail pharmacies, without a prescription. If the inappropriate use of active pharmaceutical ingredients and antibiotics is to be reduced, we need to reclassify and restrict access to certain antibiotics and to develop systems to audit the dispensing of antibiotics in the retail sector and track the movements of active ingredients.
Tudor DRUGAN
2003-08-01
Full Text Available The aim of the paper was to present the usefulness of the binomial distribution in studying of the contingency tables and the problems of approximation to normality of binomial distribution (the limits, advantages, and disadvantages. The classification of the medical keys parameters reported in medical literature and expressing them using the contingency table units based on their mathematical expressions restrict the discussion of the confidence intervals from 34 parameters to 9 mathematical expressions. The problem of obtaining different information starting with the computed confidence interval for a specified method, information like confidence intervals boundaries, percentages of the experimental errors, the standard deviation of the experimental errors and the deviation relative to significance level was solves through implementation in PHP programming language of original algorithms. The cases of expression, which contain two binomial variables, were separately treated. An original method of computing the confidence interval for the case of two-variable expression was proposed and implemented. The graphical representation of the expression of two binomial variables for which the variation domain of one of the variable depend on the other variable was a real problem because the most of the software used interpolation in graphical representation and the surface maps were quadratic instead of triangular. Based on an original algorithm, a module was implements in PHP in order to represent graphically the triangular surface plots. All the implementation described above was uses in computing the confidence intervals and estimating their performance for binomial distributions sample sizes and variable.
Magne Sætersdal
2016-01-01
Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.
Patients’ Data Management System Protected by Identity-Based Authentication and Key Exchange
Alexandra Rivero-García
2017-03-01
Full Text Available A secure and distributed framework for the management of patients’ information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth scheme for managing patients’ data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed.
Patients' Data Management System Protected by Identity-Based Authentication and Key Exchange.
Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti
2017-03-31
A secure and distributed framework for the management of patients' information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients' data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed.
Patients’ Data Management System Protected by Identity-Based Authentication and Key Exchange
Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti
2017-01-01
A secure and distributed framework for the management of patients’ information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients’ data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed. PMID:28362328
Control and operation of distributed generation in distribution systems
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
Many distribution systems nowadays have significant penetration of distributed generation (DG)and thus, islanding operation of these distribution systems is becoming a viable option for economical and technical reasons. The DG should operate optimally during both grid-connected and island...... algorithm, which uses average rate of change off requency (Af5) and real power shift RPS), in the islanded mode. RPS will increase or decrease the power set point of the generator with increasing or decreasing system frequency, respectively. Simulation results show that the proposed method can operate...
Gehring, Tobias; Haendchen, Vitus; Duhme, Joerg
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State......-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our...... with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components....
TRAO Multibeam Receiver System and Key Science Programs
Lee, Youngung
2017-06-01
Taeduk Radio Astronomy Observatory (TRAO) is now equipped with a main controling computer with VxWorks operating system, a new receiver system, and a new backend system. The new receiver system(TRAO-SEQUOIA) is equipped with high-performing 16-pixel MMIC pre-amplifiers in a 4x4 array, operating within 85~115 GHz frequency range. The system temperature ranges from 150 K (86~110 GHz) to 450 K (115 GHz). The 2nd IF modules with the narrow band and the 8 channels with 4 FFT spectrometers allow to observe 2 frequencies simultaneously within the 85~100 or 100~115 GHz bands for all 16 pixels of the receiver. Radome replacement was completed successfully as of February 2017. In addition, a new servo system will be installed in 2017 summer. We provide OTF (On-The-Fly) as a main observing mode, and position switching mode is available as well. The backend system (FFT spectrometer) provides the 4096x2 channels with fine velocity resolution of about 0.05 km/sec (15 kHz) per channel, and their full spectra bandwidth is 60 MHz. Beam efficiency of the TRAO was measured to be about 46% - 54% (with less than 2% error) between 86 and 115 GHz bands and pointing errors of the 14m telescope were found be 4.4 arcsec in AZ direction and 6 arcsec in EL direction. Generally, we allocate 18 hours of telescope time a day from January to the middle of May, and from October to December. Three Key Science Programs had been selected in 2015 fall and they are supposed to have higher priority for telescope time.
Key developments of a rod control system - 15101
Pouillot, M.; Jegou, H.; Duthou, A.
2015-01-01
The aim of the Rod Control System is to carry out the insertion and withdrawal of control rod clusters to provide the power required by the grid (G-mode control), to control the temperature of the reactor, or to provide negative reactivity margin when the reactor is shut down. The rod control system is not classified important for safety, but its correct operation is essential for the availability of the reactor, as the spurious drop of a single cluster usually results in a reactor trip. Rolls-Royce has been designing, manufacturing and providing rod control systems since 1977, in France, China, Belgium, Korea, and South Africa, as an original manufacturer and for modernization projects. All the corresponding nuclear units share the following features, key points for the system design: -) The power source is a three-phased 260 Vac with neutral, provided by zigzag-coupled alternators; -) The Control Rod Drive Mechanisms (CRDM) are 'three-coil type': Stationary Gripper (SG), Movable Gripper (MG) and Lift Coil (LC); -) Rod clusters are arranged in banks and sub-banks, the bank being composed of one or two sub-banks and a sub-bank is a set of 4 clusters moved simultaneously, the central cluster being an exception; and -) Most of those reactors are operated in G-mode (load following). (authors)
Islanding Operation of Distribution System with Distributed Generations
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
The growing interest in distributed generations (DGs) due to environmental concern and various other reasons have resulted in significant penetration of DGs in many distribution system worldwide. DGs come with many benefits. One of the benefits is improved reliability by supplying load during power...
