WorldWideScience

Sample records for ketosteroid isomerase oxyanion

  1. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  2. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  3. Ketosteroid Standardized Cissus quadrangularis L. Extract and its Anabolic Activity: Time to Look Beyond Ketosteroid?

    Science.gov (United States)

    Jadhav, Atul N; Rafiq, Mohammed; Devanathan, Rajendran; Azeemuddin, Mohammed; Anturlikar, Suryakanth D; Ahmed, Akhil; Sundaram, Ramchandran; Babu, U V; Paramesh, Rangesh

    2016-05-01

    Cissus quadrangularis (CQ) L. reported to contain 3-ketosteroids and have bone health benefits. This study aimed at establishing the relationship between the ketosteroid content and anabolic as well as bone health-promoting activities of various Cissus extracts in well-established orchidectomized (ORX) rat model. Supercritical carbon dioxide, ethyl acetate, and aqueous extracts (AE) of CQ L. were prepared and standardized for ketosteroid content by two methods used in commerce. Moreover, ketosteroid standardized extracts of this plant were evaluated for anabolic activity in rats in well-established ORX rat model. The increase in the absolute weight was appreciable in the CQ-AE treated group. Similarly, with respect to bone parameters, a similar trend was seen. The mean bone density, strength, and calcium content were found to be highest in the group treated with CQ-AE compared to groups treated with other extracts. This study reveals for the first time that 3-ketosteroids are not linked to the beneficial activities on bone and highlights the need for extensive characterization of biological active principles from CQ L. In light of the above estimation studies, we believe that current standardization of Cissus extraction "3-ketosteroids" is incorrect. We also did not find any report suggesting the presence of androgenic steroids in this plant and hence the characterization based on "3-ketosteroids" is scientifically incorrect. This study highlights the insufficient understanding of biological active principles from CQ L. and underlines the need for extensive bioactivity guided studies. Cissus quadrangularis (CQ) L. reported to contain 3.ketosteroids and have bone health benefitsWe did not find correlation between ketosteroid content obtained by conventional methods and its biological effectStudies indicate that claims of ketosteroid content need not necessarily correlate to biological effects and hence warrants extensive phytochemical characterization of biological

  4. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  5. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5 alpha)-dehydrogenase from Rhodococcus jostii RHA1

    NARCIS (Netherlands)

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke

    2011-01-01

    3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid

  6. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Tintel, Marc; Masepohl, Bernd

    2017-07-15

    Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens , Dinoroseobacter shibae , Rhodobacter sphaeroides , and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens , R. sphaeroides , and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides , to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family. IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions. Copyright © 2017 American Society for Microbiology.

  7. Influence of the oxyanion nature of the electrolyte on the corrosion/passivation behaviour of nickel

    International Nuclear Information System (INIS)

    Trompette, J.L.; Massot, L.; Vergnes, H.

    2013-01-01

    Highlights: •Influence of oxyanion nature on the passivation of nickel. •Constitutive atoms of oxyanion incorporated into the passive film. •Evidence of direct bonding between N and Ni surface. -- Abstract: The electrochemical behaviour of nickel in the presence of various electrolyte solutions at 0.1 mol/L concentration exhibits a distinction according to the oxyanion nature of the investigated anions. Passivity is achieved with oxyanions whereas it fails with anions not containing oxygen. SIMS and XPS measurements performed from isotopic and non isotopic KNO 3 electrolytes indicate that the oxygen and nitrogen atoms from nitrate oxyanions are incorporated into the passive film during anodic polarization and with evidence of a direct bonding between nitrogen and nickel surface

  8. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    OpenAIRE

    Townsend, G T; Suflita, J M

    1997-01-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. ...

  10. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes.

    Science.gov (United States)

    Zhou, Tianzhu; Li, Cuiping; Jin, Huiling; Lian, Yangyang; Han, Wenmei

    2017-02-22

    Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H 2 SO 4 , HNO 3 , and H 3 PO 4 . The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO 3 , H 2 SO 4 , and H 3 PO 4 , the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H 3 PO 4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH + /═N + - groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

  11. Molecular characterization of three 3-ketosteroid-Delta(1)-dehydrogenase isoenzynnes of Rhodococcus ruber strain Chol-4

    NARCIS (Netherlands)

    Fernandez de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julian; Navarro Llorens, Juana Maria

    2012-01-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Delta(1)-dehydrogenases (KstDs) in the genome of R. ruber

  12. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    International Nuclear Information System (INIS)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W.

    2011-01-01

    The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase [Δ 4 -(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ 4 -(5α)-KSTD enzyme was purified by Ni 2+ –NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222 1 , with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å

  13. Glucose (xylose) isomerase production from thermotolerant and ...

    African Journals Online (AJOL)

    Owner

    2012-11-13

    Nov 13, 2012 ... in the production of the high fructose corn syrup (HFCS) from corn starch. ... Key words: Glucose isomerase, xylose isomerase, enzyme activity, Klebsiella, ... Soil, water, and manure (five samples each) were collected from.

  14. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    Energy Technology Data Exchange (ETDEWEB)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W., E-mail: b.w.dijkstra@rug.nl [University of Groningen, Nijenborgh 7, 9747 AG Groningen (Netherlands)

    2011-10-01

    The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222{sub 1} and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase [Δ{sup 4}-(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ{sup 4}-(5α)-KSTD enzyme was purified by Ni{sup 2+}–NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222{sub 1}, with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å.

  15. Rhodococcus rhodochrous DSM 43269 3-Ketosteroid 9 alpha-Hydroxylase, a Two-Component Iron-Sulfur-Containing Monooxygenase with Subtle Steroid Substrate Specificity

    NARCIS (Netherlands)

    Petrusma, M.; Dijkhuizen, L.; van der Geize, R.

    2009-01-01

    This paper reports the biochemical characterization of a purified and reconstituted two-component 3-ketosteroid 9 alpha-hydroxylase (KSH). KSH of Rhodococcus rhodochrous DSM 43269, consisting of a ferredoxin reductase (KshB) and a terminal oxygenase (KshA), was heterologously expressed in

  16. Purification and characterization of the d-xylose isomerase gene from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N W.Y.; Rosenfeld, S; Stevis, P; Tsao, G T

    1983-11-01

    A DNA fragment containing both the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene and the D-xylulokinase (ATP: D-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The D-xylose isomerase gene was separated from the D-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The D-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the D-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first D-xylose isomerase gene that has been isolated and extensively purified from any organism. D-Xylose isomerase, the enzyme product of the D-xylose isomerase gene, is responsible for the conversion of D-xylose to D-xylulose, as well as D-glucose to D-fructose. It is widely believed that yeast cannot ferment D-xylose to ethanol primarily because of the lack of D-xylose isomerase in yeast. D-Xylose isomerase (also known as D-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the D-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting D-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology. 14 references.

  17. Immobilized poly-L-histidine for chelation of metal cations and metal oxyanions

    International Nuclear Information System (INIS)

    Malachowski, Lisa; Holcombe, James A.

    2003-01-01

    The biohomopolymer poly-L-histidine (PLHis) was immobilized onto controlled pore glass (CPG) and its metal binding capabilities evaluated through the use of a flow injection-flame atomic absorption system. The metal binding capability of PLHis-CPG was determined through the analysis of the generated breakthrough curves. The polymer likely coordinates cationic metals through the imidazole side chain (pK a ∼6) present on each histidine residue with both strong and weak binding sites for Cu 2+ , Cd 2+ , Co 2+ , and Ni 2+ . Weak to minimal binding was observed for Mn 2+ , Ca 2+ , Mg 2+ , Na + , and Cr 3+ . The bound metals are quantitatively released from the column with an acid strip. It has also been shown that the protonated imidazole side chain present in acidic solutions is capable of binding metal oxyanions such as chromates, arsenates, and selenites; although oxyanion binding currently exhibits interferences from competing anions in solution, such as sulfate and nitrate. The interference in oxyanion binding is less severe in the presence of chloride, phosphate, and acetate. PLHis-CPG exhibits a capacity of ∼30 μmol Cu 2+ /g CPG in neutral to basic conditions, and a capacity of ∼70 μmol Cr(VI)/g CPG, ∼4 μmol As(V)/g CPG, and ∼4 μmol Se(IV)/g CPG in acidic conditions

  18. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions.

    Science.gov (United States)

    Sugimoto, Takuya; Cao, Tianchi; Szilagyi, Istvan; Borkovec, Michal; Trefalt, Gregor

    2018-08-15

    Electrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation. On the other hand the interaction of oxyanions with the amidine latex surface is highly specific. The monovalent dihydrogen phosphate ion strongly adsorbs to the positively charged surface and reverses the charge of the particle. This charge reversal leads also to the restabilization of the amidine latex suspension at the intermediate phosphate concentrations. In the case of dihydrogen arsenate the adsorption to amidine latex surface is weaker and no charge reversal and restabilization occurs. Similar differences are seen between the sulfate and selenate analogues, where selenate adsorbs more strongly to the surface as compared to the sulfate ion and invokes charge reversal. The present results indicate that ion specificity is much more pronounced in the case of counterions. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of oxyanions on the IGSCC inhibition of sensitized 304 stainless steel in high temperature water

    International Nuclear Information System (INIS)

    Tsuge, Hiroyuki; Murayama, Junichiro; Nagano, Hiroo.

    1983-01-01

    Effect of oxyanions such as MoO 4 2- , WO 4 2- , and CrO 4 2- on the intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel in high temperature water was studied. The results obtained are as follows: 1) Addition of such oxyanion as MoO 4 2- , WO 4 2- , and CrO 4 2- suppresses IGSCC of sensitized Type 304 stainless steel in high temperature nondeaerated water. The effectiveness of the inhibitive action by the oxyanion is ranked in the order of MoO 4 2- >WO 4 2- >CrO 4 2- . 2) The mechanism of IGSCC inhibition by MoO 4 2- ion for sentized Type 304 stainless steel in high temperature water is considered as follows, i.e., the presence MoO 4 2- ion decreases the dissolution rate of Cr depleted zone at grain boundaries to the level of matrix by helping the formation of the Cr rich film containing MoO 3 or adsorbed MoO 4 2- ion on the surface of Type 304 stainless steel. (author)

  20. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR.

    Science.gov (United States)

    Infanzón, Belén; Sotelo, Pablo H; Martínez, Josefina; Diaz, Pilar

    2018-01-01

    Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr 110 and Asp 111 , previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr 110 and Asp 111 ), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr 110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp 111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Incorporation of rapid thermodynamic data in fragment-based drug discovery.

    Science.gov (United States)

    Kobe, Akihiro; Caaveiro, Jose M M; Tashiro, Shinya; Kajihara, Daisuke; Kikkawa, Masato; Mitani, Tomoya; Tsumoto, Kouhei

    2013-03-14

    Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.

  3. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    International Nuclear Information System (INIS)

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-01-01

    Selenium-substituted hydroxyapatites containing selenate SeO 4 2− or selenite SeO 3 2− ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO 3 2− and SeO 4 2− into the crystal lattice. • The toxicity of the materials was studied

  4. Characterization of 3-Ketosteroid 9α-Hydroxylase, a Rieske Oxygenase in the Cholesterol Degradation Pathway of Mycobacterium tuberculosis*S⃞

    OpenAIRE

    Capyk, Jenna K.; D'Angelo, Igor; Strynadka, Natalie C.; Eltis, Lindsay D.

    2009-01-01

    KshAB (3-Ketosteroid 9α-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and m...

  5. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  6. Bioreduction of Selenium Oxyanions via the Feammox Process

    Science.gov (United States)

    Sherman, A.; Jaffe, P. R.

    2017-12-01

    Selenium (Se) is an important environmental contaminant found in both agricultural and industrial wastewater. A novel bacterium, Acidimicrobiaceae bacterium A6 (hereon referred to as A6), has been shown to oxidize ammonium through the reduction of iron oxides (termed the Feammox process) and has also been shown to reduce trace metals and radionuclides. This research aims to establish whether the Feammox process can be used to reduce Se oxyanions in wastewater, and to determine the pathway by which this reduction occurs. A novel method of Se analysis using ion chromatography (Dionex Aquion IC system, AS18 separator and guard columns, 18mM KOH eluent, 45mA) has been developed, showing clear resolution of SeO32- and SeO42- peaks and detection limits in the ppb range. Batch incubations were run using pure A6 culture to tie the reduction of Se to the activity of this bacterium. Nontronite was used as the iron source to sustain A6 activity. Unlike other iron sources, such as ferrihydrite, nontronite does not sorb Se oxyanions, and thus selenium remains bioavailable as an electron acceptor for use during the Feammox process. Concentrations of 1ppm of SeO32- and SeO42- were used, below the toxic threshold for A6, and incubations were sampled destructively over the course of 8 days. Samples were analyzed using ion chromatography and UV-Vis spectroscopy to determine bacterial activity and chemical speciation. Initial results indicate that A6 may be able to reduce 300ppb of SeO32-in 3 days, however more work is needed to further explain this result.

  7. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  8. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  9. Neurological findings in triosephosphate isomerase deficiency

    NARCIS (Netherlands)

    Poll-The, B. T.; Aicardi, J.; Girot, R.; Rosa, R.

    1985-01-01

    Two siblings with hemolytic anemia caused by triosephosphate isomerase deficiency developed a progressive neurological syndrome featuring dystonic movements, tremor, pyramidal tract signs, and evidence of spinal motor neuron involvement. Intelligence was unaffected. The findings in these patients

  10. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kolmas, Joanna, E-mail: joanna.kolmas@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Oledzka, Ewa; Sobczak, Marcin [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Nałęcz-Jawecki, Grzegorz [Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, ul. Banacha 1, 02-097 Warsaw (Poland)

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO{sub 4}{sup 2−} or selenite SeO{sub 3}{sup 2−} ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} into the crystal lattice. • The toxicity of the materials was studied.

  11. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    Science.gov (United States)

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  13. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  14. Overexpression, purification, crystallization and preliminary X-ray crystal analysis of Bacillus pallidusd-arabinose isomerase

    International Nuclear Information System (INIS)

    Takeda, Kosei; Yoshida, Hiromi; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2008-01-01

    Recombinant B. pallidusd-arabinose isomerase was crystallized and diffraction data were collected to 2.3 Å resolution. d-Arabinose isomerase catalyzes the isomerization of d-arabinose to d-ribulose. Bacillus pallidusd-arabinose isomerase has broad substrate specificity and can catalyze the isomerization of d-arabinose, l-fucose, l-xylose, l-galactose and d-altrose. Recombinant B. pallidusd-arabinose isomerase was overexpressed, purified and crystallized. A crystal of the enzyme was obtained by the sitting-drop method at room temperature and belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 144.9, b = 127.9, c = 109.5 Å. Diffraction data were collected to 2.3 Å resolution

  15. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  16. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  17. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  18. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  19. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Science.gov (United States)

    2010-04-01

    .... Measurements of phosphohexose isomerase are used in the diagnosis and treatment of muscle diseases such as muscular dystrophy, liver diseases such as hepatitis or cirrhosis, and metastatic carcinoma. (b...

  20. The secreted l-arabinose isomerase displays anti-hyperglycemic effects in mice

    OpenAIRE

    Rhimi, Moez; Bermudez-Humaran, Luis G.; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, H?la; Langella, Philippe; Maguin, Emmanuelle

    2015-01-01

    Background The l-arabinose isomerase is an intracellular enzyme which converts l-arabinose into l-ribulose in living systems and d-galactose into d-tagatose in industrial processes and at industrial scales. d-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The d-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive l-arabinose isomerase should be thermoactive and a...

  1. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    Science.gov (United States)

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Purification, crystallization and preliminary crytallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Akerboom, A.P.; Turnbull, A.P.; Hargreaves, D.; Fischer, M.; Geus, de D.; Sedelnikova, S.E.; Berrisford, J.M.; Baker, P.J.; Verhees, C.H.; Oost, van der J.; Rice, D.W.

    2003-01-01

    The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic

  3. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  4. Preparation of fluorescence quenched libraries containing interchain disulphide bonds for studies of protein disulphide isomerases

    DEFF Research Database (Denmark)

    Spetzler, J C; Westphal, V; Winther, Jakob R.

    1998-01-01

    Protein disulphide isomerase is an enzyme that catalyses disulphide redox reactions in proteins. In this paper, fluorogenic and interchain disulphide bond containing peptide libraries and suitable substrates, useful in the study of protein disulphide isomerase, are described. In order to establish...... the quenching chromophore (Tyr(NO2)) and Cys(pNpys) activated for reaction with a second thiol. The formation and cleavage of the interchain disulphide bonds in the library were monitored under a fluorescence microscope. Substrates to investigate the properties of protein disulphide isomerase in solution were...

  5. Adsorption of Oxy-Anions in the Teaching Laboratory: An Experiment to Study a Fundamental Environmental Engineering Problem

    Science.gov (United States)

    D'Arcy, Mitch; Bullough, Florence; Moffat, Chris; Borgomeo, Edoardo; Teh, Micheal; Vilar, Ramon; Weiss, Dominik J.

    2014-01-01

    Synthesizing and testing bicomposite adsorbents for the removal of environmentally problematic oxy-anions is high on the agenda of research-led universities. Here we present a laboratory module successfully developed at Imperial College London that introduces the advanced undergraduate student in engineering (chemical, civil, earth) and science…

  6. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  7. Photoinduced Bioorthogonal 1,3-Dipolar Poly-cycloaddition Promoted by Oxyanionic Substrates for Spatiotemporal Operation of Molecular Glues.

    Science.gov (United States)

    Hatano, Junichi; Okuro, Kou; Aida, Takuzo

    2016-01-04

    PGlue(PZ), a pyrazoline (PZ)-based fluorescent adhesive which can be generated spatiotemporally in living systems, was developed. Since PGlue(PZ) carries many guanidinium ion (Gu(+)) pendants, it strongly adheres to various oxyanionic substrates through a multivalent salt-bridge interaction. PGlue(PZ) is given by bioorthogonal photopolymerization of a Gu(+)-appended monomer (Glue(TZ)), bearing tetrazole (TZ) and olefinic termini. Upon exposure to UV light, Glue(TZ) transforms into a nitrileimine (NI) intermediate (Glue(NI)), which is eligible for 1,3-dipolar polycycloaddition. However, Glue(NI) in aqueous media can concomitantly be deactivated into Glue(WA) by the addition of water, and the polymerization hardly occurs unless Glue(NI) is concentrated. We found that, even under high dilution, Glue(NI) is concentrated on oxyanionic substrates to a sufficient level for the polymerization, so that their surfaces can be point-specifically functionalized with PGlue(PZ) by the use of a focused beam of UV light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  9. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose.

    Science.gov (United States)

    Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K

    2006-07-01

    Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.

  10. High production of D-tagatose, a potential sugar substitute, using immobilized L-arabinose isomerase.

    Science.gov (United States)

    Kim, P; Yoon, S H; Roh, H J; Choi, J H

    2001-01-01

    An L-arabinose isomerase of Escherichia coli was immobilized using covalent binding to agarose to produce D-tagatose, a bulking sweetener that can be economically used as a sugar substitute. The immobilized L-arabinose isomerase stably produced an average of 7.5 g-tagatose/L.day for 7 days with a productivity exceeding that of the free enzyme (0.47 vs 0.30 mg/U.day). Using a scaled-up immobilized enzyme system, 99.9 g-tagatose/L was produced from galactose with 20% equilibrium in 48 h. The process was repeated two more times with production of 104.1 and 103.5 g-tagatose/L. D-Tagatose production using an immobilized L-arabinose isomerase has a high potential for commercial application.

  11. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  12. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  13. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  14. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    Science.gov (United States)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  15. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase.

    Science.gov (United States)

    Mishra, Abha; Debnath Das, Meera

    2002-01-01

    pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.

  16. Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions--a review

    International Nuclear Information System (INIS)

    Tzvetkoff, Tzvety; Gencheva, Petia

    2003-01-01

    A review of the corrosion of Ni and Ni-based alloys in melts containing oxyanions (nitrate, sulphate, hydroxide and carbonate) is presented, emphasising the mechanism of growth, the composition and structure of the passivating oxide films formed on the material in such conditions. First, the thermodynamical background involving solubility and point defect chemistry calculations for oxides formed on Ni, Cr and Ni-Cr alloys in molten salt media is briefly commented. The main passivation product on the Ni surface has been reported to be cubic NiO. In the transition stage, further oxidation of the compact NiO layer has been shown to take place in which Ni(III) ions and nickel cation vacancies are formed. Transport of nickel cation vacancies has been proposed to neutralise the charges of the excess oxide ions formed in the further oxidation reaction. Ex situ analysis studies reported in the literature indicated the possible formation of Ni 2 O 3 phase in the anodic layer. During the third stage of oxidation, a survey of the published data indicated that oxygen evolution from oxyanion melts is the predominant reaction taking place on the Ni/NiO electrode. This has been supposed to lead to a further accumulation of oxygen ions in the oxide lattice presumably as oxygen interstitials, and a NiO 2 phase formation has been also suggested. Literature data on the composition of the oxide film on industrial Ni-based alloys and superalloys in melts containing oxyanions are also presented and discussed. Special attention is paid to the effect of the composition of the alloy, the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers

  17. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice.

    Science.gov (United States)

    Rhimi, Moez; Bermudez-Humaran, Luis G; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, Héla; Langella, Philippe; Maguin, Emmanuelle

    2015-12-21

    The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive L-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of D-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. The L-arabinose isomerase (L-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SP(Usp45)). The L-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakei L-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant L-AI with the SP(Usp45). Th L-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the L-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. We report for the first time the secretion of the intracellular L-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly display other secreted proteins. The secreted L-AI originated from the food

  18. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  19. Characteristics of chalcone isomerase promoter in crabapple leaves ...

    African Journals Online (AJOL)

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of plants and chalcone isomerase (CHI) is one of the key enzymes in anthocyanin biosynthetic pathway. What characteristic is CHI promoter known as the regulation sequence of CHI gene, has been rarely investigated. We isolated A ...

  20. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque......The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  1. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    Science.gov (United States)

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  3. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, ...

  4. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    Science.gov (United States)

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  5. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.

    Science.gov (United States)

    Capyk, Jenna K; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C; Eltis, Lindsay D

    2011-11-25

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (k(cat)/K(m)) of KshAB for the CoA thioester substrates was 20-30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent K(m)(O(2)) was 90 ± 10 μM in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ(1) ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism.

  6. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv

    International Nuclear Information System (INIS)

    Mathur, Divya; Anand, Kanchan; Mathur, Deepika; Jagadish, Nirmala; Suri, Anil; Garg, Lalit C.

    2007-01-01

    The phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv was crystallized and diffraction data were collected to 2.8 Å resolution. Phosphoglucose isomerase is a ubiquitous enzyme that catalyzes the isomerization of d-glucopyranose-6-phosphate to d-fructofuranose-6-phosphate. The present investigation reports the expression, purification, crystallization and preliminary crystallographic studies of the phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv, which shares 46% sequence identity with that of its human host. The recombinant protein, which was prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group I2 1 2 1 2 1 , with unit-cell parameters a = 109.0, b = 119.8, c = 138.9 Å

  7. Evaluation of sorption capacity of modified wood biomass for arsenic five-valent oxyanions

    International Nuclear Information System (INIS)

    Littera, P.; Antoska, R.; Cernansky, S.; Sevc, J.; Kolencik, M.; Budzakova, M.

    2009-01-01

    In the present work is assessed bio-sorption of arsenic oxyanions, which represent one of two most common special arsenic occurring in contaminated waters. A wood biomass was used as sorbent, which was modified by amorphous oxohydroxides of iron to increase sorption capacity, to whom arsenic has high affinity. The work estimated sorption capacity of wood biomass adjusted by oxohydroxides of iron. The Langmuir model as well as the Freundlich model were suitable for evaluation of experimental results. Maximal sorption capacity of investigated sorbent was 9.259 mg/g, what is comparable with values published by other authors.

  8. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  9. Arabidopsis Phosphomannose Isomerase 1, but Not Phosphomannose Isomerase 2, Is Essential for Ascorbic Acid Biosynthesis*S⃞

    OpenAIRE

    Maruta, Takanori; Yonemitsu, Miki; Yabuta, Yukinori; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2008-01-01

    We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between d-fructose 6-phosphate and d-mannose 6-phosphate (Man-6P). The apparent Km and Vmax values for Man-6P of purified recombinant PMI1 were 41.3 ± 4.2 μm and 1.89 μmol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372 ± 13 μm and 22.5 μmol/min/mg protein, respectively. Both PMI1 ...

  10. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    Science.gov (United States)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  11. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, David S., E-mail: dsv3@duke.edu [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States); McIntosh, Jennifer C. [University of Arizona, Department of Hydrology and Water Resources, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Dwyer, Gary S.; Vengosh, Avner [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States)

    2011-08-15

    Highlights: > Elevated natural As and F occur in the Willcox Basin aquifer of Arizona. > Oxyanion-forming elements are derived from volcanic-source aquifer sediments. > Sr isotopes trace sediment sources linked to oxyanion-forming trace elements. > {sup 87}Sr/{sup 86}Sr > 0.720 indicates Proterozoic crystalline-source sediment contributing low As. > Both sediment source and hydrogeochemical evolution (Ca/Na) affect As levels. - Abstract: The Willcox Basin is a hydrologically closed basin in semi-arid southeastern Arizona (USA) and, like many other alluvial basins in the southwestern USA, is characterized by oxic, near-neutral to slightly basic groundwater containing naturally elevated levels of oxyanion-forming trace elements such as As. This study evaluates the sources and mobilization of these oxyanionic trace elements of health significance by using several isotopic tracers of water-rock interaction and groundwater sources ({sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S{sub SO4}, {delta}{sup 11}B, {delta}{sup 2}H, {delta}{sup 18}O, {sup 3}H). Values of {delta}{sup 2}H (-85 per mille to -64 per mille) and {delta}{sup 18}O (-11.8 per mille to -8.6 per mille) are consistent with precipitation and groundwater in adjacent alluvial basins, and low to non-detectable {sup 3}H activities further imply that modern recharge is slow in this semi-arid environment. Large variations in {sup 87}Sr/{sup 86}Sr ratios imply that groundwater has interacted with multiple sediment sources that constitute the basin-fill aquifer, including Tertiary felsic volcanic rocks, Paleozoic sedimentary rocks, and Proterozoic crystalline rocks. In general, low concentrations of oxyanion-forming trace elements and F{sup -} are associated with a group of waters exhibiting highly radiogenic values of {sup 87}Sr/{sup 86}Sr (0.72064-0.73336) consistent with waters in Proterozoic crystalline rocks in the mountain blocks (0.73247-0.75010). Generally higher As concentrations (2-29 {mu}g L{sup -1}), other

  12. Obtaining mutants of Streptomyces griseoflavus strain 1339, producers of glucose isomerase, following gamma irradiation

    International Nuclear Information System (INIS)

    Dzhedzheva, G.; Stoeva, N.; Stojchev, M.

    1990-01-01

    A water suspension of Streptomyces griseoflavus strain 1339 spores of a density of 8.7.10 6 spores/cm 3 is gamma irradiated ( 60 Co, RHM-γ-20, 30.3 Gy/min). The survival of Streptomyces griseoflavus strain 1339 spores was determined depending on radiation doses, exposure times and incubation temperature. Five major morphological types of colonies were isolated, characterized by different levels of glucose isomerase activity. Maximum specific glucose isomerase activity (GIU/g) was attained after the third gamma irradiation step using a dose of 3000 Gy. 2 tabs., 3 figs., 7 refs

  13. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    OpenAIRE

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-01-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally...

  14. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.

    Science.gov (United States)

    Zheng, Zhaojuan; Lin, Xi; Jiang, Ting; Ye, Weihua; Ouyang, Jia

    2016-08-01

    To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.

  15. Nanocrystalline hydroxyapatite doped with selenium oxyanions: a new material for potential biomedical applications.

    Science.gov (United States)

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Deficiency of triosephosphate isomerase. Apropos of 2 new cases].

    Science.gov (United States)

    Delso Martínez, M C; Uriel Miñana, P; Pérez Lugmus, G; Giménez Mas, J A; Baldellou Vázquez, A

    1983-08-01

    Two siblings, born of a no consanguineous couple, a female and a male, affected by a severe and progressive neurological disease and chronic hemolytic anemia are presented. Their clinical, hematological, biochemical and pathological studies are discussed. One of the patients showed a triosephosphate isomerase deficiency and the carrier condition of their parents was tested. Commentaries about physiopathology of this disease are made.

  17. Adsorption of oxyanions of As, B, Cr, Mo and Se from coal fly ash leachates using Al3+/Fe3+modified bentonite clay

    CSIR Research Space (South Africa)

    Vhahangwele, M

    2013-01-01

    Full Text Available ponds. On disposal, coal fly ash leaches out toxic chemical species on contact with the aqueous media hence posing hazardous effects to the aquatic and terrestrial environment. Of prime concern are Oxyanionic species such as As, B, Cr, Mo and Se...

  18. Ionic flotation of complexing oxyanions. Thermodynamics of uranyl complexation in a sulfuric medium. Definition of selectivity conditions of the process

    International Nuclear Information System (INIS)

    Bouzat, G.

    1987-01-01

    Oxyanion ionic flotation process with dodecylamine hydrochloride as collector is studied by investigation of flotation and filtration recovery curves, suspension turbidity, conductimetric measurements, and solubility of ionic species. The process is controlled by chemical reactions of precipitation and by adsorption of surfactant confering hydrophobic or hydrophilic surface properties to the solid phase respectively when one or two monolayers of surfactant are successively adsorbed. Equilibrium constants (in terms of activity) of the uranium (VI) complexation with sulphate oxyanions are calculated through Raman spectroscopic study of uranyl sulphate aqueous solutions. The complexation results in a shift of the symmetrical stretching vibration band of U0 2 to low wavenumbers and an increase of their cross section. The solubility curves of ionic species in the precipitation of uranyl -sulphate complexes by dodecylamine hydrochloride are modelled. The knowledge of solubility products, activity coefficients of the species and critical micellar concentration of the surfactant allow the modelling of flotation recovery curves. Temperature and collector structure modifications are studied in terms of optimization parameters and uranium extraction of mine drainage water is processed. Residual concentration of surfactant is considerably lowered by adsorption on montmorillonite

  19. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  20. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Kozak, Maciej; Taube, Michał

    2009-10-01

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  1. Simultaneous measurement of trace metal and oxyanion concentrations in water using diffusive gradients in thin films with a chelex-metsorb mixed binding layer

    DEFF Research Database (Denmark)

    Panther, Jared G.; Bennett, William W.; Welsh, David T.