Low jitter RF distribution system
Wilcox, Russell; Doolittle, Lawrence; Huang, Gang
2012-09-18
A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.
Improvement of two-way continuous-variable quantum key distribution using optical amplifiers
Zhang, Yi-Chen; Yu, Song; Gu, Wanyi; Li, Zhengyu; Sun, Maozhu; Peng, Xiang; Guo, Hong; Weedbrook, Christian
2014-01-01
The imperfections of a receiver's detector affect the performance of two-way continuous-variable (CV) quantum key distribution (QKD) protocols and are difficult to adjust in practical situations. We propose a method to improve the performance of two-way CV-QKD by adding a parameter-adjustable optical amplifier at the receiver. A security analysis is derived against a two-mode collective entangling cloner attack. Our simulations show that the proposed method can improve the performance of protocols as long as the inherent noise of the amplifier is lower than a critical value, defined as the tolerable amplifier noise. Furthermore, the optimal performance can approach the scenario where a perfect detector is used. (paper)
Demonstration of free-space reference frame independent quantum key distribution
Wabnig, J; Bitauld, D; Li, H W; Niskanen, A O; Laing, A; O'Brien, J L
2013-01-01
Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced. A possible route to increase the security of wireless communications is to incorporate QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that vary slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarization encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices. (paper)
McKague, Matthew
2009-01-01
Device independent quantum key distribution (QKD) aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al (2009 New J. Phys. 11 045021) applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al and techniques adapted from Renner.
Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian
2018-01-01
Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.
Quantum key distribution with several intercept-resend attacks via a depolarizing channel
Dehmani, Mustapha; Errahmani, Mohamed; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah
2012-01-01
The disturbance effect of a depolarizing channel on the security of the quantum key distribution of the four-state BB84 protocol, with multiple sequential intercept-resend attacks of many eavesdroppers, has been studied. The quantum bit error rate and the mutual information are computed for an arbitrary number N of eavesdroppers. It is found that the quantum error rate decreases with increasing the depolarizing parameter p characterizing the noise of the channel. For p tr of p below which the information is secure and otherwise the information is not secure. The value of p tr decreases with increasing the number of attacks. In contrast, for p ⩾ 0.165, the information is not secure independently of the number of eavesdroppers. Phase diagrams corresponding to the secure—unsecure information are also established. (paper)
Continuous-variable measurement-device-independent quantum key distribution with photon subtraction
Ma, Hong-Xin; Huang, Peng; Bai, Dong-Yun; Wang, Shi-Yu; Bao, Wan-Su; Zeng, Gui-Hua
2018-04-01
It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and one-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.
Self-referenced continuous-variable measurement-device-independent quantum key distribution
Wang, Yijun; Wang, Xudong; Li, Jiawei; Huang, Duan; Zhang, Ling; Guo, Ying
2018-05-01
We propose a scheme to remove the demand of transmitting a high-brightness local oscillator (LO) in continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, which we call as the self-referenced (SR) CV-MDI QKD. We show that our scheme is immune to the side-channel attacks, such as the calibration attacks, the wavelength attacks and the LO fluctuation attacks, which are all exploiting the security loopholes introduced by transmitting the LO. Besides, the proposed scheme waives the necessity of complex multiplexer and demultiplexer, which can greatly simplify the QKD processes and improve the transmission efficiency. The numerical simulations under collective attacks show that all the improvements brought about by our scheme are only at the expense of slight transmission distance shortening. This scheme shows an available method to mend the security loopholes incurred by transmitting LO in CV-MDI QKD.
Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan
2017-08-01
The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.
Information-theoretic security proof for quantum-key-distribution protocols
Renner, Renato; Gisin, Nicolas; Kraus, Barbara
2005-01-01
We present a technique for proving the security of quantum-key-distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the Bennett-Brassard 1984, the six-state, and the Bennett 1992 protocols with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel
Information-theoretic security proof for quantum-key-distribution protocols
Renner, Renato; Gisin, Nicolas; Kraus, Barbara
2005-07-01
We present a technique for proving the security of quantum-key-distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the Bennett-Brassard 1984, the six-state, and the Bennett 1992 protocols with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.
Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.
2016-02-01
Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.
Quantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
Luis A. Lizama-Pérez
2014-06-01
Full Text Available Physical implementations of quantum key distribution (QKD protocols, like the Bennett-Brassard (BB84, are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high rate of multi-photonic pulses introduces vulnerabilities that can be exploited by the photon number splitting (PNS attack to brake the quantum key. Some QKD protocols have been developed to be resistant to the PNS attack, like the decoy method, but those define a single photonic gain in the quantum channel. To overcome this limitation, we have developed a new QKD protocol, called ack-QKD, which is resistant to the PNS attack. Even more, it uses attenuated quantum states, but defines two interleaved photonic quantum flows to detect the eavesdropper activity by means of the quantum photonic error gain (QPEG or the quantum bit error rate (QBER. The physical implementation of the ack-QKD is similar to the well-known BB84 protocol.
Shared Electronic Health Record Systems: Key Legal and Security Challenges.