    2014-01-01

    A new diffusive gradients in thin films (DGT) technique with a mixed binding layer (Chelex-100 and the titanium dioxide based adsorbent Metsorb) is described for the simultaneous measurement of labile trace metal (Mn, Co, Ni, Cu, Cd, and Pb) and oxyanion (V, As, Mo, Sb, W, and P) concentrations i...

  2. Affinity labeling and characterization of the active site histidine of glucosephosphate isomerase

    International Nuclear Information System (INIS)

    Gibson, D.R.; Gracy, R.W.; Hartman, F.C.

    1980-01-01

    N-bromoacetylethanolamine phosphate was found to act as a specific affinity label for the active center of glucosephosphate isomerase. The inactivation process followed pseudo-first order kinetics, was irreversible, and exhibited rate saturation kinetics with minimal half-lives of inactivation of 4.5 and 6.3 min for the enzyme isolated from human placenta and rabbit muscle, respectively. The pH dependence of the inactivation process closely paralleled the pH dependence of the overall catalytic process with pK/sub a/ values at pH 6.4 and 9.0. The stoichiometry of labeling of either enzyme, as determined with N-bromo[ 14 C 2 ]acetylethanolamine phosphate, was 1 eq of the affinity label/subunit of enzyme. After acid hydrolysis and amino acid analysis of the radioactive affinity-labeled human enzyme, only radioactive 3-carboxymethyl histidine was found. In the case of the rabbit enzyme, the only radioactive derivative obtained was 1-carboxymethyl histidine. Active site tryptic peptides were isolated by solvent extraction, thin layer peptide fingerprinting, and ion exchange chromatography before and after removal of the phosphate from the active site peptide. Amino acid analysis of the labeled peptides from the two species were very similar. Using high sensitivity methods for sequence analysis, the primary structure of the active site was established as Val-Leu-His-Ala-Glu-Asn-Val-Asp (Gly,Thr,Ser) Glu-Ile (Thr-Gly-His-Lys-Glx)-Tyr-Phe. Apparent sequence homology between the catalytic center of glucosephosphate isomerase and triosephosphate isomerase suggest that the two enzymes may have evolved from a common ancestral gene

  3. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  4. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  5. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  6. Synthesis of 4-substituted and 6-substituted 4-En-3-ketosteroids to be used in radioimmunoassays of testosterone and progesterone

    International Nuclear Information System (INIS)

    Handschuh, D.

    1983-01-01

    The synthetic antigens required for the development of a specific radioimmunoassay for steroids are obtained, if derivatives of steroid carboxylic acid are bound to the lysin residues of bovine serum albumin. In this study, the carboxyl groups were introduced into the steroid in positions C4 or C6. For this purpose the 4-en-3-ketosteroids, progesterone and testosterone, were functionalised in C6, which is an allylic C atom. One or two further steps were required for the formation of the carboxyl acid derivatives, which then replaced the above-mentioned atoms C4 and C6. Described are the synthesis of 4-S-mercaptopropionic acid derivatives of progesterone and testosterone using 2-step or 4-step reaction procedures as well as alternative methods of synthetising different derivatives of 6-methylidene carboxyl acid. In order to characterise the products obtained measurements were carried out on the basis of 1 H-NMR, 13 C-NMR, IR spectra, CD and mass spectroscopy. (orig./RB) [de

  7. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  8. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  9. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    Science.gov (United States)

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  10. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase.

    Science.gov (United States)

    Roh, H J; Kim, P; Park, Y C; Choi, J H

    2000-02-01

    D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harbouring the L-arabinose isomerase gene (araA) from Escherichia coli, Bacillus subtilis and Salmonella typhimurium were constructed because L-arabinose isomerase was suggested previously as an enzyme that mediates the bioconversion of galactose into tagatose as well as that of arabinose to ribulose. The constructed plasmids were named pTC101, pTC105 and pTC106, containing araA from E. coli, B. subtilis and S. typhimurium respectively. In the cultures of recombinant E. coli with pTC101, pTC105 and pTC106, tagatose was produced from galactose in 9.9, 7.1 and 6.9% yields respectively. The enzyme extract of E. coli with the plasmid pTC101 also converted galactose into tagatose with a 96.4% yield.

  11. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  12. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  13. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    Science.gov (United States)

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  14. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases

    NARCIS (Netherlands)

    Zoldak, G.; Aumuller, T.; Lucke, C.; Hritz, J.; Oostenbrink, C.; Fischer, G.; Schmid, F.X.

    2009-01-01

    To fully explore the substrate specificities of prolyl isomerases, we synthesized a library of 20 tetrapeptides that are labeled with a 2-aminobenzoyl (Abz) group at the amino terminus and a p-nitroanilide (pNA) group at the carboxy terminus. In this peptide library of the general formula

  15. Inactivation and Augmentation of the Primary 3-Ketosteroid-Δ1- Dehydrogenase in Mycobacterium neoaurum NwIB-01: Biotransformation of Soybean Phytosterols to 4-Androstene- 3,17-Dione or 1,4-Androstadiene-3,17-Dione▿ †

    Science.gov (United States)

    Wei, Wei; Wang, Feng-qing; Fan, Shu-yue; Wei, Dong-zhi

    2010-01-01

    3-Ketosteroid-Δ1-dehydrogenase, KsdDM, was identified by targeted gene disruption and augmentation from Mycobacterium neoaurum NwIB-01, a newly isolated strain. The difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene-3,17-dione (ADD) is a key bottleneck to the microbial transformation of phytosterols in industry. This problem was tackled via genetic manipulation of the KsdD-encoding gene. Mutants in which KsdDM was inactivated or augmented proved to be good AD(D)-producing strains. PMID:20453136

  16. Crystallization and preliminary X-ray diffraction studies of l-rhamnose isomerase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Yoshida, Hiromi; Wayoon, Poonperm; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2006-01-01

    Recombinant l-rhamnose isomerase from P. stutzeri has been crystallized. Diffraction data have been collected to 2.0 Å resolution. l-Rhamnose isomerase from Pseudomonas stutzeri (P. stutzeril-RhI) catalyzes not only the reversible isomerization of l-rhamnose to l-rhamnulose, but also isomerization between various rare aldoses and ketoses. Purified His-tagged P. stutzeril-RhI was crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 74.3, b = 104.0, c = 107.0 Å, β = 106.8°. Diffraction data have been collected to 2.0 Å resolution. The molecular weight of the purified P. stutzeril-RhI with a His tag at the C-terminus was confirmed to be 47.7 kDa by MALDI–TOF mass-spectrometric analysis and the asymmetric unit is expected to contain four molecules

  17. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Science.gov (United States)

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  18. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  19. Effects of polybrominated diphenyl ethers (PBDEs) and their derivatives on protein disulfide isomerase activity and growth hormone release of GH3 cells.

    Science.gov (United States)

    Hashimoto, Shoko; Yoshimura, Hiromi; Okada, Kazushi; Uramaru, Naoto; Sugihara, Kazumi; Kitamura, Shigeyuki; Imaoka, Susumu

    2012-03-19

    Polybrominated diphenyl ethers (PBDEs) have been used in a variety of consumer products such as flame retardants and recently have been known to be widespread environmental pollutants, which probably affect biological functions of mammalian cells. However, the risk posed by PBDE metabolites has not been clarified. Our previous study suggested that bisphenol A (BPA), an endocrine-disrupting chemical, binds to protein disulfide isomerase (PDI) and inhibits its activity. PDI is an isomerase enzyme in the endoplasmic reticulum and facilitates the formation or cleavage of disulfide bonds. PDI consists of a, b, b', and a' domains and the c region, with the a and a' domains having isomerase active sites. In the present study, we tested the effects of 10 kinds of PBDE compounds and their metabolites on PDI. OH-PBDEs specifically inhibited the isomerase activity of PDI, with 4'-OH-PBDE more effective than 2' (or 2)-OH-PBDEs. 4'-OH-PBDE inhibited the isomerase activity of the b'a'c fragment but not that of ab and a'c, suggesting that the b' domain of PDI is essential for the inhibition by 4'-OH-PBDE. We also investigated the effects of these chemicals on the production of growth hormone (GH) in GH3 cells. In GH3 cells, levels of mRNA and protein of GH stimulated by T(3) were reduced by 4'-OH-PBDE and 4'-MeO-PBDE. The reduction in GH expression caused by these compounds was not changed by the overexpression or knockdown of PDI in GH3 cells, while these manipulations of PDI levels significantly suppressed the expression of GH. These results suggest that the biological effects of PBDEs differed depending on their brominated and hydroxylated positions. © 2011 American Chemical Society

  20. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.

    Science.gov (United States)

    Morris, D P; Phatnani, H P; Greenleaf, A L

    1999-10-29

    A phospho-carboxyl-terminal domain (CTD) affinity column created with yeast CTD kinase I and the CTD of RNA polymerase II was used to identify Ess1/Pin1 as a phospho-CTD-binding protein. Ess1/Pin1 is a peptidyl prolyl isomerase involved in both mitotic regulation and pre-mRNA 3'-end formation. Like native Ess1, a GSTEss1 fusion protein associates specifically with the phosphorylated but not with the unphosphorylated CTD. Further, hyperphosphorylated RNA polymerase II appears to be the dominant Ess1 binding protein in total yeast extracts. We demonstrate that phospho-CTD binding is mediated by the small WW domain of Ess1 rather than the isomerase domain. These findings suggest a mechanism in which the WW domain binds the phosphorylated CTD of elongating RNA polymerase II and the isomerase domain reconfigures the CTD though isomerization of proline residues perhaps by a processive mechanism. This process may be linked to a variety of pre-mRNA maturation events that use the phosphorylated CTD, including the coupled processes of pre-mRNA 3'-end formation and transcription termination.

  1. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta

    Energy Technology Data Exchange (ETDEWEB)

    Old, S.E.; Mohrenweiser, H.W. (Univ. of Michigan, Ann Arbor (USA))

    1988-09-26

    The triosephosphate isomerase gene from a rhesus monkey, Macaca mulatta, charon 34 library was sequenced. The human and chimpanzee enzymes differ from the rhesus enzyme at ASN 20 and GLU 198. The nucleotide sequence identity between rhesus and human is 97% in the coding region and >94% in the flanking regions. Comparison of the rhesus and chimp genes, including the intron and flanking sequences, does not suggest a mechanism for generating the two TPI peptides of proliferating cells from hominoids and a single peptide from the rhesus gene.

  2. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    Science.gov (United States)

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  3. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener.

    Science.gov (United States)

    Nguyen, Tien-Kieu; Hong, Moon-Gi; Chang, Pahn-Shick; Lee, Byung-Hoo; Yoo, Sang-Ho

    2018-01-01

    d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.

  4. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    Science.gov (United States)

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  5. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  6. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.

    2014-10-24

    The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30–400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.

  7. Inhibiting prolyl isomerase activity by hybrid organic-inorganic molecules containing rhodium(II) fragments.

    Science.gov (United States)

    Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T

    2014-11-15

    A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  9. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  10. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  11. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    International Nuclear Information System (INIS)

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-01-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2 1 3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M

  13. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Nickbarg, E.B.; Knowles, J.R.

    1988-01-01

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from [1(R)- 3 H]dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase

  14. Redox potential and mobility of contaminant oxyanions (As, Sb, Cr) in argillaceous rock subjected to oxic and anoxic cycles

    International Nuclear Information System (INIS)

    Markelova, Ekaterina

    2016-01-01

    Electron transfer (redox) reactions are key processes in the biogeochemical functioning of natural systems. Redox reactions control the speciation and mobility of major elements (e.g., carbon, nitrogen, iron, and manganese) and environmentally important contaminants such as arsenic (As), antimony (Sb), and chromium (Cr). Nonetheless, the characterization of redox conditions and their effects on biogeochemical cycling and contaminant fate remain incompletely understood. The first part of this thesis focused on the interpretation of redox potential (EH) measurements using results obtained in synthetic biogeochemical systems of increasing complexity under dynamic, redox-oscillating conditions. By progressively combining inorganic solutes, an organic electron donor (lactate), an aqueous electron acceptor (nitrate), a metabolically versatile heterotrophic bacterium (Shewanella oneidensis), and a solid-state electron acceptor (goethite), a full redox cascade from +500 to -350 mV (pH ∼7.4) was reproduced in the laboratory. The experimental results revealed that a conventional Pt redox electrode responds to a variety of physical, chemical, and microbial factors. In particular, the presence of the bacteria always led to lower EH readings. In contrast, measurements of EH in argillaceous suspensions were insensitive to changes in chemical ratios of the redox-sensitive, but non-electro-active, couples, including O 2 /H 2 O, CrO 4 2- /Cr(OH) 3 , NO 3 - /NO 2 - /NH 4 + , HAsO 4 2- /H3AsO 3 , and Sb(OH) 6 - /Sb 2 O 3 . Therefore, EH measurements are shown to have limited usefulness in the natural systems depleted in electro-active redox couples, such as α-FeOOH(s)/Fe 2+ (aq). The second part of the thesis focused on the behavior of oxy-anion contaminants under redox-oscillating conditions in the argillaceous subsoil suspensions. Successive cycles of oxic and anoxic conditions were imposed on the argillaceous suspensions amended with a mixture of oxidized Cr(VI), As(V), Sb

  15. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  16. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    Science.gov (United States)

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  17. Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes.

    Science.gov (United States)

    Hristovski, Kiril D; Markovski, Jasmina

    2017-11-15

    To create an integrative foundation for engineering of the next generation inexpensive sorbent systems, this critical review addresses the existing knowledge gap in factor/performance relationships between weak-acid oxyanion contaminants and metal (hydr)oxide sorbents. In-depth understanding of fundamental thermodynamics and kinetics mechanisms, material fabrication, and analytical and characterization techniques, is necessary to engineer sorbent that exhibit high capacity, selectivity, stability, durability and mass transport of contaminants under a wide range of operating and water matrix conditions requirements. From the perspective of thermodynamics and kinetics, this critical review examines the factors affecting sorbent performances and analyzes the existing research to elucidate future directions aimed at developing novel sorbents for removal of weak-acid oxyanion contaminants from water. Only sorbents that allow construction of simple and inexpensive water treatment systems adapted to overcome fiscal and technological barriers burdening small communities could pave the road for providing inexpensive potable water to millions of people. Novel sorbents, which exhibit (1) poor performances in realistic operating and water matrix conditions and/or (2) do not comply with the purely driven economics factors of production scalability or cost expectations, are predestined to never be commercialized. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  19. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei

    Science.gov (United States)

    Lopez-Zavala, Alonso A.; Carrasco-Miranda, Jesus S.; Ramirez-Aguirre, Claudia D.; López-Hidalgo, Marisol; Benitez-Cardoza, Claudia G.; Ochoa-Leyva, Adrian; Cardona-Felix, Cesar S.; Diaz-Quezada, Corina; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2016-01-01

    Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7 Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation. PMID:27614148

  20. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  1. Effect of gamma irradiation on whole-cell glucose isomerase. Pt.1

    International Nuclear Information System (INIS)

    Bachman, S.; Gebicka, L.

    1984-01-01

    Gamma-rays induced inactivation of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase has been studied. This enzyme exhibits high resistance against ionizing radiation. The D 37 value was found to be equal to 131 kGy for Actinoplanes missouriensis cells and 88 kGy for Streptomyces olivaceus cells when irradiated in the dry state in the presence of air. Mg 2+ ions do not affect the radiosensitivity of the enzyme in cells, while the addition of Co 2+ ions to the cell suspension increases its stability against ionizing radiation. (orig.) [de

  2. Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase.

    Science.gov (United States)

    Rhimi, Moez; Chouayekh, Hichem; Gouillouard, Isabelle; Maguin, Emmanuelle; Bejar, Samir

    2011-02-01

    Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Kim, Mi-Sun; Shin, Dong Hae

    2009-01-01

    Sedoheptulose-7-phosphate isomerase (GmhA) from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 Å resolution. The crystal belonged to the primitive orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 Å. A full structural determination is under way in order to provide insights into the structure–function relationships of this protein

  4. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  5. The crystal structure of a multifunctional protein: Phosphoglucose isomerase/autocrine motility factor/neuroleukin

    OpenAIRE

    Sun, Yuh-Ju; Chou, Chia-Cheng; Chen, Wei-Shone; Wu, Rong-Tsun; Meng, Menghsiao; Hsiao, Chwan-Deng

    1999-01-01

    Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-Å resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm tha...

  6. Crystallization and preliminary X-ray crystallographic analysis of l-rhamnose isomerase with a novel high thermostability from Bacillus halodurans

    International Nuclear Information System (INIS)

    Doan, Thi-Ngoc-Thanh; Prabhu, Ponnandy; Kim, Jin-Kwang; Ahn, Yeh-Jin; Natarajan, Sampath; Kang, Lin-Woo; Park, Geon Tae; Lim, Sang-Boem; Lee, Jung-Kul

    2010-01-01

    l-Rhamnose isomerase (l-RhI) from B. halodurans has been purified and crystallized. The crystals of l-RhI belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 83.2, b = 164.9, c = 92.0 Å, β = 116.0°, and diffracted to 2.5 Å resolution. l-Rhamnose isomerases catalyze isomerization between l-rhamnose (6-deoxy-l-mannose) and l-rhamnulose (6-deoxy-l-fructose), which is the first step in rhamnose catabolism. l-Rhamnose isomerase from Bacillus halodurans ATCC BAA-125 (BHRI) exhibits interesting characteristics such as high thermostability and selective substrate specificity. BHRI fused with an HHHHHH sequence was purified and crystallized in order to elucidate the molecular basis of its unique enzymatic properties. The crystals were grown by the hanging-drop vapour-diffusion method and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 83.2, b = 164.9, c = 92.0 Å, β = 116.0°. Diffraction data were collected to 2.5 Å resolution. According to a Matthews coefficient calculation, there are four monomers in the asymmetric unit with a V M of 3.0 Å 3 Da −1 and a solvent content of 59.3%. The initial structure of BHRI has been determined by the molecular-replacement method

  7. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ann De Vos

    2015-04-01

    Full Text Available Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau as well as promoting the dephosphorylation of the protein by the trans-dependent phosphatase PP2A. In this study we used models based on Saccharomyces cerevisiae to further elucidate the influence of Pin1 and its yeast ortholog Ess1 on tau phosphorylation and self-assembly. We could demonstrate that in yeast, a lack of Pin1 isomerase activity leads to an increase in phosphorylation of tau at Thr231, comparable to AD brain and consistent with earlier findings in other model organisms. However, we could also distinguish an effect by Pin1 on other residues of tau, i.e. Ser235 and Ser198/199/202. Furthermore, depletion of Pin1 isomerase activity results in reduced growth of the yeast cells, which is enhanced upon expression of tau. This suggests that the accumulation of hyperphosphorylated and aggregation-prone tau causes cytotoxicity in yeast. This study introduces yeast as a valuable model organism to characterize in detail the effect of Pin1 on the biochemical characteristics of protein tau, more specifically its phosphorylation and aggregation.

  8. Mechanism of ultraviolet light induced catabolite repression of L-arabinose isomerase

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, D; Bhattacharya, A K [Banaras Hindu Univ. (India). Inst. of Medical Sciences

    1982-12-01

    An attempt has been made to find out how U.V. irradiation of E.coli B/r cells causes catabolite repression to inhibit L-arabinose isomerase synthesis. The results presented show that U.V. irradiation leads to a lowering of the cellular cyclic AMP level and of the cyclic AMP binding activity. Unlike catabolite repression by glucose, no small molecular weight compound is involved in U.V. light induced inhibition of the binding activity. It is therefore concluded that the mechanism of catabolite repression induced by U.V. appears to be different from that of the catabolite repression by glucose.

  9. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  10. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method

    International Nuclear Information System (INIS)

    Mori, Tadashi; Hidaka, Masafumi; Lin, Yi-Chin; Yoshizawa, Ibuki; Okabe, Takayoshi; Egashira, Shinichiro; Kojima, Hirotatsu; Nagano, Tetsuo; Koketsu, Mamoru; Takamiya, Mari; Uchida, Takafumi

    2011-01-01

    Research highlights: → A Pin1 (prolyl isomerase) inhibitor, TME-001, has been discovered by using a new established high-throughput screening method. → The TME-001 showed a cell-active inhibition with lower cytotoxic effect than known Pin1 inhibitors. → Kinetic analyses revealed that the TME-001 is the first compound that exhibits dual inhibition of Pin1 and another type of prolyl isomerase, cyclophilin. → Thus, similarities of structure and reaction mechanism between Pin1 and cyclophilin are proposed. -- Abstract: Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer's disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC 50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC 50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.

  12. Methyl and p-Bromobenzyl Esters of Hydrogenated Kaurenoic Acid for Controlling Anthracnose in Common Bean Plants.

    Science.gov (United States)

    Mota, Suellen F; Oliveira, Denilson F; Heleno, Vladimir C G; Soares, Ana Carolina F; Midiwo, Jacob O; Souza, Elaine A

    2017-03-01

    Kaurenoic acid derivatives were prepared and submitted to in vitro assays with the fungus Colletotrichum lindemuthianum, which causes anthracnose disease in the common bean. The most active substances were found to be methyl and p-bromobenzylesters, 7 and 9, respectively, of the hydrogenated kaurenoic acid, which presented a minimum inhibitory concentration (MIC) of 0.097 and 0.131 mM, respectively, while the commercial fungicide methyl thiophanate (MT) presented a MIC of 0.143 mM. Substances 7 (1.401 mM) and 9 (1.886 mM) reduced the severity of anthracnose in common bean to values statistically comparable to MT (2.044 mM). According to an in silico study, both compounds 7 and 9 are inhibitors of the ketosteroid isomerase (KSI) enzyme produced by other organisms, the amino acid sequence of which could be detected in fungal genomes. These substances appeared to act against C. lindemuthianum by inhibiting its KSI. Therefore, substances 7 and 9 are promising for the development of new fungicides.

  13. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids.

    Science.gov (United States)

    Wang, Xiaojun; Feng, Jinhui; Zhang, Dalong; Wu, Qiaqing; Zhu, Dunming; Ma, Yanhe

    2017-08-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ 1 -dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, we cloned 12 putative KstD-encoding (kstd) genes from both fungal and Gram-positive microorganisms and attempted to overproduce the recombinant proteins in E. coli BL21(DE3). Five successful recombinant enzymes catalyzed the Δ 1 -desaturation of a variety of steroidal compounds such as 4-androstene-3,17-dione (AD), 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), hydrocortisone, cortisone, and cortexolone. However, the substrate specificity and catalytic efficiency of the enzymes differ depending on their sources. The purified KstD from Mycobacterium smegmatis mc 2 155 (MsKstD1) displayed high catalytic efficiency toward hydrocortisone, progesterone, and 9-OH-AD, where it had the highest affinity (K m 36.9 ± 4.6 μM) toward 9-OH-AD. On the other hand, the KstD from Rhodococcus erythropolis WY 1406 (ReKstD) exhibited high catalytic efficiency toward androst-4,9(11)-diene-3,17-dione (Diene), 21-acetoxy-pregna-4,9(11),16-triene-3,20-dione (Triene), and cortexolone, where in all three cases the K m values (12.3 to 17.8 μM) were 2.5-4-fold lower than that toward hydrocortisone (46.3 μM). For both enzymes, AD was a good substrate although ReKstD had a 3-fold higher affinity than MsKstD1. Reaction conditions were optimized for the biotransformation of AD or hydrocortisone in terms of pH, temperature, and effects of hydrogen peroxide, solvent, and electron acceptor. For the biotransformation of hydrocortisone with 20 g/L wet resting E. coli cells harboring MsKstD1 enzyme, the yield of prednisolone was about 90% within 3 h at the substrate concentration of 6 g/L, demonstrating the application potential of the newly cloned KstDs.

  14. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease.

    Directory of Open Access Journals (Sweden)

    Martin Zühlsdorf

    2015-07-01

    Full Text Available Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137; both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution.

  15. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  16. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000. Keywords: Soda Lake, Haloterrigena turkmenica, Carboxylesterase, Carboxylase, Xylose isomerase, Whole genome sequencing

  17. Revisiting the mechanistic basis of the French Paradox: red wine inhibits the activity of protein disulfide isomerase in vitro

    Science.gov (United States)

    Galinski, Christine N.; Zwicker, Jeffrey I.; Kennedy, Daniel R.

    2015-01-01

    Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. PMID:26585763

  18. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  19. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...... catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...

  20. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA

    International Nuclear Information System (INIS)

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2005-01-01

    The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution. Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source

  1. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    Science.gov (United States)

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  2. Characterization of an L-arabinose isomerase from Bacillus thermoglucosidasius for D-tagatose production.

    Science.gov (United States)

    Seo, Myung-Ji

    2013-01-01

    L-Arabinose isomerase from Bacillus thermoglucosidasius KCTC 1828 (BTAI) was expressed in Escherichia coli. The optimal temperature and pH for the activity of the purified BTAI were 40 °C and pH 7.0. The Mn(2+) ion was an activator of BTAI activity. The kinetic parameters of BTAI for D-galactose were a K(m) of 175 mM and a k(cat)/K(m) of 2.8 mM(-1)min(-1). The conversion ratio by BTAI to D-tagatose reached 45.6% at 40 °C.

  3. Polimorfisme Enzim Glucose-6-Phosphate Isomerase pada Tiga Populasi Tuna Sirip Kuning (Thunnus albacares)

    OpenAIRE

    Permana, Gusti Ngurah; Hutapea, Jhon H.; Moria, Sari Budi; Haryanti, Haryanti

    2006-01-01

    Samples of yellowfin tuna (Thunnus albacares) were taken from three locations Bali, North Sulawesi and North Maluku. The glucose-6-phosphate isomerase (GPI) was analyzed from liver using allozyme electrophoresis method. Polymorphism of GPI enzyme was observed and four alleles (A, B ,C, D) were found in Bali population, three alleles (A,B,C) were found in North Maluku and North Sulawesi populations. Heterozygosity values, from Bali, North Maluku and North Sulawesi were 0.419; 0.417; 0.143 resp...

  4. Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh

    Science.gov (United States)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.

    2018-05-01

    Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.

  5. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  6. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  7. Coexpression of β-D-galactosidase and L-arabinose isomerase in the production of D-tagatose: a functional sweetener.

    Science.gov (United States)

    Zhan, Yijing; Xu, Zheng; Li, Sha; Liu, Xiaoliu; Xu, Lu; Feng, Xiaohai; Xu, Hong

    2014-03-19

    The functional sweetener, d-tagatose, is commonly transformed from galactose by l-arabinose isomerase. To make use of a much cheaper starting material, lactose, hydrolization, and isomerization are required to take place collaboratively. Therefore, a single-step method involving β-d-galactosidase was explored for d-tagatose production. The two vital genes, β-d-galactosidase gene (lacZ) and l-arabinose isomerase mutant gene (araA') were extracted separately from Escherichia coli strains and incorporated into E. coli simultaneously. This gave us E. coli-ZY, a recombinant producing strain capable of coexpressing the two key enzymes. The resulted cells exhibited maximum d-tagatose producing activity at 34 °C and pH 6.5 and in the presence of borate, 10 mM Fe(2+), and 1 mM Mn(2+). Further monitoring showed that the recombinant cells could hydrolyze more than 95% lactose and convert 43% d-galactose into d-tagatose. This research has verified the feasibility of single-step d-tagatose fermentation, thereby laying down the foundation for industrial usage of lactose.

  8. L-Rhamnose isomerase and its use for biotechnological production of rare sugars.

    Science.gov (United States)

    Xu, Wei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-04-01

    L-Rhamnose isomerase (L-RI, EC 5.3.1.14), catalyzing the isomerization between L-rhamnose and L-rhamnulose, plays an important role in microbial L-rhamnose metabolism and thus occurs in a wide range of microorganisms. It attracts more and more attention because of its broad substrate specificity and its great potential in enzymatic production of various rare sugars. In this article, the enzymatic properties of various reported L-RIs were compared in detail, and their applications in the production of L-rhamnulose and various rare sugars including D-allose, D-gulose, L-lyxose, L-mannose, L-talose, and L-galactose were also reviewed.

  9. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    OpenAIRE

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDI...

  10. Thermoinactivation Mechanism of Glucose Isomerase

    Science.gov (United States)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  11. Characterization of 3-ketosteroid 9{alpha}-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis.

    Science.gov (United States)

    Capyk, Jenna K; D'Angelo, Igor; Strynadka, Natalie C; Eltis, Lindsay D

    2009-04-10

    KshAB (3-Ketosteroid 9alpha-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O(2). Nevertheless, the reactivity of KshAB with O(2) was low in the presence of 1,4-androstadiene-3,17-dione, with a k(cat)/K(m)(O(2)) of 2450 +/- 80 m(-1) s(-1). The crystallographic structure of KshA, determined to 2.3A(,) revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance.

  12. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    Science.gov (United States)

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  13. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    Science.gov (United States)

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  14. Helicobacter pylori Peptidyl Prolyl Isomerase Expression Is Associated with the Severity of Gastritis.