Christiansen, Ellen K; Skipenes, Eva; Hausken, Marie F; Skeie, Svein; Østbye, Truls; Iversen, Marjolein M
2017-11-01
Use of shared electronic health records opens a whole range of new possibilities for flexible and fruitful cooperation among health personnel in different health institutions, to the benefit of the patients. There are, however, unsolved legal and security challenges. The overall aim of this article is to highlight legal and security challenges that should be considered before using shared electronic cooperation platforms and health record systems to avoid legal and security "surprises" subsequent to the implementation. Practical lessons learned from the use of a web-based ulcer record system involving patients, community nurses, GPs, and hospital nurses and doctors in specialist health care are used to illustrate challenges we faced. Discussion of possible legal and security challenges is critical for successful implementation of shared electronic collaboration systems. Key challenges include (1) allocation of responsibility, (2) documentation routines, (3) and integrated or federated access control. We discuss and suggest how challenges of legal and security aspects can be handled. This discussion may be useful for both current and future users, as well as policy makers.
Review on Islanding Operation of Distribution System with Distributed Generation
Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
The growing environmental concern and various benefits of distributed generation (DG) have resulted in significant penetration of DG in many distribution systems worldwide. One of the major expected benefits of DG is the improvement in the reliability of power supply by supplying load during power...... outage by operating in an island mode. However, there are many challenges to overcome before islanding operation of a distribution system with DG can become a viable solution in future. This paper reviews some of the major challenges with islanding operation and explores some possible solutions...
Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)
2016-04-01
In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Distributed radiation protection console system
Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket
2004-01-01
Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the
Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.
2017-12-01
Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future
Control and Operation of Islanded Distribution System
Mahat, Pukar
deviation and real power shift. When a distribution system, with all its generators operating at maximum power, is islanded, the frequency will go down if the total load is more than the total generation. An under-frequency load shedding procedure for islanded distribution systems with DG unit(s) based...... states. Short circuit power also changes when some of the generators in the distribution system are disconnected. This may result in elongation of fault clearing time and hence disconnection of equipments (including generators) in the distribution system or unnecessary operation of protective devices...... operational challenges. But, on the other hand, it has also opened up some opportunities. One opportunity/challenge is an islanded operation of a distribution system with DG unit(s). Islanding is a situation in which a distribution system becomes electrically isolated from the remainder of the power system...
DIAMONDS: Engineering Distributed Object Systems
Cheng, Evan
1997-01-01
This report describes DIAMONDS, a research project at Syracuse University, that is dedicated to producing both a methodology and corresponding tools to assist in the development of heterogeneous distributed software...
Water sample-collection and distribution system
Brooks, R. R.
1978-01-01
Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.
The ATLAS distributed analysis system
Legger, F.
2014-01-01
In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...
Research in Distributed Real-Time Systems
Mukkamala, R.
1997-01-01
This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.
Modeling and optimization of parallel and distributed embedded systems
Munir, Arslan; Ranka, Sanjay
2016-01-01
This book introduces the state-of-the-art in research in parallel and distributed embedded systems, which have been enabled by developments in silicon technology, micro-electro-mechanical systems (MEMS), wireless communications, computer networking, and digital electronics. These systems have diverse applications in domains including military and defense, medical, automotive, and unmanned autonomous vehicles. The emphasis of the book is on the modeling and optimization of emerging parallel and distributed embedded systems in relation to the three key design metrics of performance, power and dependability.
Information Systems Management: an Australasian view of key issues - 1996
Graham Pervan
1997-11-01
Full Text Available As part of a longitudinal study of key information systems management issues, a survey of Australasia's largest 500 organisations was conducted to identify which issues were perceived by the IS executives as being important, problematic and critical over the next three to five years. The most critical issues were revealed to be a mix of technology management issues (IT infrastructure, communications, disaster recovery, strategic management issues (competitive advantage, IS planning, aligning the IS organisation, people management issues (organisational learning, educating senior management in IT, systems development and data management issues (effective use of the data resource, and end-user computing. This reflects the need for a balance of business, technical, and people skills in an IS executive. Non-critical issues were mostly related to systems development and the individual technologies which must be integrated and managed to ensure a responsive IT infrastructure. The study also reveals that some issues are much more important than problematic (disaster recovery, competitive advantage, information architecture, and IS alignment while others are much more problematic than important (end-user computing, IS role and contribution, and BPR. The former reflects a growing level of knowledge in handling these issues, while the latter reflects a continuing problem with them. The differences between this study and similar studies conducted in 1988 and 1992 show that there is a growing confidence in the IS executive's ability to manage the strategic issues, a continuing concern about providing a responsive IT infrastructure (especially communications, and a continuing concern with educating all 'customers' in the organisation in the effective use of IT, including senior management.
Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage
Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2015-01-01
Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...
On Distributed Port-Hamiltonian Process Systems
Lopezlena, Ricardo; Scherpen, Jacquelien M.A.
2004-01-01
In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the
Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems.
Heersmink, Richard
2017-04-01
There are various philosophical approaches and theories describing the intimate relation people have to artifacts. In this paper, I explore the relation between two such theories, namely distributed cognition and distributed morality theory. I point out a number of similarities and differences in these views regarding the ontological status they attribute to artifacts and the larger systems they are part of. Having evaluated and compared these views, I continue by focussing on the way cognitive artifacts are used in moral practice. I specifically conceptualise how such artifacts (a) scaffold and extend moral reasoning and decision-making processes, (b) have a certain moral status which is contingent on their cognitive status, and (c) whether responsibility can be attributed to distributed systems. This paper is primarily written for those interested in the intersection of cognitive and moral theory as it relates to artifacts, but also for those independently interested in philosophical debates in extended and distributed cognition and ethics of (cognitive) technology.
Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong
2014-01-01
By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced
Applying Distributed Object Technology to Distributed Embedded Control Systems
Jørgensen, Bo Nørregaard; Dalgaard, Lars
2012-01-01
In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. MicroR...... in developing control systems for distributed embedded platforms possessing severe resource restrictions.......RMI supports easy integration of high-level application specific control logic with low-level device specific control logic. Our experience from applying MicroRMI in the context of a distributed robotics control application, clearly demonstrates that it is feasible to use distributed object technology...
Thermal Distribution System | Energy Systems Integration Facility | NREL
Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control
Pradeep K. Goyal
2011-09-01
Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.
Distributed systems for protecting nuclear power stations
Jover, P.
1980-05-01
The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr
Kazmiruk, T N; Kazmiruk, V D; Bendell, L I
2018-01-01
The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000-5000 μm, 250-1000 μm, 250-0.63 μm and Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100-300/kg dry sediment). Microbeads were recovered primarily in the microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC's premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada's oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world.
Efficient User Authentication and Key Management for Peer-to-Peer Live Streaming Systems
LIU Xuening; YIN Hao; LIN Chuang; DU Changlai
2009-01-01
Recent development of the peer-to-peer (P2P) live streaming technique has brought unprece-dented new momentum to the Internet with the characters of effective, scalable, and low cost. However, be-fore these applications can be successfully deployed as commercial applications, efficient access control mechanisms are needed. This work based on earlier research of the secure streaming architecture in Trust-Stream, analyzes how to ensure that only authorized users can access the original media in the P2P live streaming system by adopting a user authentication and key management scheme. The major features of this system include (1) the management server issues each authorized user a unique public key certificate,(2) the one-way hash chain extends the certificate's lifetime, (3) the original media is encrypted by the ses-sion key and delivered to the communication group, and (4) the session key is periodically updated and dis-tributed with the media. Finally, analyses and test results show that scheme provides a secure, scalable, re-liable, and efficient access control solution for P2P live streaming systems.
Distributed computer systems theory and practice
Zedan, H S M
2014-01-01
Distributed Computer Systems: Theory and Practice is a collection of papers dealing with the design and implementation of operating systems, including distributed systems, such as the amoeba system, argus, Andrew, and grapevine. One paper discusses the concepts and notations for concurrent programming, particularly language notation used in computer programming, synchronization methods, and also compares three classes of languages. Another paper explains load balancing or load redistribution to improve system performance, namely, static balancing and adaptive load balancing. For program effici
Lin, Chien-Yu; Chang, Yu-Ming
2014-09-01
In this study, we employed Flash- and Scratch-based multimedia by using a MaKey-MaKey-based task system to increase the motivation level of children with cerebral palsy to perform physical activities. MaKey MaKey is a circuit board that converts physical touch to a digital signal, which is interpreted by a computer as a keyboard message. In this study, we used conductive materials to control this interaction. This study followed single-case design using ABAB models in which A indicated the baseline and B indicated the intervention. The experiment period comprised 1 month and a half. The experimental results demonstrated that in the case of two kindergarten children with cerebral palsy, their scores were considerably increased during the intervention phrases. The developmental applications of the results are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Online Scheduling in Distributed Message Converter Systems
Risse, Thomas; Wombacher, Andreas; Surridge, Mike; Taylor, Steve; Aberer, Karl
The optimal distribution of jobs among hosts in distributed environments is an important factor to achieve high performance. The optimal strategy depends on the application. In this paper we present a new online scheduling strategy for distributed EDI converter system. The strategy is based on the
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-10-30
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-10-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Feasibility of quantum key distribution through a dense wavelength division multiplexing network
Qi Bing; Qian Li; Lo, Hoi-Kwong; Zhu Wen
2010-01-01
In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of classical channels on the quantum channel has been investigated for both QKD based on single-photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a 'mode selector', which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian-modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0 dBm), the latter can be multiplexed with 38 classical channels (0 dBm power per channel) and still has a secure distance around 10 km. A preliminary experiment has been conducted based on a 100 MHz bandwidth homodyne detector.
Security analysis of an untrusted source for quantum key distribution: passive approach
Zhao Yi; Qi Bing; Lo, H-K; Qian Li
2010-01-01
We present a passive approach to the security analysis of quantum key distribution (QKD) with an untrusted source. A complete proof of its unconditional security is also presented. This scheme has significant advantages in real-life implementations as it does not require fast optical switching or a quantum random number generator. The essential idea is to use a beam splitter to split each input pulse. We show that we can characterize the source using a cross-estimate technique without active routing of each pulse. We have derived analytical expressions for the passive estimation scheme. Moreover, using simulations, we have considered four real-life imperfections: additional loss introduced by the 'plug and play' structure, inefficiency of the intensity monitor noise of the intensity monitor, and statistical fluctuation introduced by finite data size. Our simulation results show that the passive estimate of an untrusted source remains useful in practice, despite these four imperfections. Also, we have performed preliminary experiments, confirming the utility of our proposal in real-life applications. Our proposal makes it possible to implement the 'plug and play' QKD with the security guaranteed, while keeping the implementation practical.