    Science.gov (United States)

    Oghalaie, Akbar; Saberi, Samaneh; Esmaeili, Maryam; Ebrahimzadeh, Fatemeh; Barkhordari, Farzaneh; Ghamarian, Abdolreza; Tashakoripoor, Mohammad; Abdirad, Afshin; Eshagh Hosseini, Mahmoud; Khalaj, Vahid; Mohammadi, Marjan

    2016-12-01

    Helicobacter pylori secretory peptidyl prolyl isomerase, HP0175, is progressively identified as a pro-inflammatory and pro-carcinogenic protein, which serves to link H. pylori infection to its more severe clinical outcomes. Here, we have analyzed host HP0175-specific antibody responses in relation to the severity of gastritis. The HP0175 gene fragment was PCR-amplified, cloned, expressed and purified by Ni-NTA affinity chromatography. Serum antigen-specific antibody responses of non-ulcer dyspeptic patients (N = 176) against recombinant HP0175 were detected by western blotting. The infection status of these subjects was determined by rapid urease test, culture, histology, and serology. The grade of inflammation and stage of atrophy were scored blindly according to the OLGA staging system. The recombinant HP0175 (rHP0175) was expressed as a ~35 kDa protein and its identity was confirmed by western blotting using anti-6X His tag antibody and pooled H. pylori-positive sera. Serum IgG antibodies against rHP0175 segregated our patients into two similar-sized groups of sero-positives (90/176, 51.1 %) and sero-negatives (86/176, 48.9 %). The former presented with higher grades of gastric inflammation (OR = 4.4, 95 % CI = 1.9-9.9, P = 0.001) and stages of gastric atrophy (OR = 18.3, 95 %CI = 1.4-246.6, P = 0.028). Our findings lend further support to the pro-inflammatory nature of H. pylori peptidyl prolyl isomerase (HP0175) and recommends this antigen as a non-invasive serum biomarker of the severity of H. pylori-associated gastritis.

  15. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum.

    Science.gov (United States)

    Qin, Ning; Shen, Yanbing; Yang, Xu; Su, Liqiu; Tang, Rui; Li, Wei; Wang, Min

    2017-07-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KsdD) from Mycobacterium neoaurum could transform androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione. This reaction has a significant effect on the product of pharmaceutical steroid. The crystal structure and active site residues information of KsdD from Mycobacterium is not yet available, which result in the engineering of KsdD is tedious. In this study, by the way of protein modeling and site-directed mutagenesis, we find that, Y122, Y125, S138, E140 and Y541 from the FAD-binding domain and Y365 from the catalytic domain play a key role in this transformation. Compared with the wild type, the decline in AD conversion for mutants illustrated that Y125, Y365, and Y541 were essential to the function of KsdD. Y122, S138 and E140 contributed to the catalysis of KsdD. The following analysis revealed the catalysis mechanism of these mutations in KsdD of Mycobacterium. These information presented here facilitate the manipulation of the catalytic properties of the enzyme to improve its application in the pharmaceutical steroid industry.

  16. Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides

    DEFF Research Database (Denmark)

    Westphal, V; Spetzler, J C; Meldal, M

    1998-01-01

    Protein-disulfide isomerase (PDI) is an abundant folding catalyst in the endoplasmic reticulum of eukaryotic cells. PDI introduces disulfide bonds into newly synthesized proteins and catalyzes disulfide bond isomerizations. We have synthesized a library of disulfide-linked fluorescence......-quenched peptides, individually linked to resin beads, for two purposes: 1) to probe PDI specificity, and 2) to identify simple, sensitive peptide substrates of PDI. Using this library, beads that became rapidly fluorescent by reduction by human PDI were selected. Amino acid sequencing of the bead-linked peptides...

  17. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  18. Mechanisms of Neuroprotection by Protein Disulphide Isomerase in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Adam K. Walker

    2011-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI, which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.

  19. Unique regional distribution of delta 4-3-ketosteroid-5 alpha-oxidoreductase and associated epididymal morphology in the marsupial, Didelphis virginiana.

    Science.gov (United States)

    Kelce, W R; Krause, W J; Ganjam, V K

    1987-09-01

    The epididymal epithelial ultrastructure has been described in the adult male North American opossum, Didelphis virginiana. Morphological results have suggested that absorptive activity is prominent in the proximal epididymal region by virtue of numerous microvilli, an endocytotic complex, dense granules, and multivesicular bodies in the apical cytoplasm. In contrast, the middle and distal epididymal regions exhibit ultrastructural features indicative of protein synthesis such as large invaginated euchromatic nuclei, large nucleoli, and increased amounts of granular endoplasmic reticulum. It is in the middle and distal epididymal regions where sperm head rotation and sperm pairing take place. Epididymal delta 4-3-ketosteroid-5 alpha-oxidoreductase (5 alpha-reductase) activity also has been measured. It has been found that the level of enzyme activity differs significantly (p less than 0.01) between the proximal, middle, and distal epididymal regions. Enzyme-specific activity has been found to be highest in the middle region (47.6 +/- 5.4 picomoles 5 alpha-reduced androgens formed/b/mg protein), lower in the distal region (18.3 +/- 0.7 picomoles 5 alpha-reduced androgens formed/b/mg protein), with little activity (2.4 +/- 1.2 picomoles 5 alpha-reduced androgens formed/h/mg protein) found in the proximal epididymal region. This regional distribution of enzyme activity differs markedly from that reported for eutherian mammals. Both the suggested epididymal protein synthetic and secretory activity and the level of epididymal 5 alpha-reductase activity appear to correlate regionally with the morphological changes that occur in the opossum spermatozoa as they transit the epididymis.

  20. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.

    Science.gov (United States)

    Li, Yanjun; Zhu, Yueming; Liu, Anjun; Sun, Yuanxia

    2011-05-01

    D-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert D-galactose into the valuable D-tagatose using L-arabinose isomerase (L-AI). In this study, a thermophilic strain possessing L-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding L-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). L-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more D-tagatose from D-galactose by raising the reaction temperatures and adding borate. A 60% conversion of D-galactose to D-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k (cat) /K (m)) for D-galactose with borate was 9.47 mM(-1) min(-1), twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for D-galactose, suggesting its great potential for producing D-tagatose.

  1. Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence

    International Nuclear Information System (INIS)

    Price, E.R.; Zydowsky, L.D.; Jin, Mingjie; Baker, C.H.; McKeon, F.D.; Walsh, C.T.

    1991-01-01

    The authors report the cloning and characterization of a cDNA encoding a second human cyclosporin A-binding protein (hCyPB). Homology analyses reveal that hCyPB is a member of the cyclophilin B (CyPB) family, which includes yeast CyPB, Drosophila nina A, and rat cyclophilin-like protein. This family is distinguished from the cyclophilin A (CyPA) family by the presence of endoplasmic reticulum (ER)-directed signal sequences. hCyPB has a hydrophobic leader sequence not found in hCyPA, and its first 25 amino acids are removed upon expression in Escherichia coli. Moreover, they show that hCyPB is a peptidyl-prolyl cis-trans isomerase which can be inhibited by cyclosporin A. These observations suggest that other members of the CyPB family will have similar enzymatic properties. Sequence comparisons of the CyPB proteins show a central, 165-amino acid peptidyl-prolyl isomerase and cyclosprorin A-binding domain, flanked by variable N-terminal and C-terminal domains. These two variable regions may impart compartmental specificity and regulation to this family of cyclophilin proteins containing the conserved core domain. Northern blot analyses show that hCyPB mRNA is expressed in the Jurkat T-cell line, consistent with its possible target role in cyclosporin A-mediated immunosuppression

  2. Characterization of 3-Ketosteroid 9α-Hydroxylase, a Rieske Oxygenase in the Cholesterol Degradation Pathway of Mycobacterium tuberculosis*S⃞

    Science.gov (United States)

    Capyk, Jenna K.; D'Angelo, Igor; Strynadka, Natalie C.; Eltis, Lindsay D.

    2009-01-01

    KshAB (3-Ketosteroid 9α-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O2. Nevertheless, the reactivity of KshAB with O2 was low in the presence of 1,4-androstadiene-3,17-dione, with a kcat/KmO2 of 2450 ± 80 m–1 s–1. The crystallographic structure of KshA, determined to 2.3Å, revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance. PMID:19234303

  3. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    Triosephosphate isomerase (TPI), which catalyses the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), was studied for its control on glycolysis and mixed acid production in L. lactis subspecies lactis IL1403 and L. lactis subspecies cremoris MG1363. Strains...... metabolites glucose-6-phosphate, fructose-1,6-bisphosphate and DHAP in the IL1403 derivatives were essentially unchanged for TPI activities from 26% to 225%. At a TPI activity of 3%, the level of DHAP increased four times. The finding that an increased level of DHAP coincides with an increase in formate...

  4. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  5. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    OpenAIRE

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequ...

  6. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases.

    Science.gov (United States)

    Legname, Giuseppe; Virgilio, Tommaso; Bistaffa, Edoardo; De Luca, Chiara Maria Giulia; Catania, Marcella; Zago, Paola; Isopi, Elisa; Campagnani, Ilaria; Tagliavini, Fabrizio; Giaccone, Giorgio; Moda, Fabio

    2018-04-20

    Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1 +/+ ), hemizygous (Pin1 +/- ) or knock-out (Pin1 -/- ) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.

  9. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    Directory of Open Access Journals (Sweden)

    Wanarska Marta

    2012-08-01

    Full Text Available Abstract Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield

  10. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.

    Science.gov (United States)

    Wanarska, Marta; Kur, Józef

    2012-08-23

    D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization

  11. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun

    2006-02-01

    Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.

  12. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.

    Science.gov (United States)

    Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S

    2017-01-01

    3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  13. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16

    Science.gov (United States)

    Heyward, Carla; McMillen, Colin D.; Kolis, Joseph

    2013-07-01

    Several new borate compounds, Ba11B26O44(PO4)2(OH)6 (1), Li9BaB15O27(CO3) (2), and Ba3Si2B6O16 (3) were synthesized containing other hetero-oxyanion building blocks in addition to the borate frameworks. They were all prepared under hydrothermal conditions and characterized by single crystal and powder X-ray diffraction, and IR spectroscopy. Crystal data: For 1; space group P21/c, a=6.8909 (14) Å, b=13.629 (3) Å, c=25.851 (5) Å, β=90.04 (3)°; For 2; space group P-31c, a=8.8599 (13) Å, c=15.148 (3) Å; For 3; space group P-1, a=5.0414 (10) Å, b=7.5602 (15) Å, c=8.5374 (17) Å, α=77.15 (3)°, β=77.84 (3)°, γ=87.41 (3)° for 3. Compounds 1 and 2 contain isolated oxyanions [PO4]3- and [CO3]2- respectively, sitting in channels created by the borate framework, while structure 3 has the [SiO4]4- groups directly bonded to the borate groups creating a B-O-Si framework.

  14. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    Science.gov (United States)

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. © 2015 Authors.

  15. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  16. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  17. Optimization of an anion-exchange high performance liquid chromatography-inductively coupled plasma-mass spectrometric method for the speciation analysis of oxyanion-forming metals and metalloids in leachates from cement-based materials.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2010-10-01

    A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2-2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5-12.4; CrO(4)(2-), MoO(4)(2-) and VO(4)(3-) were detected in most of the leachates. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Oxidation of formic acid by oxyanions of chlorine and its implications to the Viking Labeled Release experiment

    Science.gov (United States)

    Martinez, P.; Navarro-gonzalez, R.

    2013-05-01

    The Viking Landers that arrived on Mars in 1976 carried out three biological experiments designed to investigate if there was microbial life. These were the Gas-Exchange, Pyrolitic Release and Labeled Release experiments. The three experiments yielded positive responses but the Labeled Release experiment had a kinetic response indicative of microbial activity. The experiment consisted of adding a broth of nutrients (formic acid, glycolic acid, glycine, D- and L-alanine and D- and L-lactic acid uniformly marked with 14C) to martian soil samples. The results were surprising; the nutrients were consumed releasing radioactive gases in a manner that is compatible by terrestrial microorganisms. The existence of Martian life was contradicted by soil chemical analysis that indicated the absence of organic compounds above the detection limits of parts per billion (ppb). Instead the positive response of the Labeled Release Experiment was attributed to the existence of peroxides and/or superoxides in the Martian soils that destroyed the nutrients upon contact. Recently, the Phoenix mission that landed in the Martian Arctic in 2008 revealed the presence of a highly oxidized form of the element chlorine in the soil: perchlorate. Perchlorate is thought to have formed in the Martian atmosphere by the oxidation of chloride from volcanic sources with ozone. Therefore perchlorate is formed by the stepwise oxidation of hypochlorite, chlorite and chlorate. These oxyanions of chlorine are powerful oxidizers that may exist in the Martian soil and may have reacted with the nutrients of the Labeled Release Experiment. This paper aims to better understand these results by designing experiments to determine the kinetics of decomposition of formic acid to carbon dioxide with different oxidized forms of chlorine by headspace technique in gas chromatography coupled to mass spectrometry (GC / MS). Previous studies done in the laboratory showed that only hypochlorite quantitatively reacted with

  19. FabQ, a Dual-Function Dehydratase/Isomerase, Circumvents the Last Step of the Classical Fatty Acid Synthesis Cycle

    OpenAIRE

    Bi, Hongkai; Wang, Haihong; Cronan, John E.

    2013-01-01

    In the classical anaerobic pathway of unsaturated fatty acid biosynthesis, that of Escherichia coli, the double bond is introduced into the growing acyl chain by the FabA dehydratase/isomerase. Another dehydratase, FabZ, functions in the chain elongation cycle. In contrast, Aerococcus viridans has only a single FabA/FabZ homolog we designate FabQ. FabQ can not only replace the function of E. coli FabZ in vivo, but it also catalyzes the isomerization required for unsaturated fatty acid biosynt...

  20. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Hanson, B. Leif [University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mason, Sax A. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Forsyth, V. Trevor [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keele University, Staffordshire (United Kingdom); Fisher, Zoe [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Mustyakimov, Marat [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Blakeley, Matthew P. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keen, David A. [Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Langan, Paul [Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States)

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  1. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  2. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Giri; Sagurthi, Someswar Rao [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  3. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme.

    Science.gov (United States)

    Kim, Byoung-Chan; Lee, Yoon-Hee; Lee, Han-Seung; Lee, Dong-Woo; Choe, Eun-Ah; Pyun, Yu-Ryang

    2002-06-18

    Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.

  4. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.

    Directory of Open Access Journals (Sweden)

    Patrick Schaub

    Full Text Available CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40 hydrocarbon substrate.

  5. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism

    Science.gov (United States)

    Goodman, C R; Sato, T; Peck, A R; Girondo, M A; Yang, N; Liu, C; Yanac, A F; Kovatich, A J; Hooke, J A; Shriver, C D; Mitchell, E P; Hyslop, T; Rui, H

    2016-01-01

    Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers. PMID:26096934

  6. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  7. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    DEWI FITRIANI

    2010-06-01

    Full Text Available L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme had optimum activity at high temperature and alkalin condition.

  8. Exploring the Role of Persulfate in the Activation Process: Radical Precursor Versus Electron Acceptor.

    Science.gov (United States)

    Yun, Eun-Tae; Yoo, Ha-Young; Bae, Hyokwan; Kim, Hyoung-Il; Lee, Jaesang

    2017-09-05

    This study elucidates the mechanism behind persulfate activation by exploring the role of various oxyanions (e.g., peroxymonosulfate, periodate, and peracetate) in two activation systems utilizing iron nanoparticle (nFe 0 ) as the reducing agent and single-wall carbon nanotubes (CNTs) as electron transfer mediators. Since the tested oxyanions serve as both electron acceptors and radical precursors in most cases, oxidative degradation of organics was achievable through one-electron reduction of oxyanions on nFe 0 (leading to radical-induced oxidation) and electron transfer mediation from organics to oxyanions on CNTs (leading to oxidative decomposition involving no radical formation). A distinction between degradative reaction mechanisms of the nFe 0 /oxyanion and CNT/oxyanion systems was made in terms of the oxyanion consumption efficacy, radical scavenging effect, and EPR spectral analysis. Statistical study of substrate-specificity and product distribution implied that the reaction route induced on nFe 0 varies depending on the oxyanion (i.e., oxyanion-derived radical), whereas the similar reaction pathway initiates organic oxidation in the CNT/oxyanion system irrespective of the oxyanion type. Chronoamperometric measurements further confirmed electron transfer from organics to oxyanions in the presence of CNTs, which was not observed when applying nFe 0 instead.

  9. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    Science.gov (United States)

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  10. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin.

    Science.gov (United States)

    Sun, Y J; Chou, C C; Chen, W S; Wu, R T; Meng, M; Hsiao, C D

    1999-05-11

    Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-A resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm that PGI is neuroleukin and AMF. PGI has an open twisted alpha/beta structural motif consisting of two globular domains and two protruding parts. Based on this substrate-free structure, together with the previously published biological, biochemical, and modeling results, we postulate a possible substrate-binding site that is located within the domains' interface for PGI and AMF. In addition, the structure provides evidence suggesting that the top part of the large domain together with one of the protruding loops might participate in inducing the neurotrophic activity.

  11. L-Arabinose isomerase and its use for biotechnological production of rare sugars.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Liang, Jinfeng; Xu, Hong

    2014-11-01

    L-Arabinose isomerase (AI), a key enzyme in the microbial pentose phosphate pathway, has been regarded as an important biological catalyst in rare sugar production. This enzyme could isomerize L-arabinose into L-ribulose, as well as D-galactose into D-tagatose. Both the two monosaccharides show excellent commercial values in food and pharmaceutical industries. With the identification of novel AI family members, some of them have exhibited remarkable potential in industrial applications. The biological production processes for D-tagatose and L-ribose (or L-ribulose) using AI have been developed and improved in recent years. Meanwhile, protein engineering techniques involving rational design has effectively enhanced the catalytic properties of various AIs. Moreover, the crystal structure of AI has been disclosed, which sheds light on the understanding of AI structure and catalytic mechanism at molecular levels. This article reports recent developments in (i) novel AI screening, (ii) AI-mediated rare sugar production processes, (iii) molecular modification of AI, and (iv) structural biology study of AI. Based on previous reports, an analysis of the future development has also been initiated.

  12. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    Science.gov (United States)

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    Science.gov (United States)

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  14. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.

    Directory of Open Access Journals (Sweden)

    Valentina Castillo

    Full Text Available ERp57 (also known as grp58 and PDIA3 is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.

  15. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Mirończuk

    2018-05-01

    Full Text Available Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1, the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.

  16. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    Science.gov (United States)

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  17. Screening and identification of efficient strain in selenium oxyanions sorption in order to biological wastewater treatment

    Directory of Open Access Journals (Sweden)

    fatemeh yaghoobizadeh

    2016-06-01

    Full Text Available Introduction: Selenium is an element with antioxidant activities that plays roles in thyroid hormone homeostasis, immunity and also fertility. Nevertheless, selenium toxicity (selenosis causes problems for humans such as abnormalities of the nervous system, gastrointestinal problems and hair loss. Thus, this study was performed with the aim of bacterial biosorbent isolation in order to remove selenium contaminant from wastewater. Materials and methods: In this research, at first using modified Luria- Bertani agar (mLBA medium with certain concentration of sodium selenate salt, isolation of bacterial isolates was done from three collected wastewater and sludge samples from Khouzestan industrial factories. After determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC, the sorption capacity and the percentage of metal removal efficiency (%RE were investigated by atomic absorption spectrophotometer using metabolically active and inactive samples belonging to an efficient isolate. Identification was performed by morphological, biochemical and molecular methods. Results: Among 73 attained bacterial isolates at the first stage, 8 selenate oxyanion resistant isolates were gathered. Among these, AMS1-S8 isolate with MIC= 600­mM and MBC= 1200­mM were selected for more studies. Attained results in sorption mechanism determination stage showed that the sorption capacity in metabolically active sample is more than the inactive samples. Based on the identification results, it is revealed that this isolate belongs to the Enterobacter genus. This isolate is deposited as accession JQ965667 in the GeneBank database. Discussion and conclusion: The results showed that active biomass of selected isolate, have most sorption capacity and %RE and among the other isolates, have high partial resistance against selenate. Therefore, it can be a relatively ideal option for the bioremediation of polluted environments.

  18. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase

    International Nuclear Information System (INIS)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose

    2008-01-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  19. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.

    Science.gov (United States)

    van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M

    2005-01-14

    Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.

  20. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  1. Stabilization of the second oxyanion intermediate by 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase of the menaquinone pathway: spectroscopic evidence of the involvement of a conserved aspartic acid.

    Science.gov (United States)

    Chen, Minjiao; Jiang, Ming; Sun, Yueru; Guo, Zu-Feng; Guo, Zhihong

    2011-07-05

    1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small

  2. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    Science.gov (United States)

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  3. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    Science.gov (United States)

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  4. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    Science.gov (United States)

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  5. Molecular identification, immunolocalization, and characterization of Clonorchis sinensis triosephosphate isomerase.

    Science.gov (United States)

    Zhou, Juanjuan; Liao, Hua; Li, Shan; Zhou, Chenhui; Huang, Yan; Li, Xuerong; Liang, Chi; Yu, Xinbing

    2015-08-01

    Clonorchis sinensis triosephosphate isomerase (CsTIM) is a key regulatory enzyme of glycolysis and gluconeogenesis, which catalyzes the interconversion of glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. In this study, the biochemical characterizations of CsTIM have been examined. A full-length complementary DNA (cDNA; Cs105350) sequence encoding CsTIM was obtained from our C. sinensis cDNA library. The open reading frame of CsTIM contains 759 bp which encodes 252 amino acids. The amino acid sequence of CsTIM shares 60-65% identity with other species. Western blot analysis displayed that recombinant CsTIM (rCsTIM) can be probed by anti-rCsTIM rat serum and anti-C. sinensis excretory/secretory products (anti-CsESPs) rat serum. Quantitative reverse transcription (RT)-PCR and western blotting analysis revealed that CsTIM messenger RNA (mRNA) and protein were differentially expressed in development cycle stages of the parasite, including adult worm, metacercaria, excysted metacercaria, and egg. In addition, immunolocalization assay showed that CsTIM was located in the seminal vesicle, eggs, and testicle. Moreover, rCsTIM exhibited active enzyme activity in catalytic reactions. The Michaelis constant (K m) of rCsTIM was 0.33 mM, when using glyceraldehyde 3-phosphate as the substrate. The optimal temperature and pH of CsTIM were 37 °C and 7.5-9.5, respectively. Collectively, these results suggest that CsTIM is an important protein involved in glycometabolism, and CsTIM possibly take part in many biological functions in the growth and development of C. sinensis.

  6. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    Science.gov (United States)

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  9. Creation of metal-independent hyperthermophilic L-arabinose isomerase by homologous recombination.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Pyun, Yu-Ryang; Lee, Sung Haeng

    2011-12-28

    Hyperthermophilic L-arabinose isomerases (AIs) are useful in the commercial production of D-tagatose as a low-calorie bulk sweetener. Their catalysis and thermostability are highly dependent on metals, which is a major drawback in food applications. To study the role of metal ions in the thermostability and catalysis of hyperthermophilic AI, four enzyme chimeras were generated by PCR-based hybridization to replace the variable N- and C-terminal regions of hyperthermophilic Thermotoga maritima AI (TMAI) and thermophilic Geobacillus stearothermophilus AI (GSAI) with those of the homologous mesophilic Bacillus halodurans AI (BHAI). Unlike Mn(2+)-dependent TMAI, the GSAI- and TMAI-based hybrids with the 72 C-terminal residues of BHAI were not metal-dependent for catalytic activity. By contrast, the catalytic activities of the TMAI- and GSAI-based hybrids containing the N-terminus (residues 1-89) of BHAI were significantly enhanced by metals, but their thermostabilities were poor even in the presence of Mn(2+), indicating that the effects of metals on catalysis and thermostability involve different structural regions. Moreover, in contrast to the C-terminal truncate (Δ20 residues) of GSAI, the N-terminal truncate (Δ7 residues) exhibited no activity due to loss of its native structure. The data thus strongly suggest that the metal dependence of the catalysis and thermostability of hyperthermophilic AIs evolved separately to optimize their activity and thermostability at elevated temperatures. This may provide effective target regions for engineering, thereby meeting industrial demands for the production of d-tagatose.

  10. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao.

    Science.gov (United States)

    Yang, Yang; Chen, Zhong-Wei; Hurlburt, Barry K; Li, Gui-Ling; Zhang, Yong-Xia; Fei, Dan-Xia; Shen, Hai-Wang; Cao, Min-Jie; Liu, Guang-Ming

    2017-05-01

    Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A 71 G 74 S 69 D 75 T 73 F 72 V 67 ) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  12. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI by high-throughput screening of existing drugs

    Directory of Open Access Journals (Sweden)

    Rana Eltahan

    2018-04-01

    Full Text Available Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min. We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM, while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM. Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Keywords: Apicomplexan, Cryptosporidium parvum, Glucose-6-phosphate isomerase (GPI, Ebselen

  13. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2017-12-01

    Full Text Available l-Arabinose isomerase (EC 5.3.1.4 (l-AI from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg−1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.

  14. A novel familial mutation in the PCSK1 gene that alters the oxyanion hole residue of proprotein convertase 1/3 and impairs its enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Michael Wilschanski

    Full Text Available Four siblings presented with congenital diarrhea and various endocrinopathies. Exome sequencing and homozygosity mapping identified five regions, comprising 337 protein-coding genes that were shared by three affected siblings. Exome sequencing identified a novel homozygous N309K mutation in the proprotein convertase subtilisin/kexin type 1 (PCSK1 gene, encoding the neuroendocrine convertase 1 precursor (PC1/3 which was recently reported as a cause of Congenital Diarrhea Disorder (CDD. The PCSK1 mutation affected the oxyanion hole transition state-stabilizing amino acid within the active site, which is critical for appropriate proprotein maturation and enzyme activity. Unexpectedly, the N309K mutant protein exhibited normal, though slowed, prodomain removal and was secreted from both HEK293 and Neuro2A cells. However, the secreted enzyme showed no catalytic activity, and was not processed into the 66 kDa form. We conclude that the N309K enzyme is able to cleave its own propeptide but is catalytically inert against in trans substrates, and that this variant accounts for the enteric and systemic endocrinopathies seen in this large consanguineous kindred.

  15. Comparison between serum levels of carcinoembryonic antigen, sialic acid and phosphohexose isomerase in lung cancer

    International Nuclear Information System (INIS)

    Patel, P.S.; Raval, G.N.; Rawal, R.M.; Balar, D.B.; Patel, G.H.; Shah, P.M.; Patel, D.D.

    1995-01-01

    The identification and application of quantifiable tumor markers as adjuncts to clinical care is a story of both success and failure. The present study compared serum levels of carcinoembryogenic antigen (CEA) with total sialic acid/total protein (TSA/TP) ration and phosphohexose isomerase (PHI) in 192 untreated lung cancer patients as well as 80 age and sex matched controls (44 non-smokers). CEA values were significantly raised (p < 0.001) in smokers as compared to the non-smokers; whereas, TSA/TP and PHI values were comparable between the groups of the groups of the controls. All the bio-markers were significantly elevated (p < 0.00.1) in untreated lung cancer patients as compared to the controls. Receiver operating characteristic curve analysis revealed higher sensitivities of TSA/TP and PHI as compared to CEA at different specificity levels between 60% and 95%. Mean values of CEA, TSA/TP and PHI were higher in non-responders compared to the responders. The results indicate that TSA/TP and PHI are superior tumor markers than CEA for lung cancer patients. (author)

  16. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  17. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins.

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    Full Text Available The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca(2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.

  18. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose.

    Science.gov (United States)

    Chen, Ziwei; Xu, Wei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2018-04-01

    l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co 2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co 2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg -1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L -1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L -1 l-mannose, respectively. The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. [Screening of food-grade microorganisms for biotransformation of D-tagatose and cloning and expression of L-arabinose isomerase].

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Guan, Yuping; Zhang, Tongcun; Izumori, Ken; Sun, Yuanxia

    2012-05-01

    L-Arabinose isomerase (L-AI) is an intracellular enzyme that catalyzes the reversible isomerization of D-galactose and D-tagatose. Given the widespread use of D-tagatose in the food industry, food-grade microorganisms and the derivation of L-AI for the production of D-tagatose is gaining increased attention. In the current study, food-grade strains from different foods that can convert D-galactose to D-tagatose were screened. According to physiological, biochemical, and 16S rDNA gene analyses, the selected strain was found to share 99% identity with Pediococcus pentosaceus, and was named as Pediococcus pentosaceus PC-5. The araA gene encoding L-AI from Pediococcus pentosaceus PC-5 was cloned and overexpressed in E. coli BL21. The yield of D-tagatose using D-galactose as the substrate catalyzed by the crude enzyme in the presence of Mn2+ was found to be 33% at 40 degrees C.

  1. The disulfide isomerase ERp57 is required for fibrin deposition in vivo.

    Science.gov (United States)

    Zhou, J; Wu, Y; Wang, L; Rauova, L; Hayes, V M; Poncz, M; Essex, D W

    2014-11-01

    ERp57 is required for platelet function; however, whether ERp57 contributes to fibrin generation is unknown. Using an inhibitory anti-ERp57 antibody (mAb1), Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice, and mutants of ERp57, we analyzed the function of ERp57 in laser-induced thrombosis. Fibrin deposition was decreased in Pf4-Cre/ERp57(fl/fl) mice, consistent with a role for platelet ERp57 in fibrin generation. Fibrin deposition was further decreased with infusion of mAb1 and in Tie2-Cre/ERp57(fl/fl) mice, consistent with endothelial cells also contributing to fibrin deposition. Infusion of eptibifatide inhibited platelet and fibrin deposition, confirming a role for platelets in fibrin deposition. Infusion of recombinant ERp57 corrected the defect in fibrin deposition but not platelet accumulation, suggesting a direct effect of ERp57 on coagulation. mAb1 inhibited thrombin generation in vitro, consistent with a requirement for ERp57 in coagulation. Platelet accumulation was decreased to similar extents in Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice and normal mice infused with mAb1. Infusion of completely inactivated ERp57 or ERp57 with a non-functional second active site inhibited fibrin deposition and platelet accumulation, indicating that the isomerase activity of the second active site is required for these processes. ERp57 regulates thrombosis via multiple targets. © 2014 International Society on Thrombosis and Haemostasis.

  2. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  3. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  4. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.

    Science.gov (United States)

    Zhai, Xiang; Amyes, Tina L; Richard, John P

    2015-12-09

    The side chains of Y208 and S211 from loop 7 of triosephosphate isomerase (TIM) form hydrogen bonds to backbone amides and carbonyls from loop 6 to stabilize the caged enzyme-substrate complex. The effect of seven mutations [Y208T, Y208S, Y208A, Y208F, S211G, S211A, Y208T/S211G] on the kinetic parameters for TIM catalyzed reactions of the whole substrates dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate [(k(cat)/K(m))(GAP) and (k(cat)/K(m))DHAP] and of the substrate pieces glycolaldehyde and phosphite dianion (k(cat)/K(HPi)K(GA)) are reported. The linear logarithmic correlation between these kinetic parameters, with slope of 1.04 ± 0.03, shows that most mutations of TIM result in an identical change in the activation barriers for the catalyzed reactions of whole substrate and substrate pieces, so that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The second linear logarithmic correlation [slope = 0.53 ± 0.16] between k(cat) for isomerization of GAP and K(d)(⧧) for phosphite dianion binding to the transition state for wildtype and many mutant TIM-catalyzed reactions of substrate pieces shows that ca. 50% of the wildtype TIM dianion binding energy, eliminated by these mutations, is expressed at the wildtype Michaelis complex, and ca. 50% is only expressed at the wildtype transition state. Negative deviations from this correlation are observed when the mutation results in a decrease in enzyme reactivity at the catalytic site. The main effect of Y208T, Y208S, and Y208A mutations is to cause a reduction in the total intrinsic dianion binding energy, but the effect of Y208F extends to the catalytic site.

  5. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    Science.gov (United States)

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  6. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Directory of Open Access Journals (Sweden)

    Hironori Kurisaki

    Full Text Available Although the autoimmune regulator (Aire knockout (KO mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2, which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  7. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Science.gov (United States)

    Kurisaki, Hironori; Nagao, Yukihiro; Nagafuchi, Seiho; Mitsuyama, Masao

    2013-01-01

    Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  8. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    Science.gov (United States)

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  9. Structural insights into conserved L-arabinose metabolic enzymes reveal the substrate binding site of a thermophilic L-arabinose isomerase.

    Science.gov (United States)

    Lee, Yong-Jik; Lee, Sang-Jae; Kim, Seong-Bo; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2014-03-18

    Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the l-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  11. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene.

    Science.gov (United States)

    Davidi, Lital; Pick, Uri

    2017-06-01

    We identified and demonstrated the function of 9-cis/all-trans β-carotene isomerases in plastidic globules of Dunaliella bardawil, the species accumulating the highest levels of 9-cis β-carotene that is essential for humans. The halotolerant alga Dunaliella bardawil is unique in that it accumulates under light stress high levels of β-carotene in plastidic lipid globules. The pigment is composed of two major isomers: all-trans β-carotene, the common natural form of this pigment, and 9-cis β-carotene. The biosynthetic pathway of β-carotene is known, but it is not clear how the 9-cis isomer is formed. We identified in plastidic lipid globules that were isolated from D. bardawil two proteins with high sequence homology to the D27 protein-a 9-cis/all-trans β-carotene isomerase from rice (Alder et al. Science 335:1348-1351, 2012). The proteins are enriched in the oil globules by 6- to 17-fold compared to chloroplast proteins. The expression of the corresponding genes, 9-cis-βC-iso1 and 9-cis-βC-iso2, is enhanced under light stress. The synthetic proteins catalyze in vitro conversion of all-trans to 9-cis β-carotene. Expression of the 9-cis-βC-iso1 or of 9-cis-βC-iso2 genes in an E. coli mutant line that harbors β-carotene biosynthesis genes enhanced the conversion of all-trans into 9-cis β-carotene. These results suggest that 9-cis-βC-ISO1 and 9-cis-βC-ISO2 proteins are responsible for the formation of 9-cis β-carotene in D. bardawil under stress conditions.

  12. Charge-based fractionation of oxyanion-forming metals and metalloids leached from recycled concrete aggregates of different degrees of carbonation: a comparison of laboratory and field leaching tests.

    Science.gov (United States)

    Mulugeta, Mesay; Engelsen, Christian J; Wibetoe, Grethe; Lund, Walter

    2011-02-01

    The release and charge-based fractionation of As, Cr, Mo, Sb, Se and V were evaluated in leachates generated from recycled concrete aggregates (RCA) in a laboratory and at a field site. The leachates, covering the pH range 8.4-12.6, were generated from non-carbonated, and artificially and naturally carbonated crushed concrete samples. Comparison between the release of the elements from the non-carbonated and carbonated samples indicated higher solubility of the elements from the latter. The laboratory leaching tests also revealed that the solubility of the elements is low at the "natural pH" of the non-carbonated materials and show enhancement when the pH is decreased. The charge-based fractionation of the elements was determined by ion-exchange solid phase extraction (SPE); it was found that all the target elements predominantly existed as anions in both the laboratory and field leachates. The high fraction of the anionic species of the elements in the leachates from the carbonated RCA materials verified the enhanced solubility of the oxyanionic species of the elements as a result of carbonation. The concentrations of the elements in the leachates and SPE effluents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Ion-Molecule Reaction of Gas-Phase Chromium Oxyanions: CrxOyHz- + H2O

    International Nuclear Information System (INIS)

    Gianotto, Anita Kay; Hodges, Brittany DM; Benson, Michael Timothy; Harrington, Peter Boves; Appelhans, Anthony David; Olson, John Eric; Groenewold, Gary Steven

    2003-01-01

    Chromium oxyanions having the general formula CrxOyHz- play a key role in many industrial, environmental, and analytical processes, which motivated investigations of their intrinsic reactivity. Reactions with water are perhaps the most significant, and were studied by generating CrxOyHz- in the gas phase using a quadrupole ion trap secondary ion mass spectrometer. Of the ions in the Cr1OyHz envelope (y = 2, 3, 4; z = 0, 1), only CrO2- was observed to react with H2O, producing the hydrated CrO3H2- at a slow rate (∼0.07% of the ion-molecule collision constant at 310 K). CrO3-, CrO4-, and CrO4H- were unreactive. In contrast, Cr2O4-, Cr2O5-, and Cr2O5H2- displayed a considerable tendency to react with H2O. Cr2O4- underwent sequential reactions with H2O, initially producing Cr2O5H2- at a rate that was ∼7% efficient. Cr2O5H2- then reacted with a second H2O by addition to form Cr2O6H4- (1.8% efficient) and by OH abstraction to form Cr2O6H3- (0.6% efficient). The reactions of Cr2O5- were similar to those of Cr2O5H2-: Cr2O5- underwent addition to form Cr2O6H2- (3% efficient) and OH abstraction to form Cr2O6H- (<1% efficient). By comparison, Cr2O6- was unreactive with H2O, and in fact, no further H2O addition could be observed for any of the Cr2O6Hz- anions. Hartree-Fock ab initio calculations showed that reactive CrxOyHz- species underwent nucleophilic attack by the incoming H2O molecules, which produced an initially formed adduct in which the water O was bound to a Cr center. The experimental and computational studies suggested that Cr2OyHz- species that have bi- or tricoordinated Cr centers are susceptible to attack by H2O; however, when the metal becomes tetracoordinate, reactivity stops. For the Cr2OyHz- anions the lowest energy structures all contained rhombic Cr2O2 rings with pendant O atoms and/or OH groups. The initially formed [Cr2Oy- + H2O] adducts underwent H rearrangement to a gem O atom to produce stable dihydroxy structures. The calculations indicated that

  14. The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation.

    Science.gov (United States)

    Hilgert, Jitka; Sura-De Jong, Martina; Fišer, Jiří; Tupá, Kateřina; Vrbová, Miroslava; Griga, Miroslav; Macek, Tomáš; Žiarovská, Jana

    2017-05-04

    A plant selection system based on the phosphomannose isomerase gene (pmi) as a selectable marker is often used to avoid selection using antibiotic resistance. Nevertheless, pmi gene is endogenous in several plant species and therefore difficult to use in such cases. Here we evaluated and compared Agrobacterium-mediated transformation of Linum usitatissimum breeding line AGT-952 (without endogenous pmi gene) and Nicotiana tabacum var. WSC-38 (with endogenous pmi gene). Transformation was evaluated for vectors bearing transgenes that have the potential to be involved in improved phytoremediation of contaminated environment. Tobacco regenerants selection resulted in 6.8% transformation efficiency when using a medium supplemented with 30 g/L mannose with stepwise decrease of the sucrose concentration. Similar transformation efficiency (5.3%) was achieved in transformation of flax. Relatively low selection efficiency was achieved (12.5% and 34.8%, respectively). The final detection of efficient pmi selection was conducted using PCR and the non-endogenous genes; pmi transgene for flax and todC2 transgene for tobacco plants.

  15. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.; Pallanck, Leo J.

    2016-03-31

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.

  16. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . The rpiB gene resided on a 4.6-kbp HindIII-EcoRV DNA fragment from phage lambda 10H5 (642) of the Kohara gene library and mapped at 92.85 min. Consistent with this map position, the cloned DNA fragment contained two divergent open reading frames of 149 and 296 codons, encoding ribose phosphate isomerase B...

  17. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Science.gov (United States)

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  18. Production of L-allose and D-talose from L-psicose and D-tagatose by L-ribose isomerase.

    Science.gov (United States)

    Terami, Yuji; Uechi, Keiko; Nomura, Saki; Okamoto, Naoki; Morimoto, Kenji; Takata, Goro

    2015-01-01

    L-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert L-psicose and D-tagatose to L-allose and D-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce L-allose and D-talose. Conversion reaction was performed with the reaction mixture containing 10% L-psicose or D-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of L-allose and D-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert L-psicose to L-allose without remarkable decrease in the enzyme activity over 7 times use and D-tagatose to D-talose over 37 times use. After separation and concentration, the mixture solution of L-allose and D-talose was concentrated up to 70% and crystallized by keeping at 4 °C. L-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% L-allose and 7.30% D-talose that were obtained from L-psicose and D-tagatose, respectively.

  19. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  20. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study

    International Nuclear Information System (INIS)

    Chrysochoou, Maria; Dermatas, Dimitris

    2006-01-01

    The immobilization of heavy metal oxyanions like chromate, arsenate and selenate, has proven to be a challenging task as they are highly mobile in alkaline environments involving S/S of contaminated media. Ettringite, a pozzolanic phase that forms in cementitious materials, has been proposed as a viable immobilization mechanism for oxyanions, wherein the oxyanion may substitute for sulfate in the ettringite structure. A literature review on the immobilization potential of ettringite showed that the substitution potential exists from the thermodynamic point of view where the formation of substituted ettringites occurs under strictly controlled conditions. The pH control over a narrow range is essential for ettringite stability; it becomes even narrower for substituted ettringites, as competing effects with sulfate ettringite and monophases are significantly affected by pH. The presence of sulfate has a catalytic effect on oxyanion incorporation in ettringite. Rapid leaching may occur when the treated media is exposed to sulfate influx. Conversely, monophases seem to be more suitable than ettringite for oxyanion immobilization, mainly as they control oxyanion solubility to lower levels than ettringite. A shift to the thermodynamic equilibrium caused by a shift in environmental conditions may result in monophase conversion to ettringite, which may lead to catastrophic expansion, as widely demonstrated in the cement and soils literature. Overall, the sensitivity of phase equilibria in cement-like systems involving oxyanions is significant with regard to multiple parameters and it is uncertain to what extent these can be predicted and/or controlled in the field

  1. The acid tolerant L-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive D-tagatose producer.

    Science.gov (United States)

    Rhimi, Moez; Ilhammami, Rimeh; Bajic, Goran; Boudebbouze, Samira; Maguin, Emmanuelle; Haser, Richard; Aghajari, Nushin

    2010-12-01

    The araA gene encoding an L-arabinose isomerase (L-AI) from the psychrotrophic and food grade Lactobacillus sakei 23K was cloned, sequenced and over-expressed in Escherichia coli. The recombinant enzyme has an apparent molecular weight of nearly 220 kDa, suggesting it is a tetramer of four 54 kDa monomers. The enzyme is distinguishable from previously reported L-AIs by its high activity and stability at temperatures from 4 to 40 degrees C, and pH from 3 to 8, and by its low metal requirement of only 0.8 mM Mn(2+) and 0.8 mM Mg(2+) for its maximal activity and thermostability. Enzyme kinetic studies showed that this enzyme displays a high catalytic efficiency allowing D-galactose bioconversion rates of 20% and 36% at 10 and 45 degrees C, respectively, which are useful for commercial production of D-tagatose. 2010 Elsevier Ltd. All rights reserved.

  2. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  4. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Park, Sun-Ha; Lee, Chang Woo; Cho, Sung Mi; Lee, Hyoungseok; Park, Hyun; Lee, Jungeun; Lee, Jun Hyuck

    2018-01-01

    Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  5. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Sun-Ha Park

    Full Text Available Chalcone isomerase (CHI is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1 is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  6. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  7. Vanadate, molybdate and tungstate for orthomolecular medicine.

    Science.gov (United States)

    Matsumoto, J

    1994-09-01

    Recent studies indicate that oxyanions, such as vanadate (V) or vanadyl (IV), cause insulin-like effects on rats by stimulating the insulin receptor tyrosine kinase. Tungstate (VI) and molybdate (VI) show the same effects on rat adipocytes and hepatocytes. Results of uncontrolled trials on volunteers accumulated in Japan also suggest that tungstate effectively regulates diabetes mellitus without detectable side effects. Since these oxyanions naturally exist in organisms, oxyanion therapy, the oral administration of vanadate, vanadyl, molybdate, or tungstate, can be considered to be orthomolecular medicine. Therefore, these oxyanions may provide a viable alternative to chemotherapy. Many diseases in addition to diabetes mellitus might also be treated since the implication of these results is that tyrosine kinases are involved in a variety of diseases.

  8. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.

    Directory of Open Access Journals (Sweden)

    Li-Rong Xu

    Full Text Available BACKGROUND: Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. METHODOLOGY/PRINCIPAL FINDINGS: As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244-372 monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244-372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244-372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244-372 fibrillization more strongly than full-length human PDI. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau

  9. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Stephanie Abromaitis

    2009-04-01

    Full Text Available Chlamydia is an obligate intracellular pathogen that causes a wide range of diseases in humans. Attachment and entry are key processes in infectivity and subsequent pathogenesis of Chlamydia, yet the mechanisms governing these interactions are unknown. It was recently shown that a cell line, CHO6, that is resistant to attachment, and thus infectivity, of multiple Chlamydia species has a defect in protein disulfide isomerase (PDI N-terminal signal sequence processing. Ectopic expression of PDI in CHO6 cells led to restoration of Chlamydia attachment and infectivity; however, the mechanism leading to this recovery was not ascertained. To advance our understanding of the role of PDI in Chlamydia infection, we used RNA interference to establish that cellular PDI is essential for bacterial attachment to cells, making PDI the only host protein identified as necessary for attachment of multiple species of Chlamydia. Genetic complementation and PDI-specific inhibitors were used to determine that cell surface PDI enzymatic activity is required for bacterial entry into cells, but enzymatic function was not required for bacterial attachment. We further determined that it is a PDI-mediated reduction at the cell surface that triggers bacterial uptake. While PDI is necessary for Chlamydia attachment to cells, the bacteria do not appear to utilize plasma membrane-associated PDI as a receptor, suggesting that Chlamydia binds a cell surface protein that requires structural association with PDI. Our findings demonstrate that PDI has two essential and independent roles in the process of chlamydial infectivity: it is structurally required for chlamydial attachment, and the thiol-mediated oxido-reductive function of PDI is necessary for entry.

  10. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  11. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    Science.gov (United States)

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  12. Silver-mediated direct trifluoromethoxylation of α-diazo esters via the (-)OCF3 anion.

    Science.gov (United States)

    Zha, Gao-Feng; Han, Jia-Bin; Hu, Xiao-Qian; Qin, Hua-Li; Fang, Wan-Yin; Zhang, Cheng-Pan

    2016-06-14

    Silver-mediated direct trifluoromethoxylation of α-diazo esters and ketosteroid was disclosed. The reactions of alkyl α-diazo arylacetates with AgOCF3 or CF3SO2OCF3/AgF at -30 to 10 °C under a N2 atmosphere provided α-trifluoromethoxyl arylacetates in up to 90% yield, while alkyl α-diazo vinylacetates reacting with CF3SO2OCF3/AgF or AgOCF3 afforded γ-trifluoromethoxyl α,β-unsaturated esters in up to 94% yield. The α-diazo ketosteroid was also trifluoromethoxylated under the standard reaction conditions. This protocol allows for an effective and convenient access to a large number of synthetic building blocks, which are promising in the development of new functional OCF3-molecules.

  13. Receptor type I and type II binding regions and the peptidyl-prolyl isomerase site of cyclophilin B are required for enhancement of T-lymphocyte adhesion to fibronectin.

    Science.gov (United States)

    Carpentier, Mathieu; Allain, Fabrice; Slomianny, Marie-Christine; Durieux, Sandrine; Vanpouille, Christophe; Haendler, Bernard; Spik, Geneviève

    2002-04-23

    Cyclophilin B (CyPB), a cyclosporin A (CsA) binding protein, interacts with two types of binding sites at the surface of T-lymphocytes. The type I sites correspond to functional receptors involved in endocytosis and the type II sites to sulfated glycosaminoglycans (GAGs). Mutational analysis of CyPB has revealed that W128, which is part of the CsA-binding pocket, is implicated in the binding to the functional type I receptors and that two amino acid clusters located in the N-terminus ensure the binding to GAGs. The peptidyl-prolyl isomerase activity of CyPB is not required for receptor binding. We have recently demonstrated that CyPB enhances adhesion of peripheral blood T-lymphocytes to fibronectin, a component of the extracellular matrix. We intended to identify additional amino acids involved in the binding of CyPB to its functional type I receptor and to determine regions responsible for the stimulation of peripheral blood T-lymphocyte adhesion. We determined that residues R76, G77, K132, D155, and D158 of the calcineurin (CN) interacting region were implicated in the recognition of type I receptor but not of GAGs. We also found that two different changes in the N-terminal extension that abated binding to GAGs prevented adhesion of peripheral blood T-lymphocytes to coated CyPB, whereas abbrogation of the PPIase activity had no effect. On the other hand, the adhesion of peripheral blood T-lymphocytes to coated fibronectin was not stimulated by CyPB mutants devoid of either type I receptor or GAGs binding activity or by mutants of the PPIase site. Altogether, the results demonstrate that different regions of CyPB are involved in peripheral blood T-lymphocyte activation and imply a novel important physiological function for peptidyl-prolyl isomerase activity.

  14. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    Aspects of protein disulfide isomerase (PDI) function have been studied in yeast in vivo. PDI contains two thioredoxin-like domains, a and a', each of which contains an active-site CXXC motif. The relative importance of the two domains was analyzed by rendering each one inactive by mutation to SGAS....... Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC......-deleted strains overexpressing the yeast PDI homologue EUG1 are viable. Exchanging the wild-type Eug1p C(L/I)HS active site sequences for C(L/I)HC increased the growth rate significantly, however, further highlighting the importance of the oxidizing function for optimal growth....

  15. A novel potential biomarker for metabolic syndrome in Chinese adults: Circulating protein disulfide isomerase family A, member 4.

    Science.gov (United States)

    Chien, Chu-Yen; Hung, Yi-Jen; Shieh, Yi-Shing; Hsieh, Chang-Hsun; Lu, Chieh-Hua; Lin, Fu-Huang; Su, Sheng-Chiang; Lee, Chien-Hsing

    2017-01-01

    Protein disulfide isomerase (PDI) family members are specific endoplasmic reticulum proteins that are involved in the pathogenesis of numerous diseases including neurodegenerative diseases, cancer and obesity. However, the metabolic effects of PDIA4 remain unclear in humans. The aims of this study were to investigate the associations of serum PDIA4 with the metabolic syndrome (MetS) and its components in Chinese adults. A total of 669 adults (399 men and 270 women) were recruited. Serum PDIA4 concentrations and biochemical variables were recorded. Insulin sensitivity and β-cell function were examined by homeostasis model assessment. MetS was defined based on the modified National Cholesterol Education Program Adult Treatment Panel III criteria for Asia Pacific. The participants with MetS had significantly higher serum PDIA4 levels than those without MetS (Pmetabolic syndrome were 67 and 72%, respectively, in male patients and 60 and 78%, respectively, in female patients. Finally, the result showed that PDIA4 had a significantly higher area under the curve compared with blood pressure to detect MetS using receiver operating characteristic analysis. Serum PDIA4 concentrations are closely associated to MetS and its components in Chinese adults.

  16. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    Science.gov (United States)

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-01-01

    SUMMARY Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, over-expressing Pin1 reduces Fbw7 abundance and suppresses Fbw7’s ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis and Pin1 may be a promising drug target for anti-cancer therapy. PMID:22608923

  17. Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI as a putative drug target for Aspergillosis

    Directory of Open Access Journals (Sweden)

    Morya Vivek K

    2012-02-01

    Full Text Available Abstract Aspergillus is a leading causative agent for fungal morbidity and mortality in immuno-compromised patients. To identify a putative target to design or identify new antifungal drug, against Aspergillus is required. In our previous work, we have analyzed the various biochemical pathways, and we found Ketol Acid Reducto-Isomerase (KARI an enzyme involves in the amino acid biosynthesis, could be a better target. This enzyme was found to be unique by comparing to host proteome through BLASTp analysis. A homology based model of KARI was generated by Swiss model server. The generated model had been validated by PROCHECK and WHAT IF programs. The Zinc library was generated within the limitation of the Lipinski rule of five, for docking study. Based on the dock-score six molecules have been studied for ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678, ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a drug target and the screened inhibitors could help in the development of the better drug against Aspergillus.

  18. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis

    International Nuclear Information System (INIS)

    Wohlkönig, Alexandre; Hodak, Hélène; Clantin, Bernard; Sénéchal, Magalie; Bompard, Coralie; Jacob-Dubuisson, Françoise; Villeret, Vincent

    2008-01-01

    Par27 from B. pertussis, the prototype of a new group of parvulins has been crystallized in two different crystal forms. Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 Å, β = 95.1°), diffracts to 2.8 Å resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 Å), diffracts to 2.2 Å resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form

  19. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production.

    Science.gov (United States)

    Zheng, Zhaojuan; Mei, Wending; Xia, Meijuan; He, Qin; Ouyang, Jia

    2017-06-14

    d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L -1 d-tagatose could be produced from 150 and 250 g L -1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.

  20. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.

    Directory of Open Access Journals (Sweden)

    Ignacio de la Mora-de la Mora

    Full Text Available Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM, an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.

  1. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability

    Directory of Open Access Journals (Sweden)

    Lu Kun

    2008-12-01

    Full Text Available Abstract Overexpression of HER-2/Neu occurs in about 25–30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself. Methods Immunohistochemistry for Her2 and Pin1 were performed on two hundred twenty-three human breast cancers, with 59% of the specimen from primary cancers and 41% from metastatic sites. Pin1 inhibition was achieved using siRNA in Her2+ breast cancer cell lines, and its effects were studied using cell viability assays, immunoblotting and immunofluorescence. Results Sixty-four samples (28.7% stained positive for Her2 (IHC 3+, and 54% (122/223 of all breast cancers stained positive for Pin1. Of the Her2-positive cancers 40 (62.5% were also Pin1-positive, based on strong nuclear or nuclear and cytoplasmic staining. Inhibition of Pin1 via RNAi resulted in significant suppression of Her2-positive tumor cell growth in BT474, SKBR3 and AU565 cells. Pin1 inhibition greatly increased the sensitivity of Her2-positive breast cancer cells to the mTOR inhibitor Rapamycin, while it did not increase their sensitivity to Trastuzumab, suggesting that Pin1 might act on Her2 signaling. We found that Pin1 interacted with the protein complex that contains ubiquitinated erbB2 and that Pin1 inhibition accelerated erbB2

  2. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase.

    Science.gov (United States)

    Jez, Joseph M; Bowman, Marianne E; Noel, Joseph P

    2002-04-23

    In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional

  3. Simultaneous sorption of As, B, Cr, Mo and Se from coal fly ash leachates by Al(sup3+)-pillared bentonite clay: implication for the construction of activated geo-synthetic clay liner

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-03-01

    Full Text Available successfully removed oxyanion species from generated coal FA leachates. This study shows that Al(sup3+)-modified bentonite clay is an effective adsorbent for oxyanion species in coal FA leachates and could be applied as a reactive barrier in coal FA retention...

  4. Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.

    Science.gov (United States)

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Enzymatic conversion of D-galactose to D-tagatose: cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5.

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Zhang, Lili; Kang, Zhenkui; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-01-01

    The gene encoding L-arabinose isomerase from food-grade strain Pediococcus pentosaceus PC-5 was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at 50 °C and pH 6.0. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its maximal activity evaluated at 0.6 mM Mn(2+) or 0.8 mM Co(2+). Interestingly, this enzyme was distinguished from other L-AIs, it could not use L-arabinose as its substrate. In addition, a three-dimensional structure of L-AI was built by homology modeling and L-arabinose and D-galactose were docked into the active site pocket of PPAI model to explain the interaction between L-AI and its substrate. The purified P. pentosaceus PC-5 L-AI converted D-galactose into D-tagatose with a high conversion rate of 52% after 24 h at 50 °C, suggesting its excellent potential in D-tagatose production. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  6. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    International Nuclear Information System (INIS)

    Ou Wu; Silver, Jonathan

    2006-01-01

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion

  7. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2007-10-01

    Full Text Available Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite.Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  8. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells.

    Science.gov (United States)

    Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna

    2016-06-01

    Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.

  9. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  10. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisation.

    Science.gov (United States)

    Cheng, Lifang; Mu, Wanmeng; Jiang, Bo

    2010-06-01

    D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.

  11. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  12. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    Science.gov (United States)

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup.

    Science.gov (United States)

    Jia, Dong-Xu; Zhou, Lin; Zheng, Yu-Guo

    2017-04-01

    Glucose isomerase (GI) is used in vitro to convert d-glucose to d-fructose, which is capable of commercial producing high fructose corn syrup (HFCS). To manufacture HFCS at elevated temperature and reduce the cost of enriching syrups, novel refractory GIs from Thermoanaerobacterium xylanolyticum (TxGI), Thermus oshimai (ToGI), Geobacillus thermocatenulatus (GtGI) and Thermoanaerobacter siderophilus (TsGI) were screened via genome mining approach. The enzymatic characteristics research showed that ToGI had higher catalytic efficiency and superior thermostability toward d-glucose among the screened GIs. Its optimum temperature reached 95°C and could retain more than 80% of initial activity in the presence of 20mM Mn 2+ at 85°C for 48h. The K m and k cat /K m values for ToGI were 81.46mM and 21.77min -1 mM -1 , respectively. Furthermore, the maximum conversion yield of 400g/L d-glucose to d-fructose at 85°C was 52.16%. Considering its excellent high thermostability and ameliorable application performance, ToGI might be promising for realization of future industrial production of HFCS at elevated temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4-isomerase expressed in the adrenal gland and gonads.

    Science.gov (United States)

    Durocher, Francine; Sanchez, Rocio; Ricketts, Marie-Louise; Labrie, Yvan; Laudet, Vincent; Simard, Jacques

    2005-11-01

    The guinea pig adrenal gland, analogous to the human, possesses the capacity to synthesize C(19) steroids. In order to further understand the control of guinea pig adrenal steroidogenesis we undertook the characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD) expressed in the adrenal gland. A cDNA clone encoding guinea pig 3beta-HSD isolated from a guinea pig adrenal library is predicted to encode a protein of 373 amino acid residues and 41,475Da. Ribonuclease protection assay suggests that this cDNA corresponds to the predominant, if not the sole, mRNA species detectable in total RNA from the guinea pig adrenal gland, ovary and testis. The guinea pig 3beta-HSD shows a similar affinity for both pregnenolone and dehydroepiandrosterone, and in addition, a 17beta-HSD type II-like activity was also observed. A phylogenetical analysis of the 3beta-HSD gene family demonstrates that the guinea pig is in a parallel branch to the myomorpha group supporting the hypothesis that the guinea pig lineage has branched off after the divergence among primates, artiodactyls and rodents, suggesting the paraphyly of the order rodentia.

  15. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

    Science.gov (United States)

    Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy

    2009-05-15

    We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.

  16. Analysis of the relationship between Chalcone Isomerase gene expression level and rutin production in Ficus deltoidea var. deltoidea and F. deltoidea var. angustifolia

    Science.gov (United States)

    Najid, Najihah Mohd; Zain, Che Radziah Che Mohd; Zainal, Zamri

    2016-11-01

    Ficus deltoidea (moraceae) is a herbal plant with medicinal values. Previous studies reported that the F. deltoidea contains a high level of bioactive compounds such as flavonoids. A cDNA encodes for chalcone isomerase was identified from F. deltoidea, designated as FdCHI, which involved in the isomerization of naringenin chalcone to naringenin. Naringenin is a key branch point for the synthesis of rutin, which is believed involved in defense mechanism in the plant. Therefore, we hypothesized that there might be a direct relationship between FdCHI expression level and rutin production in leaves of F. deltoidea var. deltoidea (FDD) and F. deltoidea var. angustifolia (FDA). Our result showed that expression level of FdCHI in leaves FDD was greater than FDA. Analysis of High Performance Liquid Chromatography (HPLC) revealed that rutin was only detected in FDA leaves. Based on the results between FdCHI expression and rutin production, this study concluded that there is no relationship between FdCHI expression and rutin production in leaves of FDA and FDD.

  17. Distinguishing two types of gray mullet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose-6-phosphate isomerase (GPI) allozymes with special reference to enzyme activities.