Simple proof of the unconditional security of the Bennett 1992 quantum key distribution protocol
Zhang Quan; Tang Chaojing
2002-01-01
It is generally accepted that quantum key distribution (QKD) could supply legitimate users with unconditional security during their communication. Quite a lot of satisfactory efforts have been achieved on experimentations with quantum cryptography. However, when the eavesdropper has extra-powerful computational ability, has access to a quantum computer, for example, and can carry into execution any eavesdropping measurement that is allowed by the laws of physics, the security against such attacks has not been widely studied and rigorously proved for most QKD protocols. Quite recently, Shor and Preskill proved concisely the unconditional security of the Bennett-Brassard 1984 (BB84) protocol. Their method is highly valued for its clarity of concept and concision of form. In order to take advantage of the Shor-Preskill technique in their proof of the unconditional security of the BB84 QKD protocol, we introduced in this paper a transformation that can translate the Bennett 1992 (B92) protocol into the BB84 protocol. By proving that the transformation leaks no more information to the eavesdropper, we proved the unconditional security of the B92 protocol. We also settled the problem proposed by Lo about how to prove the unconditional security of the B92 protocol with the Shor-Preskill method
Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction
Leverrier, Anthony
2017-05-01
Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U (n ) (instead of the symmetric group Sn as in usual de Finetti theorems), and by introducing generalized S U (2 ,2 ) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.
Implementation of quantum key distribution network simulation module in the network simulator NS-3
Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav
2017-10-01
As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.
Tsurumaru, Toyohiro
2007-01-01
In this paper, we discuss the security of the differential-phase-shift quantum-key-distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. [Phys. Rev. A 73, 012344 (2006)]. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the 'discretized Gaussian' intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100 km reported by Diamanti et al. [Opt. Express 14, 13073 (2006)] turns out to be insecure. Moreover, it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95 km
Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction
Li, Fei; Wang, Yijun; Liao, Qin; Guo, Ying
2018-06-01
Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \\hat {x} or \\hat {p} itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.
Koehler-Sidki, A.; Dynes, J. F.; Lucamarini, M.; Roberts, G. L.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.
2018-04-01
Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.
Distributed control and instrumentation systems for future nuclear power plants
Yan, G.; L'Archeveque, J.V.R.
1976-01-01
The centralized dual computer system philosophy has evolved as the key concept underlying the highly successful application of direct digital control in CANDU power reactors. After more than a decade, this basis philosophy bears re-examination in the light of advances in system concepts--notably distributed architectures. A number of related experimental programs, all aimed at exploring the prospects of applying distributed systems in Canadian nuclear power plants are discussed. It was realized from the outset that the successful application of distributed systems depends on the availability of a highly reliable, high capacity, low cost communications medium. Accordingly, an experimental facility has been established and experiments have been defined to address such problem areas as interprocess communications, distributed data base design and man/machine interfaces. The design of a first application to be installed at the NRU/NRX research reactors is progressing well
Smart intimation and location of faults in distribution system
Hari Krishna, K.; Srinivasa Rao, B.
2018-04-01
Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.
Adefarati, T.; Bansal, R.C.
2017-01-01
Highlights: • Addresses impacts of renewable DG on the reliability of the distribution system. • Multi-objective formulation for maximizing the cost saving with integration of DG. • Uses Markov model to study the stochastic characteristics of the major components. • The investigation is done using modified RBTS bus test distribution system. • Proposed approach is useful for electric utilities to enhance the reliability. - Abstract: Recent studies have shown that renewable energy resources will contribute substantially to future energy generation owing to the rapid depletion of fossil fuels. Wind and solar energy resources are major sources of renewable energy that have the ability to reduce the energy crisis and the greenhouse gases emitted by the conventional power plants. Reliability assessment is one of the key indicators to measure the impact of the renewable distributed generation (DG) units in the distribution networks and to minimize the cost that is associated with power outage. This paper presents a comprehensive reliability assessment of the distribution system that satisfies the consumer load requirements with the penetration of wind turbine generator (WTG), electric storage system (ESS) and photovoltaic (PV). A Markov model is proposed to access the stochastic characteristics of the major components of the renewable DG resources as well as their influence on the reliability of a conventional distribution system. The results obtained from the case studies have demonstrated the effectiveness of using WTG, ESS and PV to enhance the reliability of the conventional distribution system.
Myhr, Geir Ove
2010-01-01
Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the
Myhr, Geir Ove
2010-11-08
Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the
Protection of Distribution Systems with Distributed Energy Resources
Bak-Jensen, Birgitte; Browne, Matthew; Calone, Roberto
of 17 months of work of the Joint Working Group B5/C6.26/CIRED “Protection of Distribution Systems with Distributed Energy Resources”. The working group used the CIGRE report TB421 “The impact of Renewable Energy Sources and Distributed Generation on Substation Protection and Automation”, published...... by WG B5.34 as the entry document for the work on this report. In doing so, the group aligned the content and the scope of this report, the network structures considered, possible islanding, standardized communication and adaptive protection, interface protection, connection schemes and protection...... are listed (chapter 3). The first main part of the report starts with a summary of the backgrounds on DER and current practices in protection at the distribution level (chapter 4). This chapter contains an analysis of CIGRE TB421, protection relevant characteristics of DER, a review of current practices...