    Science.gov (United States)

    Huang, C S; Weng, C F; Lee, S C

    2001-06-01

    The resident and migratory types of gray mullet, Mugil cephalus, on the coast of Taiwan can not be separated morphologically. Allozyme analysis was applied to estimate genetic variation between the two types of gray mullet and to test whether they belong to different populations. After starch gel electrophoresis, different allelic frequency spectra of glucose-6-phosphate isomerase-A (GPI-A) between stocks was observed. The resident stock contained Gpi-A(135) and Gpi-A(100), whereas the migratory type contained Gpi-A(100) only. In addition, GPI activities of locus A showed two distinct profiles between the two alleles. The results broadly revealed that Gpi-A allelic frequency was not regulated by temperature changes even after 6 months of thermal acclimation. This suggests that natural selection may play a role in shaping the allelic frequency change during the migratory journey. These findings suggest that the Gpi-A allelic difference can be used for population discrimination.

  18. Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

    International Nuclear Information System (INIS)

    Kim, Y. S.

    2010-01-01

    According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (NO x - ), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. NO x - species improve the cation selectivity of the film, increasing the oxide content and film density. NO x - acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, NO x - can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, Molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and from more oxide and increase the

  19. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1*

    Science.gov (United States)

    Niu, Yingbo; Zhang, Lihui; Yu, Jiaojiao; Wang, Chih-chen; Wang, Lei

    2016-01-01

    The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway. PMID:26846856

  20. Application of a new bifunctionalized chitosan derivative with zwitterionic characteristics for the adsorption of Cu(2+), Co(2+), Ni(2+), and oxyanions of Cr(6+) from aqueous solutions: Kinetic and equilibrium aspects.

    Science.gov (United States)

    de Almeida, Francine Tatiane Rezende; Ferreira, Bruno Christiano Silva; Moreira, Ana Luísa da Silva Lage; de Freitas, Rossimiriam Pereira; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-03-15

    This study describes the synthesis of a new chitosan derivative (C2) with zwitterionic characteristics and its use for the removal of cationic species Cu(2+), Co(2+), and Ni(2+) and anionic species of Cr(6+) in a single aqueous solution. The new adsorbent was synthesized by quaternization of the amine group of chitosan and esterification of hydroxyl groups with EDTA dianhydride. These combined reactions gave both cationic and anionic characteristics to C2 with the release of quaternary ammonium groups and carboxylic groups. The capacity of C2 to adsorb Cu(2+), Co(2+), Ni(2+), and oxyanions of Cr(6+) was evaluated in a batch process with different contact times, pH values, and initial concentrations. Adsorption isotherms were best fitted to the Langmuir and Sips models. The maximum adsorption capacities (Q(max)) of C2 for adsorption of Cu(2+), Co(2+), Ni(2+), and Cr(6+) were 0.698, 1.125, 0.725, and 1.910 mmol/g, respectively. The Δ(ads)G° values were in the range from -20 to -28 kJ/mol. These values suggest a mixed mechanism controlling adsorption. Desorption studies using an aqueous solution consisting of 0.1 mol/L HNO3 were carried out. The reusability of the recovered C2 adsorbent after desorption was also evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  2. Triose phosphate isomerase deficiency is caused by altered dimerization--not catalytic inactivity--of the mutant enzymes.

    Directory of Open Access Journals (Sweden)

    Markus Ralser

    Full Text Available Triosephosphate isomerase (TPI deficiency is an autosomal recessive disorder caused by various mutations in the gene encoding the key glycolytic enzyme TPI. A drastic decrease in TPI activity and an increased level of its substrate, dihydroxyacetone phosphate, have been measured in unpurified cell extracts of affected individuals. These observations allowed concluding that the different mutations in the TPI alleles result in catalytically inactive enzymes. However, despite a high occurrence of TPI null alleles within several human populations, the frequency of this disorder is exceptionally rare. In order to address this apparent discrepancy, we generated a yeast model allowing us to perform comparative in vivo analyses of the enzymatic and functional properties of the different enzyme variants. We discovered that the majority of these variants exhibit no reduced catalytic activity per se. Instead, we observed, the dimerization behavior of TPI is influenced by the particular mutations investigated, and by the use of a potential alternative translation initiation site in the TPI gene. Additionally, we demonstrated that the overexpression of the most frequent TPI variant, Glu104Asp, which displays altered dimerization features, results in diminished endogenous TPI levels in mammalian cells. Thus, our results reveal that enzyme deregulation attributable to aberrant dimerization of TPI, rather than direct catalytic inactivation of the enzyme, underlies the pathogenesis of TPI deficiency. Finally, we discovered that yeast cells expressing a TPI variant exhibiting reduced catalytic activity are more resistant against oxidative stress caused by the thiol-oxidizing reagent diamide. This observed advantage might serve to explain the high allelic frequency of TPI null alleles detected among human populations.

  3. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  4. Purification and characterization of an L-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing D-tagatose.

    Science.gov (United States)

    Kim, Hye-Jung; Oh, Deok-Kun

    2005-11-04

    The araA gene, encoding l-arabinose isomerase (AI), from the thermophilic bacterium Geobacillus thermodenitrificans was cloned and expressed in Escherichia coli. Recombinant AI was isolated with a final purity of about 97% and a final specific activity of 2.10 U/mg. The molecular mass of the purified AI was estimated to be about 230 kDa to be a tetramer composed of identical subunits. The AI exhibited maximum activity at 70 degrees C and pH 8.5 in the presence of Mn2+. The enzyme was stable at temperatures below 60 degrees C and within the pH range 7.5-8.0. d-Galactose and l-arabinose as substrate were isomerized with high activities. Ribitol was the strongest competitive inhibitor of AI with a Ki of 5.5mM. The apparent Km and Vmax for L-arabinose were 142 mM and 86 U/mg, respectively, whereas those for d-galactose were 408 mM and 6.9 U/mg, respectively. The catalytic efficiency (kcat/Km) was 48 mM(-1)min(-1) for L-arabinose and 0.5mM(-1)min(-1) for D-galactose. Mn2+ was a competitive activator and increased the thermal stability of the AI. The D-tagatose yield produced by AI from d-galactose was 46% without the addition of Mn2+ and 48% with Mn2+ after 300 min at 65 degrees C.

  5. Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles.

    Science.gov (United States)

    Aluise, Christopher D; Rose, Kristie; Boiani, Mariana; Reyzer, Michelle L; Manna, Joseph D; Tallman, Keri; Porter, Ned A; Marnett, Lawrence J

    2013-02-18

    Oxidation of membrane phospholipids is associated with inflammation, neurodegenerative disease, and cancer. Oxyradical damage to phospholipids results in the production of reactive aldehydes that adduct proteins and modulate their function. 4-Hydroxynonenal (HNE), a common product of oxidative damage to lipids, adducts proteins at exposed Cys, His, or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme that catalyzes the conversion of the peptide bond of pSer/pThr-Pro moieties in signaling proteins from cis to trans, is highly susceptible to HNE modification. Incubation of purified Pin1 with HNE followed by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael adducts at the active site residues His-157 and Cys-113. Time and concentration dependencies indicate that Cys-113 is the primary site of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation with biotin followed by streptavidin-based pulldown and Western blotting with anti-Pin1 antibody. Furthermore, orbitrap MS data support the adduction of Cys-113 in the Pin1 active site upon HNE treatment of MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially protected the cells from HNE-induced toxicity. Recent studies indicate that Pin1 is an important molecular target for the chemopreventive effects of green tea polyphenols. The present study establishes that it is also a target for electrophilic modification by products of lipid peroxidation.

  6. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  7. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires

    Directory of Open Access Journals (Sweden)

    Pemberton Trevor J

    2006-09-01

    Full Text Available Abstract Background The peptidyl-prolyl cis/trans isomerase (PPIase class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii whilst the cyclophilins and parvulins have evolved to perform conserved

  8. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis

    NARCIS (Netherlands)

    Kalsbeek, A.; van der Spek, R.; Lei, J.; Endert, E.; Buijs, R. M.; Fliers, E.

    2012-01-01

    The pronounced daily variation in the release of adrenal hormones has been at the heart of the deciphering and understanding of the circadian timing system. Indeed, the first demonstration of an endocrine day/night rhythm was provided by Pincus (1943), by showing a daily pattern of 17-keto-steroid

  9. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Kim, Hye-Jung; Ryu, Se-Ah; Kim, Pil; Oh, Deok-Kun

    2003-01-01

    To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.

  10. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  11. Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase*S⃞

    Science.gov (United States)

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-01-01

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ∼ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters. PMID:19182270

  12. Saturation analysis

    International Nuclear Information System (INIS)

    1974-01-01

    The invention comprises a radioimmunoassay kit for steroid determination. Selenium-75 is used as labelling element. The chemical preparation methods for various selenium-labelled keto-steroids and their derivatives, such as hydrocortisone, testosteron, corticosteron, estriol, and other steroid hormones as well as cardiacal glycosides are described. Analytical examples are presented

  13. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Science.gov (United States)

    Fava, Natália M. N.; Soares, Rodrigo M.; Scalia, Luana A. M.; Kalapothakis, Evanguedes; Pena, Isabella F.; Vieira, Carlos U.; Faria, Elaine S. M.; Cunha, Maria J.; Couto, Talles R.; Cury, Márcia Cristina

    2013-01-01

    Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4%) and 36 (61.0%) samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology. PMID:24308010

  14. Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella.

    Directory of Open Access Journals (Sweden)

    Hongyu Han

    Full Text Available Protein disulfide isomerase (PDI and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE according to the expressed sequence tag (EST. The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC. BLAST analysis showed that the EtPDIL protein was 55-59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells

  15. Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella.

    Science.gov (United States)

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55-59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results

  16. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  17. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Laura Margarita López-Castillo

    2016-12-01

    Full Text Available In plants triosephosphate isomerase (TPI interconverts glyceraldehyde 3-phosphate (G3P and dihydroxyacetone phosphate (DHAP during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI and chloroplast TPI (pdTPI share more than 60% amino acid identity and assemble as (β-α8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218. Site directed mutagenesis of residues pdTPI-C15, cTPI-C13 and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218. Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to

  18. At the Perphery of the Amidohydrolase Superfamily: Bh0493 from Bacillus halodurans Catalyzes the Isomerization of D-Galacturonate to D-Tagaturonate

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen,T.; Brown, S.; Fedorov, A.; Fedorov, E.; Babbitt, P.; Almo, S.; Raushel, F.

    2008-01-01

    The amidohydrolase superfamily is a functionally diverse set of enzymes that catalyzes predominantly hydrolysis reactions involving sugars, nucleic acids, amino acids, and organophosphate esters. One of the most divergent members of this superfamily, uronate isomerase from Escherichia coli, catalyzes the isomerization of d-glucuronate to d-fructuronate and d-galacturonate to d-tagaturonate and is the only uronate isomerase in this organism. A gene encoding a putative uronate isomerase in Bacillus halodurans (Bh0705) was identified based on sequence similarity to uronate isomerases from other organisms. Kinetic evidence indicates that Bh0705 is relatively specific for the isomerization of d-glucuronate to d-fructuronate, confirming this functional assignment. Despite a low sequence identity to all other characterized uronate isomerases, phylogenetic and network-based analysis suggests that a second gene in this organism, Bh0493, is also a uronate isomerase, although it is an outlier in the group, with <20% sequence identity to any other characterized uronate isomerase from another species. The elucidation of the X-ray structure at a resolution of 2.0 Angstroms confirms that Bh0493 is a member of the amidohydrolase superfamily with conserved residues common to other members of the uronate isomerase family. Functional characterization of this protein shows that unlike Bh0705, Bh0493 can utilize both d-glucuronate and d-galacturonate as substrates. In B. halodurans, Bh0705 is found in an operon for the metabolism of d-glucuronate, whereas Bh0493 is in an operon for the metabolism of d-galacturonate. These results provide the first identification of a uronate isomerase that operates in a pathway distinct from that for d-glucuronate. While most organisms that contain this pathway have only one gene for a uronate isomerase, sequence analysis and operon context show that five other organisms also appear to have two genes and one organism appears to have three genes for

  19. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2007-02-01

    Full Text Available Abstract Background Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i the xylose reductase (XR and xylitol dehydrogenase (XDH pathway and ii the xylose isomerase (XI pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3. The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. Results In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. Conclusion Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.

  20. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  1. Dual reorientation relaxation routes of water molecules in oxyanion’s hydration shell: A molecular geometry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2015-12-14

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion’s hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a “structure breaker” in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics.

  2. Dual reorientation relaxation routes of water molecules in oxyanion’s hydration shell: A molecular geometry perspective

    International Nuclear Information System (INIS)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin

    2015-01-01

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion’s hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a “structure breaker” in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics

  3. Insights into evolution in Andean Polystichum (Dryopteridaceae) from expanded understanding of the cytosolic phosphoglucose isomerase gene.

    Science.gov (United States)

    Lyons, Brendan M; McHenry, Monique A; Barrington, David S

    2017-07-01

    Cytosolic phosphoglucose isomerase (pgiC) is an enzyme essential to glycolysis found universally in eukaryotes, but broad understanding of variation in the gene coding for pgiC is lacking for ferns. We used a substantially expanded representation of the gene for Andean species of the fern genus Polystichum to characterize pgiC in ferns relative to angiosperms, insects, and an amoebozoan; assess the impact of selection versus neutral evolutionary processes on pgiC; and explore evolutionary relationships of selected Andean species. The dataset of complete sequences comprised nine accessions representing seven species and one hybrid from the Andes and Serra do Mar. The aligned sequences of the full data set comprised 3376 base pairs (70% of the entire gene) including 17 exons and 15 introns from two central areas of the gene. The exons are highly conserved relative to angiosperms and retain substantial homology to insect pgiC, but intron length and structure are unique to the ferns. Average intron size is similar to angiosperms; intron number and location in insects are unlike those of the plants we considered. The introns included an array of indels and, in intron 7, an extensive microsatellite array with potential utility in analyzing population-level histories. Bayesian and maximum-parsimony analysis of 129 variable nucleotides in the Andean polystichums revealed that 59 (1.7% of the 3376 total) were phylogenetically informative; most of these united sister accessions. The phylogenetic trees for the Andean polystichums were incongruent with previously published cpDNA trees for the same taxa, likely the result of rapid evolutionary change in the introns and contrasting stability in the exons. The exons code a total of seven amino-acid substitutions. Comparison of non-synonymous to synonymous substitutions did not suggest that the pgiC gene is under selection in the Andes. Variation in pgiC including two additional accessions represented by incomplete sequences

  4. Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver

    Directory of Open Access Journals (Sweden)

    Chen Ren

    2012-10-01

    Full Text Available Abstract Background Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. Results To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629 encoding isopentenyl diphosphate isomerase (IPI was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line control. Conclusions Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our

  5. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  6. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    Directory of Open Access Journals (Sweden)

    Cody Caba

    2018-02-01

    Full Text Available Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI, the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin. A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  7. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation.

    Science.gov (United States)

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys 57 and Lys 401 of human PDI in vitro . Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys 57 and Lys 401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys 57 and acLys 401 . The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  8. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  9. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  10. Proline substitutions in a Mip-like peptidyl-prolyl cis-trans isomerase severely affect its structure, stability, shape and activity

    Directory of Open Access Journals (Sweden)

    Soumitra Polley

    2015-01-01

    Full Text Available FKBP22, an Escherichia coli-specific peptidyl-prolyl cis-trans isomerase, shows substantial homology with the Mip-like virulence factors. Mip-like proteins are homodimeric and possess a V-shaped conformation. Their N-terminal domains form dimers, whereas their C-terminal domains bind protein/peptide substrates and distinct inhibitors such as rapamycin and FK506. Interestingly, the two domains of the Mip-like proteins are separated by a lengthy, protease-susceptible α-helix. To delineate the structural requirement of this domain-connecting region in Mip-like proteins, we have investigated a recombinant FKBP22 (rFKBP22 and its three point mutants I65P, V72P and A82P using different probes. Each mutant harbors a Pro substitution mutation at a distinct location in the hinge region. We report that the three mutants are not only different from each other but also different from rFKBP22 in structure and activity. Unlike rFKBP22, the three mutants were unfolded by a non-two state mechanism in the presence of urea. In addition, the stabilities of the mutants, particularly I65P and V72P, differed considerably from that of rFKBP22. Conversely, the rapamycin binding affinity of no mutant was different from that of rFKBP22. Of the mutants, I65P showed the highest levels of structural/functional loss and dissociated partly in solution. Our computational study indicated a severe collapse of the V-shape in I65P due to the anomalous movement of its C-terminal domains. The α-helical nature of the domain-connecting region is, therefore, critical for the Mip-like proteins.

  11. Synthesis of Birnessite in the Presence of Phosphate, Silicate, or Sulfate.

    Science.gov (United States)

    Wang, Qian; Liao, Xianya; Xu, Wenqian; Ren, Yang; Livi, Kenneth J; Zhu, Mengqiang

    2016-10-17

    Layered manganese (Mn) oxides, such as birnessite, are versatile materials in industrial applications and common minerals mediating elemental cycling in natural environment. Many of birnessite properties are controlled by Mn(III) concentration and particle sizes. Thus, it is important to synthesize birnessite nanoparticles with controlled Mn(III) concentrations and sizes so that one can tune its properties for many applications. Birnessite was synthesized in the presence of oxyanions (phosphate, silicate, or sulfate) during reductive precipitation of KMnO 4 by HCl and characterized using multiple synchrotron X-ray techniques, electron microscopy, and diffuse reflectance UV-vis spectroscopy. Results indicate that all three anions decrease MnO 6 sheet sizes, attributed to oxyanion adsorption on edges of the sheets, inhibiting their lateral growth. As a result of decreased sizes, sheets undergo significant structural contraction. Meanwhile, Mn(III) concentration significantly increases with increasing oxyanion/Mn ratio. The increased Mn(III) concentration, along with the decreased size, enlarges both direct and indirect band gaps of birnessite. Phosphate imposes the strongest influence, followed by silicate and then by sulfate, consistent with their decreasing adsorption affinity. Reacting with 1 M KOH solution effectively removed the adsorbed oxyanions while leading to increased sheet sizes, probably due to oriented attachment-driven particle growth mechanisms. The results have important implications for developing highly performed birnessite materials, for example, small size Mn(III)-rich birnessite for photochemical and catalytic applications, as well as for understanding chemical compositional variations of naturally occurring birnessite.

  12. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.

    Science.gov (United States)

    Branny, P; de la Torre, F; Garel, J R

    1998-04-01

    The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.

  13. Conversion of pregnenolone 16-3H and progesterone-4-14C to radioactive testosterone by the 18-day embryonic mouse testis

    International Nuclear Information System (INIS)

    Pointis, Georges; Lombard, M.-N.; Guichard, Arlette; Cedard, Lise

    1975-01-01

    Fetal mice testes convert pregnenolone-16- 3 H and progesterone-4- 14 C to testosterone in organ culture. The 3 H/ 14 C ratio in progesterone and testosterone fractions isolated from culture media suggests the importance of the Δ 5- 3β hydroxysteroid pathway in the experimental conditions. LH decreases radioactive testosterone production and increases the activity of the Δ 4 -3-ketosteroid pathway [fr

  14. A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by the diffusive gradients in a thin film technique

    DEFF Research Database (Denmark)

    Shiva, Amir Houshang; Teasdale, Peter R.; Bennett, William W.

    2015-01-01

    A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell...... concentrations required with the Dcell measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all DDGT measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL...

  15. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  16. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    Science.gov (United States)

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  17. TAL effectors target the C-terminal domain of RNA polymerase II (CTD by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin.

    Directory of Open Access Journals (Sweden)

    Mariane Noronha Domingues

    Full Text Available Transcriptional activator-like (TAL effectors of plant pathogenic bacteria function as transcription factors in plant cells. However, how TAL effectors control transcription in the host is presently unknown. Previously, we showed that TAL effectors of the citrus canker pathogen Xanthomonas citri, named PthAs, targeted the citrus protein complex comprising the thioredoxin CsTdx, ubiquitin-conjugating enzymes CsUev/Ubc13 and cyclophilin CsCyp. Here we show that CsCyp complements the function of Cpr1 and Ess1, two yeast cyclophilins that regulate transcription by the isomerization of proline residues of the regulatory C-terminal domain (CTD of RNA polymerase II. We also demonstrate that CsCyp, CsTdx, CsUev and four PthA variants interact with the citrus CTD and that CsCyp co-immunoprecipitate with the CTD in citrus cell extracts and with PthA2 transiently expressed in sweet orange epicotyls. The interactions of CsCyp with the CTD and PthA2 were inhibited by cyclosporin A (CsA, a cyclophilin inhibitor. Moreover, we present evidence that PthA2 inhibits the peptidyl-prolyl cis-trans isomerase (PPIase activity of CsCyp in a similar fashion as CsA, and that silencing of CsCyp, as well as treatments with CsA, enhance canker lesions in X. citri-infected leaves. Given that CsCyp appears to function as a negative regulator of cell growth and that Ess1 negatively regulates transcription elongation in yeast, we propose that PthAs activate host transcription by inhibiting the PPIase activity of CsCyp on the CTD.

  18. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs.

    Science.gov (United States)

    Eltahan, Rana; Guo, Fengguang; Zhang, Haili; Xiang, Lixin; Zhu, Guan

    2018-04-01

    Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (K m  = 0.309 mM, V max  = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC 50  = 8.33 μM; K i  = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC 50  = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC 50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Demonstration of glycosomes (microbodies) in the Bodonid flagellate Trypanoplasma borelli (Protozoa, Kinetoplastida)

    NARCIS (Netherlands)

    Opperdoes, Fred R.; Nohynkova, Eva; Schaftingen, Emile Van; Lambeir, Anne-Marie; Veenhuis, Marten; Roy, Joris Van

    1988-01-01

    Homogenates of Trypanoplasma borelli were subjected to subcellular fractionation by sequential differential and isopycnic centrifugation in sucrose. Glycerol-3-phosphate dehydrogenase and the glycolytic enzymes, glucosephosphate isomerase and triosephosphate isomerase, as well as the peroxisomal

  20. Structural analysis of substrate recognition by glucose isomerase in Mn2+ binding mode at M2 site in S. rubiginosus.

    Science.gov (United States)

    Bae, Ji-Eun; Hwang, Kwang Yeon; Nam, Ki Hyun

    2018-06-16

    Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn 2+ , but not in the presence of Mg 2+ . Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn 2+ at the M2 site. Glucose and Mn 2+ at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn 2+ binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition. Copyright © 2018. Published by Elsevier Inc.

  1. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  2. 21 CFR 862.1430 - 17-Ketosteroids test system.

    Science.gov (United States)

    2010-04-01

    ... treatment of disorders of the adrenal cortex and gonads and of other endocrine disorders, including hypertension, diabetes, and hypothyroidism. (b) Classification. Class I (general controls). The device is...

  3. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  4. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L. genome

    Directory of Open Access Journals (Sweden)

    Łucja ePrzysiecka

    2015-04-01

    Full Text Available Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI, a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL, and fatty acid-binding (FAP proteins. Here, two Lupinus angustifolius (narrow-leafed lupin CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1 main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis

  6. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes

    International Nuclear Information System (INIS)

    Sjoestedt, Carin; Waellstedt, Teresia; Gustafsson, Jon Petter; Borg, Hans

    2009-01-01

    The possible existence of the potentially toxic oxyanions of Al (Al(OH) 4 - ), As (HAsO 4 2- ), and Mo (MoO 4 2- ) was examined in excessively limed lakes. In-situ dialysis (MWCO 1 kDa) was performed in the surface and bottom waters of two excessively limed lakes (pH 7.1-7.7) and one acidic lake (pH ∼ 5.4). The dialysable metal concentrations were compared to the equilibrium distribution of species as calculated with the geochemical code Visual MINTEQ incorporating the CD-MUSIC and Stockholm Humic models for complexation onto colloidal ferrihydrite and dissolved organic matter. Arsenic and molybdenum in the excessively limed lakes were to a large extent present in the dialysable fraction (> 79% and > 92% respectively). They were calculated to exist as free or adsorbed oxyanions. Most of the Al was observed to reside in the colloidal fraction (51-82%). In agreement with this, model predictions indicated aluminium to be present mostly as colloids or bound to dissolved organic matter. Only a small fraction was modelled as Al(OH) 4 - ions. In most cases, modelled values were in agreement with the dialysis results. The free concentrations of the three oxyanions were mostly low compared to toxic levels.

  7. Immobilized Trienzymatic System with Enhanced Stabilization for the Biotransformation of Lactose

    Directory of Open Access Journals (Sweden)

    Pedro Torres

    2017-02-01

    Full Text Available The use of ketohexose isomerases is a powerful tool in lactose whey processing, but these enzymes can be very sensitive and expensive. Development of immobilized/stabilized biocatalysts could be a further option to improve the process. In this work, β-galactosidase from Bacillus circulans, l-arabinose (d-galactose isomerase from Enterococcus faecium, and d-xylose (d-glucose isomerase from Streptomyces rubiginosus were immobilized individually onto Eupergit C and Eupergit C 250 L. Immobilized activity yields were over 90% in all cases. With the purpose of increasing thermostability of derivatives, two post-immobilization treatments were performed: alkaline incubation to favor the formation of additional covalent linkages, and blocking of excess oxirane groups by reacting with glycine. The greatest thermostability was achieved when alkaline incubation was carried out for 24 h, producing l-arabinose isomerase-Eupergit C derivatives with a half-life of 379 h and d-xylose isomerase-Eupergit C derivatives with a half-life of 554 h at 50 °C. Preliminary assays using immobilized and stabilized biocatalysts sequentially to biotransform lactose at pH 7.0 and 50 °C demonstrated improved performances as compared with soluble enzymes. Further improvements in ketohexose productivities were achieved when the three single-immobilizates were incubated simultaneously with lactose in a mono-reactor system.

  8. Spectroscopic and computational studies of cobalamin species with variable lower axial ligation: implications for the mechanism of Co-C bond activation by class I cobalamin-dependent isomerases.

    Science.gov (United States)

    Conrad, Karen S; Jordan, Christopher D; Brown, Kenneth L; Brunold, Thomas C

    2015-04-20

    5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) serves as the cofactor for several enzymes that play important roles in fermentation and catabolism. All of these enzymes initiate catalysis by promoting homolytic cleavage of the cofactor's Co-C bond in response to substrate binding to their active sites. Despite considerable research efforts, the role of the lower axial ligand in facilitating Co-C bond homolysis remains incompletely understood. In the present study, we characterized several derivatives of AdoCbl and its one-electron reduced form, Co(II)Cbl, by using electronic absorption and magnetic circular dichroism spectroscopies. To complement our experimental data, we performed computations on these species, as well as additional Co(II)Cbl analogues. The geometries of all species investigated were optimized using a quantum mechanics/molecular mechanics method, and the optimized geometries were used to compute absorption spectra with time-dependent density functional theory. Collectively, our results indicate that a reduction in the basicity of the lower axial ligand causes changes to the cofactor's electronic structure in the Co(II) state that replicate the effects seen upon binding of Co(II)Cbl to Class I isomerases, which replace the lower axial dimethylbenzimidazole ligand of AdoCbl with a protein-derived histidine (His) residue. Such a reduction of the basicity of the His ligand in the enzyme active site may be achieved through proton uptake by the catalytic triad of conserved residues, DXHXGXK, during Co-C bond homolysis.

  9. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    Science.gov (United States)

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production.

    Science.gov (United States)

    Mei, Wending; Wang, Lu; Zang, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2016-06-30

    L-arabinose isomerase (AI) is a crucial catalyst for the biotransformation of D-galactose to D-tagatose. In previous reports, AIs from thermophilic bacterial strains had been wildly researched, but the browning reaction and by-products formed at high temperatures restricted their applications. By contrast, AIs from mesophilic Bacillus strains have some different features including lower optimal temperatures and lower requirements of metallic cofactors. These characters will be beneficial to the development of a more energy-efficient and safer production process. However, the relevant data about the kinetics and reaction properties of Bacillus AIs in D-tagatose production are still insufficient. Thus, in order to support further applications of these AIs, a comprehensive characterization of a Bacillus AI is needed. The coding gene (1422 bp) of Bacillus coagulans NL01 AI (BCAI) was cloned and overexpressed in the Escherichia coli BL21 (DE3) strain. The enzymatic property test showed that the optimal temperature and pH of BCAI were 60 °C and 7.5 respectively. The raw purified BCAI originally showed high activity in absence of outsourcing metallic ions and its thermostability did not change in a low concentration (0.5 mM) of Mn(2+) at temperatures from 70 °C to 90 °C. Besides these, the catalytic efficiencies (k cat/K m) for L-arabinose and D-galactose were 8.7 mM(-1) min(-1) and 1.0 mM(-1) min(-1) respectively. Under optimal conditions, the recombinant E. coli cell containing BCAI could convert 150 g L(-1) and 250 g L(-1) D-galactose to D-tagatose with attractive conversion rates of 32 % (32 h) and 27 % (48 h). In this study, a novel AI from B. coagulans NL01was cloned, purified and characterized. Compared with other reported AIs, this AI could retain high proportions of activity at a broader range of temperatures and was less dependent on metallic cofactors such as Mn(2+). Its substrate specificity was understood deeply by carrying out molecular

  11. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    Science.gov (United States)

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  12. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  13. The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances

    Science.gov (United States)

    Stüeken, E. E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B. M.; Kah, L. C.; Machel, H. G.; Montañez, I. P.; Poulton, S. W.

    2015-08-01

    The Earth's surface has undergone major transitions in its redox state over the past three billion years, which have affected the mobility and distribution of many elements. Here we use Se isotopic and abundance measurements of marine and non-marine mudrocks to reconstruct the evolution of the biogeochemical Se cycle from ∼3.2 Gyr onwards. The six stable isotopes of Se are predominantly fractionated during redox reactions under suboxic conditions, which makes Se a potentially valuable new tool for identifying intermediate stages from an anoxic to a fully oxygenated world. δ82/78Se shows small fractionations of mostly less than 2‰ throughout Earth's history and all are mass-dependent within error. In the Archean, especially after 2.7 Gyr, we find an isotopic enrichment in marine (+0.37 ± 0.27‰) relative to non-marine samples (-0.28 ± 0.67‰), paired with increasing Se abundances. Student t-tests show that these trends are statistically significant. Although we cannot completely rule out the possibility of volcanic Se addition, these trends may indicate the onset of oxidative weathering on land, followed by non-quantitative reduction of Se oxyanions during fluvial transport. The Paleoproterozoic Great Oxidation Event (GOE) is not reflected in the marine δ82/78Se record. However, we find a major inflection in the secular δ82/78Se trend during the Neoproterozoic, from a Precambrian mean of +0.42 ± 0.45‰ to a Phanerozoic mean of -0.19 ± 0.59‰. This drop probably reflects the oxygenation of the deep ocean at this time, stabilizing Se oxyanions throughout the water column. Since then, reduction of Se oxyanions has likely been restricted to anoxic basins and diagenetic environments in sediments. In light of recent Cr isotope data, it is likely that oxidative weathering before the Neoproterozoic produced Se oxyanions in the intermediate redox state SeIV, whereas the fully oxidized species SeVI became more abundant after the Neoproterozoic rise of

  14. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  16. Interaction of oxyanions with nickel (2) hydroxide

    International Nuclear Information System (INIS)

    Sokolova, M.M.; Vol'khin, V.V.

    1997-01-01

    Relative ability of oxoanions B(3), V(6), Cr(4), Mo(6), S(6), Mn(7), etc and Cl - to be contained in the basic salts by interaction with Ni(OH) 2 is deformined primarily by formation of ion-covalent bonds. The experimental series of oxoanions, characterizing the above property coincides with the calculational series, composed on the basis of notions on the ion-covalent interaction. The anions composition, their position in the structure of the basic salts, participation in formation of hydrogen bonds with OH-groups, contained in the brucite layer structure and H 2 O molecules influence the position of oxoanions in the series

  17. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  18. Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A; Boudko, Sergei P; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R; Rashmir-Raven, Ann M; Nagata, Kazuhiro; Winand, Nena J; Bächinger, Hans Peter

    2012-06-22

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.

  19. Mutation in Cyclophilin B That Causes Hyperelastosis Cutis in American Quarter Horse Does Not Affect Peptidylprolyl cis-trans Isomerase Activity but Shows Altered Cyclophilin B-Protein Interactions and Affects Collagen Folding*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Vranka, Janice A.; Boudko, Sergei P.; Pokidysheva, Elena; Mizuno, Kazunori; Zientek, Keith; Keene, Douglas R.; Rashmir-Raven, Ann M.; Nagata, Kazuhiro; Winand, Nena J.; Bächinger, Hans Peter

    2012-01-01

    The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum. PMID:22556420

  20. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A*

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-01-01

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. PMID:25122773

  1. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    Science.gov (United States)

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    Science.gov (United States)

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  3. Development of a strain of saccharomyces cereviase to utilize hemicellulosic biomass

    International Nuclear Information System (INIS)

    Batt, C.A.

    1991-01-01

    The current status of yeast conversion to utilize pentose sugar is discussed in this paper. The development of processes for the production of ethanol from agricultural wastes provides both a beneficial utilization of the resources presently available and an alternate source of liquid transportation fuel. The efficient conversion of agricultural bio mass is in part dependent on utilization of all the potential sugars, including the pentoses in the hemicellulosic fraction. A number of approaches have been investigated, including the engineering of strain of S. cerevisiae which express a xylose isomerase activity. Despite the apparent lack of success with respect to expressing an active xylose isomerase, a great deal of knowledge has been gained on the metabolism of pentoses by yeast and the genetics, structure/function of the enzyme xylose isomerase. Hopefully this cumulative knowledge base will lead to the design of a xylose isomerase with the appropriate structure to allow it retain activity in S. cerevisiae. This coupled with the elegant efforts in a number of laboratories to develop cellulose utilizing strains of S. cerevisiae might yield a single yeast capable of fermenting all of the major carbon substrates in agricultural to fuel grade ethanol. (Orig./A.B.)

  4. A molecular receptor selective for zwitterionic alanine.

    Science.gov (United States)

    Rubio, Omayra H; Taouil, Rachid; Muñiz, Francisco M; Monleón, Laura M; Simón, Luis; Sanz, Francisca; Morán, Joaquín R

    2017-01-04

    A molecular receptor has been synthesized joining an aza-crown ether with a chiral chromane which mimics the oxyanion hole of the enzymes. With this receptor an apolar host-guest complex with zwitterionic alanine has been achieved through the formation of up to seven H-bonds. This complex allows the extraction of aqueous alanine to a chloroform phase, while other natural amino acids are poorly extracted or are not extracted at all. Due to the chiral nature of the receptor, enantioselective extraction from the aqueous alanine solution to a chloroform phase takes place. X-Ray analysis combined with anisotropic effects, NOE and CD studies revealed the absolute configuration of both strong and weak complexes. Modelling studies also support the proposed structures. The presence of an oxyanion-hole motif in this structure was corroborated by X-ray diffraction studies.

  5. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    Science.gov (United States)

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  6. Materials Biotechnology Symposium Proceedings Held in Natick, Massachusetts on June 23 and 24, 1987

    Science.gov (United States)

    1987-11-05

    21. O.J. Lantaro, New immobilized whole cell glucose isomerase for fructose syrup production, Eng. Foundations Conf., White Haven, PA, Sept. 25-30...1983. 22. Miles Laboratories, Inc., Taka-Sweets- Immobilized glucose isomerase for high fructose syrup production, Elkhart, IN. 203...for poly(L-valine) and poly(L-isoleucine) in water differ markedly from each other, primarily because of the different degrees of hydration of the

  7. Inhibition of the functional interplay between endoplasmic reticulum (ER) oxidoreduclin-1α (Ero1α) and protein-disulfide isomerase (PDI) by the endocrine disruptor bisphenol A.

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-09-26

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b' domain, preventing PDI from binding to unfolded proteins. The b' domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b' domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Atypical protein disulfide isomerases (PDI: Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

    Directory of Open Access Journals (Sweden)

    Benjamin Selles

    Full Text Available Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH, peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors of PDI which contributes to understand why this protein family expanded along evolution.

  9. Pnp gene modification for improved xylose utilization in Zymomonas

    Science.gov (United States)

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  10. Modified low-grade aluminosilicates as efective sorbents of hazardeous axyanions from aqueous systems

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Fuitová, L.; Hercogová, J.; Grygar, Tomáš; Koloušek, D.; Machovič, Vladimír

    2009-01-01

    Roč. 6, č. 2 (2009), s. 193-200 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z30460519 Keywords : toxic oxyanions * adsorption * Fe/Al/Mn modification Subject RIV: DD - Geochemistry Impact factor: 0.275, year: 2009

  11. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins.

    Science.gov (United States)

    Beranič, Nataša; Brožič, Petra; Brus, Boris; Sosič, Izidor; Gobec, Stanislav; Lanišnik Rižner, Tea

    2012-05-01

    The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics.

    Science.gov (United States)

    Roux, Celine; Gresh, Nohad; Perera, Lalith E; Piquemal, Jean-Philip; Salmon, Laurent

    2007-04-15

    Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors < 3%. On the basis of the PMI-5PAH SIBFA energy-minimized structure, we report the first hypothesis of a detailed view of the active site of the zinc PMI complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates. (c) 2007 Wiley Periodicals, Inc.

  13. Transaction Design Specification Medical Exam Databases System (MED) update Transaction

    Science.gov (United States)

    1986-12-01

    8217RECOFD IN 51) 73. CORONARY SFAS1 SITE ;CHAR X(6) IN 7:) 74* CORONARY FLAQUES (RECO D IN 51) 75. CCFONARY PLAOUE 3ITE ,CHAR K(60 IN 74) 76* FCT DIAMETER...KETOSTEROIDS YE HYDROXYCARTICOSTEROIDS YO 24 HR URINE TOTAL VOLUME MA URINE OSMOLALITY MB SERUM OSMOLALITY MC 24HR URINE TOTAL VOLUME ZE SERUM COPPER FBS TO...RHEUMATOID FACTOR PA N P -2 2 ANTINUCLEAR ANTIBODY PB N P -2 2 0 FREE FATTY ACIDS QA 5 9 57 200 MG% SERUM COPPER RA 30 70 130 300 JG% URINE COPPER RBM 10 30 90

  14. Reactivity of ferrihydrite and ferritin in relation to surface structure, size, and nanoparticle formation studied for phosphate and arsenate

    NARCIS (Netherlands)

    Hiemstra, T.; Zhao, Wei

    2016-01-01

    Ferritin (Ftn) is a natural protein that can store metal (hydr)oxide nanoparticles of tunable size in its cavity and bind oxyanions. This quality can be used in water purification by applying nanotechnology. As our study suggests, the adsorption behavior of engineered ferritin strongly resembles

  15. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    So, Keum-Young [Department of Anesthesiology and Pain Medicine College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: seonh@chosun.ac.kr [Department of Premedicine, School of Medicine, College of Dentistry, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-10-23

    Prolyl isomerase Pin1 plays an important role in cell proliferation and is overexpressed in many human tumors. However, its role in autophagy induction remains undefined. Here we show that Pin1 regulates cell survival via autophagy in cadmium (Cd)-exposed oral squamous cell carcinoma (OSCC). OSCC exposure to Cd induced autophagy, as demonstrated by the formation of green fluorescent punctae in transfected cells expressing GFP-conjugated microtubule-associated protein light chain 3 (LC3) and by LC3 flux in the presence of autophagy inhibitors. Suppression of Atg5 enhanced Cd-induced apoptosis, indicating that autophagy is involved in cell protection. In dose–response experiments, cleavage of procaspase-3, PARP-1, and LC3-II was induced by Cd with an IC{sub 50} of 45 μM. Expression of Pin1 was decreased at or above the Cd IC{sub 50} value and was inversely correlated with the level of phospho(p)-Ser-GSK3αβ. Genetic or pharmacologic inhibition of Pin1 suppressed Cd-induced autophagy, but increased p-Akt-mediated p-Ser-GSK3αβ; this was reversed by overexpression of Pin1. However, suppression of GSK3αβ inhibited Cd-induced autophagy and induced apoptosis, which could be reversed by overexpression of GSK3β. The PI3K inhibitor Ly294002 blocked p-Akt-mediated increases in p-Ser-GSK3αβ and autophagy and induced apoptosis. Therefore, p-Ser-GSK3αβ can directly regulate Cd-induced autophagy, although its function is suppressed by Pin1. Collectively, the present results indicate that targeting Pin1 and GSK3αβ at the same time could be an effective therapeutic tool for Cd-induced carcinogenesis. - Highlights: • Pin1 regulated autophagy to protect cells from cadmium toxicity. • Pin1 suppression inhibited cadmium-induced autophagy and induced apoptosis. • Pin1 inhibited the function of p-Ser-GSK3αβ in autophagy regulation. • p-Ser-GSK3αβ regulated autophagy independently of Pin1.

  16. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity

    International Nuclear Information System (INIS)

    So, Keum-Young; Ahn, Sang-Gun; Oh, Seon-Hee

    2015-01-01

    Prolyl isomerase Pin1 plays an important role in cell proliferation and is overexpressed in many human tumors. However, its role in autophagy induction remains undefined. Here we show that Pin1 regulates cell survival via autophagy in cadmium (Cd)-exposed oral squamous cell carcinoma (OSCC). OSCC exposure to Cd induced autophagy, as demonstrated by the formation of green fluorescent punctae in transfected cells expressing GFP-conjugated microtubule-associated protein light chain 3 (LC3) and by LC3 flux in the presence of autophagy inhibitors. Suppression of Atg5 enhanced Cd-induced apoptosis, indicating that autophagy is involved in cell protection. In dose–response experiments, cleavage of procaspase-3, PARP-1, and LC3-II was induced by Cd with an IC_5_0 of 45 μM. Expression of Pin1 was decreased at or above the Cd IC_5_0 value and was inversely correlated with the level of phospho(p)-Ser-GSK3αβ. Genetic or pharmacologic inhibition of Pin1 suppressed Cd-induced autophagy, but increased p-Akt-mediated p-Ser-GSK3αβ; this was reversed by overexpression of Pin1. However, suppression of GSK3αβ inhibited Cd-induced autophagy and induced apoptosis, which could be reversed by overexpression of GSK3β. The PI3K inhibitor Ly294002 blocked p-Akt-mediated increases in p-Ser-GSK3αβ and autophagy and induced apoptosis. Therefore, p-Ser-GSK3αβ can directly regulate Cd-induced autophagy, although its function is suppressed by Pin1. Collectively, the present results indicate that targeting Pin1 and GSK3αβ at the same time could be an effective therapeutic tool for Cd-induced carcinogenesis. - Highlights: • Pin1 regulated autophagy to protect cells from cadmium toxicity. • Pin1 suppression inhibited cadmium-induced autophagy and induced apoptosis. • Pin1 inhibited the function of p-Ser-GSK3αβ in autophagy regulation. • p-Ser-GSK3αβ regulated autophagy independently of Pin1.

  17. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    Science.gov (United States)

    2011-01-01

    Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase

  18. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  19. Development of a Multimarker Urine Test for Prostate Cancer

    Science.gov (United States)

    2017-10-01

    connected to a chemically etched 20 μm i.d. fused-silica emitter via a Valco stainless steel union. Four μL of individual peptide fractions (total...isomerase family A, member 17 (PD1A17 or member 17); or secreted cement gland protein XAG-2 homolog, AGR2 belongs to the protein disulfide 5 isomerase...silica emitter via a Valco stainless steel union. Four microliters of individual peptide fractions (total volume 20 µL) following PRISM were

  20. Hot atom chemistry in oxyanion targets Pt 2

    International Nuclear Information System (INIS)

    Mishra, S.P.; Singh, Jyoti

    1986-01-01

    Fractional precipitation techniques were utilized to separate the lower valent and parent forms of 56 Mn in permanganate targets and an attempt was made to study a few aspects of chemical stabilization of recoil 56 Mn in permanganates. Ammonium permanganate, recoil behaviour of which was not studied previously, is chosen as one of the targets along with the potassium permanganate for initial retention and also for isothermal annealing. 56 Mn initial retentions of about 12% and about 4% are obtained for potassium and ammonium permanganate, respectively, by activation from a Ra-Be neutron source. A usual trend for KMnO 4 and the reduction of recoil fragments by ammonium ions in NH 4 MnO 4 are seen through the isothermal annealing study. (author)

  1. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  2. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  3. Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues† †Electronic supplementary information (ESI) available: Synthesis of TEG–BA, Gluen–BA, mGluen–BA and Gluen–Ph; 1H NMR, 13C NMR, MALDI-TOF MS, electronic absorption, and CD spectra; zeta potential distributions; SLS plots; DLS histograms; and related experimental procedures. See DOI: 10.1039/c5sc00524h Click here for additional data file.

    Science.gov (United States)

    Mogaki, Rina

    2015-01-01

    Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668

  4. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Maria, E-mail: mariaizq@ija.csic.es [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Davidovits, Joseph [Cordi-Geopolymere, Espace Creatis, Z.A. Bois de la Chocque 02100 Saint-Quentin (France); Antenucci, Diano [Institut Scientifique de Service Public (ISSeP) 200, rue du Chera, B-4000 Liege (Belgium); Nugteren, Henk [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Particle Technology Group, Julianalaan 136, 2628 BL Delft (Netherlands); Fernandez-Pereira, Constantino [University of Seville, School of Industrial Engineering, Department of Chemical and Environmental Engineering, Camino de los Descubrimientos s/n, 41092 Seville (Spain)

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  5. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    International Nuclear Information System (INIS)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernandez-Pereira, Constantino

    2009-01-01

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  6. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate

  7. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome.

    Science.gov (United States)

    Noda-García, Lianet; Juárez-Vázquez, Ana L; Ávila-Arcos, María C; Verduzco-Castro, Ernesto A; Montero-Morán, Gabriela; Gaytán, Paul; Carrillo-Tripp, Mauricio; Barona-Gómez, Francisco

    2015-06-10

    Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2

  8. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  9. Speciation of arsenic and selenium during leaching of fly ash

    NARCIS (Netherlands)

    Hoek, E.E. van der

    1995-01-01

    The leaching (release) of large amounts of oxyanions, such as those of arsenic and selenium, is an major environmental problem when it comes to the disposal or use of coal fly ash. To predict environmentally safe conditions for the disposal or use of fly ash in, for example,

  10. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2?) and tungstate (WO4 2?). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across

  11. Determination of Abundance of Tellurite-Resistant Bacteria and the Ability of Remove of them from Qom Province Industrial Wastewater, Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mahboubeh Soleimani Sasani

    2013-02-01

    Full Text Available Background and Objectives: Accumulation of toxic oxyanion of potassium tellurite, which has increased in the environment due to industrial activities, can cause complications in human, such as skin irritation, dermatitis, anorexia, tremor, nausea, vomiting, nervous system stimulation, convulsion, and respiratory arrest. The purpose of this research was to isolate tellurite-resistant bacteria, determine the minimum inhibitory concentration (MIC, and evaluate bioreduction of tellurite in strains.Methods: MIC was measured by agar dilution method in 84 resistant strains isolated from wastewater. QWTm6 strain with tolerance of tellurite concentration of 6684μg/ml was selected as superior strain. Toleration of this level of tellurite has not been reported yet. Results: According to biochemical, phenotypic, and physiological characteristics, QWTm6 was initially classified into Staphylococcus genus. Using the spectrophotometric technique and DDTC reagent (A340nm & sodium diethyldithiocarbamate trihydrate, maximum elimination was seen in 0.4mM concentration of potassium tellurite in 24 hours. The strain showed high ability in the elimination of toxic oxyanion of potassium tellurite under a wide range of factors such as pH=(5-11, temperature (15-50◦C, blender speed (50, 100, 150, and 200rpm, various oxyanion concentrations (0.04-1mM, and different percentages of NaCl (0-20%. This strain was also resistant to penicillin, cefixime, tetracycline, chloramphenicol, streptomycin, neomycin, erythromycin, gentamicin, kanamycin, norfloxacin, and ciprofloxacin.Conclusion: The results of this study showed that QWTm6 could be introduced in the international societies as an acceptable candidate for bioremediation, because of its high ability in removal and reduction of potassium tellurite.

  12. The nairovirus nairobi sheep disease virus/ganjam virus induces the translocation of protein disulphide isomerase-like oxidoreductases from the endoplasmic reticulum to the cell surface and the extracellular space.

    Science.gov (United States)

    Lasecka, Lidia; Baron, Michael D

    2014-01-01

    Nairobi sheep disease virus (NSDV) of the genus Nairovirus causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%; the virus is found in East and Central Africa, and in India, where the virus is called Ganjam virus. NSDV is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus, which also causes a haemorrhagic disease. As with other nairoviruses, replication of NSDV takes place in the cytoplasm and the new virus particles bud into the Golgi apparatus; however, the effect of viral replication on cellular compartments has not been studied extensively. We have found that the overall structure of the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment and the Golgi were unaffected by infection with NSDV. However, we observed that NSDV infection led to the loss of protein disulphide isomerase (PDI), an oxidoreductase present in the lumen of the endoplasmic reticulum (ER) and which assists during protein folding, from the ER. Further investigation showed that NSDV-infected cells have high levels of PDI at their surface, and PDI is also secreted into the culture medium of infected cells. Another chaperone from the PDI family, ERp57, was found to be similarly affected. Analysis of infected cells and expression of individual viral glycoproteins indicated that the NSDV PreGn glycoprotein is involved in redistribution of these soluble ER oxidoreductases. It has been suggested that extracellular PDI can activate integrins and tissue factor, which are involved respectively in pro-inflammatory responses and disseminated intravascular coagulation, both of which manifest in many viral haemorrhagic fevers. The discovery of enhanced PDI secretion from NSDV-infected cells may be an important finding for understanding the mechanisms underlying the pathogenicity of haemorrhagic nairoviruses.

  13. The nairovirus nairobi sheep disease virus/ganjam virus induces the translocation of protein disulphide isomerase-like oxidoreductases from the endoplasmic reticulum to the cell surface and the extracellular space.

    Directory of Open Access Journals (Sweden)

    Lidia Lasecka

    Full Text Available Nairobi sheep disease virus (NSDV of the genus Nairovirus causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%; the virus is found in East and Central Africa, and in India, where the virus is called Ganjam virus. NSDV is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus, which also causes a haemorrhagic disease. As with other nairoviruses, replication of NSDV takes place in the cytoplasm and the new virus particles bud into the Golgi apparatus; however, the effect of viral replication on cellular compartments has not been studied extensively. We have found that the overall structure of the endoplasmic reticulum (ER, the ER-Golgi intermediate compartment and the Golgi were unaffected by infection with NSDV. However, we observed that NSDV infection led to the loss of protein disulphide isomerase (PDI, an oxidoreductase present in the lumen of the endoplasmic reticulum (ER and which assists during protein folding, from the ER. Further investigation showed that NSDV-infected cells have high levels of PDI at their surface, and PDI is also secreted into the culture medium of infected cells. Another chaperone from the PDI family, ERp57, was found to be similarly affected. Analysis of infected cells and expression of individual viral glycoproteins indicated that the NSDV PreGn glycoprotein is involved in redistribution of these soluble ER oxidoreductases. It has been suggested that extracellular PDI can activate integrins and tissue factor, which are involved respectively in pro-inflammatory responses and disseminated intravascular coagulation, both of which manifest in many viral haemorrhagic fevers. The discovery of enhanced PDI secretion from NSDV-infected cells may be an important finding for understanding the mechanisms underlying the pathogenicity of haemorrhagic nairoviruses.

  14. Geology and lithogeochemistry of hydrothermal mudstones from the upper block near the Duck Pond volcanogenic massive sulfide (VMS) deposit, Newfoundland, Canada: evidence for low-temperature venting into oxygenated mid-Cambrian seawater

    Science.gov (United States)

    Piercey, Stephen J.; Squires, Gerry; Brace, Terry

    2018-02-01

    Pyrite- and pyrrhotite-rich mudstones are spatially associated with Cambrian ( 512-509 Ma) volcanogenic massive sulfide (VMS) deposits throughout the Tally Pond group, central Newfoundland, Canada. At the Duck Pond mine, sulfide-rich mudstones are hosted within a weakly mineralized upper block that structurally overlies the deposit but is older ( 513 versus 509 Ma). The mudstones are laminated, 10-30-cm thick, and pyrite- and pyrrhotite-rich and occur along pillow lava selvages, or in between pillow lavas, rhyolite flows, and volcaniclastic rocks. The mudstones are laterally extensive and proximal to the mudstone host rocks are hydrothermally altered to epidote-quartz-chlorite (basalt host) and sericite-quartz (rhyolite host). Lithogeochemical data for the sulfide-rich mudstones reflect the varying contributions of elements from sedimentary detritus, hydrothermal discharge, and hydrogenous scavenging from middle Cambrian seawater. The mudstones have minor detrital element abundances and significant hydrothermal element enrichments (i.e., elevated Fe2O3, S, Pb, Zn, Cu, and Ba concentrations, high Fe/Al ratios). The hydrothermal mudstones are also enriched in oxyanions (i.e., P2O5, U, V, Cr, Ni, Co, and Hg), interpreted to have been enriched via oxidative scavenging from seawater by Fe-oxide/oxyhydroxide particles. The mudstones also have REE-Y signatures similar to modern oxygenated seawater with high Y/Ho and negative Ce anomalies (Ce/Ce* = 0.40-0.86; average = 0.58), which correlate with adsorbed oxyanion concentrations. The low Eu/Eu* (1.02-1.86; average = 1.22) in the mudstones suggest that they were deposited from low-temperature (residence time to scavenge oxyanions from seawater and inherit a middle Cambrian seawater signature. The predominant seawater REE-Y-oxyanion signature in the Duck Pond upper block sulfide-rich mudstones suggests that they are distal hydrothermal sedimentary rocks that could have formed up to 10 km from their original vent sources

  15. Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... Fischer et al. (2006) confirmed that this class consists of. 4 superfamilies with known protein structures, where the oxyanion hole-forming residue is located in a well con- served GGG pattern, which is followed by a conserved hydrophobic amino acid X. From sequence alignment and structure superposition ...

  16. The effect of a moderate zinc deficiency and dietary fat source on the activity and expression of the Δ(3)Δ (2)-enoyl-CoA isomerase in the liver of growing rats.

    Science.gov (United States)

    Justus, Jennifer; Weigand, Edgar

    2014-06-01

    Auxiliary enzymes participate in β-oxidation of unsaturated fatty acids. The objective of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on Δ(3)Δ(2)-enoyl-CoA isomerase (ECI) in the liver and other tissues. Five groups of eight weanling rats each were fed moderately zinc-deficient (ZD) or zinc-adequate (ZA) semisynthetic diets (7 or 50 mg Zn/kg) enriched with 22 % cocoa butter (CB) or 22 % safflower oil (SO) for 4 weeks: (1) ZD-CB, fed free choice; (2) ZA-CBR, ZA-CB diet fed in equivalent amounts consumed by the ZD-CB group; (3) ZD-SO, fed free choice; (4) ZA-SOR, ZA-SO diet fed in equivalent amounts consumed by the ZD-SO group; and (5) ZA-SO, fed free choice. Growth and Zn status markers were markedly reduced in the ZD groups. ECI activity in the liver of the animals fed the ZD- and ZA-SO diets were significantly higher (approximately 2- and 3-fold, respectively) as compared with the CB-fed animals, whereas activities in extrahepatic tissues (kidneys, heart, skeletal muscle, testes, adipose tissue) were not altered by dietary treatments. Transcript levels of the mitochondrial Eci gene in the liver did not significantly differ between ZD and ZA rats, but were 1.6-fold higher in the ZA-SO- than in the ZD-CB-fed animals (P safflower oil as a source high in linoleic acid induce markedly increased hepatic ECI activities and that a moderate Zn deficiency does not affect transcription of the mitochondrial Eci gene in the liver.

  17. Structure and properties of vanadium(V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb{sup 2+} from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hui; Feng, Xionghan; Tan, Wenfeng [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Koopal, Luuk K. [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen (Netherlands); Hu, Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Zhu, Mengqiang, E-mail: mzhu6@uwyo.edu [Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071 (United States); Liu, Fan, E-mail: liufan@mail.hzau.edu.cn [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2015-05-15

    Highlights: • V was coprecipitated with birnessite at a series of V/Mn molar ratios. • V-doped birnessites have greatly reduced particle sizes and increased SSAs. • V exists as V(V) oxyanions, including [V{sub 6}O{sub 16}] and [VO{sub 4}], on birnessite surfaces. • Scavenging of Pb{sup 2+} by these V-doped birnessites is greatly enhanced. - Abstract: Vanadium(V)-doped hexagonal turbostratic birnessites were synthesized and characterized by multiple techniques and were used to remove Pb{sup 2+} from aqueous solutions. With increasing V content, the V(V)-doped birnessites have significantly decreased crystallinity, i.e., the thickness of crystals in the c axis decreases from 9.8 nm to ∼0.7 nm, and the amount of vacancies slightly increases from 0.063 to 0.089. The specific surface areas of these samples increase after doping while the Mn average oxidation sates are almost constant. V has a valence of +5 and tetrahedral symmetry, and exists as oxyanions, including V{sub 6}O{sub 16}{sup 2−}, and VO{sub 4}{sup 3−} on birnessite edge sites by forming monodentate corning-sharing complexes. Pb L{sub III}-edge extended X-ray absorption fine structure (EXAFS) spectra analysis shows that, at low V contents (V/Mn ≤ 0.07) Pb{sup 2+} mainly binds with birnessite on octahedral vacancy and especially edge sites whereas at higher V contents (V/Mn > 0.07) more Pb{sup 2+} associates with V oxyanions and form vanadinite [Pb{sub 5}(VO{sub 4}){sub 3}Cl]-like precipitates. With increasing V(V) content, the Pb{sup 2+} binding affinity on the V-doped birnessites significantly increases, ascribing to both the formation of the vanadinite precipitates and decreased particle sizes of birnessite. These results are useful to design environmentally benign materials for treatment of metal-polluted water.

  18. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.

    Science.gov (United States)

    Johansson, Charlotte L; Paul, Nicholas A; de Nys, Rocky; Roberts, David A

    2016-01-01

    Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    Science.gov (United States)

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  20. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons.

    Science.gov (United States)

    Galán, Beatriz; Uhía, Iria; García-Fernández, Esther; Martínez, Igor; Bahíllo, Esther; de la Fuente, Juan L; Barredo, José L; Fernández-Cabezón, Lorena; García, José L

    2017-01-01

    A number of pharmaceutical steroid synthons are currently produced through the microbial side-chain cleavage of natural sterols as an alternative to multi-step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc 2 155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc 2 155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3-ketosteroid 9α-hydroxylase (KshAB) and a ketosteroid Δ 1 -dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4-androstadiene-3,17-dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039-5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4-androstene-3,17-dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc 2 155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. 1H, 13C and 15N backbone resonance assignment of the arsenate reductase from Staphylococcus aureus in its reduced state

    NARCIS (Netherlands)

    Jacobs, D.M.; Messens, J.; Wechselberger, R.W.|info:eu-repo/dai/nl/304829005; Brosens, E.; Willem, R.; Wyns, L.; Martins, J.C.