Strategy Guideline. Compact Air Distribution Systems
Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)
2013-06-01
This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.
Internet and redefining tourism distribution system
Đelić Tanja
2004-01-01
Full Text Available Since the introduction, computerized systems that manage reservation systems, rapidly became inevitable distribution channel for all service companies in tourist industry. GDS in reality using communication network connects service offer, selling personnel and air companies.
Construction of Green Tide Monitoring System and Research on its Key Techniques
Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.
2018-04-01
As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.
Economic Models and Algorithms for Distributed Systems
Neumann, Dirk; Altmann, Jorn; Rana, Omer F
2009-01-01
Distributed computing models for sharing resources such as Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. This book intends to discover fresh avenues of research and amendments to existing technologies, aiming at the successful deployment of commercial distributed systems
Hybrid solar lighting distribution systems and components
Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN
2011-07-05
A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
Formal Specification of Distributed Information Systems
Vis, J.; Brinksma, Hendrik; de By, R.A.; de By, R.A.
The design of distributed information systems tends to be complex and therefore error-prone. However, in the field of monolithic, i.e. non-distributed, information systems much has already been achieved, and by now, the principles of their design seem to be fairly well-understood. The past decade
RF phase distribution systems at the SLC
Jobe, R.K.; Schwarz, H.D.
1989-04-01
Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs
Silver disinfection in water distribution systems
Silvestry Rodriguez, Nadia
Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.
Rapid Prototyping of Formally Modelled Distributed Systems
Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.
1999-01-01
This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.
Programming a Distributed System Using Shared Objects
Tanenbaum, A.S.; Bal, H.E.; Kaashoek, M.F.
1993-01-01
Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally,
BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS
Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...
Grid-connected distributed solar power systems
Moyle, R.; Chernoff, H.; Schweizer, T.
This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.
Zhang, Zheshen; Chen, Changchen; Zhuang, Quntao; Wong, Franco N. C.; Shapiro, Jeffrey H.
2018-04-01
Quantum key distribution (QKD) enables unconditionally secure communication ensured by the laws of physics, opening a promising route to security infrastructure for the coming age of quantum computers. QKD’s demonstrated secret-key rates (SKRs), however, fall far short of the gigabit-per-second rates of classical communication, hindering QKD’s widespread deployment. QKD’s low SKRs are largely due to existing single-photon-based protocols’ vulnerability to channel loss. Floodlight QKD (FL-QKD) boosts SKR by transmitting many photons per encoding, while offering security against collective attacks. Here, we report an FL-QKD experiment operating at a 1.3 Gbit s‑1 SKR over a 10 dB loss channel. To the best of our knowledge, this is the first QKD demonstration that achieves a gigabit-per-second-class SKR, representing a critical advance toward high-rate QKD at metropolitan-area distances.
Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke
2015-12-01
Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.
Reliability assessment of distribution power systems including distributed generations
Megdiche, M.
2004-12-01
Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)
Moroder, Tobias
2009-01-01
idealized quantum key distribution protocol to the real experiment. We develop a formalism to check whether a given realistic measurement device has such a squash model or not and provide relevant detection schemes with and without this particular property. We also address an experimental option which equally well provides security of a realistic quantum key distribution experiment by just using the idealized version of it. We exploit the idea that one can combine a variable beam splitter with a simple click/no-click detector in order to achieve the statistics of a photon number resolving detector. Via this hardware change it is straightforward to estimate the crucial parameters for the security statement. Lastly we focus on experimental entanglement verification. Considering the mere question of entanglement verification this practicality issue occurs since one often uses - because of various reasons - an oversimplified model for the performed measurements. We show that via such a misinterpretation of the measurement results one can indeed make mistakes, nevertheless we are more interested in conditions under which such errors can be excluded. For that we introduce and investigate a similar, but less restrictive, concept of the squash model. As an application we show that the usual tomography entanglement test, typically used in parametric down-conversion or even multipartite photonic experiments, can easily be made error-free. (orig.)
Moroder, Tobias
2009-07-31
security analysis of an idealized quantum key distribution protocol to the real experiment. We develop a formalism to check whether a given realistic measurement device has such a squash model or not and provide relevant detection schemes with and without this particular property. We also address an experimental option which equally well provides security of a realistic quantum key distribution experiment by just using the idealized version of it. We exploit the idea that one can combine a variable beam splitter with a simple click/no-click detector in order to achieve the statistics of a photon number resolving detector. Via this hardware change it is straightforward to estimate the crucial parameters for the security statement. Lastly we focus on experimental entanglement verification. Considering the mere question of entanglement verification this practicality issue occurs since one often uses - because of various reasons - an oversimplified model for the performed measurements. We show that via such a misinterpretation of the measurement results one can indeed make mistakes, nevertheless we are more interested in conditions under which such errors can be excluded. For that we introduce and investigate a similar, but less restrictive, concept of the squash model. As an application we show that the usual tomography entanglement test, typically used in parametric down-conversion or even multipartite photonic experiments, can easily be made error-free. (orig.)
Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent
2016-02-01
This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the
Information Systems Management: an Australian view of the key issues
Graham Pervan
1994-05-01
Full Text Available Studies investigating the key issues in IS management serve to better understand the concerns of IS managers and help to guide IS researchers in choosing IS management problems worthy of investigation. This paper presents results from a study of the key issues facing the IS managers of Australia's largest 300 organisations which is part of a three-yearly longitudinal study. In order to gain consensus on the relative importance of the key issues, a three-round Delphi method was applied. The results reveal that IS strategic planning continues to be the paramount issue in our industry, as are many issues associated with IS strategic planning, including responsiveness of the IT infrastructure, effective use of the data resource, IS for competitive advantage, and a comprehensive information architecture. A greater emphasis on quality is also revealed in highly rated issues such as effective use of the data resource, data integrity and quality assurance, and the quality of software development
Large scale network-centric distributed systems
Sarbazi-Azad, Hamid
2014-01-01
A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu
Sun Maozhu; Peng Xiang; Guo Hong
2013-01-01
We propose an improved two-way continuous-variable quantum key distribution (CV QKD) protocol by adding proper random noise on the receiver’s homodyne detection, the security of which is analysed against general collective attacks. The simulation result under the collective entangling cloner attack indicates that despite the correlation between two-way channels decreasing the secret key rate relative to the uncorrelated channels slightly, the performance of the two-way protocol is still far beyond that of the one-way protocols. Importantly, the added noise in detection is beneficial for the secret key rate and the tolerable excess noise of this two-way protocol. With the reasonable reconciliation efficiency of 90%, the two-way CV QKD with added noise allows the distribution of secret keys over 60 km fibre distance. (paper)
Differences Between Distributed and Parallel Systems
Brightwell, R.; Maccabe, A.B.; Rissen, R.
1998-10-01
Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.
Asymptotic work distributions in driven bistable systems
Nickelsen, D; Engel, A
2012-01-01
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
Centralised and distributed electricity systems
Bouffard, Francois; Kirschen, Daniel S.
2008-01-01
Because of their high level of integration, centralised energy supply systems are vulnerable to disturbances in the supply chain. In the case of electricity especially, this supply paradigm is losing some of its appeal. Apart from vulnerability, a number of further aggravating factors are reducing its attractiveness. They include the depletion of fossil fuels and their climate change impact, the insecurities affecting energy transportation infrastructure, and the desire of investors to minimise risks through the deployment of smaller-scale, modular generation and transmission systems. Small-scale decentralised systems, where energy production and consumption are usually tightly coupled, are emerging as a viable alternative. They are less dependent upon centralised energy supply, and can sometimes use more than one energy source. They are less sensitive to the uncertain availability of remote primary energy and transportation networks. In addition, the close connection between energy generation and use makes decentralised systems cleaner because they are most often based on renewable energies or on high-efficiency fossil fuel-based technologies such as combined heat and power (CHP). Fully decentralised energy supply is not currently possible or even truly desirable. The secure and clean energy systems of the future will be those flexible enough to allow for a spectrum of hybrid modes of operation and investment, combining the best attributes of both paradigms. A large part of this flexibility will come from the networks that make it possible to combine these two types of infrastructures and obtain the benefits of both approaches
Light distribution system comprising spectral conversion means
2012-01-01
, longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....
Evaluation of two typical distributed energy systems
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
PFS: a distributed and customizable file system
Bosch, H.G.P.; Mullender, Sape J.
1996-01-01
In this paper we present our ongoing work on the Pegasus File System (PFS), a distributed and customizable file system that can be used for off-line file system experiments and on-line file system storage. PFS is best described as an object-oriented component library from which either a true file
BARI+: A Biometric Based Distributed Key Management Approach for Wireless Body Area Networks
Syed Muhammad Khaliq-ur-Rahman Raazi
2010-04-01
Full Text Available Wireless body area networks (WBAN consist of resource constrained sensing devices just like other wireless sensor networks (WSN. However, they differ from WSN in topology, scale and security requirements. Due to these differences, key management schemes designed for WSN are inefficient and unnecessarily complex when applied to WBAN. Considering the key management issue, WBAN are also different from WPAN because WBAN can use random biometric measurements as keys. We highlight the differences between WSN and WBAN and propose an efficient key management scheme, which makes use of biometrics and is specifically designed for WBAN domain.
BARI+: a biometric based distributed key management approach for wireless body area networks.
Muhammad, Khaliq-ur-Rahman Raazi Syed; Lee, Heejo; Lee, Sungyoung; Lee, Young-Koo
2010-01-01
Wireless body area networks (WBAN) consist of resource constrained sensing devices just like other wireless sensor networks (WSN). However, they differ from WSN in topology, scale and security requirements. Due to these differences, key management schemes designed for WSN are inefficient and unnecessarily complex when applied to WBAN. Considering the key management issue, WBAN are also different from WPAN because WBAN can use random biometric measurements as keys. We highlight the differences between WSN and WBAN and propose an efficient key management scheme, which makes use of biometrics and is specifically designed for WBAN domain.
Unbelievable security : Matching AES using public key systems
Lenstra, A.K.; Boyd, C.
2001-01-01
The Advanced Encryption Standard (AES) provides three levels of security: 128, 192, and 256 bits. Given a desired level of security for the AES, this paper discusses matching public key sizes for RSA and the ElGamal family of protocols. For the latter both traditional multiplicative groups of finite
Archtecture of distributed real-time systems
Wing Leung, Cheuk
2013-01-01
CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...
Long-term performance of the SwissQuantum quantum key distribution network in a field environment
Stucki, D; Gisin, N; Thew, R; Legré, M; Clausen, B; Monat, L; Page, J-B; Ribordy, G; Rochas, A; Robyr, S; Trinkler, P; Buntschu, F; Perroud, D; Felber, N; Henzen, L; Junod, P; Monbaron, P; Ventura, S; Litzistorf, G; Tavares, J
2011-01-01
In this paper, we report on the performance of the SwissQuantum quantum key distribution (QKD) network. The network was installed in the Geneva metropolitan area and ran for more than one-and-a-half years, from the end of March 2009 to the beginning of January 2011. The main goal of this experiment was to test the reliability of the quantum layer over a long period of time in a production environment. A key management layer has been developed to manage the key between the three nodes of the network. This QKD-secure network was utilized by end-users through an application layer. (paper)
Support system for ATLAS distributed computing operations
Kishimoto, Tomoe; The ATLAS collaboration
2018-01-01
The ATLAS distributed computing system has allowed the experiment to successfully meet the challenges of LHC Run 2. In order for distributed computing to operate smoothly and efficiently, several support teams are organized in the ATLAS experiment. The ADCoS (ATLAS Distributed Computing Operation Shifts) is a dedicated group of shifters who follow and report failing jobs, failing data transfers between sites, degradation of ATLAS central computing services, and more. The DAST (Distributed Analysis Support Team) provides user support to resolve issues related to running distributed analysis on the grid. The CRC (Computing Run Coordinator) maintains a global view of the day-to-day operations. In this presentation, the status and operational experience of the support system for ATLAS distributed computing in LHC Run 2 will be reported. This report also includes operations experience from the grid site point of view, and an analysis of the errors that create the biggest waste of wallclock time. The report of oper...
A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM
Lynggaard, Per
2013-01-01
A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...
Yue, Jingpeng; Hu, Zhijian; Li, Chendan
2017-01-01
Smart DC residential distribution system(RDS) consisted by DC living homes will be a significant integral part in the future green transmission with demand flexibility. Meanwhile, the distributed generations will play an important role in the active demand response (DR). Energy Management System...... (EMS) with aid of the wireless communication and the smart meter is imperative in achieving ADR for DC residential community. This paper presents a framework of centralized management system integration and the key process of ADR in DC residential distribution system. The propose framework and methods...
Parallel and Distributed System Simulation
Dongarra, Jack
1998-01-01
This exploratory study initiated our research into the software infrastructure necessary to support the modeling and simulation techniques that are most appropriate for the Information Power Grid. Such computational power grids will use high-performance networking to connect hardware, software, instruments, databases, and people into a seamless web that supports a new generation of computation-rich problem solving environments for scientists and engineers. In this context we looked at evaluating the NetSolve software environment for network computing that leverages the potential of such systems while addressing their complexities. NetSolve's main purpose is to enable the creation of complex applications that harness the immense power of the grid, yet are simple to use and easy to deploy. NetSolve uses a modular, client-agent-server architecture to create a system that is very easy to use. Moreover, it is designed to be highly composable in that it readily permits new resources to be added by anyone willing to do so. In these respects NetSolve is to the Grid what the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can also impose significant limitations on the performance and robustness of a NetSolve system. This project explored the design innovations that push the performance and robustness of the NetSolve paradigm as far as possible without sacrificing the Web-like ease of use and composability that make it so powerful.
Integrating photovoltaics into utility distribution systems
Zaininger, H.W.; Barnes, P.R.
1995-01-01
Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest
Equilibrium distribution function in collisionless systems
Pergamenshchik, V.M.
1988-01-01
Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors
Advanced smartgrids for distribution system operators
Boillot, Marc
2014-01-01
The dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the secu
Science network resources: Distributed systems
Cline, Neal
1991-01-01
The Master Directory, which is overview information about whole data sets, is outlined. The data system environment is depicted. The question is explored of what is a prototype international directory including purpose and features. Advantages of on-line directories are listed. Interconnected directory assumptions are given. A description of given of DIF (Directory Interchange Format), which is an exchange file for directory information, along with information content of DIF and directories. The directory population status is given in a percentage viewgraph. The present and future directory interconnections status at GSFC is also listed.
Distributed Space Missions for Earth System Monitoring
2013-01-01
A key addition to Springer's Space Technology Library series, this edited volume features the work of dozens of authors and offers a wealth of perspectives on distributed Earth observation missions. In sum, it is an eloquent synthesis of the fullest possible range of current approaches to a fast-developing field characterized by growing membership of the 'space club' to include nations formerly regarded as part of the Third World. The volume's four discrete sections focus on the topic's various aspects, including the key theoretical and technical issues arising from the division of payloads onto different satellites. The first is devoted to analyzing distributed synthetic aperture radars, with bi- and multi-static radars receiving separate treatment. This is followed by a full discussion of relative dynamics, guidance, navigation and control. Here, the separate topics of design; establishment, maintenance and control; and measurements are developed with relative trajectory as a reference point, while the dis...
PROWAY - a standard for distributed control systems
Gellie, R.W.
1980-01-01
The availability of cheap and powerful microcomputer and data communications equipment has led to a major revision of instrumentation and control systems. Intelligent devices can now be used and distributed about the control system in a systematic and economic manner. These sub-units are linked by a communications system to provide a total system capable of meeting the required plant objectives. PROWAY, an international standard process data highway for interconnecting processing units in distributed industrial process control systems, is currently being developed. This paper describes the salient features and current status of the PROWAY effort. (auth)