    2001-01-01

    In S. aureus, resistance to the metal(III)oxyanions arsenite As(III)O− 2 and antimonite Sb(III)O− 2 is mediated by two proteins, ArsB and ArsR, encoded in the ars operon of plasmid pI258 (Silver, 1999). ArsR acts as the transcription repressor, which is de-repressed in the presence of intracellular

  2. Transport of radioselenium oxyanions by diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, David; Rigol, Anna; Vidal, Miquel [Barcelona Univ. (Spain). Dept. de Quimica Analitica; Garcia-Gutierrez, Miguel [CIEMAT, Dept. de Medioambiente, Madrid (Spain); Abrao, Taufik [State University of Londrina (UEL) (Brazil). Dept. of Electrical Engineering (DEEL)

    2015-07-01

    There is a lack of data on the diffusion of long-lived radionuclides in soils, especially of those originated from the leaching of radioactive waste in waste disposal facilities. Here, the simultaneous diffusion of two radioselenium species, which were postulated to be radioselenite and radioselenate, was examined for the first time in four soils at laboratory level by applying the planar-source method. The Gaussian-shaped experimental diffusion profile was deconvoluted into two Gaussian functions, and then the apparent diffusion coefficients (D{sub a}) were quantified for each species. Radioselenate D{sub a} values ranged from 1.4 x 10{sup -11} to 1.5 x 10{sup -10} m{sup 2}s{sup -1}, while those of radioselenite were two orders of magnitude lower (from 5.2 x 10{sup -13} to 2.7 x 10{sup -12} m{sup 2}s{sup -1}) for all samples and conditions tested. The radioselenite distribution coefficient values derived from D{sub a} correlated to soil properties, such as pH and Al/Fe mineral content, and thus were consistent with the factors controlling the sorption of selenium species in soils.

  3. Urinary steroid hormone patterns: III. Effect of continuous daily administration of low dose megestrol acetate.

    Science.gov (United States)

    Kumari, G L; Roy, S; Allag, I S; Ghosal, J

    1975-12-01

    The effect of megestrol acetate, administered in daily doses of .5 mg, on urinary steroid levels was studied before, during, and after therapy in 4 women volunteers. In each case, pregnanediol levels were reduced, though ovulatory biphasic patterns, as reflected in basal body temperature patterns, were apparent in the majority of the cycles, which suggests that corpus luteum function, but not ovulation, was impaired. 17-ketosteroid levels were significantly (p less than .001) increased either during or after treatment, while 17-hydroxycorticoid levels were reduced in 3 of the women. 2 subjects showed a marked reduction in levels of 17-ketogenic steroids and corticoid levels. Total estrogen levels seemed to correlate with the levels of corticoid excretion.

  4. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations

    Science.gov (United States)

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-01-01

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. PMID:24569166

  5. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations.

    Science.gov (United States)

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-07-15

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia-ectrodactyly-cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1-ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. © The Author 2014. Published by Oxford University Press.

  6. ORF Alignment: NC_005090 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... PEPTIDYL-PROLYL ISOMERASE [Wolinella succinogenes] ... Length = 147 ... Query: 29 ... VVVLETTSGTIELTLFPKAAPKAVENFTTH...VKNGYYDGLIFHRVIKRFMLQXXXXXXXXX 88 ... VVVLETTSGTIELTLFPKAAPKAVENFTTH...VKNGYYDGLIFHRVIKRFMLQ ... Sbjct: 1 ... VVVLETTSGTIELTLFPKAAPKAVENFTTHVKNGYYDGLIFHRVIKRFMLQGGDP

  7. Glycogen metabolism in the liver of Indian desert gerbils (Meriones hurrianae, Jerdon) exposed to internal beta irradiation

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1996-01-01

    Glycogen content and the activities of phosphorylase, glycogen synthetase, phosphohexose isomerase, glucose-6-phosphatase, succinate dehydrogenase, alanine and aspartate aminotransferases have been biochemically determined in the liver of Indian desert gerbils following radiocalcium internal irradiation. Decline in glycogen, phosphohexose isomerase, with a concomitant increase in phosphorylase, succinate dehydrogenase reveals a switch over from glycolytic to oxidative metabolism in liver. Activities of aminotransferases indicate the utilization of transamination products of alanine and aspartate in oxidative pathway during early periods. Transiently increased glucose-6-phosphatase seems to restrict glycogenolytic and glycolytic metabolism and thereby pave way for the acceleration of oxidative metabolism. (author). 52 refs., 2 tabs

  8. Single zymomonas mobilis strain for xylose and arabinose fermentation

    Science.gov (United States)

    Zhang, Min; Chou, Yat-Chen; Picataggio, Stephen K.; Finkelstein, Mark

    1998-01-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol.

  9. Arsenic in groundwater: a summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility

    Science.gov (United States)

    Barringer, Julia L.; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Arsenic (As) is a metalloid element (atomic number 33) with one naturally occurring isotope of atomic mass 75, and four oxidation states (-3, 0, +3, and +5) (Smedley and Kinniburgh, 2002). In the aqueous environment, the +3 and +5 oxidation states are most prevalent, as the oxyanions arsenite (H3AsO3 or H2AsO3- at pH ~9-11) and arsenate (H2AsO4- and HAsO42- at pH ~4-10) (Smedley and Kinniburgh, 2002). In soils, arsine gases (containing As3-) may be generated by fungi and other organisms (Woolson, 1977). The different forms of As have different toxicities, with arsine gas being the most toxic form. Of the inorganic oxyanions, arsenite is considered more toxic than arsenate, and the organic (methylated) arsenic forms are considered least toxic (for a detailed discussion of toxicity issues, the reader is referred to Mandal and Suzuki (2002)). Arsenic is a global health concern due to its toxicity and the fact that it occurs at unhealthful levels in water supplies, particularly groundwater, in more than 70 countries (Ravenscroft et al., 2009) on six continents.

  10. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata; Gerda, Vasyl; Chubar, Natalia

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  11. Atmospheric Pressure Photoionization Tandem Mass Spectrometry of Androgens in Prostate Cancer

    Science.gov (United States)

    Lih, Fred Bjørn; Titus, Mark A.; Mohler, James L.; Tomer, Kenneth B.

    2010-01-01

    Androgen deprivation therapy is the most common treatment option for advanced prostate cancer. Almost all prostate cancers recur during androgen deprivation therapy, and new evidence suggests that androgen receptor activation persists despite castrate levels of circulating androgens. Quantitation of tissue levels of androgens is critical to understanding the mechanism of recurrence of prostate cancer during androgen deprivation therapy. A liquid chromatography atmospheric pressure photoionization tandem mass spectrometric method was developed for quantitation of tissue levels of androgens. Quantitation of the saturated keto-steroids dihydrotestosterone and 5-α-androstanedione required detection of a novel parent ion, [M + 15]+. The nature of this parent ion was explored and the method applied to prostate tissue and cell culture with comparison to results achieved using electrospray ionization. PMID:20560527

  12. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  13. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes.

    Science.gov (United States)

    Pyott, Shawna M; Schwarze, Ulrike; Christiansen, Helena E; Pepin, Melanie G; Leistritz, Dru F; Dineen, Richard; Harris, Catharine; Burton, Barbara K; Angle, Brad; Kim, Katherine; Sussman, Michael D; Weis, Maryann; Eyre, David R; Russell, David W; McCarthy, Kevin J; Steiner, Robert D; Byers, Peter H

    2011-04-15

    Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis-trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin B (CYPB; encoded by PPIB), which reside in the rough endoplasmic reticulum (RER) and can form a complex involved in prolyl 3-hydroxylation in type I procollagen. CYPB, a prolyl cis-trans isomerase, has been thought to drive the prolyl-containing peptide bonds to the trans configuration needed for triple helix formation. Here, we describe mutations in PPIB identified in cells from three individuals with OI. Cultured dermal fibroblasts from the most severely affected infant make some overmodified type I procollagen molecules. Proα1(I) chains are slow to assemble into trimers, and abnormal procollagen molecules concentrate in the RER, and bind to protein disulfide isomerase (PDI) and prolyl 4-hydroxylase 1 (P4H1). These findings suggest that although CYPB plays a role in helix formation another effect is on folding of the C-terminal propeptide and trimer formation. The extent of procollagen accumulation and PDI/P4H1 binding differs among cells with mutations in PPIB, CRTAP and LEPRE1 with the greatest amount in PPIB-deficient cells and the least in LEPRE1-deficient cells. These findings suggest that prolyl cis-trans isomerase may be required to effectively fold the proline-rich regions of the C-terminal propeptide to allow proα chain association and suggest an order of action for CRTAP, P3H1 and CYPB in procollagen biosynthesis and pathogenesis of OI.

  14. Effect of combined gamma-irradiation and storage on biochemical changes in sweet potato

    International Nuclear Information System (INIS)

    Ajlouni, S.; Hamdy, M.K.

    1988-01-01

    Sucrose of uncured Red Jewel sweet potato increased from 3.8% to 10.7% after a combined treatment of a 300 Krad dose ( 60 Co) and 4 days storage at 24 0 C post-irradiation (PI). Starch decreased from 16.8% to 6.1% after 16 days following a 500 Krad treatment. Phosphorylase, phosphoglucomutase and sucrose phosphate synthase enzyme specific activities increase 2.4-, 1.8- and 1.3-fold, respectively, after 3 days PI following 200 Krad exposures compared to nonirradiated roots. The beta-Amylase, phosphoglucose isomerase and sucrose synthase specific activities increased 1.2-fold. Sucrose synthesis in the irradiated sweet potato was attributed to beta-amylase, phosphorylase, phosphoglucomutase, phosphoglucose isomerase and sucrose synthase

  15. Short and long-term effects of internal irradiation on the murine hepatic glycogen and its metabolizing enzymes

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1990-01-01

    Glycogen content and the activities of phosphorylase, phosphorhexose isomerase, glucose 6-phosphatase, glycogen synthesis' phosphorylase and succinate dehydrogenase have been biochemically determined in the liver of Swiss albino mice after radiocalcium internal irradiation up to 225 days posttreatment. Increase in the glycogen content and glycogen synthesis phosphorylase with a concomitant decrease in the activities of phosphorylase, glucose 6-phosphatase, phosphohexose isomerase and succinate dehydrogenase reveals inhibited glycolysis in the presence of normal glyogenesis and inhibited Kreb's cycle in the liver during early intervals. Decrease in the glycogen content at later stages along with decrease in the activities of all these enzymes is probably because of an inhibited glycogen biosynthesis and its catabolism through HMP shunt. (orig.)

  16. Production of fructose-containing syrup with enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Helwiig-Nielsen, B

    1981-01-01

    A review on enzymic processes used for production of fructose- high syrup from starch including liquefaction by alpha-amylase, saccharification by amyloglucosidase, and isomerization with glucose isomerase.

  17. Main: 1QRR [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available Molecule: Sulfolipid Biosynthesis (Sqd1) Protein; Chain: A; Engineered: Yes Isomerase A.M.Mulichak, M.J.Thei...IASIHDRISRWKALTGKSIELYVGDICDFEFLAESFKSFEPDSVVHFGEQRSAPYSMIDRSRAVYTQHNNVIGTLNVLFAIKEFGEECHLVKLGTMGEYGTPNIDIEE...LNRFCVQAAVGHPLTVYGKGGQTRGYLDIRDTVQCVEIAIANPAKAGEFRVFNQFTEQFSVNELASLVTKAGSKLGLDVKKMTVPNPRVEAEEHYYNAKHTKLMELGLEPHYLSDSLLDSLLNFAVQFKDRVDTKQIMPSVSWKKIGVKTKSMTT arabi_1QRR.jpg ...

  18. Differential Selectivity of the Escherichia coli Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose▿

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-01-01

    An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746

  19. Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose.

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-04-01

    An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.

  20. Investigation of phase relationships in subsolidus region of Ln2O3-MoO3-B2O3 systems

    International Nuclear Information System (INIS)

    Lysanova, C.V.; Dzhurinskij, B.F.; Komova, M.G.; Tananaev, I.V.

    1983-01-01

    Phase formation in subsolidus region of Ln 2 O 3 -MoO 3 B 2 O 3 systems (Ln-La, Nd) is studied. Three compounds with mixed oxyanions-boratomolybdates of LnMoBO 6 composition (Ln-La, Ce, Pr, Nd), Ln 2 MoB 2 O 9 (Ln-La, Ce, Pr, Nd, Sm, EU, Gde Tb) Ln 6 Mo 3 B 4 0 24 (Ln-Pr, Nd) are revealed and described

  1. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    OpenAIRE

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinester...

  2. Characterizing Isozymes of Chlorite Dismutase for Water Treatment

    OpenAIRE

    Mobilia, Kellen C.; Hutchison, Justin M.; Zilles, Julie L.

    2017-01-01

    This work investigated the potential for biocatalytic degradation of micropollutants, focusing on chlorine oxyanions as model contaminants, by mining biology to identify promising biocatalysts. Existing isozymes of chlorite dismutase (Cld) were characterized with respect to parameters relevant to this high volume, low-value product application: kinetic parameters, resistance to catalytic inactivation, and stability. Maximum reaction velocities (V max) were typically on the order of 104 μmol m...

  3. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Matysek, Dalibor; Raclavsky, Konstantin; Juchelkova, Dagmar [VSB - Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Poruba (Czech Republic)

    2010-02-15

    The application of NEUTREC {sup registered} technology - desulphurisation by means of sodium bicarbonate - has been tested at the Trebovice coal-fired power plant (Ostrava, Czech Republic). This technology significantly influences the chemical composition of fly ash and the leachability of total dissolved substances (TDS), e.g., sulphates, fluorides and oxyanions (Se, Sb, Cr, As), which are monitored according to the Council of the European Union Decision 2003/33/EC. An increase of TDS in the water leachate from the fly ash obtained at 60% desulphurisation was influenced by sodium content, which is present in the form of Na{sup +} ions (85-90%). The percentages of sodium sulphate and sodium carbonate were between 5 and 10% of the total sodium content. In order to decrease the leachability of TDS, sodium, sulphates and oxyanion mixtures were prepared containing a sorbent (60% bentonite) and mixed with desulphurised and non-desulphurised fly ash in various ratios. The addition of CaO resulted in the formation of a new mineral phase, burkeite. None of the applied technologies tested for the processed fly ash resulted in the preparation of a water leachate which complied in all monitored parameters to the requirements of Council Decision 2003/33 EC for nonhazardous wastes. (author)

  4. Androgenic function of the adrenal cortex in external gamma-irradiation

    International Nuclear Information System (INIS)

    Kirkov, N.; Jordanov, J.

    1987-01-01

    Urinary 17-ketosteroid (17-KS) excretion served to evaluate the androgenic function of the adrenal cortex and the gonads of male albino Wistar rats, following single external gamma-irradiation ( 137 Cs) with dose 4 Gy. A three-phase undulant dynamics in 17-KS excretion was established after irradiation at a high level of significance (p<0,001): a fall down to 19% during the first two days; a rise on day 15 up to 185% and a second fall down to 70% on day 25. On day 30 urinary 17-KS excretion returned to normal. The reduced 17-KS excretion during the first two days may be due to blocking of androgenic hormone secretion and excretion, to inhibited excretory renal function and to changes in the liver metabolic function

  5. Effect of combined gamma-irradiation and storage on biochemical changes in sweet potato

    International Nuclear Information System (INIS)

    Ajlouni, S.; Handy, M.K.

    1992-01-01

    Sucrose of uncured red jewel sweet potato increased from 3.8% to 10.7% after a combined treatment of a 300 Krad dose and 4 days storage at 24 C o post-irradiation (PI). Starch decreased from 16.8% to 6.1% after 16 days following a 500 Krad treatment. Phosphorylase, phosphoglucomutase and sucrose phosphate synthase enzyme specific activities increased 2.4-, 1.8- and 1.3-fold, respectively, after 3 days PI following 200 Krad exposures compared to nonirradiated roots. The beta-Amylase, phospho glucose isomerase and sucrose synthase specific activities increased 1.2-fold. Sucrose synthesis in the irradiated sweet potato was attributed to beta-amylase, phosphorylase, phosphoglucomutase, phospho glucose isomerase and sucrose synthase. (author). 28 refs., 3 figs., 2 tabs

  6. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis

    DEFF Research Database (Denmark)

    Raina, Medha; Elgamal, Sara; Santangelo, Thomas J

    2012-01-01

    -dependent methyltransferase 144, GTP cyclohydrolase 398, DNA topoisomerase VI subunit A 209, DNA topoisomerase VI subunit B 192, Type A Flavoprotein 911, NAD(P)H:rubredoxin oxidoreductase (Fatty acid metabolism) 120, NAD(P)H:rubredoxin oxidoreductase 120, cofactor-independent phosphoglycerate mutase 909, bis(5'-adenosyl...... subunit 2 255, glycerol kinase 257, phosphomannomutase-related protein 321, ribose-5-phosphate isomerase A 107, phosphate transport regulator 193, isopentenyl pyrophosphate isomerase (mevanolate Pathway) 500, amino acid kinase 203, NADH:polysulfide oxidoreductase 203, 5'-methylthioadenosine phosphorylase......, cysteine desulfurase 521, hydrogenase maturation protein HypF 235, iron-molybdenum cofactor-binding protein 192, ATPase 260, 4Fe-4S cluster-binding protein 254, phosphopyruvate hydratase 650, fructose-1,6-bisphosphatase 140, aspartate carbamoyltransferase catalytic subunit 158, Bipolar DNA helicase 448...

  7. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  8. Genetics Home Reference: triosephosphate isomerase deficiency

    Science.gov (United States)

    ... movement problems are caused by impairment of motor neurons, which are specialized nerve cells in the brain ... known as glycolysis. During glycolysis, the simple sugar glucose is broken down to produce energy for cells. ...

  9. In Silico Prediction of T and B Cell Epitopes of Der f 25 in Dermatophagoides farinae

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2014-01-01

    Full Text Available The house dust mites are major sources of indoor allergens for humans, which induce asthma, rhinitis, dermatitis, and other allergic diseases. Der f 25 is a triosephosphate isomerase, representing the major allergen identified in Dermatophagoides farinae. The objective of this study was to predict the B and T cell epitopes of Der f 25. In the present study, we analyzed the physiochemical properties, function motifs and domains, and structural-based detailed features of Der f 25 and predicted the B cell linear epitopes of Der f 25 by DNAStar protean system, BPAP, and BepiPred 1.0 server and the T cell epitopes by NetMHCIIpan-3.0 and NetMHCII-2.2. As a result, the sequence and structure analysis identified that Der f 25 belongs to the triosephosphate isomerase family and exhibited a triosephosphate isomerase pattern (PS001371. Eight B cell epitopes (11–18, 30–35, 71–77, 99–107, 132–138, 173–187, 193–197, and 211–224 and five T cell epitopes including 26–34, 38–54, 66–74, 142–151, and 239–247 were predicted in this study. These results can be used to benefit allergen immunotherapies and reduce the frequency of mite allergic reactions.

  10. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  11. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  12. JB_054_Supplementary_Tables.docx

    Indian Academy of Sciences (India)

    LENOVO

    TRI 10032, T. aestivum L. var. aestivum, Mexico, Spring, Q4 ... TRI 10311, T. aestivum L. var. aestivum, Japan, Spring, Q2 ..... precursor (sucrose export defective 1), dihydrolipoamide dehydrogenase precursor, disulfide-isomerase precursor.

  13. FKBP immunophilins and Alzheimer's disease: A chaperoned affair

    Indian Academy of Sciences (India)

    All FKBPs contain a domain with prolyl cis/trans isomerase (PPIase) activity. ... FKBP proteins are expressed ubiquitously but show relatively high levels of expression in the nervous .... evolution, higher organisms like humans, who normally.

  14. Tagatose: properties, applications, and biotechnological processes.

    Science.gov (United States)

    Oh, Deok-Kun

    2007-08-01

    D-Tagatose has attracted a great deal of attention in recent years due to its health benefits and similar properties to sucrose. D-Tagatose can be used as a low-calorie sweetener, as an intermediate for synthesis of other optically active compounds, and as an additive in detergent, cosmetic, and pharmaceutical formulation. Biotransformation of D-tagatose has been produced using several biocatalyst sources. Among the biocatalysts, L-arabinose isomerase has been mostly applied for D-tagatose production because of the industrial feasibility for the use of D-galactose as a substrate. In this article, the characterization of many L-arabinose isomerases and their D-tagatose production is compared. Protein engineering and immobilization of the enzyme for increasing the conversion rate of D-galactose to D-tagatose are also reviewed.

  15. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    OpenAIRE

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the reduct...

  16. Strains for the production of flavonoids from glucose

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Santos, Christine; Koffas, Mattheos

    2015-11-13

    The invention relates to the production of flavonoids and flavonoid precursors in cells through recombinant expression of tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI).

  17. Radioimmunological determination of plasma androstenione and dehydroepiandrosterone levels in hirsute women before and during therapy using cyproterone acetate and ethinyl estradiol

    International Nuclear Information System (INIS)

    Holzer, R.

    1982-01-01

    Plasma androstendione and dehydroepiandrosterone levels were determined in 54 hirsute women before and after treatment with cyproterone acetate and ethinyl estradiol. Anderostenione levels were, on an average, significantly higher than in normal control persons (1.97+-0.97 ng/ml as compared to 1.54+-0.46 ng/ml) while the dehydroepiandrosterone levels were nearly twice as high (9.99+-5.71 ng/ml as compared to 5.17+-1.98 ng/ml). Increased cortisol and 17-ketosteroid levels were recorded only in a few women with raised androgen levels. The improved clinical picture after therapy was not in all cases accompanied by lower hormone levels. On the other hand, lower hormone levels were measured also in women who did not improve. There appears to be no close correlation between the clinical picture and the plasma androstendione and dehydroepiandrosterone levels. (orig./MG) [de

  18. Isolation of homoleptic platinum oxyanionic complexes with doubly protonated diazacrown cation

    Science.gov (United States)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Korenev, Sergey

    2017-02-01

    Doubly protonated diazacrown ether cation (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane DCH22+) was used for the efficient isolation of the homoleptic platinum complexes [Pt(NO3)6]2- and [Pt(C2O4)2]2- to crystalline solid phases from solutions containing mixtures of related platinum complexes. DCH22+ molecules in nitric acid solution were shown to prevent the condensation of mononuclear [Pt(H2O)n(NO3)6-n]n-2 species.

  19. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.; Gonzalez-Gil, Graciela; Saikaly, Pascal; van Hullebusch, Eric D.; Lens, Piet N L

    2014-01-01

    and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency

  20. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    Science.gov (United States)

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Aeration Controls the Reduction and Methylation of Tellurium by the Aerobic, Tellurite-Resistant Marine Yeast Rhodotorula mucilaginosa▿

    Science.gov (United States)

    Ollivier, Patrick R. L.; Bahrou, Andrew S.; Church, Thomas M.; Hanson, Thomas E.

    2011-01-01

    We previously described a marine, tellurite-resistant strain of the yeast Rhodotorula mucilaginosa that both precipitates intracellular Te(0) and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a “green” route for the production of Te(0)-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed by R. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te(0) precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te(0) was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te(0) precipitates produced by R. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te(0) is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te(0) nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated. PMID:21602387

  2. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  3. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    deoxyribonucleic acid. M GOPALa*, M S ... base pairs of DNA and interference with normal functioning of the enzyme topo- isomerase II which ... Data from the fluorescence titrations were used to determine the binding constant of. MPTQ with ...

  4. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  5. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  6. Vanadium bioavailability and toxicity to soil microorganisms and plants

    OpenAIRE

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-01-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200mgVkg(-1)) of dissolved vanadate, and toxicity ...

  7. Subterranean Microhabitat Dependent Intra Versus Extracellular Enzyme Secretion Capabilities of Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Jayant Biswas

    2015-04-01

    Full Text Available Deinococcus radiodurans is one of the most yet discovered extremophilic microbe, the isolation of which from the various habitats of Kotumsar cave is always a matter of enticement to discover its ecological economics. In the present work we studied the intra versus extracellular alkaline protease and glucose isomerase secretion capabilities of Deinococcus radiodurans; KCB21, KCB50, KCB93 isolated from three distinct subterranean niches of Kotumsar cave. The selected niches/zones were the entrance zone, transient zone and the deep inner zone from where the soil sediments were collected to isolate the bacterial strains. The results revealed high extracellular alkaline protease activity from the Deinococcus radiodurans strain which was isolated from the deeper zones of the cave, whereas no such phenomenon was revealed for glucose isomerase. The possible reason for the obtained results has been discussed.

  8. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  9. An overview of the non-mevalonate pathway for terpenoid

    Indian Academy of Sciences (India)

    Unknown

    troversial role of isomerase via non-MVA route in which both IPP and DMAPP are reported to be synthe- ... chemical scheme was proposed with a head-to-head con- densation of ..... berry exocarp and mesocarp; Phytochemistry 60 451–459.

  10. Xylose utilization in recombinant zymomonas

    Science.gov (United States)

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  11. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Jong, de A.J.; Yakimova, E.T.; Kapchina, V.M.; Woltering, E.J.

    2002-01-01

    Camptothecin, a topo isomerase-I inhibitor used in cancer therapy, induces apoptosis in animal cells. In tomato (Lycopersicon esculentum Mill.) suspension cells, camptothecin induces cell death that is accompanied by the characteristic nuclear morphological changes such as chromatin condensation and

  12. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... glycolytic pathway; in this step, a molecule called glucose-6-phosphate is converted to another molecule called fructose-6-phosphate. When GPI remains a single molecule (a monomer) it is involved in the development and maintenance of nerve cells ( neurons ). In this context, it is often known as ...

  13. Proč axony nezabloudí

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin

    2017-01-01

    Roč. 96, č. 2 (2017), s. 78-79 ISSN 0042-4544 R&D Projects: GA ČR(CZ) GA16-15915S Institutional support: RVO:67985823 Keywords : axon guidance * prolyl isomerase * neural development Subject RIV: FH - Neurology OBOR OECD: Developmental biology

  14. In-house zinc SAD phasing at Cu Kα edge.

    Science.gov (United States)

    Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin

    2013-07-01

    De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.

  15. Effects of 45Ca on murine skeletal muscle. 1

    International Nuclear Information System (INIS)

    Asotra, K.; Katoch, S.S.; Krishan, K.; Malhotra, R.K.

    1983-01-01

    Adult Swiss albino mice weighing 16+-1 g were injected with 3.7x10 4 Bq and 7.4x10 4 Bq/g body weight of 45 Ca. Mice of both dose groups were autopsied on days 1, 3, 5, 7, 14 and 28 after 45 Ca administration. Diaphragm and gastrocnemius in the 45 Ca-treated and normal mice were analyzed for quantitation of glycogen as well as bioassay of phosphorylase and phosphohexose isomerase activities. Internal irradiation with the two doses of 45 Ca resulted in glycogen accumulation in both the muscles. 45 Ca-treated diaphragm showed greater radioresponse but a slower recovery than gastrocnemius with respect to glycogen accumulation. A decline in the rates of glycogenolysis and glycolysis indicated by decreased phosphorylase and phosphohexose isomerase activities appeared to be responsible for glycogen accumulation in skeletal muscle on account of 45 Ca treatment. (author)

  16. Arsenate and chromate incorporation in schwertmannite

    International Nuclear Information System (INIS)

    Regenspurg, Simona; Peiffer, Stefan

    2005-01-01

    High concentrations of Cr (up to 812 ppm) and As (up to 6740 ppm) were detected in precipitates of the mineral schwertmannite in areas influenced by acid mine drainage. Schwertmannite may act as well as a natural filter for these elements in water as well as their source by releasing the previously bound elements during its dissolution or mineral-transformation. The mechanisms of uptake and potential release for the species arsenate and chromate were investigated by performing synthesis and stability experiments with schwertmannite. Schwertmannite, synthesized in solutions containing arsenate in addition to sulphate, was enriched by up to 10.3 wt% arsenate without detectable structural changes as demonstrated by powder X-ray diffraction (XRD). In contrast to arsenate, a total substitution of sulphate by chromate was possible in sulphate-free solutions. Thereby, the chromate content in schwertmannite could reach 15.3 wt%. To determine the release of oxyanions from schwertmannite over time, synthetic schwertmannite samples containing varying amounts of sulphate, chromate and arsenate were kept at a stable pH of either 2 or 4 over 1 year in suspension. At several time intervals Fe and the oxyanions were measured in solution and alterations of the solid part were observed by XRD and Fourier-Transform infrared (FT-IR) spectroscopy. At pH 2 schwertmannite partly dissolved and the total release of arsenate (24%) was low in contrast to chromate (35.4-57.5%) and sulphate (67-76%). Accordingly, the ionic activity product (log IAP) of arsenated schwertmannite was lowest (13.5), followed by the log IAP for chromated schwertmannite (16.2-18.5) and the log IAP for regular (=non-substituted) schwertmannite (18). At pH 4 schwertmannite transformed to goethite, an effect which occurred at the fastest rate for regular schwertmannite (=arsenate- and chromate-free), followed by chromate and arsenate containing schwertmannite. Both chromate and more evidently arsenate have a

  17. Life cycle assessment of construction and demolition waste management

    International Nuclear Information System (INIS)

    Butera, Stefania; Christensen, Thomas H.; Astrup, Thomas F.

    2015-01-01

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  18. Life cycle assessment of construction and demolition waste management

    Energy Technology Data Exchange (ETDEWEB)

    Butera, Stefania, E-mail: stbu@teknologisk.dk; Christensen, Thomas H.; Astrup, Thomas F.

    2015-10-15

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  19. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    International Nuclear Information System (INIS)

    Brandenberger, Jill M.; Louchouarn, Patrick; Herbert, Bruce; Tissot, Philippe

    2004-01-01

    The phase distribution of trace metals and oxyanions was investigated within a South Texas watershed hosting a high density of surface uranium mine pits and tailings. The objectives of the study were to evaluate the potential impact of these old uranium mining sites on the watershed with particular emphasis on spatial and temporal changes in water quality of a reservoir that serves as the major source of freshwater to a population of ∼ 350,000 people in the region. A livestock pond, bordered by uranium mine tailings, was used as a model case-study site to evaluate the cycling of uranium mine-derived oxyanions under changing redox conditions. Although the pond showed seasonal thermal and chemical stratification, geochemical cycling of metals was limited to Co and Pb, which seemed to be mostly associated with redox cycling of Mn mineral phases, and U, which suggested reductive precipitation in the ponds hypolimnion. Uranium levels, however, were too low to support strong inputs from th e tailings into the water column of the pond. The strong relations observed between particulate Cr, Cs, V and Fe suggest that these metals are associated with a stable particulate phase (probably allochthonous aluminosilicates) enriched in unreactive iron. This observation is supported by a parallel relationship in sediments collected across a broad range of sediment depositional processed (and histories) in the basin. Arsenic, though selectively enriched in the ponds water column, remained stable and mostly in solution throughout the depth of the profile and showed no sign of geochemical cycling or interaction with Fe-rich particles. We found no evidence of anthropogenic impacts of U mines beyond the purely local scale. Arsenic does decrease in concentration downstream of uranium mining sites but its presence within the Nueces drainage basin is related to interactions between surface and ground waters with uranium-rich geological formations rather than long-scale transport of

  20. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    International Nuclear Information System (INIS)

    Brandenberger, J.; Louchouarn, P.; Herbert, B.; Tissot, P.

    2004-01-01

    The phase distribution of trace metals and oxyanions, including U and As, in 2 surface water bodies was investigated within a South Texas watershed hosting a high density of surface U mine pits and tailings. The objectives of the study were to evaluate the environmental legacy of U mining, with particular emphasis on the spatial and temporal variability of water quality in Lake Corpus Christi, a downstream reservoir that serves as the major water resource to a population of ∼350,000 people in the region. Lyssy Pond, a livestock pond bordered by U mine tailings, was used as a model case-study site to evaluate the cycling of U mine-derived oxyanions under changing redox conditions. Although the pond showed seasonal thermal and chemical stratification, geochemical cycling of metals was limited to Co and Pb, which was correlated with redox cycling of Mn mineral phases, and U, which suggested reductive precipitation in the pond's hypolimnion. Uranium levels, however, were too low to support strong inputs from the tailings into the water column of the pond. The strong relationships observed between particulate Cr, Cs, V, and Fe suggest that these metals are associated with a stable particulate phase (probably allochthonous alumino-silicates) enriched in unreactive Fe. This observation is supported by a parallel relationship in sediments collected across a broad range of sediment depositional processes (and histories) in the basin. Arsenic, though selectively enriched in the pond's water column, was dominated by dissolved species throughout the depth of the profile and showed no sign of geochemical cycling or interaction with Fe-rich particles. Arsenic (and other oxyanions) in the water columns of Lake Corpus Christi and Lyssy pond were not affected by the abundant presence of Fe-rich particles but instead behaved conservatively. No evidence was found of anthropogenic impacts of U mines beyond the purely local scale. Arsenic's presence within the Nueces drainage basin

  1. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  2. Incorporating the effect of ionic strength in free energy calculations using explicit ions

    NARCIS (Netherlands)

    Donnini, S; Mark, AE; Juffer, AH; Villa, Alessandra

    2005-01-01

    The incorporation of explicit ions to mimic the effect of ionic strength or to neutralize the overall charge on a system in free energy calculations using molecular dynamics simulations is investigated. The difference in the free energy of hydration between two triosephosphate isomerase inhibitors

  3. Mutations in iron-sulfur cluster proteins that improve xylose utilization

    Science.gov (United States)

    Froehlich, Allan; Henningsen, Brooks; Covalla, Sean; Zelle, Rintze M.

    2018-03-20

    There is provided an engineered host cells comprising (a) one or more mutations in one or more endogenous genes encoding a protein associated with iron metabolism; and (b) at least one gene encoding a polypeptide having xylose isomerase activity, and methods of their use thereof.

  4. Dicty_cDB: SLA264 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available -propyl cis-trans isomerase (CYP1) gene, complete cds. 52 3e-22 4 AJ537762 |AJ537762.1 Timarcha... balearica EST, clone Timarcha3B3. 88 5e-22 3 AJ537662 |AJ537662.1 Timarcha balearica EST, clone Timarcha

  5. Selenite and tellurite form mixed seleno- and tellurotrisulfides with CstR from Staphylococcus aureus

    OpenAIRE

    Luebke, Justin L.; Arnold, Randy J.; Giedroc, David P.

    2013-01-01

    Staphylococcus aureus CstR (CsoR-like sulfur transferase repressor) is a member of the CsoR family of transition metal sensing metalloregulatory proteins. Unlike CsoR, CstR does not form a stable complex with transition metals but instead reacts with sulfite to form a mixture of di- and trisulfide species, CstR2(RS-SR′) and CstR2(RS-S-SR′)n, n = 1 or 2, respectively. Here, we investigate if CstR performs similar chemistry with related chalcogen oxyanions selenite and tellurite. In this work w...

  6. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    2002-01-01

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures

  7. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  8. Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt; Aguila, Briana [Department of Chemistry, University of South Florida, USA; Li, Baiyan [Department of Chemistry, University of South Florida, USA; Kim, Dongsang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Schweiger, Michael J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kruger, Albert A. [US Department of Energy, Office of River Protection, Richland WA 99352 USA; Doonan, Christian J. [Department of Chemistry, The University of Adelaide, Adelaide South Australia 5005 Australia; Ma, Shengqian [Department of Chemistry, University of South Florida, USA; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-10-20

    Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.

  9. Regulation of carbohydrate metabolism during Giardia encystment

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Jarroll, E.L.; Macechko, P.T.; Steimle, P.A.; Bulik, D.; Karr, C.D.; Keulen, Harry van; Paget, P.A.

    2001-01-01

    Giardia intestinalis trophozoites encyst when they are exposed to bile. During encystment, events related to the inducible synthesis of a novel N-acetyl-d-galactosamine (GalNAc) homopolymer, occur. Within the first 6 h of encystment, mRNA for glucosamine 6-P isomerase (GPI), the first inducible

  10. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.

    Science.gov (United States)

    Barnes, Aileen M; Carter, Erin M; Cabral, Wayne A; Weis, MaryAnn; Chang, Weizhong; Makareeva, Elena; Leikin, Sergey; Rotimi, Charles N; Eyre, David R; Raggio, Cathleen L; Marini, Joan C

    2010-02-11

    Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The proband's collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought. 2010 Massachusetts Medical Society

  11. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  12. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    Science.gov (United States)

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  13. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis......The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...... analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s...

  14. First insights into the mode of action of a "lachrymatory factor synthase"--implications for the mechanism of lachrymator formation in Petiveria alliacea, Allium cepa and Nectaroscordum species.

    Science.gov (United States)

    He, Quan; Kubec, Roman; Jadhav, Abhijit P; Musah, Rabi A

    2011-11-01

    A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehydrogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachrymator. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and would be called a "sulfenic acid isomerase", whereas the P. alliacea LFS would be termed a "sulfenic acid dehydrogenase". Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    Science.gov (United States)

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    International Nuclear Information System (INIS)

    Scanlon, B.R.; Nicot, J.P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D.K.

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3-164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ≥ As MCL of 10 μg/L; range 0.2-43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman's ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO 2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ 2 H: -65 to -27; δ 18 O: -9.1 to -4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization

  17. The effects of mutating Tyr9 and Arg15 on the structure, stability, conformational dynamics and mechanism of GSTA3-3

    CSIR Research Space (South Africa)

    Robertson, GJ

    2017-03-01

    Full Text Available activity of the steroid isomerase reaction; however, Arg15 is more important for lowering the pKa of GSH. Lowering the pKa of GSH being how GSTs catalyse their reactions. Additionally, there is evidence to suggest that Arg15 is integral to allowingGSTA3...

  18. Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of swiss landrace pigs.

    Science.gov (United States)

    Vögeli, P; Stranzinger, G; Schneebeli, H; Hagger, C; Künzi, N; Gerwig, C

    1984-12-01

    Associations between production traits and the genes for halothane sensitivity (HAL), S, A and H blood group systems and phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) enzyme systems were investigated in two lines of pigs selected for an index. The phenotypic variance-covariance matrix of the index included backfat thickness and daily gain, whereas the genetic variance-covariance matrix included daily gain, feed conversion and percentage of lean meat. The experiment was conducted at the experimental station of the Institute of Animal Production and has been underway since 1973. The same index was applied but in two opposite directions to give a superior and inferior line in relation to the production traits. One hundred twenty-nine animals of the superior line in the seventh generation and 88 animals of the inferior line in the sixth generation were studied. Forty-two percent (54/129) of the animals of the superior line were halothane-positive. No animals in the inferior line were halothane reactors. Of the halothane-positive pigs, 70.4% (38/54) in the superior line had the HaHa and 94.4% (51/54) had the SsSs genotype, whereas only 4% (3/75) of the HaHa and 12% (9/75) of the SsSs pigs were halothane-negative. By practicing selection at the H and S loci, it seems possible to efficiently reduce halothane sensitivity in Swiss Landrace pigs. In pigs of the superior line, there were significant differences in percentage of lean meat, carcass length, pH1 (pH value at 45 min to 1 h postmortem, M. longissimus) and reflectance values among genotypes of the HAL, S and H systems and among some genotypes of the 6-PGD system. Poorest meat quality, highest percentage of lean meat and shortest carcass length were observed in pigs homozygous for the alleles HALn, Ss, Ha, PHIB and 6-PGDA. In the inferior line, these associations were absent. As the HAL locus is associated with the above mentioned production traits, linkage disequilibria may explain the

  19. 21 CFR 173.357 - Materials used as fixing agents in the immobilization of enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... glucose isomerase enzyme preparations for use in the manufacture of high fructose corn syrup, in... manufacture of high fructose corn syrup, in accordance with § 184.1372 of this chapter. Cellulose triacetate... enzyme preparations for use in the manufacture of high fructose corn syrup, in accordance with § 184.1372...

  20. Uranium and selenium resistance in Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Avoscan, L.; Untereiner, G.; Carriere, M.; Gouget, B.; Degrouard, J.

    2007-01-01

    Cupriavidus metallidurans CH34, a soil bacterium, is known to resist a variety of heavy metals and metalloids. Its capacity to resist, accumulate and transform selenium (Se as selenite or selenate) and uranium (U as uranyl-carbonate and uranyl-citrate) was investigated. C. metallidurans CH34 resists to high U concentrations (up to 10 mM) whatever its speciation. However, no major accumulation could be measured: U-carbonate and U-citrate are not bio-available for the bacteria. The anaerobic response of C. metallidurans CH34 to U will be looked for. C. metallidurans CH34 resists to high Se concentrations (up to 4 mM of selenite and 8 mM of selenate). Bacteria exposed to 2 mM of selenite accumulate 25 times more Se than when they are exposed to same concentration of selenate. Se resistance is characterized by the reduction of oxy-anions in the bacteria. Selenite is reduced to elemental Se by an intracellular process, but the metabolic fate of selenate is unknown. By combining three methods of speciation (X-ray absorption spectroscopy (XANES and EXAFS), HPLC-ICP-MS and SDS-PAGE coupled with particle induced X-ray emission (PIXE)), we both identified and specified the chemical intermediates formed by this bacterium upon exposure to these oxy-anions. Two mechanisms of reduction of Se oxides in C. metallidurans CH34 were highlighted. Assimilation transforms selenite and selenate into organic Se, identified as seleno-methionine and leads to its non-specific incorporation into bacterial proteins (presence of selenious proteins). Detoxication precipitates selenite in nano-particles of elemental Se. (authors)

  1. Separation science and technology

    International Nuclear Information System (INIS)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO 2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO 2 films in reaction with chlorophenol

  2. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Protamine 3 expressions in crossbred bull spermatozoa may not be ...

    African Journals Online (AJOL)

    The mRNA expression of PRM3 gene among two groups was evaluated by real time quantitative polymerase chain reaction (PCR) using TaqMan chemistry, where peptidylprolyl isomerase A (PPIA) was used as an internal control. Our finding revealed that expression of PRM3 was down regulated in poor quality semen ...

  4. 21 CFR 184.1866 - High fructose corn syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true High fructose corn syrup. 184.1866 Section 184.1866... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... partial enzymatic conversion of glucose (dextrose) to fructose using an insoluble glucose isomerase enzyme...

  5. GenBank blastx search result: AK061794 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061794 001-039-F11 AF031161.1 Pseudomonas sp. VLB120 styrene degradation genes in...cluding histidine kinase (stdSc) gene, partial cds; and transcriptional activator (stdR), styrene monooxygen...ase large component (stdA), styrene monooxygenase small component (stdB), styrene oxide isomerase (stdC), an

  6. Characteristics of chalcone isomerase promoter in crabapple leaves ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... in flavonoid biosynthetic pathway, can convert chalcone to (2S)-naringenin in the ... Construction of expression vectors with McCHI promoter fragment ... Each sample was bombarded three times with tungsten particles coated ...

  7. Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Liu, Zhuo; Kromann-Hansen, Tobias; Lund, Ida K

    2012-01-01

    The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which...... the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully...

  8. Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments

    Science.gov (United States)

    O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.

    2008-12-01

    Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the

  9. Participation of the endoplasmic reticulum protein chaperone thio-oxidoreductase in gonadotropin-releasing hormone receptor expression at the plasma membrane

    Directory of Open Access Journals (Sweden)

    W. Lucca-Junior

    2009-02-01

    Full Text Available Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18 shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated wild-type human GnRHR (hGnRHR or mutant GnRHR (Cys14Ala and Cys200Ala and pcDNA3.1 without insert (empty vector or ERp18 cDNA (75 ng/well, pre-loaded for 18 h with 1 µCi myo-[2-3H(N]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Genetically modified yeast species and fermentation processes using genetically modified yeast

    Energy Technology Data Exchange (ETDEWEB)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Genetically modified yeast species and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    Science.gov (United States)

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  15. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    Science.gov (United States)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  16. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones.

    Science.gov (United States)

    Kozlov, Guennadi; Muñoz-Escobar, Juliana; Castro, Karla; Gehring, Kalle

    2017-09-05

    The lectin chaperones calreticulin (CRT) and calnexin (CNX) contribute to the folding of glycoproteins in the ER by recruiting foldases such as the protein disulfide isomerase ERp57 and the peptidyl prolyl cis-trans isomerase CypB. Recently, CRT was shown to interact with the chaperone ERp29. Here, we show that ERp29 directly binds to the P domain of CNX. Crystal structures of the D domain of ERp29 in complex with the P domains from CRT and calmegin, a tissue-specific CNX homolog, reveal a commonality in the mechanism of binding whereby the tip of the P domain functions as a plurivalent adapter to bind a variety of folding factors. We show that mutation of a single residue, D348 in CNX, abrogates binding to ERp29 as well as ERp57 and CypB. The structural diversity of the accessory factors suggests that these chaperones became specialized for glycoprotein folding through convergent evolution of their P-domain binding sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effective selection of transgenic papaya plants with the PMI/Man selection system.

    Science.gov (United States)

    Zhu, Yun J; Agbayani, Ricelle; McCafferty, Heather; Albert, Henrik H; Moore, Paul H

    2005-09-01

    The selectable marker gene phospho-mannose isomerase (pmi), which encodes the enzyme phospho-mannose isomerase (PMI) to enable selection of transformed cell lines on media containing mannose (Man), was evaluated for genetic transformation of papaya (Carica papaya L.). We found that papaya embryogenic calli have little or no PMI activity and cannot utilize Man as a carbon source; however, when calli were transformed with a pmi gene, the PMI activity was greatly increased and they could utilize Man as efficiently as sucrose. Plants regenerated from selected callus lines also exhibited PMI activity but at a lower specific activity level. Our transformation efficiency with Man selection was higher than that reported using antibiotic selection or with a visual marker. For papaya, the PMI/Man selection system for producing transgenic plants is a highly efficient addition to previously published methods for selection and may facilitate the stacking of multiple transgenes of interest. Additionally, since the PMI/Man selection system does not involve antibiotic or herbicide resistance genes, its use might reduce environmental concerns about the potential flow of those genes into related plant populations.

  18. Bacteria versus selenium: A view from the inside out

    Science.gov (United States)

    Staicu, Lucian; Oremland, Ronald S.; Tobe, Ryuta; Mihara, Hisaaki

    2017-01-01

    Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

  19. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  20. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin.

    Science.gov (United States)

    Stewart, James J P

    2017-05-01

    The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.

  1. Production of high fructose corn syrup Streptomyces sp

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M; Prabhu, K A

    1978-01-01

    A Streptomyces strain exhibiting considerable glucose isomerase activity was isolated from soil. The cell free extract of the culture was able to convert glucose to fructose in a period of 48 ha and gave 40% conversion. With acid hydrolyzates of corn and bagasse as substrates, the cell-free extract gave glucose to fructose conversions of 39.8 and 29%, respectively.

  2. Testosterone-secreting adrenal adenoma in a peripubertal girl

    International Nuclear Information System (INIS)

    Kamilaris, T.C.; DeBold, C.R.; Manolas, K.J.; Hoursanidis, A.; Panageas, S.; Yiannatos, J.

    1987-01-01

    A 15-year-old girl who presented with primary amenorrhea and virilization had an adrenocortical adenoma that secreted predominantly testosterone. To the authors' knowledge, she is the first peripubertal and second youngest patient with a testosterone-secreting adrenal tumor described. Serum dehydroepiandrosterone sulfate and urinary 17-ketosteroid an 17-hydroxycorticosteroid levels were normal. A tumor was located by a computed tomographic (CT) scan and by uptake of 6-β-[ 75 Se] selenomethylnorcholesterol. Microscopic examination of the tumor showed typical features of an adrenocortical adenoma with no histologic features characteristic of Leydig cells. Postoperatively, her hirsutism regressed, she rapidly went through puberty, and regular monthly menstruation started four months later. Finding the source of testosterone in a virilized patient can be difficult. Eleven of the 14 previously described patients with testosterone-secreting adrenal tumors initially underwent misdirected surgery on the ovaries. Review of these cases revealed that results of hormone stimulation and suppression tests are unreliable and that these tumors are usually large. Therefore, CT scanning of the adrenal glands is recommended in all patients suspected of having a testosterone-secreting tumor

  3. Effect of Centchroman administration in normospermic & oligospermic individuals.

    Science.gov (United States)

    Roy, S; Chatterjee, S; Taneja, S L; Kumari, G L; Allag, I S; Pandey, H C; Jadhav, Y N

    1977-12-01

    The effect of Centchroman, 3,4-trans-2,2-dimethyl-3-phenyl-4-para-(beta -pyrrolidinoethocy)-phenyl-7-methorychroman, administration was investigated in normospermic and oligospermic subjects. 3 normal volunteers, aged 32-40 years, were treated with increasing doses (30, 60, and 120 mg/day, each dose for 2 weeks). The sperm count was decreased in 1 volunteer but the percentages of nonmotile and abnormal spermatozoa were increased in all 3. There was no change in plasma testosterone and urinary 17-ketosteroid (17-KS) levels but the 17-ketogenic steroids (17-KGSs) were decreased in all of them. 3 out of 5 oligospermic subjects, aged 24-35 years, who received 30 mg/day for 6 weeks revealed increased sperm counts. Plasma testosterone levels were decreased in 4, urinary 17-KGSs were decreased in 2, and 17-KSs were decreased in 1 subject. Acid phosphatase, fructose, sialic acid and glycerylphosphoryl choline levels in semen, and serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, alkaline phosphatase, and urea in blood were not markedly altered in either group.

  4. Non-chromatographic radioimmunoassay for serum dehydroepiandrosterone using a mixture of antisera

    International Nuclear Information System (INIS)

    Sekihara, H.; Ohsawa, N.

    1974-01-01

    A simplified method for evaluating serum dehydroepiandrosterone (DHEA) without chromatography was developed, using mixtures of two different anti-DHEA antisera, anti-3β-hydroxy-Δ 5 antiserum and anti-11-deoxy-17-ketosteroid antiserum, in which cross-reactivity of each antiserum is reduced to a negligible amount. Serum (20 μl) was extracted with 1 ml of n-hexane. One milliliter of 80 percent methanol was added to the n-hexane extract, which was stirred and centrifuged. The n-hexane layer was discarded, and the methanol layer was evaporated to dryness. The residue was incubated with an antiserum mixture containing DHEA-7α- 3 H, pepsin-treated human immune serum globulin and bovine serum albumin. Ammonium sulfate was used to separate free from bound DHEA-7α- 3 H. The accuracy, precision, sensitivity, and specificity were satisfactory. Good agreement was found between the serum DHEA levels obtained by the present radioimmunoassay and those obtained by radioimmunoassay with paper chromatography, making this method suitable for routine use. (U.S.)

  5. Testosterone-secreting adrenal adenoma in a peripubertal girl

    Energy Technology Data Exchange (ETDEWEB)

    Kamilaris, T.C.; DeBold, C.R.; Manolas, K.J.; Hoursanidis, A.; Panageas, S.; Yiannatos, J.

    1987-11-13

    A 15-year-old girl who presented with primary amenorrhea and virilization had an adrenocortical adenoma that secreted predominantly testosterone. To the authors' knowledge, she is the first peripubertal and second youngest patient with a testosterone-secreting adrenal tumor described. Serum dehydroepiandrosterone sulfate and urinary 17-ketosteroid an 17-hydroxycorticosteroid levels were normal. A tumor was located by a computed tomographic (CT) scan and by uptake of 6-..beta..-(/sup 75/Se) selenomethylnorcholesterol. Microscopic examination of the tumor showed typical features of an adrenocortical adenoma with no histologic features characteristic of Leydig cells. Postoperatively, her hirsutism regressed, she rapidly went through puberty, and regular monthly menstruation started four months later. Finding the source of testosterone in a virilized patient can be difficult. Eleven of the 14 previously described patients with testosterone-secreting adrenal tumors initially underwent misdirected surgery on the ovaries. Review of these cases revealed that results of hormone stimulation and suppression tests are unreliable and that these tumors are usually large. Therefore, CT scanning of the adrenal glands is recommended in all patients suspected of having a testosterone-secreting tumor.

  6. Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts

    International Nuclear Information System (INIS)

    Schweikert, H.U.; Hein, H.J.; Romijn, J.C.; Schroeder, F.H.

    1982-01-01

    The metabolism of [1,2,6,7-3H]testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC

  7. Sympathoadrenal and hypophyseal-adrenal systems in preoperative irradiation of patients with esophageal and cardiac cancer

    International Nuclear Information System (INIS)

    Tarutinov, V.I.; Starosel'skij, I.V.; Gol'dshmidt, B.Ya.; Shmal'ko, Yu.P.; Levchenko, A.M.

    1983-01-01

    A study was made of 74 patients with esophageal and cardiac cancer. Stages 3 and 4. The excretion of catecholamines, corticosteroids and their precursors was studied, tests with adrenalin before and after preoperative irradiation at a summary dose of 30 Gy were done. It has been shown that before the start of radiation therapy the excretion of catecholamines and corticosteroids is lowered, the reaction to adrenalin administration is negative in most patients, the phase syndrome of cardiac hypodynamics associated with disturbed function of the sympathoadrenal system was revealed. Preoperative irradiation in patients with esophageal and cardiac cancer results in an incres ased excretion of 17-ketosteroids (17-KS) and 17-ketogenic steroids, however 17-KS excretion does not reach the normal level. For better tolerance of irradiation and for a radiosensitization effect testenate is administered to patients before and during radiation therapy. The administration of testenate 7-10 days before the start and during radiotherapy proved to be effective Which was confirmed by noticeable necrobiotic and necrotic changes of cancer cells

  8. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    Science.gov (United States)

    Scanlon, Bridget R.; Nicot, J.-P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D. Kirk

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ⩾ As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying

  9. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  10. Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Lynn Ellen [Univ. of Texas, Austin, TX (United States)

    2017-04-15

    This research study is an important component of a broader comprehensive project, “Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters,” which sought to identify and evaluate the critical molecular phenomena at metal-oxide interfaces that control many geochemical and environmental processes. The primary goal of this research study was to better understand and predict adsorption of metal ions at mineral/water surfaces. Macroscopic data in traditional batch experiments was used to develop predictive models that characterize sorption in complex systems containing a wide range of background solution compositions. Our studies focused on systems involving alkaline earth metal (Mg2+, Ca2+, Sr2+, Ba2+) and heavy metal (Hg2+, Co2+, Cd2+, Cu2+, Zn2+, Pb2+) cations. The anions we selected for study included Cl-, NO3-, ClO4-, SO42-, CO32- and SeO32- and the background electrolyte cations we examined included (Na+, K+, Rb+ and Cs+) because these represent a range of ion sizes and have varying potentials for forming ion-pairs or ternary complexes with the metal ions studied. The research led to the development of a modified titration congruency approach for estimating site densities for mineral oxides such as goethite. The CD-MUSIC version of the surface complexation modeling approach was applied to potentiometric titration data and macroscopic adsorption data for single-solute heavy metals, oxyanions, alkaline earth metals and background electrolytes over a range of pH and ionic strength. The model was capable of predicting sorption in bi-solute systems containing multiple cations, cations and oxyanions, and transition metal cations and alkaline earth metal ions. Incorporation of ternary

  11. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    Science.gov (United States)

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  12. Energy conservation and maximal entropy production in enzyme reactions.

    Science.gov (United States)

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...

  14. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... 1Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China. 2Beijing ... 6 Tianshuiyuan Street, Chaoyang District, Beijing 100026, P. R. China. ... Kang et al., 2008). Cyclophilins were ..... Xu YX, Manley JL (2007). ... Yao Q, Li M, Yang H, Chai H, Fisher W, Chen C (2005).

  15. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    Science.gov (United States)

    2006-06-01

    best examples of this is glucose isomerase, which has been used in the commercial production of high fructose corn syrup (HFCS) since 1967.230 Most...EDGEWOOD CHEMICAL BIOLOGICAL CENTER U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND ECBC-TR-489 CATALYTIC ENZYME-BASED METHODS FOR WATER ...TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1. LITERATURE SURVEY Joseph J. DeFrank RESEARCH AND TECHNOLOGY DIRECTORATE June 2006 Approved for

  16. U(VI) sorption on kaolinite. Effects of pH, U(VI) concentration and oxyanions

    International Nuclear Information System (INIS)

    Liang Gao; Ziqian Yang; Keliang Shi; Xuefeng Wang; Zhijun Guo; Wangsuo Wu

    2010-01-01

    U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pH PZNPC ) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite. (author)

  17. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum.

    Science.gov (United States)

    Smith, T; Ferreira, L R; Hebert, C; Norris, K; Sauk, J J

    1995-08-04

    Hsp47 and cyclophilin B (CyPB) are residents of the endoplasmic reticulum (ER). Both of these proteins are closely associated with polysome-associated alpha 1(I) procollagen chains. Hsp47 possesses chaperone properties early during the translation of procollagen while the cis/trans-isomerase properties of CyPB facilitate procollagen folding. In this report, we further investigate the interaction of these proteins with procollagen I during export from the ER. To inhibit vesicular budding and retain procollagen within the ER, cells were treated with the heterotrimeric G protein inhibitor mastoparan or calphostin C, a specific inhibitor of diacylglycerol/phorbol ester binding proteins. To arrest procollagen in pre-Golgi intermediate vesicles, cells were treated with guanosine 5'-3-O-(thio)triphosphate. Pulse-chase experiments of cells labeled with [35S]methionine followed by immunoprecipitation during the chase period with anti-procollagen, anti-Hsp47, and anti-CyPB antibodies were performed to reveal the relationship between Hsp47/CyPB/procollagen I. The distribution of procollagen, Hsp47, and CyPB to the ER and/or pre-Golgi vesicles was verified by immunofluorescence. Hsp47 and CyPB remained associated with procollagen retained within the ER. Hsp47 and CyPB were also associated with procollagen exported from the ER into pre-Golgi intermediate vesicles. Treatment of cells with cyclosporin A diminished the levels of CyPB bound to procollagen and diminished the rate of Hsp47 released from procollagen and the rate of procollagen secretion, suggesting that Hsp47 release from procollagen may be driven by helix formation. Also, these studies suggest that Hsp47 may resemble protein disulfide isomerase and possess both chaperone and anti-chaperone properties. During translation, high levels of Hsp47 are seen to limit protein aggregation and facilitate chain registration. Later, Hsp47 and/or CyPB and protein disulfide isomerase act as anti-chaperones and provide the basis for

  18. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles

    Science.gov (United States)

    Kamnev, Alexander A.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Tugarova, Anna V.

    2017-07-01

    Microbially driven reduction of selenium oxyanions to elementary selenium, often in the form of nanoparticles (NPs), is widespread in nature. A diversity of possible applications of such biogenic NPs, including those in nanobiotechnology, as well as the specificity of methodologies and mechanisms of their formation via ;green synthesis; are very attractive features justifying further studies of the processes of selenium oxyanion bioreduction and the resulting Se0 nanostructures. In this study, live biomass of the rhizobacterium Azospirillum brasilense Sp7 (harvested after the logarithmic growth phase and washed from culture medium components) was used to obtain extracellular Se NPs relatively homogeneous in size (with average diameters within 50-100 nm) in the process of selenite reduction. Both the control cultures of A. brasilense Sp7 and those incubated with SeO32- (producing Se NPs), as well as the resulting separated Se NPs were studied using Fourier transform infrared (FTIR) spectroscopy in the transmission mode (measured as dried layers on a ZnSe disc), in addition to transmission electron microscopy (TEM), to compare metabolic changes in cells and the bioorganic layers associated with the Se NPs. In the control culture (stored for 24 h in physiological saline), FTIR spectroscopic signs of poly-3-hydroxybutyrate (a 'reserve' biopolyester) were observed as a response to the lack of nutrients (trophic stress), whereas they were virtually absent in cells incubated for 24 h in physiological saline with 10 mM SeO32- (toxicity stress). FTIR spectra of Se NPs separated from bacterial cells showed bands typical of proteins, polysaccharides and lipids associated with the particles (in line with their TEM images showing a thin layer over the NPs), in addition to strong carboxylate bands, which evidently stabilise the NP structure and morphology.

  19. Selenite reduction by anaerobic microbial aggregates: Microbial community structure, and proteins associated to the produced selenium spheres.

    Directory of Open Access Journals (Sweden)

    Graciela eGonzalez-Gil

    2016-04-01

    Full Text Available Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0, insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20 % and Pseudomonadaceae (c.a.10 % were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (~200 m of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  20. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe