WorldWideScience

Sample records for karoo array telescope

  1. A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7

    CERN Document Server

    Armstrong, R P; Nicolson, G D; Ratcliffe, S; Linares, M; Horrell, J; Richter, L; Schurch, M P E; Coriat, M; Woudt, P; Jonas, J; Booth, R; Fanaroff, B

    2013-01-01

    Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ~17-day timescale. A longer-term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys during the years 1994 to 2007. Here we report first observations of this source with the MeerKAT test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array (SKA), demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 13 December 2011 to 16 January 2012 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from...

  2. Verification measurements of the Karoo Array timing system: a laser radar based time transfer system

    Science.gov (United States)

    Siebrits, R.; Bauermeister, E.; Gamatham, R.; Adams, G.; Malan, J. A.; Burger, J. P.; Kapp, F.; Gibbon, T.; Kriel, H.; Abbott, T.

    2016-02-01

    An optical fiber based laser radar time transfer system has been developed for the 64-dish MeerKAT radiointerferometer telescope project to provide accurate atomic time to the receivers of the telescope system. This time transfer system is called the Karoo Array Timing System (KATS). Calibration of the time transfer system is essential to ensure that time is accurately transferred to the digitisers that form part of the receivers. Frequency domain reflectometry via vector network analysers is also used to verify measurements taken using time interval counters. This paper details the progress that is made in the verification measurements of the system in order to ensure that time, accurate to within a few nanoseconds of the Universal Coordinated Time (UTC, is available at the point where radio signals from astronomical sources are received. This capability enables world class transient and timing studies with a compact radio interferometer, which has inherent advantages over large single dish radio-telescopes, in observing the transient sky.

  3. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  4. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  5. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  6. Engineering and science highlights of the KAT-7 radio telescope

    NARCIS (Netherlands)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-01-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and

  7. Engineering and science highlights of the KAT-7 radio telescope

    NARCIS (Netherlands)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-01-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scienti

  8. Highlights from the Telescope Array

    Science.gov (United States)

    Matthews, J. N.

    2016-11-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  9. Highlights from the Telescope Array

    Directory of Open Access Journals (Sweden)

    Matthews J.N.

    2016-01-01

    Full Text Available The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth’s surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  10. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  11. Recent Results from Telescope Array

    CERN Document Server

    Fukushima, M

    2015-01-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum Xmax are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20 degrees radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 sigma. The measured Xmax is consistent with the primary being proton or light nuclei for energies 10^18.2 eV - 10^19.2 eV.

  12. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  13. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  14. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  15. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Meagher, Kevin J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.

  16. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  17. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  18. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  19. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  20. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  1. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  2. The Telescope Array's Low Energy Extension: TALE

    Science.gov (United States)

    Matthews, John

    2009-05-01

    A great deal of information about the sources of ultra high energy cosmic rays exists encoded in the energy spectrum. There are three spectral features in the ultra high energy regime (the second knee, the ankle, and the GZK cut-off). An important composition change also occurs in this energy range. The Telescope Array (TA) is a large area ultra high energy cosmic ray observatory built and operated by groups from the US, Japan, Korea, and Russia. The existing part of the Telescope Array already has good efficiency above the ankle (˜10^18.5 eV). These detectors are already in the field collecting data. The TA Low Energy Extension (TALE) refers to the detectors devoted to the ``low energy'' portion of the spectrum - 10^16.5 - 10^19 eV. The aim of TA/TALE is to understand the origin of cosmic rays and to study their composition over a broad energy range. We will introduce the detector components and discuss the opportunities.

  3. The ASTRI prototype and mini-array: precursor telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni

    2016-07-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site on the slopes of Mount Etna, a large field of view (9.6 degrees) dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. CTA plans to install about 70 small size telescopes in the southern site to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach, since it includes the entire system of structure, mirror's optics (primary and secondary mirrors), camera, and control/acquisition software. Although it is a technological prototype, the ASTRI SST-2M prototype will be able to perform systematic monitoring of bright TeV sources. A remarkable improvement in terms of performance could come from the operation of the ASTRI mini-array, led by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa) and with also a contribution by INFN. The ASTRI mini-array will be composed of at least nine ASTRI SST-2M units. It is proposed as one of the CTA mini-array of telescope precursors and initial seeds of CTA, to be installed at the final CTA southern site. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the sensitivity, similar to the H.E.S.S. one in the 1-10 TeV energy range, up to about 100 TeV.

  4. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  5. The Allen Telescope Array Commensal Observing System

    CERN Document Server

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  6. Status of the Cherenkov Telescope Array Project

    CERN Document Server

    de Almeida, Ulisses Barres

    2016-01-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has n...

  7. Status of the Cherenkov telescope array project

    Science.gov (United States)

    Barres de Almeida, Ulisses

    2015-12-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an international initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10× improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be composed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has now entered its prototyping phase with the first, stand-alone instruments being built. Brazil is an active member of the CTA consortium, and the project is represented in Latin America also by Argentina, Mexico and Chile. In the next few months the consortium will define the site for installation of CTA South, which might come to be hosted in the Chilean Andes, with important impact for the high-energy community in Latin America. In this talk we will present the basic concepts of the CTA and the detailed project of the observatory. Emphasis will be put on its scientific potential and on the Latin-American involvement in the preparation and construction of the observatory, whose first seed, the ASTRI mini-array, is currently being constructed in Sicily, in a cooperation between Italy, Brazil and South Africa. ASTRI should be installed on the final CTA site in 2016, whereas the full CTA array is expected to be operational by the end of the decade.

  8. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  9. VERITAS The Very Energetic Radiation Imaging Telescope Array System

    CERN Document Server

    Weekes, T C; Biller, S D; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dingus, B L; Fazio, G G; Fegan, D J; Finley, J; Fishman, G; Gaidos, J A; Gillanders, G H; Gorham, P W; Grindlay, J E; Hillas, A M; Huchra, J P; Kaaret, P E; Kertzman, M P; Kieda, D B; Krennrich, F; Lamb, R C; Lang, M J; Marscher, A P; Matz, S; McKay, T; Müller, D; Ong, R; Purcell, W; Rose, J; Sembroski, G H; Seward, F D; Slane, P O; Swordy, S P; Tümer, T O; Ulmer, M P; Urban, M; Wilkes, B J

    1997-01-01

    A next generation atmospheric Cherenkov observatory is described based on the Whipple Observatory $\\gamma$-ray telescope. A total of nine such imaging telescopes will be deployed in an array that will permit the maximum versatility and give high sensitivity in the 50 GeV - 50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV).

  10. Performance of the SST-1M telescope for the Cherenkov Telescope Array observatory

    CERN Document Server

    Moderski, R; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2015-01-01

    The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being constructed at the Institute of Nuclear Physics in Cracow, Poland, while the camera will be assembled at the University of Geneva, Switzerland. This prototype enables measurements of parameters having a decisive influence on the telescope performance. We present results of numerical simulations of the SST-1M performance based on such measurements. The telescope effective area, the expected trigger rates and the optical point spread function are calculated.

  11. Light Sensor Candidates for the Cherenkov Telescope Array

    CERN Document Server

    Knoetig, M L; Kurz, M; Hose, J; Lorenz, E; Schweizer, T; Teshima, M; Buzhan, P; Popova, E; Bolmont, J; Tavernet, J -P; Vincent, P; Shayduk, M

    2011-01-01

    We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.

  12. A Trigger and Readout Scheme for future Cherenkov Telescope Arrays

    CERN Document Server

    Hermann, G; Foehr, C; Hofmann, W; Kihm, T; Köck, F

    2008-01-01

    The next generation of ground-based gamma-ray observatories, such as e.g. CTA, will consist of about 50-100 telescopes, and cameras with in total ~100000 to ~200000 channels. The telescopes of the core array will cover and effective area of ~ 1 km2 and will be possibly accompanied by a large halo of smaller telescopes spread over about 10 km2 . In order to make maximum use of the stereoscopic approach, a very flexible inter-telescope trigger scheme is needed which allows to couple telescopes that located up to ~1 km apart. The development of a cost effective readout scheme for the camera signals exhibits a major technological challenge. Here we present ideas on a new asynchronous inter-telescope trigger scheme, and a very cost-effective, high-bandwidth frontend to backend data transfer system, both based on standard Ethernet components and an Ethernet front-end interface based on mass production standard FPGAs.

  13. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  14. Status of the Schwarzchild-Couder Medium-Sized Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Benbow, W

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next-generation very-high-energy (VHE; E > 100 GeV) gamma-ray observatory. It is anticipated that CTA will improve upon the sensitivity of the current generation of VHE experiments, such as VERITAS, HESS and MAGIC, by an order of magnitude. CTA is planned to consist of two graded arrays of Cherenkov telescopes with three primary-mirror sizes. A proof-of-concept telescope, based on the dual-mirror Schwarzchild-Couder design, is being constructed on the VERITAS site at the F.L. Whipple Observatory in southern Arizona, USA, and is a candidate design for the medium-sized telescopes. The construction of the telescope will be completed in early 2017, and the status of this project is presented here.

  15. The ASTRI/CTA mini-array of Small Size Telescopes as a precursor of the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni; Agnetta, Gaetano; Antolini, Elisa; Antonelli, Lucio Angelo; Bastieri, Denis; Bellassai, Giancarlo; Belluso, Massimiliano; Bigongiari, Ciro; Billotta, Sergio; Biondo , Benedetto; Boettcher, Markus; Bonanno, Giovanni; Bonnoli, Giacomo; Bruno , Pietro; Bulgarelli, Andrea; Canestrari, Rodolfo; Capalbi, Milvia; Capobianco, G.; Caraveo, Patrizia; Carosi, Alòessandro; Cascone, Enrico; Catalano, Osvaldo; Cereda, Michele; Conconi, Paolo; Conforti, Vito; Cusumano, Giancarlo; De Caprio, Vincenzo; De Luca, Andrea; de Gouveia Dal Pino, Elisabete; Di Paola, Andrea; Di Pierro, Federico; Fantinel, Daniela; Fiorini, Mauro; Fugazza, Dino; Gardiol, Daniele; Gargano, Carmelo; Garozzo , Salvatore; Gianotti , Fulvio; Giarrusso , Salvatore; Giro, Enrico; Grillo, Aledssandro; Impiombato, Domenico; Incorvaia , Salvatore; La Barbera , Antonino; La Palombara , Nicola; La Parola , Valentina; La Rosa, Giovanni; Lessio, Luigi; Leto, Giuseppe; Lombardi , Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaspina, Giuseppe; Marano, Davide; Martinetti , Eugenio; Melioli, C.; Millul, Rachele; Mineo , Teresa; Morello, Carlo; Morlino, Giovanni; Nemmen, R.; Perri, Luca; Rodeghiero, Gabriele; Romano, Patrizia; Romeo, Giuseppe; Russo, Francesco; Sacco, Bruno; Sartore, Nicola; Schwarz, Joseph; Alberto, Segreto; Selvestrel, Danilo; Sironi, Giorgia; Stamerra, Antonio; Strazzeri, Elisabetta; Stringhetti, Luca; Tagliaferri, Gianpiero; Tanci, Claudio; Testa, Vincenzo; Timpanaro , Maria Cristina; Toso, Giorgio; Tosti, Gino; Trifoglio, Massimo; Vallania, Piero; Vercellone, Stefano; Volpicelli, Antonio; Zitelli, Valentina

    2014-08-01

    ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide-field-of-view (9.6 degrees in diameter) end-to-end prototype of the small-size telescope (SST) of the Cherenkov Telescope Array, CTA, sensitive in the energy band from a few TeV up to hundreds TeV. The ASTRI telescope is based on a dual-mirror Schwarzschild-Couder (ASTRI SST-2M) optical design, with a compact (F# = 0.5) optical configuration named ASTRI SST-2M telescope. This allows us to adopt an innovative modular focal plane camera based on silicon photo-multipliers, with a logical pixel size of 6.2mm x 6.2mm. Moreover, planned, and already being developed, an SST mini-array based on 7 identical telescopes represents an evolution of the ASTRI SST-2M telescope. The ASTRI/CTA mini-array will be part of the CTA array, representing a precursor that will be included into the final array. With the mini-array, in addition to a technical assessment studies in the perpective of the full CTA implementation, it will be possible to perform an early scientific program. In particular we wish to start investigating the poorly known energy range between a few and 100 TeV, thus exploring e.g. the cut-off regime of cosmic accelerators. Apart from INAF, other international institutes will directly participate in the mini-array implementation, as the North-West University in South Africa and the University of Sao Paulo in Brazil. An interest about it has been expressed also by other international groups. In this talk we will report on the development status of the ASTRI prototype and ASTRI/CTA mini-array.

  16. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  17. The next generation Cherenkov Telescope Array observatory: CTA

    CERN Document Server

    Vercellone, Stefano

    2014-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To a...

  18. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    Science.gov (United States)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  19. Optimum linear array of an optical aperture synthesis telescope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Measuring out successively the degree of coherence of the source produced by any couple of the small apertures via rotating an array composed of the small aperture telescopes, and synthesizing them into the (u, v) coverage of the source, the brightness distribution of the source can be obtained by the inverse Fourier transform of the degree of coherence with much higher resolution than from a single telescope. This article discusses the arrangements of the small apertures in the linear array, and found a method to decide the quality of the arrangements. the judgment factor ? is introduced to calculate the arrangements in quantity. There are 1.5×1011 possibilities for 11 apertures. Therefore, the computer procedures are programmed to select the optimum arrangements. The effect of the simulation of the aperture synthesis is given for the linear array. The simulation method can also be used in the nonlinear arrays.

  20. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  1. Single-Mirror Small-Size Telescope structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, Jacek; Dyrda, Michał; Kochański, Wojciech; Ludwin, Jaromir; Stodulski, Marek; Ziółkowski, Paweł

    2013-01-01

    A single-mirror small-size (1M-SST) Davies-Cotton telescope has been proposed for the southern observatory of the Cherenkov Telescope Array (CTA) by a consortium of scientific institutions from Poland, Switzerland, and Germany. The telescope has a 4 m diameter reflector and will be equipped with a fully digital camera based on Geiger avalanche photodiodes (APDs). Such a design is particularly interesting for CTA because it represents a very simple, reliable, and cheap solution for a SST. Here we present the design and the characteristics of the mechanical structure of the 1M-SST telescope and its drive system. We also discuss the results of a finite element method analysis in order to demonstrate the conformance of the design with the CTA specifications and scientific objectives. In addition, we report on the current status of the construction of a prototype telescope structure at the Institute of Nuclear Physics PAS in Krakow.

  2. The Cherenkov Telescope Array single-mirror small size telescope project: status and prospects

    Science.gov (United States)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzińska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszalek, A.; Michalowski, J.; Rameez, M.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Rafalski, J.; Rajda, P. J.; Rataj, M.; Rupiński, M.; Rutkowskai, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Winiarski, K.; Zietara, K.; Ziółkowski, P.; Źychowski, P.

    2014-07-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-ray observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The small size telescopes are dedicated to the observation of gamma-rays with energy between a few TeV and few hundreds of TeV. The single-mirror small size telescope (SST-1M) is one of several SST designs. It will be equipped with a 4 m-diameter segmented mirror dish and a fully digital camera based on Geiger-mode avalanche photodiodes. Currently, the first prototype of the mechanical structure is under assembly in Poland. In 2014 it will be equipped with 18 mirror facets and a prototype of the camera.

  3. Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, J; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Rameez, M; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K

    2015-01-01

    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.

  4. 4 m Davies-Cotton telescope for the Cherenkov Telescope Array

    CERN Document Server

    Moderski, R; Barnacka, A; Basili, A; Boccone, V; Bogacz, L; Cadoux, F; Christov, A; Della Volpe, M; Dyrda, M; Frankowski, A; Grudzińska, M; Janiak, M; Karczewski, M; Kasperek, J; Kochański, W; Korohoda, P; Kozioł, J; Lubiński, P; Ludwin, J; Lyard, E; Marszałek, A; Michałowski, J; Montaruli, T; Nicolau-Kukliński, J; Niemiec, J; Ostrowski, M; Płatos, Ł; Rajda, P J; Rameez, M; Romaszkan, W; Rupiński, M; Seweryn, K; Stodulska, M; Stodulski, M; Walter, R; Winiarski, K; Wiśniewski, Ł; Zagdański, A; Zietara, K; Ziółkowski, P; Żychowski, P

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. It will consist of three classes of telescopes, of large, medium and small sizes. The small telescopes, of 4 m diameter, will be dedicated to the observations of the highest energy gamma-rays, above several TeV. We present the technical characteristics of a single mirror, 4 m diameter, Davies-Cotton telescope for the CTA and the performance of the sub-array consisting of the telescopes of this type. The telescope will be equipped with a fully digital camera based on custom made, hexagonal Geiger-mode avalanche photodiodes. The development of cameras based on such devices is an RnD since traditionally photomultipliers are used. The photodiodes are now being characterized at various institutions of the CTA Consortium. Glass mirrors will be used, although an alternative is being considered: composite mirrors that could be adopted if they meet the project requirements. We present a design of the telescope structure,...

  5. The next generation Cherenkov Telescope Array observatory: CTA

    Energy Technology Data Exchange (ETDEWEB)

    Vercellone, S., E-mail: stefano@ifc.inaf.it

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV–100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild–Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50–70 telescopes with a mirror area of about 5–10 m{sup 2} and about 300 m spacing, distributed across an area of about 10 km{sup 2}. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  6. The next generation Cherenkov Telescope Array observatory: CTA

    Science.gov (United States)

    Vercellone, S.

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  7. The Very Energetic Radiation Imaging Telescope Array System (VERITAS)

    CERN Document Server

    Bradbury, S M; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Criswell, S; Dingus, B L; Fegan, D J; Finley, J P; Gaidos, J A; Grindlay, J; Hillas, A M; Harris, K; Hermann, G; Kaaret, P E; Kieda, D B; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Lloyd-Evans, J; McKernan, B; Müller, D; Ong, R; Quenby, J J; Quinn, J; Rochester, G D; Rose, H J; Salamon, M B; Sembroski, G H; Sumner, T J; Swordy, S P; Vasilev, V; Weekes, T C

    1999-01-01

    We give an overview of the current status and scientific goals of VERITAS, a proposed hexagonal array of seven 10 m aperture imaging Cherenkov telescopes. The selected site is Montosa Canyon (1390 m a.s.l.) at the Whipple Observatory, Arizona. Each telescope, of 12 m focal length, will initially be equipped with a 499 element photomultiplier camera covering a 3.5 degree field of view. A central station will initiate the readout of 500 MHz FADCs upon receipt of multiple telescope triggers. The minimum detectable flux sensitivity will be 0.5% of the Crab Nebula flux at 200 GeV. Detailed simulations of the array's performance are presented elsewhere at this meeting. VERITAS will operate primarily as a gamma-ray observatory in the 50 GeV to 50 TeV range for the study of active galaxies, supernova remnants, pulsars and gamma-ray bursts.

  8. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  9. Monte Carlo design studies for the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Yoshikoshi, T; Zech, A

    2012-01-01

    The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods -- in use with cu...

  10. Pupil geometry and pupil re-imaging in telescope arrays

    Science.gov (United States)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  11. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  12. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  13. Status of the array control and data acquisition system for the Cherenkov Telescope Array

    Science.gov (United States)

    Füßling, Matthias; Oya, Igor; Balzer, Arnim; Berge, David; Borkowski, Jerzy; Conforti, Vito; Colomé, Josep; Lindemann, Rico; Lyard, Etienne; Melkumyan, David; Punch, Michael; Schwanke, Ullrich; Schwarz, Joseph; Tanci, Claudio; Tosti, Gino; Wegner, Peter; Wischnewski, Ralf; Weinstein, Amanda

    2016-08-01

    The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory using the atmospheric Cherenkov technique. The CTA instrument will allow researchers to explore the gamma-ray sky in the energy range from 20 GeV to 300 TeV. CTA will comprise two arrays of telescopes, one with about 100 telescopes in the Southern hemisphere and another smaller array of telescopes in the North. CTA poses novel challenges in the field of ground-based Cherenkov astronomy, due to the demands of operating an observatory composed of a large and distributed system with the needed robustness and reliability that characterize an observatory. The array control and data acquisition system of CTA (ACTL) provides the means to control, readout and monitor the telescopes and equipment of the CTA arrays. The ACTL system must be flexible and reliable enough to permit the simultaneous and automatic control of multiple sub-arrays of telescopes with a minimum effort of the personnel on-site. In addition, the system must be able to react to external factors such as changing weather conditions and loss of telescopes and, on short timescales, to incoming scientific alerts from time-critical transient phenomena. The ACTL system provides the means to time-stamp, readout, filter and store the scientific data at aggregated rates of a few GB/s. Monitoring information from tens of thousands of hardware elements need to be channeled to high performance database systems and will be used to identify potential problems in the instrumentation. This contribution provides an overview of the ACTL system and a status report of the ACTL project within CTA.

  14. The Single Mirror Small Sized Telescope For The Cherenkov Telescope Array

    CERN Document Server

    Heller, M; Porcelli, A; Pujadas, I Troyano; Zietara, K; della Volpe, D; Montaruli, T; Cadoux, F; Favre, Y; Aguilar, J A; Christov, A; Prandini, E; Rajda, P; Rameez, M; Bilnik, W; Blocki, J; Bogacz, L; Borkowski, J; Bulik, T; Frankowski, A; Grudzinska, M; Idzkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszalek, A; Miranda, L D Medina; Michalowski, J; Moderski, R; Neronov, A; Niemiec, J; Ostrowski, M; Pasko, P; Pech, M; Schovanek, P; Seweryn, K; Sliusar, V; Skowron, K; Stawarz, L; Stodulska, M; Stodulski, M; Walter, R; Wiecek, M; Zagdanski, A

    2016-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9 degrees. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of...

  15. Calibration and testing of a prototype of the JEM-EUSO telescope on Telescope Array site

    Directory of Open Access Journals (Sweden)

    Tsunesada Y.

    2013-06-01

    Full Text Available Aim of the TA-EUSO project is to install a prototype of the JEM-EUSO telescope on the Telescope Array site in Black Rock Mesa, Utah and perform observation of natural and artificial ultraviolet light. The detector consists of one Photo Detector Module (PDM, identical to the 137 present on the JEM-EUSO focal surface. Each PDM is composed by 36 Hamamatsu multi-anode photomultipliers (64 channels per tube, for a total of 2304 channels. Front-End readout is performed by 36 ASICS, with trigger and readout tasks performed by two FPGA boards that send the data to a CPU and storage system. Two, 1 meter side square Fresnel lenses provide a field-of-view of 8 degrees. The telescope will be housed in a container located in front of the fluorescence detector of the Telescope Array collaboration, looking in the direction of the ELF (Electron Light Source and CLF (Central Laser Facility. Aim of the project is to calibrate the response function of the EUSO telescope with the TA fluorescence detector in presence of a shower of known intensity and distribution. An initial run of about six months starting from end 2012 is foreseen, during which we expect to observe, triggered by TA electronics, a few cosmic ray events which will be used to further refine the calibration of the EUSO-Ground with TA. Medium term plans include the increase of the number of PDM and therefore the field of view.

  16. The SST-1M camera for the Cherenkov Telescope Array

    CERN Document Server

    Schioppa, E J; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Montaruli, T.; Porcelli, A.; Rameez, M.; Pujadas, I. Troyano; Bilnik, W.; Blocki, J.; Bogacz, L.; Bulik, T.; Curylo, M.; Dyrda, M.; Frankowski, A.; Grudniki, L.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszalek, A.; Michaowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, M.; Prandini, E.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowinski, M.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiecek, M.; Zagdanski, A.; Zietara, K.; Zychowski, P.

    2015-01-01

    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.

  17. Water Vapour Radiometers for the Australia Telescope Compact Array

    CERN Document Server

    Indermuehle, Balthasar T; Crofts, Jonathan

    2012-01-01

    We have developed Water Vapour Radiometers (WVRs) for the Australia Telescope Compact Array (ATCA) that are capable of determining path fluctuations by virtue of measuring small temperature fluctuations in the atmosphere using the 22.2 GHz water vapour line for each of the six antennae. By measuring the line of sight variations of the water vapour, the induced path excess and thus the phase delay can be estimated and corrections can then be applied during data reduction. This reduces decorrelation of the source signal. We demonstrate how this recovers the telescope's efficiency and image quality as well as how this improves the telescope's ability to use longer baselines at higher frequencies, thereby resulting in higher spatial resolution. A description of the WVR hardware design, their calibration and water vapour retrieval mechanism is given.

  18. The Nuclear Spectroscopic Telescope Array (NuSTAR)

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Boggs, Steve; Christensen, Finn Erland

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated...... in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried...... on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFC's High Energy Archive Research...

  19. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, X. N.; Huang, L.; Wei, J. Y.

    2016-07-01

    GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.

  20. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  1. Pointing Calibration for the Cherenkov Telescope Array Medium Size Telescope Prototype

    CERN Document Server

    Oakes, Louise; Baehr, Juergen; Gruenewald, Sandra; Raeck, Tobias; Schlenstedt, Stefan; Schubert, Anja; Schwanke, Ullrich

    2013-01-01

    Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended sources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The "Lid CCD" is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the "Sky CCD" is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source ...

  2. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  3. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  4. Actuator Development at IAAT for the Cherenkov Telescope Array Medium Size Telescopes

    CERN Document Server

    Diebold, S; Pühlhofer, G; Renner, S; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) will be the future observatory for TeV gamma-ray astronomy. In order to increase the sensitivity and to extend the energy coverage beyond the capabilities of current facilities, its design concept features telescopes of three different size classes. Based on the experience from H.E.S.S. phase II, the Institute for Astronomy and Astrophysics T\\"ubingen (IAAT) develops actuators for the mirror control system of the CTA Medium Size Telescopes (MSTs). The goals of this effort are durability, high precision, and mechanical stability under all environmental conditions. Up to now, several revisions were developed and the corresponding prototypes were extensively tested. In this contribution our latest design revision proposed for the CTA MSTs are presented.

  5. NectarCAM, a camera for the medium sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F

    2016-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.

  6. New air fluorescence detectors employed in the Telescope Array experiment

    CERN Document Server

    Tokuno, H; Takeda, M; Kadota, K; Ikeda, D; Chikawa, M; Fujii, T; Fukushima, M; Honda, K; Inoue, N; Kakimoto, F; Kawana, S; Kido, E; Matthews, J N; Nonaka, T; Ogio, S; Okuda, T; Ozawa, S; Sagawa, H; Sakurai, N; Shibata, T; Taketa, A; Thomas, S B; Tomida, T; Tsunesada, Y; Udo, S; Abu-zayyad, T; Aida, R; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Cho, E J; Cho, W R; Fujii, H; Fukuda, T; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Iguchi, T; Ikuta, K; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Oshima, A; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takita, M; Tanaka, H; Tanaka, K; Tanaka, M; Thomson, G B; Tinyakov, P; Tkachev, I; Troitsky, S; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment involves a surface detector (SD) array and three fluorescence detector (FD) stations. FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tubes. To obtain the EAS parameters with high accuracies, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation ti...

  7. Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    CERN Document Server

    Oya, I; Schwanke, U; Wegner, P; Balzer, A; Berge, D; Borkowski, J; Camprecios, J; Colonges, S; Colome, J; Champion, C; Conforti, V; Gianotti, F; Flour, T Le; Lindemann, R; Lyard, E; Mayer, M; Melkumyan, D; Punch, M; Tanci, C; Schmidt, T; Schwarz, J; Tosti, G; Verma, K; Weinstein, A; Wiesand, S; Wischnewski, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogene...

  8. The dual-mirror Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Pareschi, G; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; MistÒ, A; Morello, C; Morlino, G; Panzera, M R; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V; Amans, J P; Boisson, C; Costille, C; Dournaux, J L; Dumas, D; Fasola, G; Hervet, O; Huet, J M; Laporte, P; Rulten, C; Sol, H; Zech, A; White, R; Hinton, J; Ross, D; Sykes, J; Ohm, S; Schmoll, J; Chadwick, P; Greenshaw, T; Daniel, M; Cotter, G; Varner, G S; Funk, S; Vandenbroucke, J; Sapozhnikov, L; Buckley, J; Moore, P; Williams, D; Markoff, S; Vink, J; Berge, D; Hidaka, N; Okumura, A; Tajima, H

    2013-01-01

    In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Repl...

  9. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  10. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  11. Distributed data acquisition system for Pachmarhi array of Cverenkov telescopes

    Science.gov (United States)

    Upadhya, S. S.; Acharya, B. S.; Bhat, P. N.; Chitnis, V. R.; D'Souza, A. I.; Francis, P. J.; Gothe, K. S.; Joshi, S. R.; Majumdar, P.; Manogaran, M.; Nagesh, B. K.; Pose, M. S.; Purohit, P. N.; Rahman, M. A.; Rao, K. K.; Rao, S. K.; Sharma, S. K.; Singh, B. B.; Stanislaus, A. J.; Sudersanan, P. V.; Venkatesh Murthy, B. L.; Vishwanath, P. R.

    2002-03-01

    Pachmarhi Array of Cverenkov Telescopes consists of 25 Telescopes distributed within an area of 8000m2. The array was designed to detect and process faint Cverenkov light flashes that lasts for a few nanoseconds, produced in the atmosphere by celestial VHE ?-rays or cosmic rays. In this experiment, the arrival time and amplitude of fast tiny pulses have to be measured and recorded from each of 175 photo-tubes in a shortest possible time. In view of the complexity of the system, the entire array is divided into 4 sectors. A Distributed Data Acquisition System developed for the purpose consists of independent Sector Data Acquisition Systems and a Master Data Acquisition System. The distributed data acquisition and monitoring system are built using PC's which are networked through LAN. The entire software for DDAS was developed in-house in C language under LINUX environment. Also, most of the hardware barring a few fast digitization modules were designed and fabricated in-house. The design features, implementation strategy as well as the performance of the whole system are discussed.

  12. Sites in Argentina for the Cherenkov Telescope Array Project

    CERN Document Server

    Allekotte, Ingo; Etchegoyen, Alberto; García, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrián

    2013-01-01

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  13. Square Kilometre Array: The radio telescope of the XXI century

    Science.gov (United States)

    Grainge, K.; Alachkar, B.; Amy, Shaun; Barbosa, D.; Bommineni, M.; Boven, P.; Braddock, R.; Davis, J.; Diwakar, P.; Francis, V.; Gabrielczyk, R.; Gamatham, R.; Garrington, S.; Gibbon, T.; Gozzard, D.; Gregory, S.; Guo, Y.; Gupta, Y.; Hammond, J.; Hindley, D.; Horn, U.; Hughes-Jones, R.; Hussey, M.; Lloyd, S.; Mammen, S.; Miteff, S.; Mohile, V.; Muller, J.; Natarajan, S.; Nicholls, J.; Oberland, R.; Pearson, M.; Rayner, T.; Schediwy, S.; Schilizzi, R.; Sharma, S.; Stobie, S.; Tearle, M.; Wang, B.; Wallace, B.; Wang, L.; Warange, R.; Whitaker, R.; Wilkinson, A.; Wingfield, N.

    2017-04-01

    The Square Kilometre Array (SKA) will be the world's largest and most sensitive radio telescope. It will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of theUniverse, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. This project envisages the construction of 133 15-m antennas in South Africa and 131072 log-periodic antennas in Australia, together with the associated infrastructure in the two desert sites. In addition, the SKA is an exemplar Big Data project, with data rates of over 10 Tbps being transported from the telescope to HPC/HTC facilities.

  14. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  15. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Rando, Riccardo; Dazzi, Francesco; De Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald; Manea, Christian; Mariotti, Mosè; Mazin, Daniel; Mehrez, Fatima; Mirzoyan, Razmik; Podkladkin, Sergey; Reichardt, Ignasi; Rhode, Wolfgang; Rosier, Sylvie; Schultz, Cornelia; Stella, Carlo; Teshima, Masahiro; Wetteskind, Holger; Zavrtanik, Marko

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong pot...

  16. The Australia Telescope Compact Array Broadband Backend (CABB)

    CERN Document Server

    Wilson, Warwick E; Axtens, P; Brown, A; Davis, E; Hampson, G; Leach, M; Roberts, P; Saunders, S; Koribalski, B S; Caswell, J L; Lenc, E; Stevens, J; Voronkov, M A; Wieringa, M H; Brooks, K; Edwards, P G; Ekers, R D; Emonts, B; Hindson, L; Johnston, S; Maddison, S T; Mahony, E K; Malu, S S; Massardi, M; Mao, M Y; McConnell, D; Norris, R P; Schnitzeler, D; Subrahmanyan, R; Urquhart, J S; Thompson, M A; Wark, R M

    2011-01-01

    Here we describe the Compact Array Broadband Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2 x 128 MHz to 2 x 2048 MHz, high bit sampling, and addition of 16 zoom windows (each divided into a further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity, (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges, (3) simultaneous multi-line and continuum observations, (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling, and (5) high velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capab...

  17. Engineering and science highlights of the KAT-7 radio telescope

    Science.gov (United States)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-08-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scientific highlights from this effort, and discusses their applicability to both MeerKAT and other next-generation radio telescopes. In particular, we found that the composite dish surface works well, but it becomes complicated to fabricate for a dish lacking circular symmetry; the Stirling cycle cryogenic system with ion pump to achieve vacuum works but demands much higher maintenance than an equivalent Gifford-McMahon cycle system; the ROACH (Reconfigurable Open Architecture Computing Hardware)-based correlator with SPEAD (Streaming Protocol for Exchanging Astronomical Data) protocol data transfer works very well and KATCP (Karoo Array Telescope Control Protocol) control protocol has proven very flexible and convenient. KAT-7 has also been used for scientific observations where it has a niche in mapping low surface-brightness continuum sources, some extended H I haloes and OH masers in star-forming regions. It can also be used to monitor continuum source variability, observe pulsars, and make Very Long Baseline Interferometry observations.

  18. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Chadwick, Paula M; Daniel, Michael; White, Richard

    2015-01-01

    The GCT is a dual-mirror Small-Sized-Telescope prototype proposed for the Cherenkov Telescope Array. Calibration of the GCT's camera is primarily achieved with LED-based flasher units capable of producing $\\sim4$ ns FWHM pulses of 400 nm light across a large dynamic range, from 0.1 up to 1000 photoelectrons. The flasher units are housed in the four corners of the camera's focal plane and illuminate it via reflection from the secondary mirror. These flasher units are adaptable to allow several calibration scenarios to be accomplished: camera flat-fielding, linearity measurements (up to and past saturation), and gain estimates from both single pe measurements and from the photon statistics at various high illumination levels. In these proceedings, the performance of the GCT flashers is described, together with ongoing simulation work to quantify the efficiency of using muon rings as an end-to-end calibration for the optical throughput of the GCT.

  19. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission

    CERN Document Server

    Harrison, Fiona A; Christensen, Finn E; Hailey, Charles J; Zhang, Will W; Boggs, Steven E; Stern, Daniel; Cook, W Rick; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Kim, Yunjin; Kitaguchi, Takao; Koglin, Jason E; Madsen, Kristin K; Mao, Peter H; Miyasaka, Hiromasa; Mori, Kaya; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram R; Westergaard, Niels J; Willis, Jason; Zoglauer, Andreas; An, Hongjun; Bachetti, Matteo; Barriere, Nicolas M; Bellm, Eric C; Bhalerao, Varun; Brejnholt, Nicolai F; Fuerst, Felix; Liebe, Carl C; Markwardt, Craig B; Nynka, Melania; Vogel, Julia K; Walton, Dominic J; Wik, Daniel R; Alexander, David M; Cominsky, Lynn R; Hornschemeier, Ann E; Hornstrup, Allan; Kaspi, Victoria M; Madejski, Greg M; Matt, Giorgio; Molendi, Silvano; Smith, David M; Tomsick, John A; Ajello, Marco; Ballantyne, David R; Balokovic, Mislav; Barret, Diddier; Bauer, Franz E; Blandford, Roger D; Brandt, W Niel; Brenneman, Laura W; Chiang, James; Chakrabarty, Deepto; Chenevez, Jerome; Comastri, Andrea; Elvis, Martin; Fabian, Andrew C; Farrah, Duncan; Fryer, Chris L; Gotthelf, Eric V; Grindlay, Jonathan E; Helfand, David J; Krivonos, Roman; Meier, David L; Miller, Jon M; Natalucci, Lorenzo; Ogle, Patrick; Ofek, Eran O; Ptak, Andrew; Reynolds, Stephen P; Rigby, Jand R; Tagliaferri, Gianpiero; Thorsett, Stephen E; Treister, Ezequiel; Urry, C Megan

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 13 June 2012, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 -- 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low-background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than one-hundred-fold improvement in sensitivity over the collimated or coded-mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity, spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives, and will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6degree inclination orbit, the Observatory has now comp...

  20. Laser metrology for coherent multi-telescope arrays

    Science.gov (United States)

    Shao, Michael; Massie, Norbert A.

    1993-01-01

    In multi-telescope arrays that comprise multiple telescopes, a beam-combining module, and flat mirrors for directing light beams from the multiple telescopes to the beam combining module, a laser metrology system is used for monitoring various pathlengths along a beam path where deviations are likely. Some pathlengths are defined simply by a pair of retroreflectors or reflectors at both ends. Lengths between pairs of retroreflectors are measured and monitored by laser interferometers. One critical pathlength deviation is related to the displacement of the flat mirror. A reference frame is set up relative to the beam-combining module to form and define the coordinate system within which the positions of the flat mirrors are measured and monitored. In the preferred embodiment, a pair of retroreflectors along the optical axis of the beam-combining module defines a reference frame. A triangle is formed by the reference frame as the base and another retroreflector at the flat mirror as the vertex. The triangle is used to monitor the position of the flat mirror. A beam's pathlength is dynamically corrected in response to the monitored deviations.

  1. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  2. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  3. Description of the Karoo Biome project

    CSIR Research Space (South Africa)

    Cowling, RM

    1986-01-01

    Full Text Available The ecological characteristics and ecological problems of the karoo biome are briefly described. A conceptual basis and guidelines for the development of the Karoo Biome Project are outlined by addressing project goals, project structure...

  4. The ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array: camera DAQ software architecture

    Science.gov (United States)

    Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.

  5. The ASTRI SST-2M prototype and mini-array for the Cherenkov Telescope Array (CTA)

    Science.gov (United States)

    Pareschi, Giovanni

    2016-08-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site (on the slopes of Mount Etna), a dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. It is planned to install up to 70 small size telescopes in the southern CTA site, in order to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach. According to this philosophy, the telescope includes structure, primary and secondary mirrors, camera, software and hardware for control/acquisition and data handling. The camera, almost completed, has been designed to cover a field of view of 9.6 degrees. After the full implementation of the prototype, a remarkable improvement in terms of technology advancement and performance will come from the operation of the ASTRI mini-array, led within the CTA collaboration by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa). The ASTRI mini-array will be composed of at least 9 ASTRI SST-2M units and it is proposed to be installed at the CTA southern site as part of its pre-production phase. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the flux sensitivity compared with the current experiments (HESS, MAGIC and VERITAS) in the 5 - 300 TeV energy range.

  6. Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    CERN Document Server

    Zhang, S S; Cao, Z; Chen, S Z; Chen, M J; Chen, Y; Chen, L H; Ding, K Q; He, H H; Liu, J L; Li, X X; Liu, J; Ma, L L; Ma, X H; Sheng, X D; Zhou, B; Zhang, Y; Zhao, J; Zha, M; Xiao, G

    2011-01-01

    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented.

  7. The software architecture to control the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and

  8. The ASTRI mini-array within the future Cherenkov Telescope Array

    CERN Document Server

    Vercellone, Stefano

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wid...

  9. The Nuclear Spectroscopic Telescope Array (NuSTAR)

    Science.gov (United States)

    Harrison, Fiona A.; Boggs, Steven; Christensen, Finn; Craig, William; Hailey, Charles; Stern, Daniel; Zhang, William; Angelini, Lorella; An, Hong Jun; Bhalereo, Varun; Brejnholt, Nicolai; Cominsky, Lynn; Cook, Rick; Doll, Melania; Giommi, Paolo; Grefenstette, Brian; Hornstrup, Allan; Kaspi, Victoria M.; Kim, Yunjin; Kitaguchi, Takao; Koglin, Jason; Liebe, Carl Christian; Madejski, Greg; Madsen, Kristen Kruse; Mao, Peter

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute field of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a. guest observer program will be proposed for an extended mission to expand the range of scientific targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit. NuSTAR largely avoids SAA passages, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.15-meter focal length through on-orbit deployment of all mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast flexure during ground data processing. Data will be publicly available at GSFC's High Energy Astrophysics Science Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.

  10. New air fluorescence detectors employed in the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H., E-mail: htokuno@cr.phys.titech.ac.jp [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Tameda, Y.; Takeda, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Kadota, K. [Tokyo City University, Setagaya-ku, Tokyo (Japan); Ikeda, D. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Honda, K. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Inoue, N. [Saitama University, Saitama, Saitama (Japan); Kakimoto, F. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kawana, S. [Saitama University, Saitama, Saitama (Japan); Kido, E. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Matthews, J.N. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Nonaka, T. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Ogio, S.; Okuda, S. [Osaka City University, Osaka, Osaka (Japan); Ozawa, S. [Waseda University, Advanced Research Institute for Science and Engineering, Shinjuku-ku, Tokyo (Japan); Sagawa, H. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Sakurai, N. [Osaka City University, Osaka, Osaka (Japan); and others

    2012-06-01

    Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment includes a surface detector (SD) array and three fluorescence detector (FD) stations. The FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye (HiRes) experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tube pixels. To obtain the EAS parameters with high accuracy, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of the new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation time are also described in this report.

  11. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    CERN Document Server

    Zech, A; Blake, S; Boisson, C; Costille, C; De-Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Greenshaw, T; Hervet, O; Huet, J -M; Laporte, P; Rulten, C; Savoie, D; Sayede, F; Schmoll, J

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to all...

  12. Prototyping of Hexagonal Light Concentrators for the Large-Sized Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    Reflective light concentrators with hexagonal entrance and exit apertures are frequently used at the focal plane of gamma-ray telescopes in order to reduce the size of the dead area caused by the geometries of the photodetectors, as well as to reduce the amount of stray light entering at large field angles. The focal plane of the large-sized telescopes (LSTs) of the Cherenkov Telescope Array (CTA) will also be covered by hexagonal light concentrators with an entrance diameter of 50 mm (side to side) to maximize the active area and the photon collection efficiency, enabling realization of a very low energy threshold of 20 GeV. We have developed a prototype of this LST light concentrator with an injection-molded plastic cone and a specular multilayer film. The shape of the plastic cone has been optimized with a cubic B\\'{e}zier curve and a ray-tracing simulation. We have also developed a multilayer film with very high reflectance ($\\gtrsim95$\\%) along wide wavelength and angle coverage. The current status of th...

  13. NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F; Barrio, J-A; Blanch~Bigas, O; Bolmont, J; Bouyjou, F; Brun, P; Chabanne, E; Champion, C; Colonges, S; Corona, P; Delagnes, E; Delgado, C; Ginzov, C Diaz; Durand, D; Ernenwein, J-P; Fegan, S; Ferreira, O; Fesquet, M; Fiasson, A; Fontaine, G; Fouque, N; Gascon, D; Giebels, B; Henault, F; Hermel, R; Hoffmann, D; Horan, D; Houles, J; Jean, P; Jocou, L; Karkar, S; Knoedlseder, J; Kossakowski, R; Lamanna, G; LeFlour, T; Lenain, J-P; Leveque, A; Louis, F; Martinez, G; Moudden, Y; Moulin, E; Nayman, P; Nunio, F; Olive, J-F; Panazol, J-L; Pavy, S; Petrucci, P-O; Pierre, E; Prast, J; Punch, M; Ramon, P; Rateau, S; Ravel, T; Rosier-Lees, S; Sanuy, A; Shayduk, M; Sizun, P-Y; Sulanke, K-H; Tavernet, J-P; Tejedor~Alvarez, L-A; Toussenel, F; Vasileiadis, G; Voisin, V; Waegebert, V; Wischnewski, R

    2015-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electro...

  14. The surface detector array of the Telescope Array experiment to explore the highest energy cosmic rays

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah,USA, is designed for observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  15. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  16. Early attempts at atmospheric simulations for the Cherenkov Telescope Array

    CERN Document Server

    Rulten, Cameron B

    2014-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first observatory for detecting gamma-rays from astrophysical phenomena and is now in its prototyping phase with construction expected to begin in 2015/16. In this work we present the results from early attempts at detailed simulation studies performed to assess the need for atmospheric monitoring. This will include discussion of some lidar analysis methods with a view to determining a range resolved atmospheric transmission profile. We find that under increased aerosol density levels, simulated gamma-ray astronomy data is systematically shifted leading to softer spectra. With lidar data we show that it is possible to fit atmospheric transmission models needed for generating lookup tables, which are used to infer the energy of a gamma-ray event, thus making it possible to correct affected data that would otherwise be considered unusable.

  17. The Telescope Array Middle Drum fluorescence detector simulation on GPUs

    Science.gov (United States)

    Abu-Zayyad, Tareq; Telescope-Array Collaboration

    2014-06-01

    In recent years, the Graphics Processing Unit (GPU) has been recognized and widely used as an accelerator for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of fluorescence detector response to air showers presents many opportunities for parallelization. In this paper we report on a Monte Carlo program used for the simulation of the Telescope Array Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed description of the code implementation is given, and results on the accuracy and performance of the simulation are presented as well. Improvements in computational throughput in excess of 50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

  18. Detection prospects of the Telescope Array hotspot by space observatories

    Science.gov (United States)

    Semikoz, D.; Tinyakov, P.; Zotov, M.

    2016-05-01

    In the present-day cosmic ray data, the strongest indication of anisotropy of the ultrahigh energy cosmic rays is the 20-degree hotspot observed by the Telescope Array with the statistical significance of 3.4 σ . In this work, we study the possibility of detecting such a spot by space-based all-sky observatories. We show that if the detected luminosity of the hotspot is attributed to a physical effect and not a statistical fluctuation, the KLYPVE and JEM-EUSO experiments would need to collect ˜300 events with E >57 EeV in order to detect the hotspot at the 5 σ confidence level with the 68% probability. We also study the dependence of the detection prospects on the hotspot luminosity.

  19. New Cooled Feeds for the Allen Telescope Array

    Science.gov (United States)

    Welch, Wm. J.; Fleming, Matthew; Munson, Chris; Tarter, Jill; Harp, G. R.; Spencer, Robert; Wadefalk, Niklas

    2017-04-01

    We developed a new generation of low-noise, broadband feeds for the Allen Telescope Array at the Hat Creek Observatory in Northern California. The new feeds operate over the frequency range 0.9 to 14 GHz. The noise temperatures of the feeds have been substantially improved by cooling the entire feed structure as well as the low-noise amplifiers to 70 K. To achieve this improved performance, the new feeds are mounted in glass vacuum bottles with plastic lenses that maximize the microwave transmission through the bottles. Both the cooled feeds and their low-noise amplifiers produce total system temperatures that are in the range 25–30 K from 1 GHz to 5 GHz and 40–50 K up to 12.5 GHz.

  20. Data model issues in the Cherenkov Telescope Array project

    CERN Document Server

    Contreras, J L; Bernlöhr, K; Boisson, C; Bregeon, J; Bulgarelli, A; de Cesare, G; Reyes, R de los; Fioretti, V; Kosack, K; Lavalley, C; Lyard, E; Marx, R; Rico, J; Sanguillot, M; Servillat, M; Walter, R; Ward, J E

    2015-01-01

    The planned Cherenkov Telescope Array (CTA), a future ground-based Very-High-Energy (VHE) gamma-ray observatory, will be the largest project of its kind. It aims to provide an order of magnitude increase in sensitivity compared to currently operating VHE experiments and open access to guest observers. These features, together with the thirty years lifetime planned for the installation, impose severe constraints on the data model currently being developed for the project. In this contribution we analyze the challenges faced by the CTA data model development and present the requirements imposed to face them. While the full data model is still not completed we show the organization of the work, status of the design, and an overview of the prototyping efforts carried out so far. We also show examples of specific aspects of the data model currently under development.

  1. An Innovative Workspace for The Cherenkov Telescope Array

    CERN Document Server

    Costa, Alessandro; Becchini, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user i...

  2. Open-structure composite mirrors for the Cherenkov Telescope Array

    CERN Document Server

    Dyrda, Michal; Niemiec, Jacek; Stodulski, Marek

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory for high-energy gamma-ray astronomy will comprise several tens of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a new technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. An open-structure composite mirror consists of a rigid flat sandwich support structure and cast-in-mould spherical epoxy resin layer. To this layer a thin glass sheet complete with optical coating is cold-slumped to provide the spherical reflective layer of the mirror. The main components of the sandwich support structure are two flat float glass panels inter spaced with V-shape aluminum spacers of equal length. The sandwich support structure is open, thus enabling good cooling and ventilation of the mirror. A special arrangement of the aluminum spacers also prohibits water being trapped inside. The open-structure technology thus re...

  3. Monitoring the Galactic Centre with Australia Telescope Compact Array

    CERN Document Server

    Borkar, A; Straubmeier, C; Kunneriath, D; Jalali, B; Sabha, N; Shahzamanian, B; García-Marín, M; Valencia-S, M; Sjouwerman, L; Britzen, S; Karas, V; Dovčiak, M; Donea, A; Zensus, A

    2016-01-01

    The supermassive black hole, Sagittarius A* (Sgr A*), at the centre of the Milky Way undergoes regular flaring activity which is thought to arise from the innermost region of the accretion flow. We performed the monitoring observations of the Galactic Centre to study the flux-density variations at 3mm using the Australia Telescope Compact Array (ATCA) between 2010 and 2014. We obtain the light curves of Sgr A* by subtracting the contributions from the extended emission around it, and the elevation and time dependent gains of the telescope. We perform structure function analysis and the Bayesian blocks representation to detect flare events. The observations detect six instances of significant variability in the flux density of Sgr A* in three observations, with variations between 0.5 to 1.0 Jy, which last for 1.5 $-$ 3 hours. We use the adiabatically expanding plasmon model to explain the short time-scale variations in the flux density. We derive the physical quantities of the modelled flare emission, such as ...

  4. Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics

    Science.gov (United States)

    Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.

  5. Satellite Characterization of four candidate sites for the Cherenkov Telescope Array telescope

    CERN Document Server

    Cavazzani, S; Bulik, T; Ortolani, S

    2012-01-01

    In this paper we have evaluated the amount of available telescope time at four sites which are candidate to host the future Cherenkov Telescope Array (CTA). We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the...

  6. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    CERN Document Server

    Schwanke, U; Sulanke, K -H; Vorobiov, S; Wischnewski, R

    2015-01-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E>20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger wi...

  7. The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Hayashida, M; Teshima, M; de Almeida, U Barres; Chikawa, M; Cho, N; Fukami, S; Gadola, A; Hanabata, Y; Horns, D; Jablonski, C; Katagiri, H; Kagaya, M; Ogino, M; Okumura, A; Saito, T; Stadler, R; Steiner, S; Straumann, U; Vollhardt, A; Wetteskind, H; Yamamoto, T; Yoshida, T

    2015-01-01

    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $\\sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical ...

  8. On site calibration for new fluorescence detectors of the telescope array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp; Murano, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kawana, S. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Tameda, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Taketa, A.; Ikeda, D.; Udo, S. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ogio, S. [Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Azuma, R.; Fukuda, M. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, N. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Kadota, K. [Faculty of Knowledge Engineering, Musashi Institute of Technology, Setagaya, Tokyo 158-8557 (Japan); Kakimoto, F. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sagawa, H.; Sakurai, N.; Shibata, T.; Takeda, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tsunesada, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2009-04-01

    The Telescope Array experiment is searching for the origin of ultra-high energy cosmic rays using a ground array of particle detectors and three fluorescence telescope stations. The precise calibration of the fluorescence detectors is important for small systematic errors in shower reconstruction. This paper details the process of calibrating cameras for two of the fluorescence telescope stations. This paper provides the operational results of these camera calibrations.

  9. Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    CERN Document Server

    :,; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Rameez, M; Montaruli, T; Neronov, A; Niemiec, J; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K; Zychowski, P

    2015-01-01

    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy ($>$ few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SS...

  10. Redshift measurement of Fermi blazars for the Cherenkov telescope array

    Science.gov (United States)

    Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.

    2017-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.

  11. The ASTRI mini-array within the future Cherenkov Telescope Array

    Science.gov (United States)

    Vercellone, Stefano

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1-100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10-15%, is well suited to study relatively bright sources (a few × 10-12 erg cm-2 s-1 at 10 TeV) at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC) and future high-altitude extensive air-shower detectors.

  12. Redshift measurement of Fermi Blazars for the Cherenkov Telescope Array

    CERN Document Server

    Goldoni, P; Boisson, C; Cotter, G; Williams, D A

    2015-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) gamma-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This renders the determination of their redshift extremely difficult. Indeed, as of today only about 50 % of gamma-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new BL Lacs. Using the first Fermi catalogue of sources above 10 GeV (1FHL), we performed simulations which demonstrate that at least half of the 1FHL BL Lacs detectable by CTA will not have a measured redshift. Indeed the organization of observing campaigns to measure the redshift of these blazars has been ...

  13. SETI Observations of Exoplanets with the Allen Telescope Array

    CERN Document Server

    Harp, G R; Tarter, Jill C; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wimberly, M K R; Ross, John; Barott, W C; Ackermann, R F; Blair, Samantha

    2016-01-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA) for about 19000 hours from May 2009 to Dec 2015. This search focused on narrow-band radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their Habitable Zone. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1-9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrow-band (0.7-100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3 m/s^2. A total of 1.9 x 10^8 unique signals requiring immediate follow-up were detected in observations covering more than 8 x 10^9 star-MHz. We detected no persistent signals from extrate...

  14. Array of CCD's for the 1m. Schmidt telescope

    Science.gov (United States)

    Sanchez, G.; Abad, C.; della Prugna, F. A.

    2001-07-01

    We describe the array of CCDs (YIC Camera) attached to the Schmidt Telescope located in the Observatorio Nacional de Llano del Hato, Merida, Venezuela. Currently the camera has 16 CCDs (2048×2048) cooled to below -80C. The camera can be used in drift-scan mode (within 7deg of equator) or guided mode. Two filter mosaics (UBUV and BVRI) and a low-pass filter with a 7000 AA cutoff are available. An objective prism of dispersion 500 AA/mm is also available. This prototype camera was designed for the QUEST project., a collaboration of Yale and Indiana Universities (USA) with the Universidad de los Andes and CIDA (Venezuela). A second phase camera will have 96 CCDs (4096 by 1024). The system has been working since early 1997. Even thought it is still under commisioning, an important quantity of astronomical data have been acquired. Half of the dark time is assigned to the QUEST project, observing in drift-scan mode with the UBUV filter set, or with the objective prism and no filters. The rest of the time is open to projects like the Survey for low luminosity Hx emission-line galaxies (UCM - CIDA), Variability Survey near the Galactic Plane (Yale, CFA, CIDA, Indiana), Catalogo Astrometrico y movimientos para el area de la "Carte du Ciel" zona San Fernando (CIDA - ROA), Solar System Science (ULA - Yale).

  15. KRATTA, a versatile triple telescope array for charged reaction products

    CERN Document Server

    Łukasik, J; Budzanowski, A; Czech, B; Skwirczyńska, I; Brzychczyk, J; Adamczyk, M; Kupny, S; Lasko, P; Sosin, Z; Wieloch, A; Kiš, M; Leifels, Y; Trautmann, W

    2013-01-01

    A new detection system KRATTA, Krak\\'ow Triple Telescope Array, is presented. This versatile, low threshold, broad energy range system has been built to measure the energy, emission angle, and isotopic composition of light charged reaction products. It consists of 38 independent modules which can be arranged in an arbitrary configuration. A single module, covering actively about 4.5 msr of the solid angle at the optimal distance of 40 cm from the target, consists of three identical, 0.500 mm thick, large area photodiodes, used also for direct detection, and of two CsI(1500 ppm Tl) crystals of 2.5 and 12.5 cm length, respectively. All the signals are digitally processed. The lower identification threshold, due to the thickness of the first photodiode, has been reduced to about 2.5 MeV for protons (~0.065 mm of Si equivalent) by applying a pulse shape analysis. The pulse shape analysis allowed also to decompose the complex signals from the middle photodiode into their ionization and scintillation components and...

  16. Feasibility of utilizing Cherenkov Telescope Array gamma-ray telescopes as free-space optical communication ground stations

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo; Cabrero, Juan Francisco

    2013-01-01

    The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.

  17. The Cherenkov Telescope Array Observatory: top level use cases

    Science.gov (United States)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  18. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  19. SKA mid-frequency aperture array thermal analysis for South Africa

    Science.gov (United States)

    Hanenburg, Hiddo; Kragt, Jan; v. d. Brink, Raymond; Drost, Marco

    2014-07-01

    SKA (Square Kilometre Array) is a radio telescope that will have a collecting area of a square kilometer. The Mid frequency range receivers of SKA will be located in the Karoo desert in South Africa. Several designs of enclosures are proposed to protect the antenna arrays and electronics against the harsh environment. Thermal analyses by Computational Fluid Dynamics are performed on the different designs of antenna enclosures to determine their effect on the maximum temperatures and the temperature stability of the receivers.

  20. Revisiting the Westerlund 2 field with the HESS telescope array

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Boutelier, T.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Reimer, A.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Fukui, Y.; Furukawa, N.; Ohama, A.; Sano, H.; Dawson, J.; Kawamura, A; H.E.S.S. Collaboration

    2011-01-01

    Aims: Previous observations with the HESS telescope array revealed the existence of extended very-high-energy (VHE; E>100 GeV) γ-ray emission, HESS J1023-575, coincident with the young stellar cluster Westerlund 2. At the time of discovery, the origin of the observed emission was not unambiguously identified, and follow-up observations have been performed to further investigate the nature of this γ-ray source. Methods: The Carina region towards the open cluster Westerlund 2 has been re-observed, increasing the total exposure to 45.9 h. The combined dataset includes 33 h of new data and now permits a search for energy-dependent morphology and detailed spectroscopy. Results: A new, hard spectrum VHE γ-ray source, HESS J1026-582, was discovered with a statistical significance of 7σ. It is positionally coincident with the Fermi LAT pulsar PSR J1028-5819. The positional coincidence and radio/γ-ray characteristics of the LAT pulsar favors a scenario where the TeV emission originates from a pulsar wind nebula. The nature of HESS J1023-575 is discussed in light of the deep HESS observations and recent multi-wavelength discoveries, including the Fermi LAT pulsar PSR J1022-5746 and giant molecular clouds in the region. Despite the improved VHE dataset, a clear identification of the object responsible for the VHE emission from HESS J1023-575 is not yet possible, and contribution from the nearby high-energy pulsar and/or the open cluster remains a possibility.

  1. The telescope control of the ASTRI SST-2M prototype for the Cherenkov telescope Array: hardware and software design architecture

    Science.gov (United States)

    Antolini, Elisa; Cascone, Enrico; Schwarz, Joseph; Stringhetti, Luca; Tanci, Claudio; Tosti, Gino; Aisa, Damiano; Aisa, Simone; Bagaglia, Marco; Busatta, Andrea; Campeggi, Carlo; Cefala, Marco; Farnesini, Lucio; Giacomel, Stefano; Marchiori, Gianpiero; Marcuzzi, Enrico; Nucciarelli, Giuliano; Piluso, Antonfranco

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and led by the Italian National Institute of Astrophysics (INAF). One of its aims is to develop, within the Cherenkov Telescope Array (CTA) framework, an end-to-end small-sized telescope prototype in a dual-mirror configuration (SST-2M) in order to investigate the energy range E ~ 1-100 TeV. A long-term goal of the ASTRI program is the production of an ASTRI/CTA mini-array composed of seven SST-2M telescopes. The prototype, named ASTRI SST-2M, is seen as a standalone system that needs only network and power connections to work. The software system that is being developed to control the prototype is the base for the Mini-Array Software System (MASS), which has the task to make possible the operation of both the ASTRI SST-2M prototype and the ASTRI/CTA mini-array. The scope of this contribution is to give an overview of the hardware and software architecture adopted for the ASTRI SST- 2M prototype, showing how to apply state of the art industrial technologies to telescope control and monitoring systems.

  2. Divergent pointing with the Cherenkov Telescope Array for surveys and beyond

    CERN Document Server

    ,

    2015-01-01

    The galactic and extragalactic surveys are two of the main proposed legacy projects of the Cherenkov Telescope Array (CTA), providing an unbiased view of the Universe at energies above tens of GeV. Considering Cherenkov telescopes' limited field of view ($<10^\\circ$), the time needed for those projects is large. The many telescopes of CTA will allow taking full advantage of new pointing modes in which telescopes point slightly offset from one another. This divergent pointing mode leads to an increase of the array field of view ($\\sim 14^\\circ$ or larger) with competitive performance compared to normal pointing. We present here a study of the performance of the divergent pointing for different array configurations and number of telescopes. We briefly discuss the prospect of using divergent pointing for surveys.

  3. Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

    CERN Document Server

    Pareschi, G; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; de Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Förster, A; Garczarczyk, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; Mandat, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.

  4. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  5. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  6. Exploring the Dynamic Radio Sky with the Allen Telescope Array

    Science.gov (United States)

    Williams, Peter Kelsey George

    The revolution in digital technology that has had so many obvious effects in recent decades has not spared the field of astronomy. It has led to an enormous improvement in astronomers' ability to study the "time domain," the expected and unexpected ways in which celestial objects change on timescales ranging from milliseconds to centuries. In the field of radio astronomy a variety of advances have led to a new breed of observatories that are orders of magnitude more efficient at surveying the sky than previous facilities. These new observatories produce data at prodigous rates, however, and require sophisticated analysis to take full advantage of their capabilities. With several major facilities coming online in the next few years, there is an urgent need to prove that terabytes of data can be reliably turned into genuine astrophysical results. This dissertation develops tools and techniques for coping with this challenge and applies them to data obtained with the Allen Telescope Array (ATA), a pioneering next-generation radio observatory located in Northern California. The ATA was built from the ground up to be a fast survey instrument, incorporating a suite of the new technologies that figure prominently in the new telescopes. I develop and describe miriad-python, a framework for the rapid development of interferometric analysis software that is used in a variety of ways in my subsequent research. I also present a robust software system for executing multiple observing campaigns cooperatively ("commensally") at the ATA. Data from the ATA are difficult to analyze due to nontraditional features such as a large instantaneous field of view; continuous coverage of a large, interference-prone frequency range; and broadband, movable feeds; I describe and implement several methods for coping with these challenges. This technical work is driven by the needs of a variety of astrophysical applications. I use broadband spectra of starforming galaxies to investigate the

  7. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    Science.gov (United States)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  8. Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Amans, J. P.; Dangeon, L.; Fasola, G.; Gironnet, J.; Huet, J. M.; Laporte, P.; Abchiche, A.; Barkaoui, S.; Bousquet, J. J.; Buchholtz, G.; Dumas, D.; Gaudemard, J.; Jégouzo, I.; Poinsignon, P.; Vergne, L.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design

  9. Distributed genetic algorithm for optimal planar arrays of aperture synthesis telescope

    Institute of Scientific and Technical Information of China (English)

    贺小箭; 唐新怀; 尤晋元; 文建国

    2004-01-01

    Sparse arrays of telescopes have a limited ( u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum ( u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.

  10. Monte Carlo Simulations For The Cherenkov Telescope Array Observatory Using Pl-Grid E-Infrastructure

    Directory of Open Access Journals (Sweden)

    Anna Barnacka

    2012-01-01

    Full Text Available The paper presents Monte Carlo simulations carried out during the preparatory phase of the Cherenkov Telescope Array project. The aim of the project is to build the next generation observatory of very high energy gamma rays. During the preparatory phase there is a need to optimize and verify design concepts for various elements of the array. In this paper we describe the main components of the software being used for that purpose, their functions and requirements. Preliminary results of the optimization of the small telescope – one of the several kinds intended for the array, are presented.

  11. Towards micro-arcsecond spatial resolution with Air Cherenkov Telescope arrays as optical intensity interferometers

    CERN Document Server

    De Wit, W J; Hinton, J A; White, R J; Daniel, M K; Holder, J

    2008-01-01

    In this poster contribution we highlight the equivalence between an Imaging Air Cherenkov Telescope (IACT) array and an Intensity Interferometer for a range of technical requirements. We touch on the differences between a Michelson and an Intensity Interferometer and give a brief overview of the current IACT arrays, their upgrades and next generation concepts (CTA, AGIS, completion 2015). The latter are foreseen to include 30-90 telescopes that will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 micro-arcseconds resolution for a limiting V magnitude of ~8.5. This technique opens the possibility of a wide range of studies, amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we discuss possibilities for using IACT arrays as optical Intensity Interferometers.

  12. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Seweryn, K; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2015-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  13. Towards a Joint Analysis of Data from the IceCube Neutrino Telescope, the Pierre Auger Observatory and Telescope Array

    Science.gov (United States)

    Christov; Golup, G.; Montaruli, T.; Rameez, M.; Aublin, J.; Caccianiga, L.; Ghia, P. L.; Roulet, E.; Unger, M.; Sagawa, H.; Tinyakov, P.

    A joint point-source analysis to search for correlations between the arrival directions of neutrinos and ultra-high energy cosmic rays (UHECRs) is being planned by the IceCube, Pierre Auger and Telescope Array Collaborations. A cross-correlation analysis will be performed using ten years of Auger data, six years of Telescope Array data and a signal-rich set of neutrino candidate events detected at IceCube. Also, a likelihood analysis will be applied to the same sample of neutrinos, stacking their arrival directions, and to UHECRs. Finally, another likelihood analysis will be performed on stacked UHECRs and the IceCube 4-year sample of clean, through-going muons that could be associated with charged-current muon neutrino interactions. An outline of the analyses, their sensitivities and discovery potentials is presented here.

  14. Pierre Auger Observatory and Telescope Array: Joint Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013)

    CERN Document Server

    Array, The Telescope; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, K; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nanpei, H; Nonaka, T; Nozato, A; Ogio, S; Oh, S; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Takamura, M; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z; Aab, A; Abreu, P; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muniz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antivcic, T; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bardenet, R; Baeuml, J; Baus, C; Beatty, J J; Becker, K H; Belletoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blumer, H; Bohacova, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceicao, R; Contreras, F; Cook, H; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Diaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipcic, A; Foerster, N; Fox, B D; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Frohlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; Garcia, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gomez; Vitale, P F Gomez; Goncalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Homola, P; Hoerandel, J R; Horvath, P; Hrabovsky, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jansen, S; Jarne, C; Josebachuili, M; Kadija, K; Kambeitz, O; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kegl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Krause, R; Krohm, N; Kroemer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leao, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopez, R; Aguera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martinez; Martraire, D; Meza, J J Masias; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Micanovic, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Mostafa, M; Moura, C A; Muller, M A; Muller, G; Munchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novzka, L; Oehlschlager, J; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Pontz, M; Porcelli, A; Preda, T; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Frias, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouille-d'Orfeuil, B; Roulet, E; Rovero, A C; Ruhle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sanchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovanek, P; Schroeder, F G; Schulz, A; Schulz, J; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Smialkowski, A; Smida, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Straub, M; Stutz, A; Suarez, F; Suomijarvi, T; Supanitsky, A D; Susa, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Tacscuau, O; Tcaciuc, R; Thao, N T; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tome, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Tridapalli, D B; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Galicia, J F Valdes; Valino, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cardenas, B Vargas; Varner, G; Vazquez, J R; Vazquez, R A; Veberic, D; Verzi, V; Vicha, J; Videla, M; Villasenor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczynska, B; Wilczynski, H; Will, M; Williams, C; Winchen, T; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2013-01-01

    Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.

  15. Pierre Auger Observatory and Telescope Array: Joint Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013)

    NARCIS (Netherlands)

    Telescope Array, The; Pierre Auger Collaborations,; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, K.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nanpei, H.; Nonaka, T.; Nozato, A.; Ogio, S.; Oh, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Takamura, M.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.

  16. Pierre Auger Observatory and Telescope Array: Joint Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; et al.

    2013-10-02

    Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.

  17. Prospects for PWNe and SNRs science with the ASTRI mini-array of pre-production small-sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Burtovoi, A; Giuliani, A; Bigongiari, C; Di Pierro, F; Stamerra, A

    2016-01-01

    The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E>100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolutioerrorn and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated...

  18. TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

    CERN Document Server

    Funk, S; Katagiri, H; Kraus, M; Okumura, A; Schoorlemmer, H; Shigenaka, A; Tajima, H; Tibaldo, L; Varner, G; Zink, A; Zorn, J

    2016-01-01

    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each chann...

  19. Observing Pulsars with a Phased Array Feed at the Parkes Telescope

    Science.gov (United States)

    Deng, X.; Chippendale, A. P.; Hobbs, G.; Johnston, S.; Dai, S.; George, D.; Kramer, M.; Karuppusamy, R.; Malenta, M.; Spitler, L.; Tzioumis, T.; Wieching, G.

    2017-07-01

    During 2016 February, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned, and carried out science observations with a phased array feed receiver system on the 64-m diameter Parkes radio telescope. Here, we demonstrate that the phased array feed can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the phased array feed can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of -31 dB can be achieved with a phased array feed beam offset from the centre of the field of view. We discuss the possibilities for using a phased array feed for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.

  20. Design of a prototype device to calibrate the Large Size Telescope camera of the Cherenkov Telescope Array

    CERN Document Server

    Iori, M; De Persio, F; Chatterjee, A; Ferrarotto, F; Nagesh, B K; Saha, L; Singh, B B

    2015-01-01

    The Cherenkov Telescope Array is a project that aims to exploring the highest energy region of electromagnetic spectrum. Two arrays, one for each hemisphere, will cover the full sky in a range from few tens of GeV to hundreds of TeV improving the sensitivity and angular resolution of the present operating arrays. A prototype of the Large Size Telescope (LST) for the study of gamma ray astronomy above some tens of GeV will be installed at the Canary Island of La Palma in 2016. The LST camera, made by an array of photomultipliers (PMTs), requires an accurate and systematic calibration over a wide dynamic range. In this contribution, we present an optical calibration system made by a 355 nm wavelength laser with 400 ps pulse width, 1 muJ output energy, up to 4k Hz repetition rate and a set of neutral density filters to obtain a wide range of photon intensities, up to 1000 photoelectrons/PMT, to be sent to the camera plane 28 m away. The number of photons after the diffuser of the calibration box, located in the ...

  1. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    Science.gov (United States)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  2. Real-time atmospheric monitoring for the Cherenkov Telescope Array using a wide-field optical telescope

    CERN Document Server

    Ebr, Jan; Prouza, Michael; Blazek, Jiri

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments and is planned to be built on two sites (one in each hemisphere) in the coming years, with full array operation foreseen to begin 2020. The goal of performing high precision gamma-ray energy measurements while maximizing the use of observation time demands detailed and fast information about atmospheric conditions. Besides LIDARs designed to monitor clouds and aerosol content of the atmosphere in the pointing direction of the CTA telescopes, we propose to use the "FRAM" (F(/Ph)otometric Robotic Atmospheric Monitor) device, which is a small robotic astronomical telescope with a large field of view and a sensitive CCD camera that together ensure precise atmospheric characterization over the complete field-of-view of the CTA. FRAM will use stellar photometry to measure atmospheric extinction across the field of view of the CTA without interfering with the observation (unlike laser-based methods). Thi...

  3. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    Science.gov (United States)

    Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  4. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    CERN Document Server

    Sadeh, Iftach; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction. The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  5. The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

    CERN Document Server

    La Palombara, N; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; Mistó, A; Morello, C; Morlino, G; Panzera, M R; Pareschi, G; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V

    2013-01-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.

  6. The SAPHIRA Near-Infrared Avalanche Photodiode Array: Telescope Deployments and Future Developments

    Science.gov (United States)

    Atkinson, Dani Eleanor; Hall, Donald; Baranec, Christoph

    2015-01-01

    We present our recent achievements of the Selex SAPHIRA APD arrays, which this year have seen deployment at three different telescopes, most notably demonstrating tip-tilt wavefront sensing in conjunction with the Palomar 1.5-m Telescope's Robo-AO system. A cooperative effort to provide enhanced speckle nulling capability to the SCExAO instrument on the Subaru telescope is also underway. We present the progress and development timeframe for the SAPHIRA and expected future applications, including targets and observational parameter space we expect the detectors to open to the astronomical community.

  7. First On-Sky Fringes with an Up-Conversion Interferometer Tested on a Telescope Array.

    Science.gov (United States)

    Darré, P; Baudoin, R; Gomes, J-T; Scott, N J; Delage, L; Grossard, L; Sturmann, J; Farrington, C; Reynaud, F; Brummelaar, T A Ten

    2016-12-02

    The Astronomical Light Optical Hybrid Analysis project investigates the combined use of a telescope array interferometer and nonlinear optics to propose a new generation of instruments dedicated to high-resolution imaging for infrared astronomy. The nonlinear process of optical frequency conversion transfers the astronomical light to a shorter wavelength domain. Here, we report on the first fringes obtained on the sky with the prototype operated at 1.55  μm in the astronomical H band and implemented on the Center for High Angular Resolution Astronomy telescope array. This seminal result allows us to foresee a future extension to the challenging midinfrared spectral domain.

  8. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 4-11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years.

  9. The Photodetector Plane of the 4m Davies Cotton Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Boccone, V; Basili, A; Christov, A; della Volpe, M; Montaruli, T

    2013-01-01

    Photomultipliers (PMTs) are currently adopted for the photodetector plane of Imaging Atmospheric Cherenkov Telescopes (IACTs). Even though PMT quantum efficiency has improved impressively in the recent years, one of the main limitation for their application in the gamma-astronomy field - the impossibility to operate with moon light - still remains. As a matter of fact, the light excess would lead to significant and faster camera ageing. Solid state detectors, in particular Geiger-mode avalanche photo-diodes (G-APDs) represent a valuable alternative solution to overcome this limitation as demonstrated in the field by the FACT experiment (The First G- APD Cherenkov Telescope). They can be regarded as a more promising long term approach, which can be easily adopted for the new generation of cameras and for the Cherenkov Telescope Array (CTA). We describe here the Photo-Detector Plane (PDP) of the camera for the 4 m Davies Cotton CTA Small Size Telescopes, for which large area G-APD coupled to non-imaging light c...

  10. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  11. Construction of a Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: status of the optical system

    CERN Document Server

    Rousselle, J; Cameron, R; Connaughton, V; Errando, M; Guarino, V; Humensky, T B; Jenke, P; Kieda, D; Mukherjee, R; Nieto, D; Okumura, A; Petrashyk, A; Vassiliev, V

    2015-01-01

    We present the design and the status of procurement of the optical system of the prototype Schwarzschild-Couder telescope (pSCT), for which construction is scheduled to begin in fall at the Fred Lawrence Whipple Observatory in southern Arizona, USA. The Schwarzschild-Couder telescope is a candidate for the medium-sized telescopes of the Cherenkov Telescope Array, which utilizes imaging atmospheric Cherenkov techniques to observe gamma rays in the energy range of 60Gev-60TeV. The pSCT novel aplanatic optical system is made of two segmented aspheric mirrors. The primary mirror has 48 mirror panels with an aperture of 9.6 m, while the secondary, made of 24 panels, has an diameter of 5.4 m. The resulting point spread function (PSF) is required to be better than 4 arcmin within a field of view of 6.4 degrees (80% of the field of view), which corresponds to a physical size of 6.4 mm on the focal plane. This goal represents a challenge for the inexpensive fabrication of aspheric mirror panels and for the precise ali...

  12. Performance of Silicon Photomultipliers for the Dual-Mirror Medium-Sized Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Biteau, Jonathan; Dang, Dennis; Doyle, Kevin; Johnson, Caitlin A.; Williams, David A.

    2015-01-01

    Gamma-ray observations in the very-high-energy domain (E > 30 GeV) can exploit the imaging of few-nanosecond Cherenkov flashes from atmospheric particle showers. Photomultipliers have been used as the primary photosensors to detect gamma-ray induced Cherenkov light for the past 25 years, but they are increasingly challenged by the swift progress of silicon photomultipliers (SiPMs). We are working to identify the optimal photosensors for medium-sized Schwarzschild-Couder telescopes (SCT), which are proposed to contribute a significant fraction of the sensitivity of the Cherenkov Telescope Array in its core energy range. We present the capabilities of the latest SiPMs from the Hamamatsu, SensL, and Excelitas companies that we have characterized in our laboratory, and compare them to the SiPMs equipping the prototype SCT camera that is under construction.

  13. FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G; Bernhard, S; Capasso, M; Diebold, S; Eisenkolb, F; Florin, D; Föhr, C; Funk, S; Gadola, A; Garrecht, F; Hermann, G; Jung, I; Kalekin, O; Kalkuhl, C; Kasperek, J; Kihm, T; Lahmann, R; Manalaysay, A; Marszalek, A; Pfeifer, M; Rajda, P J; Reimer, O; Santangelo, A; Schanz, T; Schwab, T; Steiner, S; Straumann, U; Tenzer, C; Vollhardt, A; Weitzel, Q; Werner, F; Wolf, D; Zietara, K

    2015-01-01

    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.

  14. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  15. A deployment mechanism for the double roll-out flexible solar array on the space telescope

    Science.gov (United States)

    Cawsey, T. R.

    1982-01-01

    A roll-out flexible array which provides more than 4 kW of power for the space telescope was developed. The Array is configured as two wings. The deployment mechanism for each wing is based on flight-proven FRUSA design. Modifications have been incorporated to accommodate an increase in size and mission requirements. The assembly and operation of the deployment mechanism are described together with environmental and functional tests results.

  16. Photometry using the Infrared Array Camera on the Spitzer Space Telescope

    CERN Document Server

    Hora, Joseph L; Surace, Jason; Marengo, Massimo; Lowrance, Patrick; Glaccum, William J; Lacy, Mark; Reach, William T; Hoffmann, William F; Barmby, Pauline; Willner, S P; Fazio, Giovanni G; Megeath, S Thomas; Allen, Lori E; Bhattacharya, Bidushi; Quijada, Manuel

    2008-01-01

    We present several corrections for point source photometry to be applied to data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These corrections are necessary because of characteristics of the IRAC arrays and optics and the way the instrument is calibrated in-flight. When these corrections are applied, it is possible to achieve a ~2% relative photometric accuracy for sources of adequate signal to noise in an IRAC image.

  17. Simulating the optical performance of a small-sized telescope with secondary optics for the Cherenkov Telescope Array

    Science.gov (United States)

    Rulten, Cameron; Zech, Andreas; Okumura, Akira; Laporte, Philippe; Schmoll, Jürgen

    2016-09-01

    The Gamma-ray Cherenkov Telescope (GCT) is a small-sized telescope (SST) that represents one of three novel designs that are based on Schwarzschild-Couder optics and are proposed for use within the Cherenkov Telescope Array (CTA). The GAmma-ray Telescope Elements (GATE) program has led an effort to build a prototype of the GCT at the Paris Observatory in Meudon, France. The mechanical structure of the prototype, known as the SST-GATE prototype telescope, is now complete along with the successful installation of the camera. We present the results of extensive simulation work to determine the optical performance of the SST-GATE prototype telescope. Using the ROBAST software and assuming an ideal optical system, we find the radius of the encircled point spread function (θ80) of the SST-GATE to be ∼1.3 arcmin (∼0.02°) for an on-axis (θfield =0∘) observation and ∼3.6 arcmin (∼0.06°) for an observation at the edge of the field of view (θfield = 4 .4∘). In addition, this research highlights the shadowing that results from the stopping of light rays by various telescope components such as the support masts and trusses. It is shown that for on-axis observations the effective collection area decreases by approximately 1 m2 as a result of shadowing components other than the secondary mirror. This is a similar loss (∼11%) to that seen with the current generation of conventional Davies-Cotton (DC) Cherenkov telescopes. An extensive random tolerance analysis was also performed and it was found that certain parameters, especially the secondary mirror z-position and the tip and tilt rotations of the mirrors, are critical in order to contain θ80 within the pixel limit radius for all field angles. In addition, we have studied the impact upon the optical performance of introducing a hole in the center of the secondary mirror for use with pointing and alignment instruments. We find that a small circular area (radius cost of poorer image quality and light collection

  18. Fiber-to-the-telescope: MeerKAT, the South African precursor to Square Kilometre Telescope Array

    Science.gov (United States)

    Gibbon, Tim B.; Rotich Kipnoo, Enoch K.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Siebrits, Renier; Julie, Roufurd; Malan, Sias; Rust, Warnich; Kapp, Francois; Venkatasubramani, Thondikulam L.; Wallace, Bruce; Peens-Hough, Adriaan; Herselman, Paul

    2015-04-01

    Scientific curiosity to probe the nature of the universe is pushing the boundaries of big data transport and computing for radio telescopes. MeerKAT, the South African precursor to Square Kilometre Array, has 64 antennas separated by up to 12 km. By 2018, each antenna will stream up to 160 Gbps over optical fiber to a central computing engine. The antenna digitizers require highly accurate clock signals distributed with high stability. This paper outlines requirements and key design aspects of the MeerKAT network with timing reference overlay. Fieldwork results are presented into the impact of birefringence and polarization fluctuations on clock stability.

  19. The EEE Project: a sparse array of telescopes for the measurement of cosmic ray muons

    Science.gov (United States)

    La Rocca, P.; Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccetti, F.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; Liciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rizzi, M.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-12-01

    The Extreme Energy Events (EEE) Project is meant to be the most extensive experiment to detect secondary cosmic particles in Italy. To this aim, more than 50 telescopes have been built at CERN and installed in high schools distributed all over the Italian territory. Each EEE telescope comprises three large area Multigap Resistive Plate Chambers (MRPCs) and is capable of reconstructing the trajectories of the charged particles traversing it with a good angular resolution. The excellent performance of the EEE telescopes allows a large variety of studies, from measuring the local muon flux in a single telescope, to detecting extensive air showers producing time correlations in the same metropolitan area, to searching for large-scale correlations between showers detected in telescopes tens, hundreds or thousands of kilometers apart. In addition to its scientific goal, the EEE Project also has an educational and outreach objective, its aim being to motivate young people by involving them directly in a real experiment. High school students and teachers are involved in the construction, testing and start-up of the EEE telescope in their school, then in its maintenance and data-acquisition, and later in the analysis of the data. During the last couple of years a great boost has been given to the EEE Project through the organization of simultaneous and centralized data taking with the whole telescope array. The raw data from all telescopes are transferred to CNAF (Bologna), where they are reconstructed and stored. The data are currently being analyzed, looking at various topics: variation of the rate of cosmic muons with time, upward going muons, muon lifetime, search for anisotropies in the muon angular distribution and for time coincidences between stations. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array is also presented by showing the most recent

  20. STS-31 Hubble Space Telescope (HST) solar array (SA) mockup at MSFC, Alabama

    Science.gov (United States)

    1990-01-01

    A close-up shot shows an extravehicular mobility unit (EMU)-suited astronaut inspecting a solar array (SA) on the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. MSFC managed the design and development of the telescope. The weightlessness simulator was used to practice SA contingency procedures that might be used in space. Astronauts also practiced SA servicing missions in the simulator which they will perform on the telescope in space. The solar arrays which supply electrical power to the space telescope were developed and contributed by the European Space Agency (ESA). ESA's two prime contractors were British Aerospace in England and AEG in West Germany. The two wing-like solar arrays contain 48,000 solar cells. They convert the sun's energy to electricity during that portion of an orbit when they are exposed to sunlight. The power is stored in six batteries to support the telescope during

  1. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    Science.gov (United States)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  2. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    DEFF Research Database (Denmark)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter,radiation ...

  3. The Allen Telescope Array : The First Widefield, Panchromatic, Snapshot Radio Camera

    NARCIS (Netherlands)

    Leeuwen, Joeri van

    2009-01-01

    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting panorami

  4. Software design of the ASTRI camera server proposed for the Cherenkov Telescope Array

    Science.gov (United States)

    Conforti, Vito; Trifoglio, Massimo; Gianotti, Fulvio; Malaguti, Giuseppe; Bulgarelli, Andrea; Fioretti, Valentina; Zoli, Andrea; Catalano, Osvaldo; Capalbi, Milvia; Sangiorgi, Pierluca

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the ASTRI project within the ambitious Cherenkov Telescope Array (CTA), the next generation of ground-based observatories for very high energy gamma-ray astronomy. In the framework of the small sized telescopes (SST), a first goal of the ASTRI project is the realization of an end-to-end prototype in dual-mirror configuration (2M) with the camera composed of a matrix of Silicon photo-multiplier sensors managed by innovative front-end and back-end electronics. The prototype, named ASTRI SST-2M, is installed in Italy at the INAF "M.G. Fracastoro" observing station located at Serra La Nave, 1735 m a.s.l. on Mount Etna, Sicily. As a second step, the ASTRI project is focused on the implementation of a mini-array composed at least of nine ASTRI telescopes and proposed to be placed at the CTA southern site. This paper outlines the design of the camera server software that will be installed on the ASTRI mini-array. The software is based on the version installed on the ASTRI SST-2M prototype operating in a single telescope configuration. The migration from single telescope to mini-array context has required additional interfaces in order to guarantee high interoperability with other software and hardware components. In the mini-array configuration each camera communicates with its own camera server via a dedicated high rate data link. The primary goal of the camera server is to acquire the bulk data, packet by packet, without any data loss and to timestamp each packet very precisely. During array operation, the camera server receives from the SoftWare Array Trigger (SWAT) the list of science events that participate in stereo triggered events. These science events, and all others that are flagged either by the camera as interleaved calibration or by the camera server as possible single-muon events, are sent to the Array DAQ. All remaining science events will be discarded. A suitable buffer is provided to

  5. Recent developments for the testing of Cherenkov Telescope Array mirrors and actuators in T\\"ubingen

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation Cherenkov telescope facility. It will consist of a large number of segmented-mirror telescopes of three different diameters, placed in two locations, one in the northern and one in the southern hemisphere, thus covering the whole sky. The total number of mirror tiles will be on the order of 10,000, corresponding to a reflective area of ~10^4 m^2. The Institute for Astronomy and Astrophysics in T\\"ubingen (IAAT) is currently developing mirror control alignment mechanics, electronics, and software optimized for the medium sized telescopes. In addition, IAAT is participating in the CTA mirror prototype testing. In this paper we present the status of the current developments, the main results of recent tests, and plans for the production phase of the mirror control system. We also briefly present the T\\"ubingen facility for mirror testing.

  6. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  7. Reliability models applicable to space telescope solar array assembly system

    Science.gov (United States)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  8. TARGET: A digitizing and trigger ASIC for the Cherenkov telescope array

    Science.gov (United States)

    Funk, S.; Jankowsky, D.; Katagiri, H.; Kraus, M.; Okumura, A.; Schoorlemmer, H.; Shigenaka, A.; Tajima, H.; Tibaldo, L.; Varner, G.; Zink, A.; Zorn, J.

    2017-01-01

    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affiordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffier for each channel and on-demand digitization and transmission of waveforms with typical spans of ˜100 ns. The trigger ASIC, T5TEA, provides 4 low voltage diffierential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.

  9. The european FAZIA initiative: a high-performance digital telescope array for heavy-ion studies

    CERN Document Server

    Casini, G; Pasquali, G; Pastore, G; Bini, M; Carboni, S; Olmi, A; Piantelli, S; Poggi, G; Stefanini, A; Valdre', S; Bonnet, E; Borderie, B; Bougault, R; Bruno, M; Chbihi, A; Cinausero, M; Degerlier, M; Edelbruck, P; Frankland, J D; Gramegna, F; Gruyer, D; Guerzoni, M; Kordjasz, A; Kozik, T; Neindre, N Le; Lopez, O; Marchi, T; Marini, P; Morelli, L; Ordine, A; Parlog, M; Rivet, M F; Rosato, E; Salomon, F; Spadaccini, G; Twarog, T; Vient, E; Vigilante, M

    2013-01-01

    The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification also via pulse shape analysis. The achievement of top performances imposes specific electronics which has been developed by FAZIA and features high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program centered on experiments to be done with the demonstrator. First results on the isospin dynamics obt...

  10. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    Science.gov (United States)

    Canestrari, Rodolfo; Giro, Enrico; Sironi, Giorgia; Antolini, Elisa; Fugazza, Dino; Scuderi, Salvatore; Tosti, Gino; Tanci, Claudio; Russo, Federico; Gardiol, Daniele; Fermino, Carlos Eduardo; Stringhetti, Luca; Pareschi, Giovanni; Marchiori, G.; Busatta, A.; Marcuzzi, E.; Folla, I.

    2016-08-01

    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior.

  11. Perspectives With The GCT End-to-end Prototype Of The Small-Sized Telescope Proposed For The Cherenkov Telescope Array

    CERN Document Server

    Costantini, H; Ernenwein, J -P; Laporte, Ph; Sol, H

    2016-01-01

    In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild- Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.

  12. Perspectives with the GCT end-to-end prototype of the small-sized telescope proposed for the Cherenkov telescope array

    Science.gov (United States)

    Costantini, H.; Dournaux, J.-L.; Ernenwein, J.-P.; Laporte, P.; Sol, H.

    2017-01-01

    In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild-Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.

  13. Monte Carlo Studies of the GCT Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Armstrong, Thomas; Rulten, Cameron; Stamatescu, Victor; Zech, Andreas

    2015-01-01

    The GCT is an innovative dual-mirror solution proposed for the small-size telescopes for CTA, capable of imaging primary cosmic gamma-rays from below a TeV to hundreds of TeV. The reduced plate scale resulting from the secondary optics allows the use of compact photosensors, including multi-anode photomultiplier tubes or silicon photomultipliers. We show preliminary results of Monte Carlo simulations using the packages CORSIKA and Sim_telarray, comparing the relative performance of each photosensor type. We also investigate the effect of the secondary optics in terms of optical performance, image resolution and camera response. With the ongoing commissioning of the prototype structure and camera, we present the preliminary expected performance of GCT.

  14. The Cherenkov Telescope Array: Exploring the Very-high-energy Sky from ESO's Paranal Site

    Science.gov (United States)

    Hofmann, W.

    2017-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for ground-based very-high-energy gamma-ray astronomy, using the imaging atmospheric Cherenkov technique to detect and reconstruct gamma-ray induced air showers. The CTA project is planning to deploy 19 telescopes on its northern La Palma site, and 99 telescopes on its southern site at Paranal, covering the 20 GeV to 300 TeV energy domain and offering vastly improved performance compared to currently operating Cherenkov telescopes. The combination of three different telescope sizes (23-, 12- and 4-metre) allows cost-effective coverage of the wide energy range. CTA will be operated as a user facility, dividing observation time between a guest observer programme and large Key Science Projects (KSPs), and the data will be made public after a one-year proprietary period. The history of the project, the implementation of the arrays, and some of the major science goals and KSPs, are briefly summarised.

  15. Light sensors selection for the Cherenkov Telescope Array: PMT and SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, M., E-mail: mshayduk@googlemail.com [DESY Zeuthen, D-15738 (Germany); Mirzoyan, R.; Kurz, M.; Knoetig, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Bolmont, J. [LPNHE Universite Pierre et Marie Curie, Paris (France); Dickinson, H. [Oskar Klein Centre, Stockholm University (Sweden); Lorenz, E. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Tavernet, J.-P. [LPNHE Universite Pierre et Marie Curie, Paris (France); Hose, J.; Teshima, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Vincent, P. [LPNHE Universite Pierre et Marie Curie, Paris (France)

    2012-12-11

    The Cherenkov Telescope Array (CTA) is planned as the next generation ground-based instrument (after VERITAS, H.E.S.S. and MAGIC) for astrophysics by means of very high energy {gamma}-rays. The CTA collaboration includes the MAGIC, the H.E.S.S. and the VERITAS collaborations. Also, a large number of astrophysicists from European institutions, from Japan and USA have joined the CTA. The CTA array will comprise about 100 imaging telescopes of three sizes that shall provide one order of magnitude higher sensitivity than the current generation of telescopes. Every telescope will use an imaging camera based on {approx}2000PMTs. We have set up a PMT development program with Hamamatsu (Japan) and Electron Tube Enterprises (England) aiming to produce 1.5 in. PMTs of optimized parameters for the CTA project. The entire scientific community, including the medicine and biology, as well as many industrial applications, where a low light level sensors are necessary, may profit from it. Together with PMTs also SiPMs are interesting sensor candidates for the CTA telescopes. One expects about two times higher photon detection efficiency for SiPM compared to PMT. A set of parameters like the photon detection efficiency, cross-talk, afterpulsing, dark rate together with other important factors were evaluated. Here we report on the progress of these developments, based on detailed measurements.

  16. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  17. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  18. Engineering and Science Highlights of the KAT-7 Radio Telescope

    CERN Document Server

    Foley, A R; Armstrong, R P; Barta, A; Bauermeister, E F; Bester, H; Blose, S; Booth, R S; Botha, D H; Buchner, S J; Carignan, C; Cheetham, T; Cloete, K; Coreejes, G; Crida, R C; Cross, S D; Curtolo, F; Dikgale, A; de Villiers, M S; Toit, L J du; Esterhuyse, S W P; Fanaroff, B; Fender, R P; Fijalkowski, M; Fourie, D; Frank, B; George, D; Gibbs, P; Goedhart, S; Grobbelaar, J; Gumede, S C; Herselman, P; Hess, K M; Hoek, N; Horrell, J; Jonas, J L; Jordaan, J D B; Julie, R; Kapp, F; Kotzé, P; Kusel, T; Langman, A; Lehmensiek, R; Liebenberg, D; Liebenberg, I J V; Loots, A; Lord, R T; Lucero, D M; Ludick, J; Macfarlane, P; Madlavana, M; Magnus, L; Magozore, C; Malan, J A; Manley, J R; Marais, L; Marais, N; Marais, S J; Maree, M; Martens, A; Mokone, O; Moss, V; Mthembu, S; New, W; Nicholson, G D; van Niekerk, P C; Oozeer, N; Passmoor, S S; Peens-Hough, A; Pińska, A B; Prozesky, P; Rajan, S; Ratcliffe, S; Renil, R; Richter, L L; Rosekrans, D; Rust, A; Schröder, A C; Schwardt, L C; Seranyane, S; Serylak, M; Shepherd, D S; Siebrits, R; Sofeya, L; Spann, R; Springbok, R; Swart, P S; Thondikulam, Venkatasubramani L; Theron, I P; Tiplady, A; Toruvanda, O; Tshongweni, S; Heever, L van den; van der Merwe, C; van Rooyen, R; Wakhaba, S; Walker, A L; Welz, M; Williams, L; Wolleben, M; Woudt, P A; Young, N J; Zwart, J T L

    2016-01-01

    The construction of the KAT-7 array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scien- tific highlights from this effort, and discusses their applicability to both MeerKAT and other next-generation radio telescopes. In particular we found that the composite dish surface works well, but it becomes complicated to fabricate for a dish lacking circular symmetry; the Stir- ling cycle cryogenic system with ion pump to achieve vacuum works but demands much higher maintenance than an equivalent Gifford-McMahon cycle system; the ROACH (Recon- figurable Open Architecture Computing Hardware)-based correlator with SPEAD (Stream- ing Protocol for Exchanging Astronomical Data) protocol data transfer works very well and KATCP (Karoo Array Telescope Control Protocol) control protocol has proven very flexible and convenient. KAT-7 has also been used f...

  19. The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI

    CERN Document Server

    Welch, Jack; Blitz, Leo; Bock, Douglas; Bower, Geoffrey C; Cheng, Calvin; Croft, Steve; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James; Gutierrez-Kraybill, Colby; Heiles, Carl; Helfer, Tamara; Jorgensen, Susanne; Keating, Garrett; Lugten, John; MacMahon, Dave; Milgrome, Oren; Thornton, Douglas; Urry, Lynn; van Leeuwen, Joeri; Werthimer, Dan; Williams, Peter H; Tarter, Melvin Wright Jill; Ackermann, Robert; Atkinson, Shannon; Backus, Peter; Barott, William; Bradford, Tucker; Davis, Michael; DeBoer, Dave; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Fleming, Seth Shostak Matt; Cork, Chris; Wadefalk, Artyom Vitouchkine Niklas; Weinreb, Sander

    2009-01-01

    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.

  20. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dipold, J., E-mail: jessica.dipold@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Medina, M.C. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); García, B. [Instituto en Tecnologías de Detección y Astropartículas, CNEA, CONICET, UNSAM (Argentina); Universidad Tecnológica Nacional, FR-Mendoza (Argentina); Rasztocky, E. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); Mancilla, A.; Maya, J. [Instituto en Tecnologías de Detección y Astropartículas, CNEA, CONICET, UNSAM (Argentina); Larrarte, J.J. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); Souza, V. de [Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil)

    2016-09-11

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array – CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m{sup 2} of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  1. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Science.gov (United States)

    Dipold, J.; Medina, M. C.; García, B.; Rasztocky, E.; Mancilla, A.; Maya, J.; Larrarte, J. J.; de Souza, V.

    2016-09-01

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array - CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m2 of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  2. The software system for the Control and Data Acquisition for the Cherenkov Telescope Array

    Science.gov (United States)

    Wegner, P.; FüBling, M.; Oya, I.; Hagge, L.; Schwanke, U.; Schwarz, J.; Tosti, G.; Conforti, V.; Lyard, E.; Walter, R.; Oliveira Antonino, P.; Morgenstern, A.

    2016-10-01

    The Cherenkov Telescope Array (CTA), as the next generation ground-based very high-energy gamma-ray observatory, is defining new areas beyond those related to physics. It is also creating new demands on the control and data acquisition system. CTA will consist of two installations, one in each hemisphere, containing tens of telescopes of different sizes. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA array, as well as to time-stamp, read-out, filter and store the scientific data at aggregated rates of a few GB/s. The ACTL system must implement a flexible software architecture to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. In addition ACTL must be able to modify the observation schedule on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma-ray bursts. This contribution summarizes the status of the development of the software architecture and the main design choices and plans.

  3. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  4. Measurement of the Proton-Air Cross Section with Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda1, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan1, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki1, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2015-01-01

    In this work we are reporting on the measurement of the proton-air inelastic cross section $\\sigma^{\\rm inel}_{\\rm p-air}$ using the Telescope Array (TA) detector. Based on the measurement of the $\\sigma^{\\rm inel}_{\\rm p-air}$ the proton-proton cross section $\\sigma_{\\rm p-p}$ value is also determined at $\\sqrt{s} = 95$ TeV. Detecting cosmic ray events at ultra high energies with Telescope Array enables us to study this fundamental parameter that we are otherwise unable to access with particle accelerators. The data used in this report is collected over five years using hybrid events observed by the Middle Drum fluorescence detector together with the surface array detector. The value of the $\\sigma^{\\rm inel}_{\\rm p-air}$ is found to be equal to $ 567.0 \\pm 70.5 [{\\rm Stat.}] ^{+25}_{-29} [{\\rm Sys.}]$ mb. The total proton-proton cross section is subsequently inferred from Glauber Formalism and Block, Halzen and Stanev QCD inspired fit and is found to be equal to $170_{-44}^{+48} [{\\rm Stat.}] \\pm _{-19}^{+1...

  5. Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array

    CERN Document Server

    Dravins, Dainis

    2014-01-01

    A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observ...

  6. Techniques And Results For The Calibration Of The MST Prototype For The Cherenkov Telescope Array

    CERN Document Server

    ,

    2016-01-01

    The next generation instrument for ground-based gamma-ray astronomy will be the Cherenkov Telescope Array (CTA), consisting of approximately 100 telescopes in three sizes, built on two sites with one each in the Northern and Southern Hemi- spheres. Up to 40 of these will be Medium Size Telescopes (MSTs) which will dominate sensitivity in the core energy range. Since 2012, a full size mechanical prototype for the modified 12 m Davies-Cotton design MST has been in operation in Berlin. This doc- ument describes the techniques which have been implemented to calibrate and optimise the mechanical and optical performance of the prototype, and gives the results of over three years of observations and measurements. Pointing calibration techniques will be discussed, along with the development of a bending model, and calibration of the CCD cameras used for pointing measurements. Additionally alignment of mirror segments using the Bokeh method is shown.

  7. A 19 element cryogenic phased array feed for the Green Bank Telescope

    Science.gov (United States)

    Roshi, D. Anish; Warnick, Karl F.; Brandt, Joe; Fisher, J. Richard; Ford, Pam; Jeffs, Brian D.; Marganian, Paul; McLeod, Morgan; Mello, Melinda; Morgan, Matthew; Norrod, Roger; Shillue, William; Simon, Robert; White, Steven

    2015-10-01

    A low-noise cryogenic phased array feed (PAF) is in development for the Green Bank Telescope (GBT). The feed consists of electrically small elements tuned to operate near 1.4 GHz and optimized for active impedance matching to cooled front end low noise amplifiers (LNAs). A prototype cryogenic PAF with analog fiber link, down-converters and streaming data acquisition system was recently tested on the GBT. Preliminary results are presented. These efforts form an important step towards the development of a new receiver system, the focal L-band array for the GBT (FLAG).

  8. Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    CERN Document Server

    Maier, G; Bernlöhr, K; Bregeon, J; Di Pierro, F; Hassan, T; Jogler, T; Hinton, J; Moralejo, A; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.

  9. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  10. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Science.gov (United States)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  11. The smooth cyclotron line in her x-1 as seen with nuclear spectroscopic telescope array

    DEFF Research Database (Denmark)

    Fuerst, Felix; Grefenstette, Brian W.; Staubert, Ruediger;

    2013-01-01

    Her X-1, one of the brightest and best studied X-ray binaries, shows a cyclotron resonant scattering feature (CRSF) near 37 keV. This makes it an ideal target for detailed study with the Nuclear Spectroscopic Telescope Array (NuSTAR), taking advantage of its excellent hard X-ray spectral resoluti...... in the hot corona of the accretion disk. The average, luminosity-corrected CRSF energy is lower than in past observations and follows a secular decline. The excellent data quality of NuSTAR provides the best constraint on the CRSF energy to date.......Her X-1, one of the brightest and best studied X-ray binaries, shows a cyclotron resonant scattering feature (CRSF) near 37 keV. This makes it an ideal target for detailed study with the Nuclear Spectroscopic Telescope Array (NuSTAR), taking advantage of its excellent hard X-ray spectral resolution...

  12. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    CERN Document Server

    Abbasi, R; Allen, C; Beard, L; Belz, J; Besson, D; Byrne, M; Farhang-Boroujeny, B; Gardner, A; Gillman, W H; Hanlon, W; Hanson, J; Jayanthmurthy, C; Kunwar, S; Larson, S L; Myers, I; Prohyra, S; Ratzlaff, K; Sokolsky, P; Takai, H; Thomson, G B; Von Maluski, D

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs, extending their detection aperture far beyond what is accessible by conventional means. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  13. Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Masuda, Shu; Barrio, Juan Abel; Bigas, Oscar Blanch; Delgado, Carlos; Coromina, Lluís Freixas; Gunji, Shuichi; Hadasch, Daniela; Hatanaka, Kenichiro; Ikeno, Masahiro; Laguna, Jose Maria Illa; Inome, Yusuke; Ishio, Kazuma; Katagiri, Hideaki; Kubo, Hidetoshi; Martínez, Gustavo; Mazin, Daniel; Nakajima, Daisuke; Nakamori, Takeshi; Ohoka, Hideyuki; Paoletti, Riccardo; Ritt, Stefan; Rugliancich, Andrea; Saito, Takayuki; Sulanke, Karl-Heinz; Takeda, Junki; Tanaka, Manobu; Tanigawa, Shunsuke; Tejedor, Luis Ángel; Teshima, Masahiro; Tsuchiya, Yugo; Uchida, Tomohisa; Yamamoto, Tokonatsu

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger ...

  14. Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes

    Science.gov (United States)

    Lee, K. J.

    2016-02-01

    In this paper, we estimate the sensitivity of gravitational wave (GW) detection for future Chinese pulsar timing array (PTA) projects. The calculation of sensitivity is based on the well-known Crámer-Rao bound idea. The red noise and dispersion measure (DM) variation noise has be included in the modeling. We demonstrate that the future Chinese telescope can be very valuable for future PTA experiments and GW detection efforts.

  15. Australia telescope compact array observations of radio recombination lines toward 30 Doradus

    NARCIS (Netherlands)

    Peck, AB; Goss, WM; Dickel, HR; Roelfsema, PR; Kesteven, MJ; Dickel, [No Value; Milne, DK; Points, SD

    1997-01-01

    Three hydrogen recombination lines-H90 alpha at 8.9 GHz, H92 alpha at 8.3 GHz, and H109 alpha at 5.0 GHz-have been observed with the Australia Telescope Compact Array toward the 30 Doradus Nebula, the giant H II region in the Large Magellanic Cloud. In this paper, emphasis is placed on the more sens

  16. Prototype Tests for the CELESTE Solar Array $\\gamma$-Ray Telescope

    CERN Document Server

    Giebels, B; Bergeret, H; Cordier, A; Debiais, G; De Naurois, Mathieu; Dezalay, J P; Dumora, D; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Ghesquière, C; Herault, N; Malet, I; Merkel, B; Meynadier, C; Palatka, M; Paré, E; Procureur, J; Punch, M; Québert, J; Ragan, K; Rob, L; Schovanek, P; Smith, D A; Vrana, J

    1998-01-01

    The CELESTE experiment will be an Atmospheric Cherenkov detector designed to bridge the gap in energy sensitivity between current satellite and ground-based gamma-ray telescopes, 20 to 300 GeV. We present test results made at the former solar power plant, Themis, in the French Pyrenees. The tests confirm the viability of using a central tower heliostat array for Cherenkov wavefront sampling.

  17. Energy spectrum of UHECRs measured by newly constructed fluorescence detectors in Telescope Array experiment

    Directory of Open Access Journals (Sweden)

    Fujii Toshihiro

    2013-06-01

    Full Text Available Telescope Array (TA experiment is the largest hybrid detector to observe ultra-high energy cosmic rays (UHECRs in the northern hemisphere. In the TA experiment, we newly designed and constructed 24 fluorescence detectors (FDs located at two stations. We report the energy spectrum of UHECRs with energies above 1017.5 eV from analyzing data collected by the new FDs during the first 3.7 years in monocular mode.

  18. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    Science.gov (United States)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  19. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  20. The european FAZIA initiative: a high-performance digital telescope array for heavy-ion studies

    Science.gov (United States)

    Casini, G.; Barlini, S.; Pasquali, G.; Pastore, G.; Bini, M.; Carboni, S.; Olmi, A.; Piantelli, S.; Poggi, G.; Stefanini, A.; Valdré, S.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Chbihi, A.; Cinausero, M.; Degerlier, M.; Edelbruck, P.; Frankland, J. D.; Gramegna, F.; Gruyer, D.; Guerzoni, M.; Kordjasz, A.; Kozik, T.; Le Neindre, N.; Lopez, O.; Marchi, T.; Marini, P.; Morelli, L.; Ordine, A.; Pârlog, M.; Rivet, M. F.; Rosato, E.; Salomon, F.; Spadaccini, G.; Twaróg, T.; Vient, E.; Vigilante, M.

    2014-03-01

    The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification including pulse shape analysis, too. The achievement of top performances imposes specific electronics which has been developed by the FAZIA collaboration and includes high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program focused on experiments to be done with the demonstrator. First results on the isospin dynamics obtained with a reduced set-up demonstrate well the performance of the telescope and represent a good starting point towards future investigations with both stable and exotic beams.

  1. The european FAZIA initiative: a high-performance digital telescope array for heavy-ion studies

    Directory of Open Access Journals (Sweden)

    Casini G.

    2014-03-01

    Full Text Available The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification including pulse shape analysis, too. The achievement of top performances imposes specific electronics which has been developed by the FAZIA collaboration and includes high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program focused on experiments to be done with the demonstrator. First results on the isospin dynamics obtained with a reduced set-up demonstrate well the performance of the telescope and represent a good starting point towards future investigations with both stable and exotic beams.

  2. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    Science.gov (United States)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  3. Optical very large array (OVLA) prototype telescope: status report and perspective for large mosaic mirrors

    Science.gov (United States)

    Dejonghe, Julien; Arnold, Luc; Lardiere, Olivier; Berger, Jean-Pierre; Cazale, C.; Dutertre, S.; Kohler, D.; Vernet, D.

    1998-08-01

    The OVLA will be a kilometric-size interferometric array of N equals 27 or more 1.5 m telescopes. It is expected to provide visible to infra-red snap-shot images, containing in densified pupil mode N(superscript 2) 10(superscript -4) arc-second wide resolved elements in yellow light. The prototype telescope is under construction at Observatoire de Haute Provence and will be connected in 2000 to the GI2T, Grand Interferometre a 2 Telescopes, thus upgraded to a GI3T. The prototype telescope has a spherical mount, well suited for multi- aperture interferometric work, and a thin active 1.5 m f/1.7 mirror weighting only 180 kg with the active cell. This meniscus-shaped mirror, made of low-cost ordinary window glass, is only 24 mm thick and supported by 32 actuators. We describe the telescope optical concept with emphasis on opto-mechanical aspects and the test results of the active optics system. We also discuss the application of this mirror concept to large mosaic mirrors of moderate cost.

  4. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  5. X-Ray Polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    CERN Document Server

    Stern, Daniel; Ingram, Adam R; Miyasaka, Hiromasa; Madsen, Kristin K; Aaron, Kim M; Aminia, Rashied; Baring, Matthew G; Bodaghee, Arash; Booth, Jeffrey; Borden, Chester; Boettcher, Markus; Christensen, Finn E; Coppi, Paolo S; Davis, Shane; Dexter, Jason; Done, Chris; Dominguez, Luis A; Ellison, Don; English, Robin J; Fabian, Andrew C; Falcone, Abe; Favretto, Jeffrey A; Fernandez, Rodrigo; Giommi, Paolo; Grefenstette, Brian W; Kara, Erin; Lee, Chung H; Lyutikov, Maxim; Maccarone, Thomas; McKinney, Jonathan; Mihara, Tatehiro; Miller, Jon M; Narayan, Ramesh; Natalucci, Lorenzo; Oezel, Feryal; Pivovaroff, Michael J; Pravdo, Steven; Psaltis, Dimitrios; Okajima, Takashi; Toma, Kenji; Zhang, William W

    2015-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. The PolSTAR design is based on the technology developed for the Nuclear Spectroscopic Telescope Array (NuSTAR) mission launched in June 2012. In particular, it uses the same X-ray optics, extendable telescope boom, optical bench, and CdZnTe detectors as NuSTAR. The mission has the sensitivity to measure ~1% linear polarization fractions for X-ray sources with fluxes down to ~5 mCrab. This paper describes the PolSTAR design as well as the science drivers and the potential science return.

  6. Commensal observing with the Allen Telescope array: software command and control

    CERN Document Server

    Gutierrez-Kraybill, Colby; MacMahon, David; Williams, Peter K G; Harp, Gerald; Ackermann, Robert; Kilsdonk, Tom; Richards, Jon; Barott, William C; 10.1117/12.857860

    2010-01-01

    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronom...

  7. Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tameda, Yuichiro [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)], E-mail: tame@cr.phys.titech.ac.jp; Taketa, Akimichi [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Smith, Jeremy D. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Tanaka, Manobu [Institute of Particle and Nuclear Studies, KEK, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Fukushima, Masaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Jui, Charles C.H. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Kadota, Ken' ichi [Faculty of Knowledge Engineering, Musashi Institute of Technology, Setagaya, Tokyo 158-8557 (Japan); Kakimoto, Fumio [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Matsuda, Takeshi [Institute of Particle and Nuclear Studies, KEK, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matthews, John N. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Ogio, Shoichi [Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Sagawa, Hiroyuki; Sakurai, Nobuyuki; Shibata, Tatsunobu; Takeda, Masahiro [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Thomas, Stanton B. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Tokuno, Hisao [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tsunesada, Yoshiki [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)] (and others)

    2009-10-11

    The Telescope Array Project is an experiment designed to observe Ultra High Energy Cosmic Rays via a 'hybrid' detection technique utilizing both fluorescence light detectors (FDs) and scintillator surface particle detectors (SDs). We have installed three FD stations and 507 SDs in the Utah desert, and initiated observations from March 2008. The northern FD station reuses 14 telescopes from the High Resolution Fly's Eye, HiRes-I station. Each of the two southern FD stations contains 12 new telescopes utilizing new FADC electronics. Each telescope is instrumented with a camera composed of 256 PMTs. Since the detectors are composed of many PMTs and each PMT detects fluorescence photons together with the vast amount of night sky background, a sophisticated triggering system is required. In this paper, we describe the trigger electronics of these new FD stations. We also discuss performance of the FDs with this triggering system, in terms of efficiencies and apertures for various detector configurations.

  8. Simulated Gamma-Ray Pulse Profile of the Crab Pulsar with the Cherenkov Telescope Array

    CERN Document Server

    Burtovoi, A

    2016-01-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the MAGIC telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI mini-array. The northern CTA configuration will provide an improvement of a factor of ~3 in accuracy with an observing time comparable to that of MAGIC (73 hours). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large ...

  9. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    CERN Document Server

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  10. Synergy between the Large Synoptic Survey Telescope and the Square Kilometre Array

    CERN Document Server

    Bacon, David; Abdalla, Filipe B; Brown, Michael; Bull, Philip; Camera, Stefano; Fender, Rob; Grainge, Keith; Ivezic, Zeljko; Jarvis, Matt; Jackson, Neal; Kirk, Donnacha; Mann, Bob; McEwen, Jason; McKean, John; Newman, Jeffrey A; Raccanelli, Alvise; Sahlen, Martin; Santos, Mario; Tyson, Anthony; Zhao, Gong-Bo

    2015-01-01

    We provide an overview of the science benefits of combining information from the Square Kilometre Array (SKA) and the Large Synoptic Survey Telescope (LSST). We first summarise the capabilities and timeline of the LSST and overview its science goals. We then discuss the science questions in common between the two projects, and how they can be best addressed by combining the data from both telescopes. We describe how weak gravitational lensing and galaxy clustering studies with LSST and SKA can provide improved constraints on the causes of the cosmological acceleration. We summarise the benefits to galaxy evolution studies of combining deep optical multi-band imaging with radio observations. Finally, we discuss the excellent match between one of the most unique features of the LSST, its temporal cadence in the optical waveband, and the time resolution of the SKA.

  11. Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array

    CERN Document Server

    Moulin, E; Durand, D; Feirreira, O; Fesquet, M; Giebels, B; Glicenstein, J -F; Loiseau, D; Louis, F; Nunio, F; Rateau, S; consortia, CTA

    2015-01-01

    The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.

  12. Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Bouvier, A; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Jogler, T; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; López-Coto, R; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Moderski, R; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Wood, M; Yoshikoshi, T; Zech, A

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.

  13. The Real-Time Analysis of the Cherenkov Telescope Array Observatory

    CERN Document Server

    Bulgarelli, A; Contreras, J L; Lorca, A; Aboudan, A; Rodríguez-Vázquez, J J; Lombardi, S; Maier, G; Antonelli, L A; Bastieri, D; Boisson, C; Borkowski, J; Buson, S; Carosi, A; Conforti, V; Djannati-Ataï, A; Dumm, J; Evans, P; Fortson, L; Gianotti, F; Graciani, R; Grandi, P; Hinton, J; Humensky, B; Kosack, K; Lamanna, G; Malaguti, G; Marisaldi, M; Nicastro, L; Ohm, S; Osborne, J; Rosen, S; Trifoglio, M

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory must be capable of issuing fast alerts on variable and transient sources to maximize the scientific return. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the CTA observatory. The latency and sensitivity requirements of the alarm system impose a challenge because of the large foreseen data flow rate, between 0.5 and 8 GB/s. As a consequence, substantial efforts toward the optimization of this high-throughput computing service are envisaged, with the additional constraint that the RTA should be performed on-site (as part of the auxiliary infrastructure of the telescopes). In this work, the functional design of the RTA pipeline is presented.

  14. Testing a modified ASKAP Mark II phased array feed on the 64 m Parkes radio telescope

    CERN Document Server

    Chippendale, A P; Deng, X; Leach, M; Reynolds, J E; Kramer, M; Tzioumis, T

    2016-01-01

    We present the first installation and characterization of a phased array feed (PAF) on the 64 m Parkes radio telescope. The combined system operates best between 0.8 GHz and 1.74 GHz where the beamformed noise temperature is between 45 K and 60 K, the aperture efficiency ranges from 70% to 80%, and the effective field of view is 1.4 deg$^2$ at 1310 MHz. After a 6-month trial observing program at Parkes, the PAF will be installed on the 100 m antenna at Effelsberg. This is the first time a PAF has been installed on a large single-antenna radio telescope and made available to astronomers.

  15. A Prototype for the Cherenkov Telescope Array Pipelines Framework: Modular Efficiency Simple System (MESS)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes, producing large amounts of data. Apart from the storage system, there are also requirements on the software framework to allow efficient data processing, i.e. robustness, execution speed and coding efficiency. This contribution will present a plain and simple pipeline framework design prototype for CTA that builds upon well-known tools, allowing the users to focus on physics problems without learning complicated software paradigms.

  16. Search for annihilating Dark Matter towards dwarf galaxies with the Cherenkov Telescope Array

    Science.gov (United States)

    Morselli, Aldo; Rodríguez, Gonzalo

    2017-03-01

    The standard model of cosmology indicates that approximately 27% of the energy density of the Universe is in the form of dark matter. The nature of dark matter is an open question in modern physics. Indirect dark matter searches with imaging atmospheric Cherenkov telescopes are playing a crucial role in constraining the nature of the dark matter particle through the study of their potential annihilation that could produce very high energy gamma rays from different astrophysical structures. The Cherenkov Telescope Array will provide an unprecedented sensitivity over a range of dark matter mass from 100 GeV to 30 TeV. In this contribution we review the status of indirect dark matter searches at dwarf spheroidal galaxies.

  17. An Efficient Test Facility For The Cherenkov Telescope Array FlashCam Readout Electronics Production

    CERN Document Server

    Eisenkolb, F; Kalkuhl, C; Pühlhofer, G; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, currently under preparation by a world-wide consortium. The FlashCam group is preparing a photomultiplier-based camera for the Medium Size Telescopes of CTA, with a fully digital Readout System (ROS). For the forthcoming mass production of a substantial number of cameras, efficient test routines for all components are currently under development. We report here on a test facility for the ROS components. A test setup and routines have been developed and an early version of that setup has successfully been used to test a significant fraction of the ROS for the FlashCam camera prototype in January 2016. The test setup with its components and interface, as well as first results, are presented here.

  18. ROBAST: Development of a ROOT-based ray-tracing library for cosmic-ray telescopes and its applications in the Cherenkov Telescope Array

    Science.gov (United States)

    Okumura, Akira; Noda, Koji; Rulten, Cameron

    2016-03-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-basedsimulatorforraytracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.

  19. The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment

    CERN Document Server

    Tomida, Takayuki; Arai, Takahito; Benno, Takuya; Chikawa, Michiyuki; Doura, Koji; Fukushima, Masaki; Hiyama, Kazunori; Honda, Ken; Ikeda, Daisuke; Matthews, John N; Nakamura, Toru; Oku, Daisuke; Sagawa, Hiroyuki; Tokuno, Hisao; Tameda, Yuichiro; Thomson, Gordon B; Tsunesada, Yoshiki; Udo, Shigeharu; Ukai, Hisashi; 10.1016/j.nima.2011.07.012

    2011-01-01

    An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in $2007\\sim 2009$ revealed that the extinction coefficient by aerosol at the ground level is $0.033^{+0.016}_{-0.012} \\rm km^{-1}$ and the vertical aerosol optical depth at 5km above the ground is $0.035^{+0.019}_{-0.013}$. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.

  20. Five Years of SETI with the Allen Telescope Array: Lessons Learned

    Science.gov (United States)

    Harp, Gerald

    2016-01-01

    We discuss recent observations at the Allen Telescope Array (ATA) supporting a wide ranging Search for Extraterrestrial Intelligence (SETI). The ATA supports observations over the frequency range 1-10 GHz with three simultaneous phased array beams used in an anticoincidence detector for false positive rejection. Here we summarize observational results over the years 2011-2015 covering multiple campaigns of exoplanet stars, the galactic plane, infrared excess targets, etc. Approximately 2 x 108 signals were identified and classified over more than 5000 hours of observation. From these results we consider various approaches to the rapid identification of human generated interference in the process of the search for a signal with origins outside the radius of the Moon's orbit. We conclude that the multi-beam technique is superb tool for answering the very difficult question of the direction of origin of signals. Data-based simulations of future instruments with more than 3 beams are compared.

  1. Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    CERN Document Server

    Tovmassian, Gagik; Ochoa, Jose Luis; Ernenwein, Jean-Pierre; Mandat, Dusan; Pech, Miroslav; Frayn, Ilse Plauchu; Colorado, Enrique; Murillo, Jose Manuel; Cesena, Urania; Garcia, Benjamin; Lee, William H; Bulik, Tomasz; Garczarczyk, Markus; Fruck, Christian; Costantini, Heide; Cieslar, Marek; Aune, Taylor; Vincent, Stephane; Carr, John; Serre, Natalia; Janecek, Petr; Haefner, Dennis

    2016-01-01

    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.

  2. Beyond the Galaxy: UHECR results from the Pierre Auger Observatory and the Telescope Array

    Science.gov (United States)

    Zas, Enrique

    2015-08-01

    The beginning of the 21st century has brought much progress into the field of Ultra High Energy Cosmic Rays particularly through the completion of the Pierre Auger Observatory first and the Telescope Array later on. The success of these detectors follows from their hybrid character combining the advantages of the fluorescence technique for energy determination with the larger exposure provided by an array of particle detectors. In this article we review the important contributions made by both experiments concerning the spectrum, anisotropy searches and composition studies. We discuss how these measurements have contributed to progress in the field, partially solving long standing puzzles, and how they have also led to new challenges that are likely to constitute the driving force of the field in the immediate future.

  3. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    Science.gov (United States)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  4. Construction of a Medium-Sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Implementation of the Cherenkov-Camera Data Acquisition System

    CERN Document Server

    Santander, M; Humensky, B; Mukherjee, R

    2015-01-01

    A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible extension for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is designed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images of air showers in the atmosphere. The combination of the large number of pixels and the high trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This sets challenging requirements on the design and performance of a data acquisition system for processing and storing this data. A prototype SCT (pSCT) with a partial camera containing 1600 pixels, covering a field of view of 2.5 x 2.5 square degrees, is being assembled at the F.L. Whipple Observatory. We present the design and current status of the SCT data acquisition system.

  5. ROBAST: Development of a ROOT-Based Ray-Tracing Library for Cosmic-Ray Telescopes and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    Okumura, Akira; Rulten, Cameron

    2016-01-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-based simulator for ray tracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators propose...

  6. Camera calibration strategy of the SST-1M prototype of the Cherenokov Telescope Array

    CERN Document Server

    Prandini, E; Lyard, E.; Schioppa, E. jr.; Neronov, A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Rameez, M.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Ziętara, K.; Żychowski, P.

    2015-01-01

    The SST-1M telescope is one of the prototypes under construction proposed to be part of the future Cherenkov Telescope Array. It uses a standard Davis-Cotton design for the optics and telescope structure, with a dish diameter of 4 meters and a large field-of-view of 9 degrees. The innovative camera design is composed of a photo-detection plane with 1296 pixels including entrance window, light concentrators, Silicon Photomultipliers (SiPMs), and pre-amplifier stages together with a fully digital readout and trigger electronics, DigiCam. In this contribution we give a general description of the analysis chain designed for the SST-1M prototype. In particular we focus on the calibration strategy used to convert the SiPM signals registered by DigiCam to the quantities needed for Cherenkov image analysis. The calibration is based on an online feedback system to stabilize the gain of the SiPMs, as well as dedicated events (dark count, pedestal, and light flasher events) to be taken during the normal operation of the...

  7. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Ambrosi, G.; Bissaldi, E.; Di Venere, L.; Fiandrini, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Simone, D.; Vagelli, V.

    2017-03-01

    The Italian National Institute for Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the `Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV) has been carried out. The developed device is a NUV High-Density (NUV-HD) SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK). A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT) for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  8. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Ambrosi G.

    2017-01-01

    Full Text Available The Italian National Institute for Nuclear Physics (INFN is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs for the Cherenkov Telescope Array (CTA, a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the ‘Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it’ for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV has been carried out. The developed device is a NUV High-Density (NUV-HD SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK. A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  9. Developments of a new mirror technology for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory for very high-energy gamma rays will consist of about a hundred of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a novel technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. The mirrors are made by cold-slumping of the front reflecting aluminium-coated panel and the rear panel interspaced with aluminium spacers. Each panel is built of two glass panels laminated with a layer of a fibreglass tissue in between for reinforcement of the structure against mechanical damage. The mirror structure is open and does not require a perfect sealing needed in closed-type designs. It prohibits water to be trapped inside and enables a proper ventilation of the mirror. Full-size hexagonal prototype mirrors produced for the medium-sized CTA telescopes will be presented together with the results of recent comprehensive ...

  10. Inauguration and First Light of the GCT-M Prototype for the Cherenkov Telescope Array

    CERN Document Server

    Watson, J J; Abchiche, A; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayéde, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond continuously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure...

  11. Real-Time Analysis sensitivity evaluation of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA), the new generation very high-energy gamma-ray observatory, will improve the flux sensitivity of the current Cherenkov telescopes by an order of magnitude over a continuous range from about 10 GeV to above 100 TeV. With tens of telescopes distributed in the Northern and Southern hemispheres, the large effective area and field of view coupled with the fast pointing capability make CTA a crucial instrument for the detection and understanding of the physics of transient, short-timescale variability phenomena (e.g. Gamma-Ray Bursts, Active Galactic Nuclei, gamma-ray binaries, serendipitous sources). The key CTA system for the fast identification of flaring events is the Real-Time Analysis (RTA) pipeline, a science alert system that will automatically detect and generate science alerts with a maximum latency of 30 seconds with respect to the triggering event collection and ensure fast communication to/from the astrophysics community. According to the CTA design requirements, the...

  12. A Prototype Data Format for the Cherenkov Telescope Array: Regions Of Interest (ROI)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes and the large amount of data produced will exceed the volume of current VHE Imaging Atmospheric Cherenkov Telescopes by $\\sim$two orders of magnitude. This volume of data represents a new challenge to the community, which is looking for new data formats to transfer and store the CTA data. One of the prototypes currently under study is the ROI (Regions Of Interest) file format for camera images. It can store only those pixels of a camera image that are close to the shower, thus removing the major part of the night sky background (NSB) while keeping all pixels that might belong to the shower. Simple on-the-fly compression is used to reduce the file size even further. Here, we explain the ROI prototype in detail and present preliminary results when applied to simulations.

  13. TARA: Forward-scattered radar detection of UHECR at the telescope array

    Directory of Open Access Journals (Sweden)

    Takai H.

    2013-06-01

    Full Text Available Increased event statistics will be required to definitively answer the question of the origin(s of Ultra-High Energy Cosmic Rays (UHECR. Using current technologies however, achieving the necessary statistics may be financially and practically impossible. We describe the status and plans of the TARA project, an effort to detect Ultra-High-Energy Cosmic Rays by their forward scattered or “bistatic” radar signature. Bistatic radar holds promise as a new remote sensing technique for UHECR, without the duty cycle limitations of nitrogen fluorescence detectors. Such a technique could prove key in advancing the study of UHECR beyond the constraints of the current generation of cosmic ray observatories. TARA consists of a low-VHF television transmitter illuminating the air above the Telescope Array (TA, and a set of radio receivers on the far side of TA approximately 50 km distant from the transmitter. We have collected radar data since April 2011 using a 2 kW transmitter at 54.1 MHz. Recently, we received permission to increase our broadcast power to 40 kW and our effective radiated power (ERP to 6 MW. On the receiver end, we are employing software-defined radio receivers and developing real-time trigger algorithms based on the expected air shower radar echo. In addition to presenting an overview of the project status and future plans, we will present the most recent results of searches for coincidences between radar echoes and Telescope Array air shower events.

  14. TARA: Forward-scattered radar detection of UHECR at the telescope array

    Science.gov (United States)

    Belz, J.; Abu Bakr Othman, M.; Allen, C.; Barcikowski, E.; Besson, D.; Farhang-Boroujeny, B.; Ikeda, D.; Hanlon, W.; Kunwar, S.; Lundquist, J. P.; Kravchenko, I.; Larson, S.; Myers, I.; Nakamura, T.; Rankin, J. S.; Sagawa, H.; Sokolsky, P.; Takai, H.; Terasawa, T.; Thomson, G. B.

    2013-06-01

    Increased event statistics will be required to definitively answer the question of the origin(s) of Ultra-High Energy Cosmic Rays (UHECR). Using current technologies however, achieving the necessary statistics may be financially and practically impossible. We describe the status and plans of the TARA project, an effort to detect Ultra-High-Energy Cosmic Rays by their forward scattered or "bistatic" radar signature. Bistatic radar holds promise as a new remote sensing technique for UHECR, without the duty cycle limitations of nitrogen fluorescence detectors. Such a technique could prove key in advancing the study of UHECR beyond the constraints of the current generation of cosmic ray observatories. TARA consists of a low-VHF television transmitter illuminating the air above the Telescope Array (TA), and a set of radio receivers on the far side of TA approximately 50 km distant from the transmitter. We have collected radar data since April 2011 using a 2 kW transmitter at 54.1 MHz. Recently, we received permission to increase our broadcast power to 40 kW and our effective radiated power (ERP) to 6 MW. On the receiver end, we are employing software-defined radio receivers and developing real-time trigger algorithms based on the expected air shower radar echo. In addition to presenting an overview of the project status and future plans, we will present the most recent results of searches for coincidences between radar echoes and Telescope Array air shower events.

  15. The Cherenkov Telescope Array On-Site integral sensitivity: observing the Crab

    CERN Document Server

    Fioretti, Valentina; Schussler, Fabian

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standar...

  16. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  17. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    Science.gov (United States)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  18. Design of a 7m Davies-Cotton Cherenkov telescope mount for the high energy section of the Cherenkov Telescope Array

    CERN Document Server

    Rovero, A C; Vallejo, G; Supanitsky, A D; Actis, M; Botani, A; Ochoa, I; Hughes, G

    2013-01-01

    The Cherenkov Telescope Array is the next generation ground-based observatory for the study of very-high-energy gamma-rays. It will provide an order of magnitude more sensitivity and greater angular resolution than present systems as well as an increased energy range (20 GeV to 300 TeV). For the high energy portion of this range, a relatively large area has to be covered by the array. For this, the construction of ~7 m diameter Cherenkov telescopes is an option under study. We have proposed an innovative design of a Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. The mount is a reticulated-type structure with steel tubes and tensioned wires, designed in three main parts to be assembled on site. In this work we show the structural characteristics of the mount and the optical aberrations at the focal plane for three options of mirror facet size caused by mount deformations due to wind and gravity.

  19. Construction of a medium-sized Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: development of the optical alignment system

    CERN Document Server

    Nieto, D; Humensky, B; Kaaret, P; Limon, M; Mognet, I; Peck, A; Petrashyk, A; Ribeiro, D; Rousselle, J; Stevenson, B; Vassiliev, V; Yu, P

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium-size candidate telescope model features a novel aplanatic two-mirror optical design capable of a wide field-of-view with significantly improved imaging resolution as compared to the traditional Davis-Cotton optics design. Achieving this imaging resolution imposes strict alignment requirements to be accomplished by a dedicated alignment system. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope at the Fred Lawrence Whipple Observatory in southern ...

  20. South African Red Data Book: Plants - fynbos and Karoo biomes

    CSIR Research Space (South Africa)

    Hall, AV

    1985-01-01

    Full Text Available In this report a list is given of 1 808 rare, threatened and recently extinct plants in the fynbos and karoo biomes in the Cape Province of South Africa. The area covers the south-western and southern Cape, Namaqualand and the Karoo. Following...

  1. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the

  2. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  3. All Sky Cameras for the characterization of the Cherenkov Telescope Array candidate sites

    CERN Document Server

    Mandát, Dušan; Ebr, Jan; Hrabovský, Miroslav; Prouza, Michael; Bulik, Tomasz; Allekotte, Ingomar

    2013-01-01

    The All Sky Camera (ASC) was developed as a universal device for the monitoring of the night sky quality. Eight ASCs are already installed and measure night sky parameters at eight of the candidate sites of the Cherenkov Telescope Array (CTA) gamma-ray observatory. The ACS system consists of an astronomical CCD camera, a fish eye lens, a control computer and associated electronics. The measurement is carried out during astronomical night. The images are automatically taken every 5 minutes and automatically processed using the control computer of the device. The analysis results are the cloud fraction (the percentage of the sky covered by clouds) and night sky brightness (in mag/arcsec$^{2}$)

  4. Long-term study of Mkn 421 with the HAGAR Array of Telescopes

    CERN Document Server

    Sinha, Atreyee; Saha, Lab; Acharya, B S; Anupama, G C; Bhattacharya, P; Britto, R J; Chitnis, V R; Prabhu, T P; Singh, B B; Vishwanath, P R

    2016-01-01

    Context:The HAGAR Telescope Array at Hanle, Ladakh has been regularly monitoring the nearby blazar Mkn 421 for the past 7yrs. Aims: Blazars show flux variability in all timescales across the electromagnetic spectrum. While there is abundant literature characterizing the short term flares from different blazars, comparatively little work has been done to study the long term variability. We aim to study the long term temporal and spectral variability in the radiation from Mkn 421 during 2009-2015. Methods: We quantify the variability and lognormality from the radio to the VHE bands, and compute the correlations between the various wavebands using the z-transformed discrete correlation function. We construct the Spectral Energy Distribution (SED) contemporaneous with HAGAR observation seasons and fit it with a one zone synchrotron self Compton model to study the spectral variability. Results: The flux is found to be highly variable across all time scales. The variability is energy dependant, and is maximum in th...

  5. Radio properties of the magnetar near Sagittarius A* from observations with the Australia Telescope Compact Array

    CERN Document Server

    Shannon, Ryan M

    2013-01-01

    We have carried out observations of the newly-discovered magnetar in the direction of Sagittarius A* using the Australia Telescope Compact Array in four frequency bands from 4.5 to 20 GHz. Radio pulsations are clearly detected at all frequencies. We measure the pulsar's dispersion measure to be 1650 +/- 50 cm^-3 pc, the highest of any of the known pulsars. Once Faraday rotation has been taken into account, the pulse profile is almost completely linearly polarized at all frequencies and has a small degree of circular polarization. The rotation measure of -67000 +/- 500 rad m^-2 is the largest ever measured in an astronomical object. The combination of the dispersion and rotation measures imples an integrated magnetic field strength of -50 uG along the line of sight. This object therefore joins the small class of radio emitting magnetars. Follow-up observations using single dishes are underway and will no doubt characterise this object further.

  6. Characterization of the candidate site for the Cherenkov Telescope Array at the Observatorio del Teide

    CERN Document Server

    Puerto-Giménez, Irene; Barrena, Rafael; Castro, Julio; Doro, Michele; Font, Lluís; Rosillo, Miguel Nievas; Zamorano, Jaime

    2013-01-01

    The Spanish partners of the future Cherenkov Telescope Array (CTA) have selected a candidate site for the Northern installation of CTA, at 3 km from the Observatorio del Teide (OT), in the Canary Island of Tenerife. As the OT is a very well-characterized astronomical site. We focus here on differences between the publicly accessible measurements from the OT observatory and those obtained with instruments deployed at the candidate site. We find that the winds are generally softer at the candidate site, and the level of background light comparable to the Observatorio del Roque de los Muchachos (ORM) at La Palma in the B-band, while it is only slightly higher in the V-band.

  7. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays for energies above 1.6x10^(18) eV in its first three years of operation. The spectrum shows a dip at an energy of 5x10^(18) eV and a steepening at 5x10^(19) eV which is consistent with the expectation from the GZK cutoff. Here we use a new technique that involves generating a complete simulation of the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  8. Square Kilometer Array Telescope - Precision Reference Frequency Synchronisation via 1f-2f Dissemination

    CERN Document Server

    Wang, B; Gao, C; Bai, Y; Dong, J W; Wang, L J

    2015-01-01

    The Square Kilometer Array (SKA) is an international effort to build the world's largest radio telescope, with one square kilometer collecting area. Besides its ambitious scientific objectives, such as probing the cosmic dawn and cradle of life, SKA also demands several revolutionary technological breakthroughs, with ultra-high precision synchronisation of the frequency references for thousands of antennas being one of them. In this report, aimed at applications to SKA, we demonstrate a frequency reference synchronization and dissemination scheme with the phase noise compensation function placed at the client site. Hence, one central hub can be linked to a large number of client sites, forming a star-shaped topology. As a performance test, the 100 MHz reference signal from a Hydrogen maser clock is disseminated and recovered at two remote sites. Phase noise characteristics of the recovered reference frequency signal coincides with that of the hydrogen-maser source and satisfies SKA requirement.

  9. Gamma-Ray Burst Science in the Era of the Cherenkov Telescope Array

    CERN Document Server

    Inoue, Susumu; O'Brien, Paul T; Asano, Katsuaki; Bouvier, Aurelien; Carosi, Alessandro; Connaughton, Valerie; Garczarczyk, Markus; Gilmore, Rudy; Hinton, Jim; Inoue, Yoshiyuki; Ioka, Kunihito; Kakuwa, Jun; Markoff, Sera; Murase, Kohta; Osborne, Julian P; Otte, A Nepomuk; Starling, Rhaana; Tajima, Hiroyasu; Teshima, Masahiro; Toma, Kenji; Wagner, Stefan; Wijers, Ralph A M J; Williams, David A; Yamamoto, Tokonatsu; Yamazaki, Ryo

    2013-01-01

    We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective area and rapid slewing capabilities, CTA will be able to measure the spectra and variability of GRBs at multi-GeV energies with unprecedented photon statistics, and thereby break new ground in elucidating the physics of GRBs, which is still poorly understood. Such measurements will also provide crucial diagnostics of ultra-high-energy cosmic ray and neutrino production in GRBs, advance observational cosmology by probing the high-redshift extragalactic background light and intergalactic magnetic fields, and contribute to fundamental physics by testing Lorentz invariance violation with high precision. Aiming to quantify these goals, we present some simulated observations of GRB spectra and light curves, together with estimates of their detection rates with CTA. Alth...

  10. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  11. INTERPLANETARY SCINTILLATION RADIO SOURCES DETECTED WITH THE MEXICAN ARRAY RADIO TELESCOPE (MEXART)

    Science.gov (United States)

    Mejia Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, A.; Aguilar-Rodriguez, E.; Andrade-Mascote, E.; Carrillo-Vargas, A.

    2009-12-01

    The Mexican Array Radio Telescope (MEXART) has an antenna composed by 4096 full-wavelength dipoles, covering about 9800 square meters. The instrument is primary devoted to carry out observations of compact stelar radio sources presenting Interplanetary Scintillation (IPS) at 140 MHz. The IPS technique is a very useful tool to perform observations of large-scale solar wind density disturbances in the inner heliosphere at heliocentric ranges where no other instruments can cover. These observations can help to track the evolution of CMEs and shocks in the interplanetary medium. We present the first catalog of IPS sources detected with the MEXART. We show the power spectrum analysis to obtain information of solar wind velocity and density.

  12. Evaluation of Photo Multiplier Tube candidates for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, R. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Müller, D., E-mail: dmueller@mpp.mpg.de [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Hanabata, Y. [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hose, J.; Menzel, U. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Nakajima, D.; Takahashi, M. [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Teshima, M. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Toyama, T. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Yamamoto, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada-ku, Kobe, Hyogo 658-0072 (Japan)

    2016-07-11

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast, faint light signals. Six years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was started with the companies Hamamatsu Photonics K.K. and Electron Tubes Enterprises Ltd. (ETE). For maximizing the performance of the CTA imaging cameras we need PMTs with outstanding good quantum efficiency, high photoelectron collection efficiency, short pulse width, very low afterpulse probability and transit time spread. We will report on the measurements of PMT R-12992-100 from Hamamatsu as their final product and the PMT D573KFLSA as one of the latest test versions from ETE as candidate PMTs for the CTA project.

  13. Composition Measurements near the Second Knee with the Telescope Array Low-Energy Extension (TALE)

    Science.gov (United States)

    Belz, J.

    Cosmic rays with energies between 1016.5 and 1018.5 eV exhibit a rich range of features. The energy spectrum changes index at at least two points, known as the "second knee" and the "ankle". There appears to be a composition change in this energy regime as well, which may indicate a shift in predominance from galactic to extragalactic sources. The Telescope Array Low-Energy Extension - planned for construction in Millard County, Utah, USA - stands well poised to make decisive simultaneous measurements of cosmic ray energy spectra and composition in this transition region. Here, we present the results of simulation studies relevant to the design of the TALE detectors, and estimate the sensitivity of TALE to composition changes in the 1017 eV decade.

  14. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    Science.gov (United States)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  15. An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope

    Science.gov (United States)

    Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan

    2016-07-01

    The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.

  16. Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography

    CERN Document Server

    Atkinson, Shannon; Backus, P R; Barott, William; Bauermeister, Amber; Blitz, Leo; Bock, D C -J; Bower, Geoffrey C; Bradford, Tucker; Cheng, Calvin; Croft, Steve; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, Ed; Heiles, Carl; Helfer, Tamara; Jordan, Jane; Jorgensen, Susan; Kilsdonk, Tom; Gutierrez-Kraybill, Colby; Keating, Garrett; Law, Casey; Lugten, John; MacMahon, D H E; McMahon, Peter; Milgrome, Oren; Siemion, Andrew; Smolek, Ken; Thornton, Douglas; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Tarter, J C; Urry, Lynn; Werthimer, Dan; Williams, Peter K G; Whysong, David; Harp, G R; Ackermann, R F; Nadler, Z J; Blair, Samantha K; Davis, M M; Wright, M C H; Forster, J R; DeBoer, D R; Welch, W J

    2012-01-01

    The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1 percent of beam peak value. Holography provides images of dish illumination pattern, allowing characterization of as-built mirror surfaces. The ATA dishes can experience mm-scale distortions across -2 meter lengths due to mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20 percent, respectively. The ATA.s exceptional wide-bandwidth permits observations over a continuous range 0.5 to 11.2 GHz, and future retrofits may increase this range to 15 GHz. Beam patterns show a slowly varying focus frequency dependence. We prob...

  17. Modern middleware for the data acquisition of the Cherenkov Telescope Array

    CERN Document Server

    Lyard, Etienne; Kosack, Karl; Jacquemier, Jean; Oya, Igor; Wegner, Peter; Fuessling, Matthias; Wu, Xin

    2015-01-01

    The data acquisition system (DAQ) of the future Cherenkov Telescope Array (CTA) must be ef- ficient, modular and robust to be able to cope with the very large data rate of up to 550 Gbps coming from many telescopes with different characteristics. The use of modern middleware, namely ZeroMQ and Protocol Buffers, can help to achieve these goals while keeping the development effort to a reasonable level. Protocol Buffers are used as an on-line data for- mat, while ZeroMQ is employed to communicate between processes. The DAQ will be controlled and monitored by the Alma Common Software (ACS). Protocol Buffers from Google are a way to define high-level data structures through an in- terface description language (IDL) and a meta-compiler. ZeroMQ is a middleware that augments the capabilities of TCP/IP sockets. It does not implement very high-level features like those found in CORBA for example, but makes use of sockets easier, more robust and almost as effective as raw TCP. The use of these two middlewares enabled u...

  18. The IFAE/UAB and LUPM Raman LIDARs for Cherenkov Telescope Array Observatory

    CERN Document Server

    López-Oramas, A; Bigas, O Blanch; Boix, J; Da Deppo, V; Doro, M; Font, L; Garrido, D; Gaug, M; Martínez, M; Vasileiadis, G

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of Imaging Atmospheric Cherenkov Telescopes. It will reach a sensitivity and an energy resolution with no precendent in very high energy gamma-ray astronomy. In order to achieve this goal, the systematic uncertainties derived from the atmospheric conditions shall be reduced to the minimum. Different instruments may help account for these uncertainties. The Barcelona IFAE/UAB (acronyms for Institut de F\\'isica d'Altes Energies and Universitat Aut\\`onoma de Barcelona, respectively) and the Montpellier LUPM (Laboratoire Univers et Particules de Montpellier) groups are building Raman LIDARs, devices which can reduce the systematic uncertainties in the reconstruction of the gamma-ray energies from 20$%$ down to 5$%$. The Raman LIDARs subject of this work have coaxial 1.8 m mirrors with a Nd-YAG laser each. A liquid light-guide collects the light at the focal plane and transports it to the readout system. We are developping a monochromator with the purpose ...

  19. Current Status of the Namibian bid to host the Cherenkov Telescope Array

    Science.gov (United States)

    Backes, M.

    The Cherenkov Telescope Array (CTA) is the next generation instrument for very high energy (VHE) gamma-ray astronomy. Being successor to the vastly successful instruments H.E.S.S. in Namibia, MAGIC on the Canary Island of La Palma, and VERITAS in Arizona, USA, it is expected to outperform the former by a factor of 10, both in sensitivity as well as in the accessible energy range. To achieve these goals, the best possible operational conditions must be met and thus a world-wide site investigation campaign was launched. Based on the experience of successfully hosting the H.E.S.S. telescopes since 2002, proposals were submitted to host CTA in Namibia. Thorough investigations of the atmospheric and climatic conditions were carried out to estimate the average annual observation time. The scientific performance was estimated by means of Monte Carlo simulations, taking both the altitude and the local geomagnetic field into account. Eventually, the proposed site in Namibia was singled out as the scientifically best site in the world to host the CTA and in April 2014, the decision was taken to engage into official negotiations with the Republic of Namibia and with the European Southern Observatory (ESO), being patron to the competitor site in Chile. Details of the bidding process as well as the current status will be presented.

  20. A sensitive search for predicted methanol maser transitions with the Australia Telescope Compact Array

    CERN Document Server

    Chipman, Antony; Sobolev, Andrej; Cragg, Dinah

    2016-01-01

    We have used the Australia Telescope Compact Array (ATCA) to search for a number of centimetre wavelength methanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations we are able to place an upper limit of <~1300K on the brightness temperature of any emission from the $3_1$A$^+$-$3_1$A$^-$, $17_{-2}$-$18_{-3}$E ($v_t=1$), $12_4$-$13_3$A$^-$, $12_4$-$13_3$A$^+$ and $4_1$A$^+$-$4_1$A$^-$ transitions of methanol in these sources on angular scales of 2 arcseconds. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes.

  1. Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

    CERN Document Server

    Zoli, Andrea; De Rosa, Adriano; Aboudan, Alessio; Fioretti, Valentina; De Cesare, Giovanni; Marx, Ramin

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERITAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics community for follow-up observations, or being able to quickly respond to external science alerts, a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the CTA observatory. Among the CTA design key requirements to the RTA system, the most challenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining a flux sensitivity not worse than the one of the final analysis by more than a fac...

  2. THE AUSTRALIA TELESCOPE COMPACT ARRAY H I SURVEY OF THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Haverkorn, M., E-mail: naomi.mcclure-griffiths@csiro.au, E-mail: james.green@csiro.au, E-mail: john.dickey@utas.edu.au, E-mail: bryan.gaensler@sydney.edu.au, E-mail: anne.green@sydney.edu.au, E-mail: m.haverkorn@astro.ru.nl [Department of Astrophysics/IMAPP, Radboud University, Nijmegen, 6500 GL Nijmegen (Netherlands)

    2012-03-01

    We present a survey of atomic hydrogen (H I) emission in the direction of the Galactic Center (GC) conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 Degree-Sign {<=} l {<=} +5 Degree-Sign , -5 Degree-Sign {<=} b {<=} +5 Degree-Sign over the velocity range -309 km s{sup -1} {<=} v{sub LSR} {<=} 349 km s{sup -1} with a velocity resolution of 1 km s{sup -1}. The ATCA data are supplemented with data from the Parkes Radio Telescope for sensitivity to all angular scales larger than the 145'' angular resolution of the survey. The mean rms brightness temperature across the field is 0.7 K, except near (l, b) = 0 Degree-Sign , 0 Degree-Sign where it increases to {approx}2 K. This survey complements the Southern Galactic Plane Survey to complete the continuous coverage of the inner Galactic plane in H I at {approx}2' resolution. Here, we describe the observations and analysis of this GC survey and present the final data product. Features such as Bania's Clump 2, the far 3 kpc arm, and small high-velocity clumps are briefly described.

  3. Microseismic Observations in the Karoo: Leeu-Gamka, South Africa

    Science.gov (United States)

    Fynn, Melody; Kahle, Beth; Kahle, Richard; Hartnady, Chris

    2016-04-01

    We report on a micro-earthquake study in the interior of South Africa, in a tectonically stable intraplate setting centered on the town of Leeu Gamka, Western Cape province. The International Seismological Centre (ISC) catalogue reports localised anomalous seismicity in the region between 2007 and 2012 with local magnitudes up to 4.5. The apparent duration and time history of this anomalous seismicity is likely, in part at least, a reporting artefact. We deployed an array of 23 geophones for three months (March-June) in 2015, covering an area of 60 × 65 km centred on the zone of anomalous seismicity. The array recorded a total of 113 earthquakes over this period, with almost all events clustering in a surprisingly small area (78% of the epicentres fall within a one square kilometre block). Double difference relocation resolves the hypocentres onto a structure with an apparent NW-SE orientation, consistent with large-scale fabric that can be recognised in satellite imagery. Although the hypocentre depths are not very well constrained, their apparent range of 5-7 km puts them at the base of the Karoo basin.

  4. The Energy Spectrum of Telescope Array's Middle Drum Detector and the Direct Comparison to the High Resolution Fly's Eye Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array's Middle Drum fluorescence detector was instrumented with telescopes refurbished from the High Resolution Fly's Eye's HiRes-1 site. The data observed by Middle Drum in monocular mode was analyzed via the HiRes-1 profile-constrained geometry reconstruction technique and utilized the same calibration techniques enabling a direct comparison of the energy spectra and energy scales between the two experiments. The spectrum measured using the Middle Drum telescopes is based on a three-year exposure collected between December 16, 2007 and December 16, 2010. The calculated difference between the spectrum of the Middle Drum observations and the published spectrum obtained by the data collected by the HiRes-1 site allows the HiRes-1 energy scale to be transferred to Middle Drum. The HiRes energy scale is applied to the entire Telescope Array by making a comparison between Middle Drum monocular events and hybrid events that triggered both Middle Drum and the Telescope Array's scintillator Ground Arra...

  5. Study of High-Energy Particles Correlated with Lightning at Utah's Telescope Array Cosmic Ray Observatory

    Science.gov (United States)

    Belz, John

    2016-03-01

    It is known that x-ray and gamma radiation is emitted by lightning. This phenomenon has been observed by both ground-based and spaced-based detectors. Recently, cosmic ray physicists studying data collected by the 700 square-kilometer Telescope Array Surface Detector (TASD) have observed energetic elementary particles in coincidence with lightning strikes. A subset of these events contain reconstructable ``showers'' which point back to the particles' origin in the Earth's atmosphere. This implies that the energetic radiation may for the first time be traced to its source within the lightning strike. The Lightning Mapping Array (LMA) pioneered at Langmuir Laboratories is the ideal instrument to couple with the TASD in order to perform these studies. These LMA's consist of roughly ten VHF detectors spread over hundreds of square kilometers, and detect impulsive radiation from lightning. The sources of these impulses may be reconstructed and used to create a 3-dimensional GPS-timed reconstruction of a lightning strike. The merger of TA and LMA is also the ideal instrument to search for evidence of a more speculative - but more profound - connection between particle astrophysics and climate: The seeding of lightning strikes by cosmic ray air showers.

  6. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  7. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    CERN Document Server

    Esplin, T L

    2015-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 $\\mu$m bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7$^{\\rm th}$ and 8$^{\\rm th}$ order distortion corrections for the 3.6 and 4.5 $\\mu$m arrays of IRAC, ...

  8. Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    DEFF Research Database (Denmark)

    Madsen, K. K.; Harrison, F. A.; Mao, P. H.

    2009-01-01

    The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W...

  9. Mechanics and cooling system for the camera of the Large Size Telescopes of the Cherenkov Telescope Array (CTA)

    CERN Document Server

    Delgado, Carlos; Diaz, Carlos; Hamer, Noemi; Hideyuki, Ohoka; Mirzoyan, Razmik; Teshima, Masahiro; Wetteskind, Holger

    2013-01-01

    Mechanics of the camera for the large size telescopes of CTA must protect and provide a stable environment for its instrumentation. This is achieved by a stiff support structure enclosed in an air and water tight volume. The structure is specially devised to facilitate extracting the power dissipated by the focal plane electronics while keeping its weight small enough to guarantee an optimum load on the telescope structure. A heat extraction system is designed to keep the electronics temperature within its optimal operation range, stable in time and homogeneous along the camera volume, whereas it is decoupled from the temperature in the telescope environment. In this contribution, we present the details of this system as well as its verification based in finite element analysis computations and tested prototypes. Finally, issues related to the integration of the camera mechanics and electronics will be dealt with.

  10. ROBAST: Development of a Non-Sequential Ray-Tracing Simulation Library and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    We have developed a non-sequential ray-tracing simulation library, ROot-BAsed Simulator for ray Tracing (ROBAST), which is aimed for wide use in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used existed. To reduce the unnecessary effort demanded when different research groups develop multiple ray-tracing simulators, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the proposed telescope designs for CTA, ROBAST is currently being used for three telescopes: a Schwarzschild--Couder telescope, one of the Schwarzschild--Couder small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulations and the development of hexagonal light concentrators that has be...

  11. The Cherenkov Telescope array on-site integral sensitivity: observing the Crab

    Science.gov (United States)

    Fioretti, Valentina; Bulgarelli, Andrea; Schüssler, Fabian

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. Thanks to the wide energy coverage and the tremendous boost in effective area (10 times better than the current IACTs), for the first time a VHE observatory will be able to detect transient phenomena in short exposures. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The minimum exposure required to issue a science alert is not a general requirement of the observatory but is a function of the astrophysical object under study, because the ability to detect a given source is determined by the integral sensitivity which, in addition to the CTA Monte Carlo simulations, providing the energy-dependent instrument response (e.g. the effective area and the background rate), requires the spectral distribution of the science target. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standard candle in VHE and it is often used as unit for the IACTs sensitivity. The effect of different Crab Nebula emission models on the CTA integral sensitivity is evaluated, to emphasize the need for representative spectra of the CTA science targets in the evaluation of the OSA use cases. Using

  12. Performance of the Mechanical Structure of the SST-2M GCT Proposed for the Cherenkov Telescope Array

    CERN Document Server

    Dournaux, Jean-Laurent; Dumas, Delphine; Amans, Jean-Philippe; Fasola, Gilles; Laporte, Philippe; Bousquet, Jean-Jacques; Sol, Hélène

    2015-01-01

    The Cherenkov Telescope Array (CTA) consortium aims to create the next generation Very High Energy gamma-ray observatory. It will be devoted to the observation of gamma rays over a wide band of energy, from 20 GeV to 300 TeV. Three different classes, Large, Medium and Small Size Telescopes, are foreseen to cover the low, intermediate and high energy regions, respectively. The energy range of the Small Size Telescopes (SSTs) extends from 1 TeV to 300 TeV. Among them, the Gamma-ray Cherenkov Telescope (GCT), a telescope based on a Schwarzschild-Couder dual-mirror optical design, is one of the prototypes under construction proposed for the SST sub-array of CTA. This contribution focuses on the mechanical structure of GCT. It reports on last progress on the mechanical design and discusses this in the context of CTA specifications. Recent advances in the assembly and installation of the opto-mechanical prototype of GCT on the French site of the Paris Observatory are also described.

  13. DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    CERN Document Server

    Rajda, P; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Rameez, M.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Żychowski, P.

    2016-01-01

    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.

  14. The enterprise ecology of towns in the Karoo, South Africa

    Directory of Open Access Journals (Sweden)

    Daan F. Toerien

    2010-05-01

    Full Text Available Two concepts, (1 companies are ‘living’ entities and (2 ‘company ecology’, stimulated our hypothesis that towns are ‘enterprise ecosystems’. This hypothesis cannot be tested directly. However, if it is correct, application of clustering and ordination techniques used frequently in studies of natural ecosystems, should reveal clusters of towns that are statistically significantly different (p < 0.05. A dataset of 47 towns in the Karoo, South Africa served as study material and their enterprise assemblages were profiled through the use of a simple method based on the examination of telephone directories. Clustering and ordination techniques revealed six different clusters of towns at a correlation coefficient level of 0.65 and the clusters differed significantly (p < 0.05 in some respects. The agricultural products and services, the tourism and hospitality, and the trade sectors were particularly important in defining these clusters. We concluded that enterprise ecology is a valid concept and towns are ‘ecosystems’ that also cluster together in larger groupings. An array of potentially important techniques and approaches for the study of business development in towns now provide support to, and intriguing questions confront, academic and practical researchers of enterprise development in towns.

  15. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    Science.gov (United States)

    2003-11-01

    Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare

  16. Silicon Photomultipliers and front-end electronics performance for Cherenkov Telescope Array camera development

    Science.gov (United States)

    Ambrosi, G.; Bissaldi, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Rando, R.; Simone, D.; Vagelli, V.

    2017-02-01

    In the last few years a number of efforts have been undertaken to develop new technology related to Silicon Photomultipliers (SiPMs). These photosensors consist of an array of identical Avalanche Photodiodes operating in Geiger mode and connected in parallel to a single output. The Italian Institute of Nuclear Physics (INFN) is involved in the R&D program Progetto Premiale Telescopi CHErenkov made in Italy (TECHE.it) to develop photosensors for a SiPM based camera that will be part of the Cherenkov Telescope Array (CTA) observatory. In this framework tests are ongoing on innovative devices suitable to detect Cherenkov light in the blue and near-UV wavelength region, the so-called Near Ultra-Violet Silicon Photomultipliers (NUV SiPMs). The tests on photosensors produced by Fondazione Bruno Kessler (FBK) are revealing promising performance: low operating voltage, capability to detect very low intensity light down to a single photon and high Photo Detection Efficiency (PDE) in the range 390-410 nm. In particular the developed device is a High Density NUV-SiPM (NUV-HD SiPM) based on a micro-cell of 30 μm×30 μm and 6 mm×6 mm area. Tests on this detector in single-cell configuration and in a matrix arrangement have been done. At the same time front-end electronics based on the waveform sampling technique optimized for the new NUV-HD SIPMs is under study and development.

  17. Karoo fracking and the Christian faith community

    Directory of Open Access Journals (Sweden)

    Gerrit van Tonder

    2014-10-01

    Full Text Available One of the challenges for Practical Theology in Africa is to engage with the continent’s concerns and challenges in such a way that the kingdom of God is realised in society and is seen to be relevant to these issues by people who are outside of academia. In our article, which was first presented at the Practical Theology congress in Pretoria in January 2014, the authors seek to demonstrate how this may be accomplished by applying insights to one concern, namely ‘fracking’. The objective is to mobilise the influential Christian faith community in South Africa to begin to exercise prophetic discernment concerning fracking in the Karoo. The fracking debate is a product of the tension between the environmental degradation that its waste products may cause, on the one hand, and, on the other, the greater energy demands of a rapidly increasing world population along with its expectations of an ever-increasing standard of living. Shale gas fracking in the Karoo region of South Africa promises to make vast reserves of oil and gas available to help meet a significant percentage of the country’s energy needs for many years to come, and so thus aid development and contribute to raising the standard of living of many people. Yet the management of the waste products associated with the process is an area of serious environmental concern. The article aims to apprise the South African Christian faith community of the technology and risks involved. Theological guidelines are presented by which fracking’s benefits and dangers can be interrogated so that the community may come to an informed decision as to whether or not to support fracking.

  18. Karoo fracking and the Christian faith community

    Directory of Open Access Journals (Sweden)

    Gerrit van Tonder

    2014-02-01

    Full Text Available One of the challenges for Practical Theology in Africa is to engage with the continent’s concerns and challenges in such a way that the kingdom of God is realised in society and is seen to be relevant to these issues by people who are outside of academia. In our article, which was first presented at the Practical Theology congress in Pretoria in January 2014, the authors seek to demonstrate how this may be accomplished by applying insights to one concern, namely ‘fracking’. The objective is to mobilise the influential Christian faith community in South Africa to begin to exercise prophetic discernment concerning fracking in the Karoo. The fracking debate is a product of the tension between the environmental degradation that its waste products may cause, on the one hand, and, on the other, the greater energy demands of a rapidly increasing world population along with its expectations of an ever-increasing standard of living. Shale gas fracking in the Karoo region of South Africa promises to make vast reserves of oil and gas available to help meet a significant percentage of the country’s energy needs for many years to come, and so thus aid development and contribute to raising the standard of living of many people. Yet the management of the waste products associated with the process is an area of serious environmental concern. The article aims to apprise the South African Christian faith community of the technology and risks involved. Theological guidelines are presented by which fracking’s benefits and dangers can be interrogated so that the community may come to an informed decision as to whether or not to support fracking.

  19. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA"

    Science.gov (United States)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    We are conducting tests of optical and electronics components of JEMEUSO at the Telescope Array site in Utah with a ground-based "EUSO-TA" detector. The tests will include an engineering validation of the detector, cross-calibration of EUSO-TA with the TA fluorescence detector and observations of air shower events. Also, the proximity of the TA's Electron Light Source will allow for convenient use of this calibration device. In this paper, we report initial results obtained with the EUSO-TA telescope.

  20. Searching for Dark Matter signatures in dwarf spheroidal galaxies with the ASTRI mini-array in the framework of Cherenkov Telescope Array

    Science.gov (United States)

    Giammaria, P.; Lombardi, S.; Antonelli, L. A.; Brocato, E.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.; ASTRI Collaboration; CTA Consortium, the

    2016-07-01

    The nature of Dark Matter (DM) is an open issue of modern physics. Cosmological considerations and observational evidences indicate a behaviour beyond the Standard Model for feasible DM particle candidates. Non-baryonic DM is compatible with cold and weakly interacting massive particles (WIMPs) expected to have a mass in the range between ∼10 GeV and ∼100 TeV. Indirect DM searches with imaging atmospheric Cherenkov telescopes may play a crucial role in constraining the nature of the DM particle(s) through the study of their annihilation in very high energy (VHE) gamma rays from promising targets, such as the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way. Here, we focus on indirect DM searches in dSphs, presenting the preliminary prospects of this research beyond the TeV mass region achievable with the ASTRI mini-array, proposed to be installed at the Cherenkov Telescope Array southern site.

  1. A Large Array of CCDS for the 1 M Schmidt Telescope

    Directory of Open Access Journals (Sweden)

    G. Sánchez

    2001-01-01

    Full Text Available We describe the array of CCDs (YIC Camera attached to the Schmidt Telescope located in the Observatorio Nacional de Llano del Hato, Merida, Venezuela. Currently the camera has 16 CCDs (2048×2048 cooled to below -80C. The camera can be used in drift-scan mode (within 7deg of equator or guided mode. Two filter mosaics (UBUV and BVRI and a low-pass filter with a 7000 AA cutoff are available. An objective prism of dispersion 500 AA/mm is also available. This prototype camera was designed for the QUEST project., a collaboration of Yale and Indiana Universities (USA with the Universidad de los Andes and CIDA (Venezuela. A second phase camera will have 96 CCDs (4096 by 1024. The system has been working since early 1997. Even thought it is still under commisioning, an important quantity of astronomical data have been acquired. Half of the dark time is assigned to the QUEST project, observing in drift-scan mode with the UBUV filter set, or with the objective prism and no filters. The rest of the time is open to projects like the Survey for low luminosity Hx emission-line galaxies (UCM - CIDA, Variability Survey near the Galactic Plane (Yale, CFA, CIDA, Indiana, Catalogo Astrometrico y movimientos para el area de la "Carte du Ciel" zona San Fernando (CIDA - ROA, Solar System Science (ULA - Yale.

  2. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    Science.gov (United States)

    Lefranc, Valentin; Mamon, Gary A.; Panci, Paolo

    2016-09-01

    We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising J-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: i) using, for each dSph, a recent determination of the J-factor and its statistical error; ii) considering the most up-to-date cosmic ray background; and iii) including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the γ-ray energy spectrum and for dSphs with steep J-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.

  3. Revisiting the Westerlund 2 Field with the H.E.S.S. Telescope Array

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Barnacka, A; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Borrel, V; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Boutelier, T; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Conrad, J; Chounet, L -M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Förster, A; Fontaine, G; Füßling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak24, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Oña; Opitz, B; Orford, K J; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti1, G; Pelletier, G; Petrucci, P -O; Pita1, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger1, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schönwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sushch, I; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Szostek, A; Tam, P H; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Vorobiov, S; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Zechlin, H -S; Fukui, Y; Furukawa, N; Ohama, A; Sano, H; Dawson, J; Kawamura, A

    2010-01-01

    Aims. Previous observations with the H.E.S.S. telescope array revealed the existence of extended very-high-energy (VHE; E>100 GeV) {\\gamma}-ray emission, HESS J1023-575, coincident with the young stellar cluster Westerlund 2. At the time of discovery, the origin of the observed emission was not unambiguously identified, and follow-up observations have been performed to further investigate the nature of this {\\gamma}-ray source. Methods. The Carina region towards the open cluster Westerlund 2 has been re-observed, increasing the total exposure to 45.9 h. The combined dataset includes 33 h of new data and now permits a search for energy-dependent morphology and detailed spectroscopy. Results. A new, hard spectrum VHE {\\gamma}-ray source, HESSJ1026-582, was discovered with a statistical significance of 7{\\sigma}. It is positionally coincident with the Fermi LAT pulsar PSR J1028-5819. The positional coincidence and radio/{\\gamma}-ray characteristics of the LAT pulsar favors a scenario where the TeV emission origi...

  4. Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina

    CERN Document Server

    Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz

    2013-01-01

    Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...

  5. Spectropolarimetry with the Allen Telescope Array: Faraday Rotation toward Bright Polarized Radio Galaxies

    CERN Document Server

    Law, C J; Bower, G C; Backer, D C; Bauermeister, A; Croft, S; Forster, R; Gutierrez-Kraybill, C; Harvey-Smith, L; Heiles, C; Hull, C; Keating, G; MacMahon, D; Whysong, D; Williams, P K G; Wright, M

    2010-01-01

    We have observed 37 bright, polarized radio sources with the Allen Telescope Array (ATA) to present a novel analysis of their Faraday rotation properties. Each source was observed during the commissioning phase with 2 to 4 100-MHz bands at frequencies ranging from 1 to 2 GHz. These observations demonstrate how the continuous frequency coverage of the ATA's log-periodic receiver can be applied to the study of Faraday rotation measures (RMs). We use RM synthesis to show that wide-bandwidth data can find multiple RM components toward a single source. Roughly a quarter of the sources studied have extra RM components with high confidence (brighter than ~40 mJy), when observing with a RM resolution of roughly 100 rad/m2. These extra components contribute 10%-70% of the total polarized flux. This is the first time multiple RM components have been identified in a large sample of point sources. For our observing configuration, these extra RM components bias the measurement of the peak RM by 10-15 rad/m2 ; more general...

  6. Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2012-01-01

    We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatibl...

  7. A THz Superconducting Imaging Array Developed for the DATE5 Telescope

    Science.gov (United States)

    Shi, Sheng-Cai; Zhang, Wen; Li, Jing; Miao, Wei; Lin, Zhen-Hui; Lou, Zheng; Yao, Qi-Jun

    2016-08-01

    Dome A in Antarctica, located at an altitude of 4093 m and with very low temperature in winter down to -83^{circ }C, is an exceptionally dry site. Measurements of the atmospheric transmission in the range of 0.75-15 THz by a Far-infrared/THz Fourier transform spectrometer (FTS) strongly suggest that Dome A is a unique site for ground-based THz observations, especially for the 200- and 350-micron windows. A 5-m THz telescope (DATE5) is therefore proposed for Chinese Antarctic Kunlun Observatory. We are currently developing a THz superconducting imaging array (TeSIA) for the DATE5. The TeSIA will be working at the 350-\\upmu m window, with a pixel number of 32 × 32 and a sensitivity (NEP) of ˜ 10^{-16} W/Hz^{0.5}. Ti transition-edge sensors with time-domain multiplexing and TiN microwave kinetic inductance detectors with frequency-domain multiplexing are both developed for the TeSIA. In this paper, detailed system designs and some measurement results will be presented.

  8. Probing Fine-Scale Ionospheric Structure with the Very Large Array Radio Telescope

    CERN Document Server

    Cohen, A S

    2009-01-01

    High resolution (~1 arcminute) astronomical imaging at low frequency (below 150 MHz) has only recently become practical with the development of new calibration algorithms for removing ionospheric distortions. In addition to opening a new window in observational astronomy, the process of calibrating the ionospheric distortions also probes ionospheric structure in an unprecedented way. Here we explore one aspect of this new type of ionospheric measurement, the differential refraction of celestial source pairs as a function of their angular separation. This measurement probes variations in the spatial gradient of the line-of-sight total electron content (TEC) to 0.001 TECU/km accuracy over spatial scales of under 10 km to over 100 km. We use data from the VLA Low-frequency Sky Survey (VLSS; Cohen et al. 2007, AJ 134, 1245), a nearly complete 74 MHz survey of the entire sky visible to the Very Large Array (VLA) telescope in Socorro, New Mexico. These data comprise over 500 hours of observations, all calibrated in...

  9. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    CERN Document Server

    Lefranc, Valentin; Mamon, Gary A

    2016-01-01

    We derive the large Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ applying a joint spatial and spectral analysis in the likelihood. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $\\gamma$-ray energy spectrum and for dSphs with steep $J$-factor pr...

  10. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  11. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  12. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the Yakutsk extensive air shower array

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.A., E-mail: ivanov@ikfia.ysn.ru; Knurenko, S.P.; Krasilnikov, A.D.; Petrov, Z.E.; Pravdin, M.I.; Sleptsov, I.Ye.; Timofeev, L.V.

    2015-02-01

    The Yakutsk array group is developing a wide field-of-view Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed, assembled, and tested to demonstrate the feasibility of the conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the already existing Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  13. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the surface detectors of the extensive air shower array

    CERN Document Server

    Ivanov, A A; Krasilnikov, A D; Petrov, Z E; Pravdin, M I; Sleptsov, I Ye; Timofeev, L V

    2014-01-01

    The Yakutsk array group is developing the wide FOV Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed and assembled to demonstrate the feasibility of a conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  14. The Italian ASTRI program: an end-to-end dual-mirror telescope prototype for the CTA Small System telescope array

    Science.gov (United States)

    Caraveo, Patrizia; Pareschi, Giovanni; Catalano, Osvaldo; Vercellone, Stefano; Sacco, Bruno; Conconi, Paolo; Fiorini, Mauro; Canestrari, Rodolfo

    2012-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project ofthe Italian Ministry of Education, University and Research related to the next generation IACT (Imaging Atmospheric Cherenkov Telescope), within the framework of the CTA International Observatory. In this context, INAF (Italian National Institute of Astrophysics) is currently developing a scientific and technological breakthrough to allow the study of the uppermost end of the VHE domain (from a few TeV - hundreds of TeV). The ASTRI project timeframe is of about 3 years, and foresees the full development, installation and calibration of a Small Size class Telescope prototype compliant with the requirements of the High Energy array of CTA. The ASTRI prototype will adopt an aplanatic, wide field, double reflection optical layout in a Schwarzschild-Couder configuration. Moreover, the focal plane instrument will explore small pixelated detector sensors such as Silicon PMs. Among the number of technological challenges, this telescope will be the very first instrument implementing both the Schwarzschild-Couder optical configuration and the double reflection for air Cherenkov imaging. In this paper we describe the status of the project, and we present the results obtained so far among the different technological developments.

  15. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    Science.gov (United States)

    Naumann, C. L.; Tejedor, L. A.; Martínez, G.

    2013-06-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (``COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  16. The Expanded Very Large Array: A Radio Telescope for the 21st Century

    Science.gov (United States)

    2000-06-01

    The world's most productive and widely-used radio telescope, the National Science Foundation's Very Large Array (VLA), can be improved tenfold with an expansion project proposed by the National Radio Astronomy Observatory (NRAO). "This project will ensure that the scientific community has a state-of-the-art research tool to meet the astronomical research challenges of the 21st Century," said Paul Vanden Bout, NRAO Director. Aerial View of the VLA Plans for the Expanded VLA (EVLA) and its potential for new scientific contributions were described today in a series of presentations at the American Astronomical Society's meeting in Rochester, NY. The EVLA project plans to replace dated equipment left over from the VLA's original construction in the 1970s and add eight new radio- telescope dish antennas to the current, 27-dish system. It received a strong endorsement last month when the Astronomy and Astrophysics Survey Committee of the National Academy of Sciences gave the project one of its highest ratings as a priority for the next decade in its report entitled "Astronomy and Astrophysics in the New Millennium." "The Survey Committee's endorsement shows that the astronomical research community strongly supports the Expanded VLA," said NRAO astronomer Jim Ulvestad, who spoke to reporters at the AAS meeting. "The VLA has long been a unique and critical resource for all of astronomy, and we look forward to turning it into a dramatic, new research tool." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The

  17. Contributions of the Cherenkov Telescope Array (CTA) to the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2016)

    CERN Document Server

    :,; Abeysekara, U; Abril, Ó; Acero, F; Acharya, B S; Adams, C; Agnetta, G; Aharonian, F; Akhperjanian, A; Albert, A; Alcubierre, M; Alfaro, J; Alfaro, R; Allafort, A J; Aloisio, R; Amans, J -P; Amato, E; Ambrogi, L; Ambrosi, G; Ambrosio, M; Anderson, J; Anduze, M; Angüner, E O; Antolini, E; Antonelli, L A; Antonucci, M; Antonuccio, V; Antoranz, P; Aramo, C; Aravantinos, A; Araya, M; Arcaro, C; Arezki, B; Argan, A; Armstrong, T; Arqueros, F; Arrabito, L; Arrieta, M; Asano, K; Ashley, M; Aubert, P; Singh, C B; Babic, A; Backes, M; Bais, A; Bajtlik, S; Balazs, C; Balbo, M; Balis, D; Balkowski, C; Ballester, O; Ballet, J; Balzer, A; Bamba, A; Bandiera, R; Barber, A; Barbier, C; Barcelo, M; Barkov, M; Barnacka, A; de Almeida, U Barres; Barrio, J A; Basso, S; Bastieri, D; Bauer, C; Becciani, U; Becherini, Y; Tjus, J Becker; Beckmann, V; Bednarek, W; Benbow, W; Ventura, D Benedico; Berdugo, J; Berge, D; Bernardini, E; Bernardini, M G; Bernhard, S; Bernlöhr, K; Bertucci, B; Besel, M -A; Beshley, V; Bhatt, N; Bhattacharjee, P; Bhattacharyya, W; Bhattachryya, S; Biasuzzi, B; Bicknell, G; Bigongiari, C; Biland, A; Bilinsky, A; Bilnik, W; Biondo, B; Bird, R; Bird, T; Bissaldi, E; Bitossi, M; Blanch, O; Blasi, P; Blazek, J; Bockermann, C; Boehm, C; Bogacz, L; Bogdan, M; Bohacova, M; Boisson, C; Boix, J; Bolmont, J; Bonanno, G; Bonardi, A; Bonavolontà, C; Bonifacio, P; Bonnarel, F; Bonnoli, G; Borkowski, J; Bose, R; Bosnjak, Z; Böttcher, M; Bousquet, J -J; Boutonnet, C; Bouyjou, F; Bowman, L; Braiding, C; Brantseg, T; Brau-Nogué, S; Bregeon, J; Briggs, M; Brigida, M; Bringmann, T; Brisken, W; Bristow, D; Britto, R; Brocato, E; Bron, S; Brook, P; Brooks, W; Brown, A M; Brügge, K; Brun, F; Brun, P; Brun, P; Brunetti, G; Brunetti, L; Bruno, P; Buanes, T; Bucciantini, N; Buchholtz, G; Buckley, J; Bugaev, V; Bühler, R; Bulgarelli, A; Bulik, T; Burton, M; Burtovoi, A; Busetto, G; Buson, S; Buss, J; Byrum, K; Cadoux, F; Tovar, J Calvo; Cameron, R; Canelli, F; Canestrari, R; Capalbi, M; Capasso, M; Capobianco, G; Caproni, A; Caraveo, P; Cardenzana, J; Cardillo, M; Carius, S; Carlile, C; Carosi, A; Carosi, R; Carquín, E; Carr, J; Carroll, M; Carter, J; Carton, P -H; Casandjian, J -M; Casanova, S; Casanova, S; Cascone, E; Casiraghi, M; Castellina, A; Mora, J Castroviejo; Catalani, F; Catalano, O; Catalanotti, S; Cauz, D; Cavazzani, S; Cerchiara, P; Chabanne, E; Chadwick, P; Chaleil, T; Champion, C; Chatterjee, A; Chaty, S; Chaves, R; Chen, A; Chen, X; Chen, X; Cheng, K; Chernyakova, M; Chiappetti, L; Chikawa, M; Chinn, D; Chitnis, V R; Cho, N; Christov, A; Chudoba, J; Cieślar, M; Ciocci, M A; Clay, R; Colafrancesco, S; Colin, P; Colley, J -M; Colombo, E; Colome, J; Colonges, S; Conforti, V; Connaughton, V; Connell, S; Conrad, J; Contreras, J L; Coppi, P; Corbel, S; Coridian, J; Cornat, R; Corona, P; Corti, D; Cortina, J; Cossio, L; Costa, A; Costantini, H; Cotter, G; Courty, B; Covino, S; Covone, G; Crimi, G; Criswell, S J; Crocker, R; Croston, J; Cuadra, J; Cumani, P; Cusumano, G; Da Vela, P; Dale, Ø; D'Ammando, F; Dang, D; Dang, V T; Dangeon, L; Daniel, M; Davids, I; Davids, I; Dawson, B; Dazzi, F; Costa, B de Aguiar; De Angelis, A; Cardoso, R F de Araujo; De Caprio, V; Anjos, R de Cássia dos; De Cesare, G; De Franco, A; De Frondat, F; Pino, E M de Gouveia Dal; de la Calle, I; De Lisio, C; Lopez, R de los Reyes; De Lotto, B; De Luca, A; Neto, J R T de Mello; de Naurois, M; Wilhelmi, E de Oña; De Palma, F; De Persio, F; de Souza, V; Decock, G; Decock, J; Deil, C; Del Santo, M; Delagnes, E; Deleglise, G; Delgado, C; Delgado, J; della Volpe, D; Deloye, P; Detournay, M; Dettlaff, A; Devin, J; Di Girolamo, T; Di Giulio, C; Di Paola, A; Di Pierro, F; Diaz, M A; Díaz, C; Dib, C; Dick, J; Dickinson, H; Diebold, S; Digel, S; Dipold, J; Disset, G; Distefano, A; Djannati-Ataï, A; Doert, M; Dohmke, M; Domínguez, A; Dominik, N; Dominique, J -L; Prester, D Dominis; Donat, A; Donnarumma, I; Dorner, D; Doro, M; Dournaux, J -L; Downes, T; Doyle, K; Drake, G; Drappeau, S; Drass, H; Dravins, D; Drury, L; Dubus, G; Ducci, L; Dumas, D; Morå, K Dundas; Durand, D; D'Urso, D; Dwarkadas, V; Dyks, J; Dyrda, M; Ebr, J; Edy, E; Egberts, K; Eger, P; Egorov, A; Einecke, S; Eisch, J; Eisenkolb, F; Eleftheriadis, C; Elsaesser, D; Elsässer, D; Emmanoulopoulos, D; Engelbrecht, C; Engelhaupt, D; Ernenwein, J -P; Escarate, P; Eschbach, S; Espinoza, C; Evans, P; Fairbairn, M; Falceta-Goncalves, D; Falcone, A; Ramazani, V Fallah; Fantinel, D; Farakos, K; Farnier, C; Farrell, E; Fasola, G; Favre, Y; Fede, E; Fedora, R; Fedorova, E; Fegan, S; Ferenc, D; Fernandez-Alonso, M; Fernández-Barral, A; Ferrand, G; Ferreira, O; Fesquet, M; Fetfatzis, P; Fiandrini, E; Fiasson, A; Filipčič, A; Filipovic, M; Fink, D; Finley, C; Finley, J P; Finoguenov, A; Fioretti, V; Fiorini, M; Fleischhack, H; Flores, H; Florin, D; Föhr, C; Fokitis, E; Fonseca, M V; Font, L; Fontaine, G; Fontes, B; Fornasa, M; Fornasa, M; Förster, A; Fortin, P; Fortson, L; Fouque, N; Franckowiak, A; Franckowiak, A; Franco, F J; Albuquerque, I Freire Mota; Coromina, L Freixas; Fresnillo, L; Fruck, C; Fuessling, M; Fugazza, D; Fujita, Y; Fukami, S; Fukazawa, Y; Fukuda, T; Fukui, Y; Funk, S; Furniss, A; Gäbele, W; Gabici, S; Gadola, A; Galindo, D; Gall, D D; Gallant, Y; Galloway, D; Gallozzi, S; Galvez, J A; Gao, S; Garcia, A; Garcia, B; Gil, R García; López, R Garcia; Garczarczyk, M; Gardiol, D; Gargano, C; Gargano, F; Garozzo, S; Garrecht, F; Garrido, L; Garrido-Ruiz, M; Gascon, D; Gaskins, J; Gaudemard, J; Gaug, M; Gaweda, J; Gebhardt, B; Gebyehu, M; Geffroy, N; Genolini, B; Gerard, L; Ghalumyan, A; Ghedina, A; Ghislain, P; Giammaria, P; Giannakaki, E; Gianotti, F; Giarrusso, S; Giavitto, G; Giebels, B; Gieras, T; Giglietto, N; Gika, V; Gimenes, R; Giomi, M; Giommi, P; Giordano, F; Giovannini, G; Girardot, P; Giro, E; Giroletti, M; Gironnet, J; Giuliani, A; Glicenstein, J -F; Gnatyk, R; Godinovic, N; Goldoni, P; Gomez, G; Gonzalez, M M; González, A; Gora, D; Gothe, K S; Gotz, D; Goullon, J; Grabarczyk, T; Graciani, R; Graham, J; Grandi, P; Granot, J; Grasseau, G; Gredig, R; Green, A J; Green, A M; Greenshaw, T; Grenier, I; Griffiths, S; Grillo, A; Grondin, M -H; Grube, J; Grudzinska, M; Grygorczuk, J; Guarino, V; Guberman, D; Gunji, S; Gyuk, G; Hadasch, D; Hagedorn, A; Hagge, L; Hahn, J; Hakobyan, H; Hara, S; Hardcastle, M J; Hassan, T; Hatanaka, K; Haubold, T; Haupt, A; Hayakawa, T; Hayashida, M; Heller, M; Heller, R; Helo, J C; Henault, F; Henri, G; Hermann, G; Hermel, R; Llorente, J Herrera; Llorente, J Herrera; Herrero, A; Hervet, O; Hidaka, N; Hinton, J; Hirai, W; Hirotani, K; Hnatyk, B; Hoang, J; Hoffmann, D; Hofmann, W; Holch, T; Holder, J; Hooper, S; Horan, D; Hörandel, J; Hörbe, M; Horns, D; Horvath, P; Hose, J; Houles, J; Hovatta, T; Hrabovsky, M; Hrupec, D; Huet, J -M; Huetten, M; Hughes, G; Hui, D; Humensky, T B; Hussein, M; Iacovacci, M; Ibarra, A; Ikeno, Y; Illa, J M; Impiombato, D; Inada, T; Incorvaia, S; Infante, L; Inome, Y; Inoue, S; Inoue, T; Inoue, Y; Iocco, F; Ioka, K; Iori, M; Ishio, K; Ishio, K; Israel, G L; Iwamura, Y; Jablonski, C; Jacholkowska, A; Jacquemier, J; Jamrozy, M; Janecek, P; Janiak, M; Jankowsky, D; Jankowsky, F; Jean, P; Jegouzo, I; Jenke, P; Jimenez, J J; Jingo, M; Jingo, M; Jocou, L; Jogler, T; Johnson, C A; Jones, M; Josselin, M; Journet, L; Jung, I; Kaaret, P; Kagaya, M; Kakuwa, J; Kalekin, O; Kalkuhl, C; Kamon, H; Kankanyan, R; Karastergiou, A; Kärcher, K; Karczewski, M; Karkar, S; Karn, P; Kasperek, J; Katagiri, H; Kataoka, J; Katarzyński, K; Kato, S; Katz, U; Kawanaka, N; Kaye, L; Kazanas, D; Kelley-Hoskins, N; Kersten, J; Khélifi, B; Kieda, D B; Kihm, T; Kimeswenger, S; Kisaka, S; Kishida, S; Kissmann, R; Klepser, S; Kluźniak, W; Knapen, J; Knapp, J; Knödlseder, J; Koch, B; Köck, F; Kocot, J; Kohri, K; Kokkotas, K; Kokkotas, K; Kolitzus, D; Komin, N; Kominis, I; Kong, A; Konno, Y; Kosack, K; Koss, G; Kossatz, M; Kowal, G; Koyama, S; Kozioł, J; Kraus, M; Krause, J; Krause, M; Krawzcynski, H; Krennrich, F; Kretzschmann, A; Kruger, P; Kubo, H; Kudryavtsev, V; Mezek, G Kukec; Kuklis, M; Kuroda, H; Kushida, J; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Laffon, H; Lahmann, R; Lakicevic, M; Lalik, K; Lamanna, G; Landriu, D; Landt, H; Lang, R G; Lapington, J; Laporte, P; Fèvre, J -P Le; Flour, T Le; Sidaner, P Le; Lee, S -H; Lee, W H; Lees, J -P; Lefaucheur, J; Leffhalm, K; Leich, H; de Oliveira, M A Leigui; Lelas, D; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leonard, R; Leoni, R; Lessio, L; Leto, G; Leveque, A; Lieunard, B; Limon, M; Lindemann, R; Lindfors, E; Linhoff, L; Liolios, A; Lipniacka, A; Lockart, H; Lohse, T; Łokas, E; Lombardi, S; Longo, F; Lopatin, A; Lopez, M; Loreggia, D; Louge, T; Louis, F; Louys, M; Lucarelli, F; Lucchesi, D; Lüdecke, H; Luigi, T; Luque-Escamilla, P L; Lyard, E; Maccarone, M C; Maccarone, T; Maccarone, T J; Mach, E; Madejski, G M; Madonna, A; Magniette, F; Magniez, A; Mahabir, M; Maier, G; Majumdar, P; Majumdar, P; Makariev, M; Malaguti, G; Malaspina, G; Mallot, A K; Malouf, A; Maltezos, S; Malyshev, D; Mancilla, A; Mandat, D; Maneva, G; Manganaro, M; Mangano, S; Manigot, P; Mankushiyil, N; Mannheim, K; Maragos, N; Marano, D; Marchegiani, P; Marcomini, J A; Marcowith, A; Mariotti, M; Marisaldi, M; Markoff, S; Martens, C; Martí, J; Martin, J -M; Martin, L; Martin, P; Martínez, G; Martínez, M; Martínez, O; Martynyuk-Lototskyy, K; Marx, R; Masetti, N; Massimino, P; Mastichiadis, A; Mastroianni, S; Mastropietro, M; Masuda, S; Matsumoto, H; Matsuoka, S; Matthews, N; Mattiazzo, S; Maurin, G; Maxted, N; Maxted, N; Maya, J; Mayer, M; Mazin, D; Mazziotta, M N; Comb, L Mc; McCubbin, N; McHardy, I; Medina, C; Mehrez, F; Melioli, C; Melkumyan, D; Melse, T; Mereghetti, S; Merk, M; Mertsch, P; Meunier, J -L; Meures, T; Meyer, M; Meyrelles, J L; Miccichè, A; Michael, T; Michałowski, J; Mientjes, P; Mievre, I; Mihailidis, A; Miller, J; Mineo, T; Minuti, M; Mirabal, N; Mirabel, F; Miranda, J M; Mirzoyan, R; Mitchell, A; Mizuno, T; Moderski, R; Mognet, I; Mohammed, M; Moharana, R; Mohrmann, L; Molinari, E; Molyneux, P; Monmarthe, E; Monnier, G; Montaruli, T; Monte, C; Monteiro, I; Mooney, D; Moore, P; Moralejo, A; Morello, C; Moretti, E; Mori, K; Morris, P; Morselli, A; Moscato, F; Motohashi, D; Mottez, F; Moudden, Y; Moulin, E; Mueller, S; Mukherjee, R; Munar, P; Munari, M; Mundell, C; Mundet, J; Muraishi, H; Murase, K; Muronga, A; Murphy, A; Nagar, N; Nagataki, S; Nagayoshi, T; Nagesh, B K; Naito, T; Nakajima, D; Nakajima, D; Nakamori, T; Nakayama, K; Nanni, J; Naumann, D; Nayman, P; Nellen, L; Nemmen, R; Neronov, A; Neyroud, N; Nguyen, T; Nguyen, T T; Trung, T Nguyen; Nicastro, L; Nicolau-Kukliński, J; Niederwanger, F; Niedźwiecki, A; Niemiec, J; Nieto, D; Nievas-Rosillo, M; Nikolaidis, A; Nikołajuk, M; Nishijima, K; Nishikawa, K -I; Nishiyama, G; Noda, K; Noda, K; Nogues, L; Nolan, S; Northrop, R; Nosek, D; Nöthe, M; Novosyadlyj, B; Nozka, L; Nunio, F; Oakes, L; O'Brien, P; Ocampo, C; Occhipinti, G; Ochoa, J P; de Bhroithe, A OFaolain; Oger, R; Ohira, Y; Ohishi, M; Ohm, S; Ohoka, H; Okazaki, N; Okumura, A; Olive, J -F; Olszowski, D; Ong, R A; Ono, S; Orienti, M; Orito, R; Orlati, A; Osborne, J; Ostrowski, M; Ottaway, D; Otte, N; Öttl, S; Ovcharov, E; Oya, I; Ozieblo, A; Padovani, M; Pagano, I; Paiano, S; Paizis, A; Palacio, J; Palatka, M; Pallotta, J; Panagiotidis, K; Panazol, J -L; Paneque, D; Panter, M; Panzera, M R; Paoletti, R; Paolillo, M; Papayannis, A; Papyan, G; Paravac, A; Paredes, J M; Pareschi, G; Park, N; Parsons, D; Paśko, P; Pavy, S; Pech, M; Peck, A; Pedaletti, G; Pe'er, A; Peet, S; Pelat, D; Pepato, A; Perez, M d C; Perri, L; Perri, M; Persic, M; Persic, M; Petrashyk, A; Petrucci, P -O; Petruk, O; Peyaud, B; Pfeifer, M; Pfeiffer, G; Piano, G; Pieloth, D; Pierre, E; de Pinho, F Pinto; García, C Pio; Piret, Y; Pisarski, A; Pita, S; Platos, Ł; Platzer, R; Podkladkin, S; Pogosyan, L; Pohl, M; Poinsignon, P; Pollo, A; Porcelli, A; Porthault, J; Potter, W; Poulios, S; Poutanen, J; Prandini, E; Prandini, E; Prast, J; Pressard, K; Principe, G; Profeti, F; Prokhorov, D; Prokoph, H; Prouza, M; Pruchniewicz, R; Pruteanu, G; Pueschel, E; Pühlhofer, G; Puljak, I; Punch, M; Pürckhauer, S; Pyzioł, R; Queiroz, F; Quel, E J; Quinn, J; Quirrenbach, A; Rafighi, I; Rainò, S; Rajda, P J; Rameez, M; Rando, R; Rannot, R C; Rataj, M; Ravel, T; Razzaque, S; Reardon, P; Reichardt, I; Reimann, O; Reimer, A; Reimer, O; Reisenegger, A; Renaud, M; Renner, S; Reposeur, T; Reville, B; Rezaeian, A; Rhode, W; Ribeiro, D; Prado, R Ribeiro; Ribó, M; Richards, G; Richer, M G; Richtler, T; Rico, J; Ridky, J; Rieger, F; Riquelme, M; Ristori, P R; Rivoire, S; Rizi, V; Roache, E; Rodriguez, J; Fernandez, G Rodriguez; Vázquez, J J Rodríguez; Rojas, G; Romano, P; Romeo, G; Roncadelli, M; Rosado, J; Rose, J; Rosen, S; Lees, S Rosier; Ross, D; Rouaix, G; Rousselle, J; Rovero, A C; Rowell, G; Roy, F; Royer, S; Rubini, A; Rudak, B; Rugliancich, A; Rujopakarn, W; Rulten, C; Rupiński, M; Russo, F; Russo, F; Rutkowski, K; Saavedra, O; Sabatini, S; Sacco, B; Sadeh, I; Saemann, E O; Safi-Harb, S; Saggion, A; Sahakian, V; Saito, T; Sakaki, N; Sakurai, S; Salamon, A; Salega, M; Salek, D; Greus, F Salesa; Salgado, J; Salina, G; Salinas, L; Salini, A; Sanchez, D; Sanchez-Conde, M; Sandaker, H; Sandoval, A; Sangiorgi, P; Sanguillon, M; Sano, H; Santander, M; Santangelo, A; Santos, E M; Santos-Lima, R; Sanuy, A; Sapozhnikov, L; Sarkar, S; Satalecka, K; Satalecka, K; Sato, Y; Savalle, R; Sawada, M; Sayède, F; Schanne, S; Schanz, T; Schioppa, E J; Schlenstedt, S; Schmid, J; Schmidt, T; Schmoll, J; Schneider, M; Schoorlemmer, H; Schovanek, P; Schubert, A; Schullian, E -M; Schultze, J; Schulz, A; Schulz, S; Schure, K; Schussler, F; Schwab, T; Schwanke, U; Schwarz, J; Schweizer, T; Schwemmer, S; Schwendicke, U; Schwerdt, C; Sciacca, E; Scuderi, S; Segreto, A; Seiradakis, J -H; Sembroski, G H; Semikoz, D; Sergijenko, O; Serre, N; Servillat, M; Seweryn, K; Shafi, N; Shalchi, A; Sharma, M; Shayduk, M; Shellard, R C; Shibata, T; Shigenaka, A; Shilon, I; Shum, E; Sidoli, L; Sidz, M; Sieiro, J; Siejkowski, H; Silk, J; Sillanpää, A; Simone, D; Simpson, H; Singh, B B; Sinha, A; Sironi, G; Sitarek, J; Sizun, P; Sliusar, V; Sliusar, V; Smith, A; Sobczyńska, D; Sol, H; Sottile, G; Sowiński, M; Spanier, F; Spengler, G; Spiga, R; Stadler, R; Stahl, O; Stamerra, A; Stanič, S; Starling, R; Staszak, D; Stawarz, Ł; Steenkamp, R; Stefanik, S; Stegmann, C; Steiner, S; Stella, C; Stephan, M; Stergioulas, N; Sternberger, R; Sterzel, M; Stevenson, B; Stinzing, F; Stodulska, M; Stodulski, M; Stolarczyk, T; Stratta, G; Straumann, U; Stringhetti, L; Strzys, M; Stuik, R; Sulanke, K -H; Suomijärvi, T; Supanitsky, A D; Suric, T; Sushch, I; Sutcliffe, P; Sykes, J; Szanecki, M; Szepieniec, T; Szwarnog, P; Tacchini, A; Tachihara, K; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, K; Takahashi, M; Takalo, L; Takami, S; Takata, J; Takeda, J; Talbot, G; Tam, T; Tanaka, M; Tanaka, S; Tanaka, T; Tanaka, Y; Tanci, C; Tanigawa, S; Tavani, M; Tavecchio, F; Tavernet, J -P; Tayabaly, K; Taylor, A; Tejedor, L A; Telezhinsky, I; Temme, F; Temnikov, P; Tenzer, C; Terada, Y; Terrazas, J C; Terrier, R; Terront, D; Terzic, T; Tescaro, D; Teshima, M; Teshima, M; Testa, V; Tezier, D; Thayer, J; Thornhill, J; Thoudam, S; Thuermann, D; Tibaldo, L; Tiengo, A; Timpanaro, M C; Tiziani, D; Tluczykont, M; Peixoto, C J Todero; Tokanai, F; Tokarz, M; Toma, K; Tomastik, J; Tomono, Y; Tonachini, A; Tonev, D; Torii, K; Tornikoski, M; Torres, D F; Torres, M; Torresi, E; Toso, G; Tosti, G; Totani, T; Tothill, N; Toussenel, F; Tovmassian, G; Toyama, T; Travnicek, P; Trichard, C; Trifoglio, M; Pujadas, I Troyano; Trzeciak, M; Tsinganos, K; Tsujimoto, S; Tsuru, T; Uchiyama, Y; Umana, G; Umetsu, Y; Upadhya, S S; Uslenghi, M; Vagelli, V; Vagnetti, F; Valdes-Galicia, J; Valentino, M; Vallania, P; Valore, L; van Driel, W; van Eldik, C; van Soelen, B; Vandenbroucke, J; Vanderwalt, J; Vasileiadis, G; Vassiliev, V; Vázquez, J R; Acosta, M L Vázquez; Vecchi, M; Vega, A; Vegas, I; Veitch, P; Venault, P; Venema, L; Venter, C; Vercellone, S; Vergani, S; Verma, K; Verzi, V; Vettolani, G P; Veyssiere, C; Viana, A; Viaux, N; Vicha, J; Vigorito, C; Vincent, P; Vincent, S; Vink, J; Vittorini, V; Vlahakis, N; Vlahos, L; Voelk, H; Voisin, V; Vollhardt, A; Volpicelli, A; von Brand, H; Vorobiov, S; Vovk, I; Vrastil, M; Vu, L V; Vuillaume, T; Wagner, R; Wagner, R; Wagner, S J; Wakely, S P; Walstra, T; Walter, R; Walther, T; Ward, J E; Ward, M; Warda, K; Warren, D; Wassberg, S; Watson, J J; Wawer, P; Wawrzaszek, R; Webb, N; Wegner, P; Weiner, O; Weinstein, A; Wells, R; Werner, F; Wetteskind, H; White, M; White, R; Więcek, M; Wierzcholska, A; Wiesand, S; Wijers, R; Wilcox, P; Wild, N; Wilhelm, A; Wilkinson, M; Will, M; Will, M; Williams, D A; Williams, J T; Willingale, R; Wilson, N; Winde, M; Winiarski, K; Winkler, H; Winter, M; Wischnewski, R; Witt, E; Wojcik, P; Wolf, D; Wood, M; Wörnlein, A; Wu, E; Wu, T; Yadav, K K; Yamamoto, H; Yamamoto, T; Yamane, N; Yamazaki, R; Yanagita, S; Yang, L; Yelos, D; Yoshida, A; Yoshida, M; Yoshida, T; Yoshiike, S; Yoshikoshi, T; Yu, P; Zabalza, V; Zaborov, D; Zacharias, M; Zaharijas, G; Zajczyk, A; Zampieri, L; Zandanel, F; Sanchez, R Zanmar; Zaric, D; Zavrtanik, D; Zavrtanik, M; Zdziarski, A; Zech, A; Zechlin, H; Zhao, A; Zhdanov, V; Ziegler, A; Ziemann, J; Ziętara, K; Zink, A; Ziółkowski, J; Zitelli, V; Zoli, A; Zorn, J; Żychowski, P

    2016-01-01

    List of contributions from the Cherenkov Telescope Array (CTA) Consortium presented at the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2016), July 11-15, 2016, in Heidelberg, Germany.

  18. African Astronomy and the Square Kilometre Array

    Science.gov (United States)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  19. ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Lombardi, Saverio; Antonelli, Lucio A.; Bastieri, Denis; Donnarumma, Imma; Lucarelli, Fabrizio; Madonna, Alberto; Mastropietro, Michele

    2016-07-01

    In the framework of the international Cherenkov Telescope Array (CTA) gamma-ray observatory, the Italian National Institute for Astrophysics (INAF) is developing a dual-mirror, small-sized, end-to-end prototype (ASTRI SST-2M), inaugurated on September 2014 at Mt. Etna (Italy), and a mini-array composed of nine ASTRI telescopes, proposed to be installed at the southern CTA site. The ASTRI mini-array is a collaborative effort led by INAF and carried out by institutes from Italy, Brazil, and South-Africa. The project is also including the full data handling chain from raw data up to final scientific products. To this end, a dedicated software for the online/ on-site/off-site data reconstruction and scientific analysis is under development for both the ASTRI SST-2M prototype and mini-array. The software is designed following a modular approach in which each single component and the entire pipeline are developed in compliance with the CTA requirements. Data reduction is conceived to be run on parallel computing architectures, as multi-core CPUs and graphic accelerators (GPUs), and new hardware architectures based on low-power consumption processors (e.g. ARM). The software components are coded in C++/Python/CUDA and wrapped by efficient pipelines written in Python. The final scientific products are then achieved by means of either science tools currently being used in the CTA Consortium (e.g. ctools) or specifically developed ones. In this contribution, we present the framework and the main software components of the ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software package, and report the status of its development.

  20. The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.

  1. A Monte Carlo template-based analysis for very high definition imaging atmospheric Cherenkov telescopes as applied to the VERITAS telescope array

    CERN Document Server

    ,

    2015-01-01

    We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo based model. Shower parameters are determined by a maximisation of a likelihood function. Maximisation of the likelihood as a function of shower fit parameters is performed using a numerical non-linear optimisation technique. A related reconstruction technique has already been developed by the CAT and the H.E.S.S. experiments, and provides a more precise direction and energy reconstruction of the photon induced shower compared to the second moment of the camera image analysis. Examples are shown of the performance of the analysis on simulated gamma-ray data from the VERITAS array.

  2. Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique

    CERN Document Server

    Contreras, J L; Arqueros, F; López, M; Barrio, J A; Nievas, M

    2015-01-01

    The last 20 years have seen the development of new techniques in Astroparticle Physics providing access to the highest end of the electromagnetic spectrum. It has been shown that some sources emit photons up to energies close to 100 TeV. Yet the fluxes of these photons are incredibly low and new detection techniques are needed to go higher in energy. A new technique that would use the new generation of Cherenkov Telescopes, i.e., the Cherenkov Telescope Array (CTA), is proposed to push further the energy frontier. It is based on the detection of the fluorescence radiation emitted in extensive air showers, a successful method used in ultra-high-energy cosmic ray experiments, like the Pierre Auger Observatory. It would complement the standard imaging atmospheric Cherenkov technique with only minor modifications of the hardware currently being developed for the CTA and would not imply significant extra costs during its planned operation.

  3. Fluorescence Detection of Cosmic Ray Air Showers Between 1016.5 and 1018.5 eV with the Telescope Array Low Energy Extension (TALE)

    Science.gov (United States)

    Zundel, Zachary

    The Telescope Array (TA) Collaboration has completed construction of a low-energy extension to its Middle Drum telescope station. Ten new telescopes were added observing 32-59 degrees in elevation above the original telescopes. A graded array of scintillator detectors (SDs) with spacings of 400-600-1200 m is being installed in front of the telescope station. With these upgrades, the physics threshold will be lowered below 1016.5 eV. The TA Low Energy Extension (TALE) will explore the regime corresponding to the LHC center-of-mass energy. This is also the region where the transition from galactic to extra-galactic cosmic ray flux is suspected to occur. A brief overview of the physics is presented as well as a report on the progress toward measuring the cosmic ray spectrum between 1016.5 and 1018.5 eV.

  4. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  5. The Mass Composition of Ultra-high Energy Cosmic Rays Measured by New Fluorescence Detectors in the Telescope Array Experiment

    Science.gov (United States)

    Fujii, Toshihiro

    The longitudinal development of an extensive air shower reaches its maximum at a depth, Xmax, that depends on the species of the primary cosmic ray. Using a technique based on Xmax, we measure the cosmic-ray mass composition from analyses of 3.7 years of monocular mode operations with the newly constructed fluorescence detectors of the Telescope Array experiment. The Xmax analysis shows our data to be consistent with a proton dominant composition at energies above 1018.0 eV.

  6. Enhancement of the Yakutsk array by atmospheric Cherenkov telescopes to study cosmic rays above $10^{15}$ eV

    CERN Document Server

    Ivanov, A A; Petrov, Z E; Pravdin, M I; Sleptsov, I Ye

    2010-01-01

    The aim of the Yakutsk array enhancement project is to create an instrument to study the highest-energy galactic cosmic rays (CRs) -- their sources, energy spectrum, and mass composition. Additionally, there will be unique capabilities for investigations in the transition region between galactic and extragalactic components of CRs. Using the well-developed imaging atmospheric Cherenkov telescope technique adapted to the energy region $E>10^{15}$ eV, we plan to measure the longitudinal structure parameters of the shower, e.g., angular and temporal distributions of the Cherenkov signal related to $X_{max}$ and the mass composition of CRs. The main advantages of the Yakutsk array, such as its multi-component measurements of extensive air showers, and model-independent CR energy estimation based on Cherenkov light measurements, will be inherited by the instrument to be created.

  7. New plant records for Tankwa Karoo National Park, South Africa

    Directory of Open Access Journals (Sweden)

    Stoffel P. Bester

    2012-01-01

    Full Text Available The Tankwa Karoo National Park has been enlarged from 27 064 ha to 143 600 ha. This whole area is severely under-collected for plants in general and therefore it was an obvious target for the South African National Parks (SANParks Programme, a component of the Pretoria National Herbarium (PRE Plant Collecting Programme. This programme not only aims to survey national parks that have been poorly surveyed, but also inadequately known taxa, unique habitats, remote and inaccessible areas and plant species flowering at irregular times, especially after events such as fire or unusual timing of, or high, rainfall. General collecting in the Tankwa Karoo National Park has already led to the description of two new taxa, from two families. It furthermore resulted in new distribution records for the park and for the Northern Cape Province. These are reported on here.Conservation implications: Although the Tankwa Karoo National Park falls within the Succulent Karoo Biome (a biodiversity hotspot of international importance, information on its plant diversity is insufficient because it is an under-collected area. Results of this study will guide conservation and supply occurrence and distribution data required to compile management plans for the park.

  8. Karoo biome: a preliminary synthesis. Part 2 - vegetation and history

    CSIR Research Space (South Africa)

    Cowling, RM

    1987-01-01

    Full Text Available This volume is the second in a series of syntheses of existing knowledge of the karoo biome. The first volume summarized what is currently known on the physical environment of the biome namely geology, soils, climate, hydrology, geohydrology...

  9. Prospects for the detection of high-energy (E > 25 GeV) Fermi pulsars with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Saito, T. Y.; Zampieri, L.; Hassan, T.

    2017-10-01

    Around 160 gamma-ray pulsars were discovered by the Fermi-Large Area Telescope (LAT) since 2008. The most energetic of them, 12 objects with emission above 25 GeV, are suitable candidates for the detection with the current and future Imaging Atmospheric Cherenkov Telescopes above few tens of GeV. We perform an analysis of the Fermi-LAT data of these high-energy pulsars in order to determine if such objects can be detected with the Cherenkov Telescope Array (CTA). Our goal is to forecast the significance of their point source detection with CTA. We analyse 5 yr of the Fermi-LAT data fitting the spectra of each pulsar at energies E > 10 GeV with a power-law function. Assuming no spectral cut-off, we extrapolate the resulting spectra to the very high energy range (VHE, E > 0.1 TeV) and simulate CTA observations of all 12 pulsars with the ctools software package. Using different analysis tools, individual CTA sensitivity curves are independently calculated for each pulsar and cross-checked with the ctools results. Our simulations result in significant CTA detections of up to eight pulsars in 50 h. Observations of the most energetic Fermi pulsars with CTA will shed light on the nature of the high-energy emission of pulsars, clarifying whether the VHE emission detected in the Crab pulsar spectrum is present also in other gamma-ray pulsars.

  10. The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo

    2016-07-01

    The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.

  11. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    Science.gov (United States)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  12. The socio-economic impact of the Karoo National Park

    Directory of Open Access Journals (Sweden)

    Melville Saayman

    2009-01-01

    Full Text Available National parks in South Africa are seen as major tourism assets due to the wildlife and various activities for international and local visitors. Little is known of the socio-economic contribution of these parks to their respective local economies. The purpose of this research was to determine the socio-economic impact of the Karoo National Park (Karoo NP in South Africa, especially the economic impact of the Karoo NP on the local economy, the impact of tourism business development in the Karoo district, and how the park affects the community. Three surveys were used to determine the socio-economic impact: a community survey, a business survey and a tourist survey. The results show that the park has an impact in terms of production, income generation and employment in the area, but this impact is not as significant as that of other national parks in South Africa. A small percentage (4% of businesses in Beaufort West owe their existence to the Karoo NP, but most rely on tourist spending. For the park to have a greater impact, it is imperative to increase accommodation capacity, offer more activities and promote activities and attractions in the region.Conservation implication: The importance of this article lies in the economic value that conservation management generates as well as identifying the benefits that communities derive from the existence of a national park. It also supports the notion that conservation entails more than just conserving fauna and flora and highlights the interdependence of conservation, tourism and community participation.

  13. South African Student Constructed Indlebe Radio Telescope

    Science.gov (United States)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable

  14. NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance

    Science.gov (United States)

    Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya

    2016-08-01

    SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..

  15. The Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by the Telescope Array FADC Fluorescence Detectors in Monocular Mode

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2013-01-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector (Abu-Zayyad {\\it et al.}, {Astropart. Phys.} 39 (2012), 109). This combined spectrum corroborates the recently published Telescope Array surface detector spectrum (Abu-Zayyad {\\it et al.}, ...

  16. Study of Ultra-High Energy Cosmic Ray Composition Using Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshiia, H; Zollinger, R; Zundel, Z

    2014-01-01

    Previous measurements of the composition of Ultra-High energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in methodology to PAO, and good agreement is evident between data and a light, largely protonic composition using simulations from a variety of hadronic models for the comparison of both elongation rate and shower fluctuations. This is in good agreement with the HiRes results. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  17. The GLObal Robotic telescopes Intelligent Array for e-science (GLORIA)

    Science.gov (United States)

    Castro-Tirado, A. J.; Sánchez Moreno, F. M.; Pérez del Pulgar, C.; Azócar, D.; Beskin, G.; Cabello, J.; Cedazo, R.; Cuesta, L.; Cunniffe, R.; González, E.; González-Rodríguez, A.; Gorosabel, J.; Hanlon, L.; Hudec, R.; Jakubek, M.; Janeček, P.; Jelínek, M.; Lara-Gil, O.; Linttot, C.; López-Casado, M. C.; Malaspina, M.; Mankiewicz, L.; Maureira, E.; Maza, J.; Muñoz-Martínez, V. F.; Nicastro, L.; O'Boyle, E.; Palazzi, E.; Páta, P.; Pio, M. A.; Prouza, M.; Serena, F.; Serra-Ricart, M.; Simpson, R.; Sprimont, P.; Strobl, J.; Topinka, M.; Vitek, S.; Zarnecki, A. F.

    2015-05-01

    GLORIA, funded under the auspices of the EU FP7 program in 2012--14, is a collaborative web--2.0 project based on a network of 18 robotic telescopes, which has become the first free-access network opened to the world for public outreach and specially for e-Science projects. On-line (solar and night) observations (experiments) as well as batch-mode (night) requests are possible. Educational material, applications (such as Personal Space) and complementary software have been also produced, besides the broadcast of several astronomical events during this period. GLORIA+ will exploit the full GLORIA potential in the years to come.

  18. Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope

    Science.gov (United States)

    Shanmugha Sundaram, GA

    2015-08-01

    Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.

  19. TARGET: toward a solution for the readout electronics of the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Albert, A M; Funk, S; Kawashima, T; Kraus, M; Okumura, A; Sapozhnikov, L; Tajima, H; Varner, G S; Wu, T; Zink, A

    2015-01-01

    TARGET is an application specific integrated circuit (ASIC) designed to read out signals recorded by the photosensors in cameras of very-high-energy gamma-ray telescopes exploiting the imaging of Cherenkov radiation from atmospheric showers. TARGET capabilities include sampling at a high rate (typically 1 GSample/s), digitization, and triggering on the sum of four adjacent pixels. The small size, large number of channels read out per ASIC (16), low cost per channel, and deep buffer for trigger latency (~16 $\\mu$s at 1 GSample/s) make TARGET ideally suited for the readout in systems with a large number of telescopes instrumented with compact photosensors like multi-anode or silicon photomultipliers combined with dual-mirror optics. The possible advantages of such systems are better sensitivity, a larger field of view, and improved angular resolution. The two latest generations of TARGET ASICs, TARGET 5 and TARGET 7, are soon to be used for the first time in two prototypes of small-sized and medium-sized dual-m...

  20. The ASTRI Project: prototype status and future plans for a Cherenkov dual-mirror small-telescope array

    CERN Document Server

    Vercellone, S; Maccarone, M C; Di Pierro, F; Vallania, P; Bonnoli, G; Canestrari, R; Pareschi, G; Tosti, G

    2013-01-01

    ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) end-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA interna...

  1. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  2. The Allen Telescope Array - 42 is More than the Answer to 'Life, the Universe, and Everything'

    Energy Technology Data Exchange (ETDEWEB)

    Tarter, Jill (SETI)

    2006-05-03

    42 is also the answer to the question: 'How many antennas are constructed?' After more years of R&D and setting up production lines then we thought it would take, the Allen Telescope Array has begun doing its first science early in 2006. The pace of construction for the remaining 308 antennas will be controlled by the rate at which funds are raised. A small team can build an antenna in the construction tent and place it on a waiting pedestal in just over a day. It's easy, once you know how! The first science programs will be those for which sensitivity is not the limiting factor: a five gigahertz sky survey (FiGSS) for transients and a SETI survey of the inner galactic plane. Pilot surveys will also be conducted to learn how to conduct the commensal observing programs that are enabled by the large field of view, more than a decade of frequency coverage, and four independently tunable IF channels serving data to two spectral imaging correlators and 16 dual-polarization, phased-array beamformers.

  3. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array : Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    NARCIS (Netherlands)

    Collaboration, IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Collaboration, Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Anjos, R. C. dos; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; García-Gámez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Hervé, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Martraire, D.; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tibolla, O.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Velzen, S. van; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Collaboration, Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube

  4. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array : Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    NARCIS (Netherlands)

    Collaboration, IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Collaboration, Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Anjos, R. C. dos; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; García-Gámez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Hervé, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Martraire, D.; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tibolla, O.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Velzen, S. van; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Collaboration, Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube

  5. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  6. Creating a high-resolution picture of Cygnus with the Cherenkov Telescope Array

    CERN Document Server

    Weinstein, Amanda; Casanova, Sabrina; Di Girolamo, Tristano; Dyrda, Michael; Hahn, Joachim; Majumdar, Pratik; Rodriguez, Jerome; Tibaldo, Luigi

    2015-01-01

    The Cygnus region hosts one of the most remarkable star-forming regions in the Milky Way. Indeed, the total mass in molecular gas of the Cygnus X complex exceeds 10 times the total mass of all other nearby star-forming regions. Surveys at all wavelengths, from radio to gamma-rays, reveal that Cygnus contains such a wealth and variety of sources---supernova remnants (SNRs), pulsars, pulsar wind nebulae (PWNe), H II regions, Wolf-Rayet binaries, OB associations, microquasars, dense molecular clouds and superbubbles---as to practically be a galaxy in microcosm. The gamma-ray observations along reveal a wealth of intriguing sources at energies between 1 GeV and tens of TeV. However, a complete understanding of the physical phenomena producing this gamma-ray emission first requires us to disentangle overlapping sources and reconcile discordant pictures at different energies. This task is made more challenging by the limited angular resolution of instruments such as the Fermi Large Area Telescope, ARGO-YBJ, and HAW...

  7. Design studies for a multi-TeV gamma-ray telescope array : PeX (PeV eXplorer)

    CERN Document Server

    Denman, Jarrad

    2014-01-01

    (Abridged) This thesis presents work towards the design of a new array of Image Atmospheric Cherenkov Telescopes (IACTs) to detect multi-TeV gamma-ray sources. The array consists of 5 telescopes in a square layout with one central telescope, known as the Pevatron eXplorer or PeX. PeX is a PeV (10^{15} eV) cosmic ray explorer that aims to study and discover gamma-ray sources in the 1 to 500 TeV range. The initial PeX design has been influenced by the HEGRA CT-System and H.E.S.S. configurations. One important feature of multi-TeV air showers is their ability to trigger telescopes at large core distance (>400m). PeX will utilise large core distance events to improve the performance and illustrate the viability of a sparse array for multi-TeV gamma-ray astronomy. One important aspect of the thesis (Chapter 6) was the investigation of a new time-based image cleaning method. The arrival time between photons in two adjacent pixels in the camera is used to apply an extra cut which helps mitigate night sky background....

  8. Modeling and optimization of the antenna system with focal plane array for the new generation radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The model of the reflector antenna system with focal plane array, low-noise amplifier and beamformer is developed in the work. The beamformer strategy is suggested to reduce the receiving sensitivity ripple inside field of view of the telescope, while the sensitivity itself drops slightly (less than 10%). The system APERTIF (which is currently under development in Netherlands Institute For Radioastronomy, ASTRON) has been analyzed using developed model, and numerical results are presented. The obtained numerical results have been verified experimentally in anechoic chamber as well as on one of the dishes of the Westerbork Synthesis Radio Telescope (all measurements have been done in ASTRON).

  9. A Northern Sky Survey for Point-Like Sources of EeV Neutral Particles with the Telescope Array Experiment

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2014-01-01

    We report on the search for steady point-like sources of neutral particles around 10$^{18}$ eV between 2008 May and 2013 May with the surface detector of the Telescope Array experiment. We found overall no significant point-like excess above 0.5 EeV in the northern sky. Subsequently, we also searched for coincidence with the Fermi bright Galactic sources. No significant coincidence was found within the statistical error. Hence, we set an upper limit at the 95% confidence level on the neutron flux that corresponds to an averaged flux of 0.07 km$^{-2}$ yr$^{-1}$ above 1 EeV in the northern sky. This is the most stringent flux upper limit in a northern sky survey assuming point-like sources. The upper limit at the 95% confidence level on the neutron flux from Cygnus X-3 is also set to 0.2 km$^{-2}$ yr$^{-1}$ above 0.5 EeV. This is an order of magnitude smaller than previous flux measurements.

  10. A 65 nm CMOS broadband self-calibrated power detector for the square kilometre array radio telescope

    Directory of Open Access Journals (Sweden)

    Ge Wu

    2014-08-01

    Full Text Available In this study, a 65 nm complementary metal oxide semiconductor (CMOS broadband self-calibrated high-sensitivity power detector for use in the Square Kilometre Array (SKA, the next-generation high-sensitivity radio telescope, is presented. The power detector calibration is performed by adjusting voltages at the bulk terminals of the input transistors to compensate for mismatches in the output voltages because of process, voltage and temperature variations. Measurements show that the power detector, preceded by an input power-match circuit with 6 dB gain, has an input signal range from −48 to −11 dBm over which a 0.95 dB maximum error in the detected power is observed when the calibration rate is 20 kHz. The proposed broadband power detector has a 3 dB upper band edge of 1.8 GHz, which adequately covers the midband SKA frequency range from 0.7 to 1.4 GHz. The settling time and the calibration time are both <5 μs. The circuit consumes 1.2 mW from a 1.2 V power supply and the input-match circuit consumes another 5.8 mW. The presented power detector achieves the best combination of the detection range and sensitivity of previously published circuits.

  11. The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    CERN Document Server

    Bower, Geoffrey C; Keating, Garrett; Whysong, David; Ackermann, Rob; Atkinson, Shannon; Backer, Don; Backus, Peter; Barott, Billy; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Bradford, Tucker; Cheng, Calvin; Cork, Chris; Davis, Mike; DeBoer, Dave; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, Ed; Fleming, Matt; Forster, R James; Gutierrez-Kraybill, Colby; Harp, G R; Heiles, Carl; Helfer, Tamara; Hull, Chat; Jordan, Jane; Jorgensen, Susanne; Kilsdonk, Tom; Law, Casey; van Leeuwen, Joeri; Lugten, John; MacMahon, Dave; McMahon, Peter; Milgrome, Oren; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Siemion, Andrew; Smolek, Ken; Tarter, Jill; Thornton, Douglas; Urry, Lynn; Vitouchkine, Artyom; Wadefalk, Niklas; Weinreb, Sandy; Welch, Jack; Werthimer, Dan; Williams, Peter K G; Wright, Melvyn

    2010-01-01

    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources d...

  12. Correlation between UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

    Science.gov (United States)

    Christov, A.; Golup, G.; Montaruli, T.; Rameez, M.; Aublin, J.; Caccianiga, L.; Ghia, P. L.; Roulet, E.; Unger, M.; Sagawa, H.; Tinyakov, P.; Telescope Array Collaboration

    2016-05-01

    We present the results of three searches for correlations between ultra-high energy cosmic ray events (UHECRs) measured by Telescope Array and the Pierre Auger Observatory and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses of UHECRs are done: one with 28 “cascades” from the IceCube ‘high-energy starting events’ sample and the other one with 12 high-energy “tracks”. The angular separation between the arrival directions of neutrinos and UHECRs is scanned. The same events are also used in a separate search stacking the neutrino arrival directions and using a maximum likelihood approach. We assume that UHECR magnetic deflections are inversely proportional to the energy with values 3°, 6° and 9° at 100 EeV to account for the various scenarios of the magnetic field strength and UHECR charges. A similar analysis is performed on stacked UHECR arrival directions and the IceCube 4-year sample of through-going muon-track events that was optimized for neutrino point source searches.

  13. The Cherenkov Telescope Array: A Very-High-Energy Complement to Future High-Energy Space Missions

    Science.gov (United States)

    Williams, David A.; CTA Collaboration

    2017-01-01

    The Cherenkov Telescope Array (CTA) will be a new observatory for the study of very-high-energy gamma-ray sources, designed to achieve an order of magnitude improvement in sensitivity in the 30 GeV to 100 TeV energy band compared to currently operating instruments: VERITAS, MAGIC, and H.E.S.S. CTA will probe known sources with unprecedented sensitivity, angular resolution, and spectral coverage, while also detecting hundreds of new sources. CTA will provide access to data in this energy band to members of the wider astronomical community for the first time. The CTA Consortium will also conduct a number of Key Science Projects, including a Galactic Plane survey and a survey of one quarter of the extragalactic sky, creating legacy data sets that will also be available to the public. This presentation will highlight synergies between CTA and future high-energy missions in space. CTA is supported by the organizations listed at http://www.cta-observatory.org

  14. Upper limit on the flux of photons with energies above 10^19 eV using Telescope Array surface detector

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G I; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 10^19, 10^19.5 and 10^20 eV based on the first three years of data taken.

  15. Fluoresence Detection of Cosmic Ray Air Showers Between 10 16 . 5 eV and 1019 eV with the Telescope Array Low Energy Extension (TALE)

    Science.gov (United States)

    Zundel, Zachary; Smith, Jeremy; Thomas, Stan; Abuzayyad, Tareq; Ivanov, Dmitri; Matthews, John; Jui, Charlie

    2014-03-01

    The Telescope Array Experiment has been observing cosmic ray air showers at energies above 1018 eV since 2008. TA operates three Fluorescence Detector (FD) sites, with telescopes that observe 3-31 deg in elevation. The FD sites are located at the periphery of a surface array of 507 scintillation counters covering 700 km2 , with 1.2 km spacing. The TA Collaboration has completed building a low-energy extension at its Middle drum FD site. Ten new telescopes currently observe between 33 and 51 degrees in elevation. A graded ground array of between 400 and 600m will be placed in front of the TALE FD. With these upgrades, the physics threshold of TA will be lowered to 10 16 . 5 eV. The TA Low Energy Extension (TALE) will explore the energy regime corresponding to that of the LHC in center-of-mass frame. This is also the range where the transition from galactic to extra- galactic cosmic ray flux is suspected to occur. We will give a brief overview of the physics, and report on the progress of TALE toward measuring the cosmic ray spectrum between 10 16 . 5 eV and 1019 eV.

  16. Next-generation radio telescope of the 12- to 15-m class for the future large-interferometer arrays in the southern hemisphere

    Science.gov (United States)

    Plathner, Dietmar E.

    1998-07-01

    Based on the quality proven technologies applied on the IRAM 15 m Plateau de Bure telescopes strategies have been developed to design antennas for the future large arrays in the southern hemisphere which shall operate at frequencies as high as 850 GHz and have a very large collecting area. For this type of antenna space frames were applied wherever possible as the full cross-section of their push-pull members is used for load transfer. Thus giving maximum stiffness at minimum weight to the proposed telescope structures. The lowest eigenfrequency is therefore predicted to be in the order of 12 Hz. Similar high performances are expected under the specified windloads at the chosen site in the Atacama Desert probably at an altitude of 5000 m. Such an exposed location requires simple, low maintenance telescopes despite of their high performance requirements, so that e.g. all active thermal stabilization is avoided by the use of low expansion carbon fiber composite material for critical members. Finally an opto-mechanical metrology system is applied which replaces the standard 'on- bord' encoders and makes the control of the telescopes independent of structural deformations in the mount. An overall surface error of 25 micrometer rms for a 12 to 15 m class telescope can be obtained and the resulting pointing error under wind load is in the order of 0.4 arcsec.

  17. Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Aguilar, J A; Boccone, V; Cadoux, F; Christov, A; della Volpe, D; Montaruli, T; Platos, L; Rameez, M

    2014-01-01

    The focal-plane camera of $\\gamma$-ray telescopes frequently uses light concentrators in front of light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of an hexagonal hollow light concentrator with a lateral profile optimized using a cubic B\\'ezier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with primary mirror of about 4 meters of diameter and focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultipliers sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective des...

  18. Assessment of Permian coalbed gas resources of the Karoo Basin Province, South Africa and Lesotho, 2016

    Science.gov (United States)

    Schenk, Christopher J.; Brownfield, Michael E.; Tennyson, Marilyn E.; Klett, Timothy R.; Mercier, Tracey J.; Hawkins, Sarah J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Finn, Thomas M.; Le, Phuong A.; Leathers-Miller, Heidi M.

    2017-02-21

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 5.27 trillion cubic feet of coalbed gas in the Karoo Basin Province.

  19. Assessment of shale-gas resources of the Karoo Province, South Africa and Lesotho, Africa, 2016

    Science.gov (United States)

    Brownfield, Michael E.; Schenk, Christopher J.; Klett, Timothy R.; Pitman, Janet K.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Le, Phuong A.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Finn, Thomas M.

    2016-07-08

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resource of 44.5 trillion cubic feet of shale gas in the Karoo Province of South Africa and Lesotho, Africa.

  20. Management of a Karoo fractured-rock aquifer system – Kalkveld ...

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... Due to large-scale development of groundwater resources for irrigation purposes the Kalkveld area .... Detailed geological assessment of Karoo formations has ..... In order to investigate an aquifer system in a changing time.

  1. Diet of bat-eared foxes Otocyon megalotis in the Karoo

    OpenAIRE

    V. Kuntzsch; J. A. J Nel

    1992-01-01

    The diet of bat-eared foxes Otocyon megalotis was studied from March 1988 to September 1989 at two sites near Beaufort West in the central Karoo. In a near-natural habitat (Karoo National Park), insects and wild fruit contributed almost equally to the diet, while more insects than plant material were consumed on a sheep farm (Saucyskuil). Adult and larval Coleoptera (KNP) and Orthoptera (Saucyskuil) were predominantly preyed upon in an opportunistic manner, influenced by food availability. A ...

  2. First results of the two square meters multilayer glass composite mirror design proposed for the Cherenkov Telescope Array developed at INFN

    CERN Document Server

    Schultz, C; Lessio, L; Mariotti, M; Rando, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a future ground-based gamma-ray astronomy detector that will consist of more than 100 Imaging Atmospheric Cherenkov Telescopes of different sizes. The total reflective surface of roughly 10 000 m$^2$ requires unprecedented technological efforts towards a cost-efficient production of light-weight and reliable mirror substrates at high production rate. We report on a new mirror concept proposed for CTA developed by INFN, which is based on the replication from a spherical convex mold under low pressure. The mirror substrate is an open structure design made by thin glass layers at the mirror's front and rear interspaced by steel cylinders. A first series of nominal size mirrors has been produced, for which we discuss the optical properties in terms of radius of curvature and focusing power.

  3. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism

    CERN Document Server

    Oronsaye, S I; Bhat, N D R; Tremblay, S E; McSweeney, S J; Tingay, S J; van Straten, W; Jameson, A; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$\\sigma$ and 6.5$\\sigma$ respectively. We detected 51$\\%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>\\alpha> -4.9$ ($S_{\\rm \

  4. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    CERN Document Server

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  5. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    OpenAIRE

    Collaboration, IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same event...

  6. The Energy Spectrum of Cosmic Rays above 10$^{17.2}$ eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years

    CERN Document Server

    ,

    2015-01-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at southern two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10$^{17.2}$ eV measured by the fluorescence detectors and a comparison with previously published results.

  7. Search for correlations of the arrival directions of ultra-high energy cosmic ray with extragalactic objects as observed by the telescope array experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We search for correlations between positions of extragalactic objects and arrival directions of Ultra-High Energy Cosmic Rays (UHECRs) with primary energy $E \\ge 40$ EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examined several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We counted the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine combinations of these parameters which maximize the correlations, and calculate the chance probabilities of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several...

  8. Carbon Erosion in the Great Karoo Region of South Africa

    Science.gov (United States)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Foster, Ian; Boardman, John; Meadows, Mike; Kuhn, Nikolaus

    2015-04-01

    Work undertaken in the seasonally arid upland areas of the Great Karoo region of South Africa has established a link between land degradation and overgrazing which began in the second half of the 18th century when European farmers first settled the area. Ongoing land use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and gully systems on valley bottoms. As a consequence of agricultural intensification and overgrazing, accompanied by a higher water demand, many small reservoirs were constructed, most of which are now in-filled with sediment. The deposited material serves as an environmental archive by which land use change over the last 100 years can be analysed, but with a particular focus on erosion and deposition of soil-associated carbon (C). It is assumed that erosion caused an initial flush of carbon rich soil which was subsequently buried and stored off-site. Despite this assumption, however the net-effect of erosion on carbon dioxide emissions is still unknown. In this project, preliminary results are presented from an investigation to determine whether land degradation in the Karoo has resulted in a shift from a net sink of C to a net source of C. Firstly, a high resolution digital elevation model was generated and erosion modelling was then employed to create an erosion risk map showing areas most prone to erosion. Information from the model output then served as the basis for ground-truthing and on-site erosion mapping. Secondly, sediment deposits from silted reservoirs were analysed for varying physicochemical parameters, in order to reconstruct spatial patterns of erosion and deposition. Analysis of total carbon (TC) content revealed a sharp decrease with decreasing depth. This provisionally suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the relatively fertile surface soils. This presumably resulted in the rapid in-filling of

  9. Long-term studies of land degradation in the Sneeuberg uplands, eastern Karoo, South Africa: A synthesis

    Science.gov (United States)

    Boardman, J.; Foster, I. D. L.; Rowntree, K. M.; Favis-Mortlock, D. T.; Mol, L.; Suich, H.; Gaynor, D.

    2017-05-01

    For the past 15 yr, the Sneeuberg uplands in the eastern Karoo, South Africa, have been a focus for research on land degradation by the above authors and other colleagues. Earlier work in the Karoo emphasised vegetation change whereas we concentrate on physical changes to the landscape at the small catchment scale, e.g., bare, degraded areas (badlands) and gully (donga) systems. Analysis of sedimentation in farm dams allows for reconstruction of environmental histories using 210Pb, 137Cs, geochemical and mineral magnetic properties of the sediments. Erosion rates on badlands are monitored using arrays of erosion pins. Sediment source tracing within small catchments points to the importance of hillslope sources and the relative erosional inactivity of gully systems in recent decades. Sediment supply from hillslope and colluvial sources is maintained by high rates of weathering on mudstones and sandstones. Current degradation should be viewed in the context of a c. 200 yr history of overgrazing by European-style stock farming and limited areas of former cultivation in the valleys. Grazing pressures are now much reduced but the loss of soils and vegetation suggests that landscape recovery will require several decades. Additional drivers of past degradation are likely to have been periods of drought and fire (natural and managed) and a gradual increase in both rainfall intensity and the frequency of extreme rainfall events. The future of the degraded Sneeuberg landscape will depend on future farming practices. Desirable options include more sustainable livestock practices, adoption of wildlife farming and other more benign regimes involving mixes of agriculture, tourism, and wildlife protection together with landscape rehabilitation measures.

  10. The physical environment and major plant communities of the Karoo National Park, South Africa

    Directory of Open Access Journals (Sweden)

    Francine Rubin

    1996-02-01

    Full Text Available The major plant communities of the Karoo National Park are described using the methods of the Zurich-Montpellier school of phytosociology, to assist with the formulation of a management strategy for the park. The vegetation physiognomy consists of Montane Karoo grassy shrublands. Karoo grassy dwarf shrublands. Karoo succulent dwarf shrublands and riparian thicket. Steep elevation and precipitation gradients within the study area have a direct impact on gradients in the vegetation. High elevation (1 800 m, and relatively high rainfall (406 mm montane grasslands occupy communities dominated by grasses (Merxmuellera disticha, Themeda triandra and woody species (Diospyros austro-africana, Elytropappus rhinocerotis, Euryops annae, Passerina montana. The increasing aridity away from the escarpment edge in a northerly direction is steep, and Montane Karoo dwarf shrublands replace these mesic communities. Species such as Eriocephalus ericoides, Rosenia oppositifolia and Pteronia tricephala dominate. At lower elevation (800 m the precipitation is very low (175 mm and uncertain (coefficient of variation of 78 . The substrata influence the vegetation, with the sandy substrata of the drainage lines supporting more woody taxa (Acacia karroo, Lycium cinereum and grasses (Hyparrhenia hirta, Stipagrostis namaquensis, Cenchrus ciliaris. Moving away from the mesic environment of the riparian zone, rapid desiccation occurs and the most xeric communities are encountered, dominated by Stipagrostis obtusa, S. ciliata and Pent-da incana. This document provides descriptions of the general communities and their associated landscape, lithology and soils.

  11. Field Programmable Gate Array based Front-End Data Acquisition Module for the COSMICi Astroparticle Telescope System

    CERN Document Server

    McGowan, Darryl W; Frank, Michael P; Junnarkar, Sachin; O'Neal, Ray H

    2012-01-01

    We describe an FPGA based Front-End Data Acquisition Module (FEDAM) for implementing Time-over-Threshold (ToT) Time-to-Digital conversion (TDC) of pulses obtained from the COSMICi astroparticle telescope detector system photomultiplier tubes. The telescope system consists of a minimum of three scintillation detectors configured to detect particle airshowers likely initiated by Ultra High Energy Cosmic Rays (UHECR). The relative time delay of detection events between the detectors is used to estimate the angle of incidence of the shower. The FEDAM provides time-over-threshold measurements with a resolution of 2 ns. This allows determination of shower direction to an error of 0.035 (cos {\\theta})-1 radians where {\\theta} is the angle between the baseline axis through a pair of detectors and the plane representing the shower front.

  12. Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array

    CERN Document Server

    Toscano, S; Bilnik, W; Błocki, J; Bogacz, L; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Niemiec, J; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Rameez, M; Rajda, P; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Walter, R; Więcek, M; Zagdański, A; Ziętara, K; Żychowski, P

    2015-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments devoted to the study of very high energy gamma-rays coming from space. The detection technique consists of observing images created by the Cherenkov light emitted when gamma rays, or more generally cosmic rays, propagate through the atmosphere. While in the case of protons or gamma-rays the images present a filled and more or less elongated shape, energetic muons penetrating the atmosphere are visualised as characteristic circular rings or arcs. A relatively simple analysis of the ring images allows the reconstruction of all the relevant parameters of the detected muons, such as the energy, the impact parameter, and the incoming direction, with the final aim to use them to calibrate the total optical throughput of the given IACT telescope. We present the results of preliminary studies on the use of images created by muons as optical throughput calibrators of the single mirror small size telescope prototype SST-1M proposed for the Ch...

  13. Diet of bat-eared foxes Otocyon megalotis in the Karoo

    Directory of Open Access Journals (Sweden)

    V. Kuntzsch

    1992-09-01

    Full Text Available The diet of bat-eared foxes Otocyon megalotis was studied from March 1988 to September 1989 at two sites near Beaufort West in the central Karoo. In a near-natural habitat (Karoo National Park, insects and wild fruit contributed almost equally to the diet, while more insects than plant material were consumed on a sheep farm (Saucyskuil. Adult and larval Coleoptera (KNP and Orthoptera (Saucyskuil were predominantly preyed upon in an opportunistic manner, influenced by food availability. A higher volume of Isoptera was consumed at Saucyskuil, suggesting higher availability in the farming area.

  14. VizieR Online Data Catalog: List of Telescope Array events with E > 57EeV (Abbasi+, 2014)

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.!; Sokolsk, Y. P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-03-01

    The TA is the largest cosmic-ray detector in the northern hemisphere. It consists of a scintillator SD array (Abu-Zayyad et al. 2012NIMPA.689...87A) and three fluorescence detector (FD) stations (Tokuno et al. 2012NIMPA.676...54T). The observatory has been in full operation in Millard Country, Utah, USA (39fdg30N, 112fdg91W; about 1400 m above sea level) since 2008. The TA SD array consists of 507 plastic scintillation detectors each 3 m2 in area and located on a 1.2 km square grid. The array has an area of ~700 km2. The TA SD array observes cosmic-ray-induced extensive air showers with E > ~1 EeV, regardless of weather conditions with a duty cycle near 100% and a wide field of view (FoV). These capabilities ensure a very stable and large geometrical exposure over the northern sky survey in comparison with FD observations that have a duty cycle of ~10%. In this analysis, we used SD data recorded between 2008 May 11 and 2013 May 4. (1 data file).

  15. On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic Plane

    CERN Document Server

    Ambrogi, Lucia; Aharonian, Felix

    2016-01-01

    The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parametrized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 degree is high.

  16. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Science.gov (United States)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  17. Wideband pulse amplifier with 8 GHz GBW product in a 0.35 {mu}m CMOS technology for the integrated camera of the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Gascon, D; Sanuy, A; Ribo, M [Dept. AM i Dept.ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E; Glicenstein, J-F [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Sieiro, X [Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Feinstein, F; Vorobiov, S [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Nayman, P; Toussenel, F; Tavernet, J-P; Vincent, P, E-mail: gascon@ecm.ub.es [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2010-12-15

    A fully differential wideband amplifier for the camera of the Cherenkov Telescope Array (CTA) is presented. This amplifier would be part of a new ASIC, developed by the NECTAr collaboration, performing the digitization at 1 GS/s with a dynamic range of 16 bits. Input amplifiers must have a voltage gain up to 20 V/V and a bandwidth of 400 MHz. Being impossible to design a fully differential operational amplifier with an 8 GHz GBW product in a 0.35{mu}m CMOS technology, an alternative implementation based on HF linearised transconductors is explored. Test results show that the required GBW product is achieved, with a linearity error smaller than 1% for a differential output voltage range up to 1 Vpp, and smaller than 3% for 2 Vpp.

  18. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Maomao, E-mail: gemaomao@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Zhang, Li, E-mail: lizhang@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Chen, Yingtao [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang [Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2016-05-21

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  19. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Science.gov (United States)

    Ge, Maomao; Zhang, Li; Chen, Yingtao; Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang

    2016-05-01

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  20. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  1. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Science.gov (United States)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  2. Fluorescence Detection of Cosmic Ray Air Showers between 10^16.5 eV and 10^19 eV with the Telescope Array Low Energy Extension (TALE)

    Science.gov (United States)

    Matthews, J. N.; Zundel, Z.; Jui, C. C. H.; Smith, J. D.; Thomas, S. B.; Ivanov, D.

    2013-04-01

    The Telescope Array Experiment has been observing cosmic ray air showers at energies above 10^18 eV since 2008. TA operates three Fluorescence Detector (FD) sites, with telescopes that observe 3-31 deg in elevation. The FD sites are located at the periphery of a surface array of 507 scintillation counters covering 700 km^2, with 1.2km spacing. The TA Collaboration is in the process of building a low-energy extension at its Middle drum FD site. Ten new telescopes will observe between 33 and 51 degrees in elevation. A graded ground array of between 400 and 600m will be placed in front of the TALE FD. We have already observed multi-telescope cosmic ray events as well as the scattered light from the central laser (CLF). By 4/2013, all ten telescopes will have been commissioned and the first 35 scintillator counters will have been deployment by helicopter. With these upgrades, the physics threshold of TA will be lowered to 10^16.5 eV. The TA Low Energy Extension (TALE) will explore the energy regime corresponding to that of the LHC in center-of-mass frame. This is also the range where the transition from galactic to extra- galactic cosmic ray flux is suspected to occur. We will give a brief overview of the physics, and report on the progress of TALE.

  3. A preliminary analysis of the groundwater recharge to the Karoo formations, mid-Zambesi basin, Zimbabwe

    DEFF Research Database (Denmark)

    Larsen, Flemming; Owen, R.; Dahlin, T.

    2002-01-01

    A multi-disciplinary study is being carried out on recharge to the Karoo sandstone aquifer in the western part of Zimbabwe, where recharge is controlled by the presence of a thick, confining basalt layer. The aquifer is geographically extensive, and has been identified throughout the southern part...

  4. New Mammal Records for the Karoo National Park, with Notes on Several Other Species

    Directory of Open Access Journals (Sweden)

    C.T. Stuart

    1987-10-01

    Full Text Available Five species of mammal are recorded for the first time in the Karoo National Park: Suncus varilla, Nycteris thebaica, Aethomys granti, Petromyscus collinus and Desmodillus auricularis. The presence of a golden mole, Chrysochloridae, is noted. Notes on three previously recorded species are presented.

  5. Desertification of the eastern Karoo, South Africa: Conflicting paleoecological, historical, and soil isotopic evidence.

    Science.gov (United States)

    Hoffman, M T; Bond, W J; Stock, W D

    1995-01-01

    The desertification debate in South Africa has benefitted greatly in recent years from the contributions of a wide range of disciplines. In this paper we review the conflicting and supporting evidence for degradation in the eastern Karoo as reported in recent archaeological, historical, and stable carbon isotope studies as it relates to three key aspects of the debate: the precolonial environment, the rate and nature of change, and the relative contributions of humans and climate to the process. First, all studies suggest a greater grassiness at some time in the past, but researchers disagree on the timing of the switch to more shrubby conditions in the eastern Karoo. Second, regional rainfall records for the past 2 decades reveal an above-average rainfall period, and numerous long-term surveys show an increase in grass cover over the same period. These findings question the expanding Karoo hypothesis as well as the argument that the Karoo's carrying capacity has decreased in recent years. Finally, the relative responsibilities of humans and climate in the degradation process remain poorly understood and generally have not formed the focus of investigation.

  6. Some variations in petrography of South African Karoo dolerites and the effects thereof on aggregate properties

    CSIR Research Space (South Africa)

    Leyland, R

    2014-01-01

    Full Text Available Supergroup, which is generally lacking in quality aggregate lithologies. The Karoo Dolerite Suite can however, despite being a single geological unit, be of significantly variable petrography mainly due to the very large area (>500,000 km2) and wide variety...

  7. A Preliminary List of the Birds of the Karoo National Park

    Directory of Open Access Journals (Sweden)

    R. Martin

    1988-10-01

    Full Text Available A preliminary list of the birds of the Karoo National Park is presented. Details of status, habitat preference and breeding (where applicable are given. A supplementary list of birds which require confirmation or which were only recorded in the park before the study period, is included.

  8. Youngest dinocephalian fossils extend the Tapinocephalus Zone, Karoo Basin, South Africa

    Directory of Open Access Journals (Sweden)

    Michael O. Day

    2015-03-01

    Full Text Available The dinocephalians (Synapsida, Therapsida were one of the dominant tetrapod groups of the Middle Permian (Guadalupian Epoch, ~270–260 million years ago and are most abundantly recorded in the Tapinocephalus Assemblage Zone (AZ of the Main Karoo Basin, South Africa. Dinocephalians are thought to have become extinct near the top of the Abrahamskraal Formation of the Beaufort Group and their disappearance is one criterion used to define the base of the overlying Pristerognathus AZ. Because of the abundance of fossils in the Karoo, the Beaufort Group biozones form the biostratigraphic standard for later Permian terrestrial tetrapod ecosystems, so their stratigraphic delineation is of great importance to Permian palaeobiology. We report two new specimens of the rare tapinocephalid dinocephalian Criocephalosaurus from the lowermost Poortjie Member, which makes them the youngest dinocephalians known from the Main Karoo Basin and extends the Tapinocephalus AZ from the Abrahamskraal Formation up into the Teekloof Formation. The extension of the Tapinocephalus AZ relative to the lithostratigraphy potentially affects the biozone or biozones to which a fossil species can be attributed; this extension has implications for biostratigraphic correlations within the Main Karoo Basin as well as with other basins across Gondwana. These discoveries also indicate that a population of herbivorous tapinocephalids survived as rare constituents of the tetrapod fauna after most generic richness within the clade had already been lost.

  9. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    NARCIS (Netherlands)

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. -H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Collaboration, M. Zoll The Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. C. Chirinos; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strafella, F.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Collaboration, F. Zuccarello The Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of

  10. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    NARCIS (Netherlands)

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. -H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Collaboration, M. Zoll The Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. C. Chirinos; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strafella, F.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Collaboration, F. Zuccarello The Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of hig

  11. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    NARCIS (Netherlands)

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. -H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Collaboration, M. Zoll The Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. C. Chirinos; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strafella, F.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Collaboration, F. Zuccarello The Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of hig

  12. The First VERITAS Telescope

    CERN Document Server

    Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A

    2006-01-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  13. Hydrogen Epoch of Reionization Array (HERA)

    Science.gov (United States)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  14. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Imaging Atmospheric Cherenkov telescopes

    CERN Document Server

    Naumann-Godó, M; Degrange, B

    2009-01-01

    Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations u...

  15. The Allen Telescope Array Twenty-centimeter Survey -- A 700-Square-Degree, Multi-Epoch Radio Dataset -- II: Individual Epoch Transient Statistics

    CERN Document Server

    Croft, Steve; Keating, Garrett; Law, Casey; Whysong, David; Williams, Peter K G; Wright, Melvyn

    2011-01-01

    We present our second paper on the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch, ~700 sq. deg. radio image and catalog at 1.4 GHz. The survey is designed to detect rare, bright transients as well as to commission the ATA's wide-field survey capabilities. ATATS explores the challenges of multi-epoch transient and variable source surveys in the domain of dynamic range limits and changing (u,v) coverage. Here we present images made using data from the individual epochs, as well as a revised image combining data from all ATATS epochs. The combined image has RMS noise 3.96 mJy / beam, with a circular beam of 150 arcsec FWHM. The catalog, generated using a false detection rate algorithm, contains 4984 sources, and is >90% complete to 37.9 mJy. The catalogs generated from snapshot images of the individual epochs contain between 1170 and 2019 sources over the 564 sq. deg. area in common to all epochs. The 90% completeness limits of the single epoch catalogs range from 98.6 to 232 mJy. We comp...

  16. THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Erik D.; Mroczkowski, Tony; Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Menanteau, Felipe; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Sievers, Jonathan; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Aguirre, Paula; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Fowler, Joseph W.; Hill, J. Colin [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); and others

    2012-05-20

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive ({approx_equal} 10{sup 15} M{sub Sun }), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the {approx}< 20% level for some fraction of clusters.

  17. The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics

    CERN Document Server

    Croft, Steve; Ackermann, Rob; Atkinson, Shannon; Backer, Don; Backus, Peter; Barott, William C; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Bradford, Tucker; Cheng, Calvin; Cork, Chris; Davis, Mike; DeBoer, Dave; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, Ed; Fleming, Matt; Forster, James R; Gutierrez-Kraybill, Colby; Harp, Gerry; Helfer, Tamara; Hull, Chat; Jordan, Jane; Jorgensen, Susanne; Keating, Garrett; Kilsdonk, Tom; Law, Casey; van Leeuwen, Joeri; Lugten, John; MacMahon, Dave; McMahon, Peter; Milgrome, Oren; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Siemion, Andrew; Smolek, Ken; Tarter, Jill; Thornton, Douglas; Urry, Lynn; Vitouchkine, Artyom; Wadefalk, Niklas; Welch, Jack; Werthimer, Dan; Whysong, David; Williams, Peter K G; Wright, Melvyn

    2010-01-01

    We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408 sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than ~20 arcsec. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our abi...

  18. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Seckel, D; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M; :,; Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Anjos, R C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; García-Gámez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hervé, A E; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A W Kuotb; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Durán, M Suarez; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Tibolla, O; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F; Abbasi, R U; Abe, M; Abu-Zayyad, T; Allen, M; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshii, H; Zollinger, R; Zundel, Z

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for n...

  19. Correlation between the UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

    Science.gov (United States)

    Christov, A.; Golup, G.; Montaruli, T.; Rameez, M.; Aublin, J.; Caccianiga, L.; Ghia, P. L.; Roulet, E.; Unger, M.; Sagawa, H.; Tinyakov, P.

    2016-04-01

    We present the results of three searches for correlations between ultra-high energy cosmic ray events measured by Telescope Array and the Pierre Auger Observatory and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses of ultra-high energy cosmic rays are done: one with 39 "cascades" from the IceCube "high-energy starting events" sample and the other one with 16 high-energy "tracks". The angular separation between the arrival directions of neutrinos and UHECRs is scanned. The same events are also used in a separate search stacking the neutrino arrival directions and using a maximum likelihood approach. We assume that UHECR magnetic deflections are inversely proportional to the energy with values 3∘, 6∘ and 9∘ at 100 EeV to account for the uncertainties in the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube 4-year sample of through-going muon-track events that was optimized for neutrino point source searches.

  20. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; et al.

    2015-11-06

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.

  1. Stochastic Risk and Uncertainty Analysis for Shale Gas Extraction in the Karoo Basin of South Africa

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available We made use of groundwater flow and mass transport equations to investigate the crucial potential risk of water pollution from hydraulic fracturing especially in the case of the Karoo system in South Africa. This paper shows that the upward migration of fluids will depend on the apertures of the cement cracks and fractures in the rock formation. The greater the apertures, the quicker the movement of the fluid. We presented a novel sampling method, which is the combination of the Monte Carlo and the Latin hypercube sampling. The method was used for uncertainties analysis of the apertures in the groundwater and mass transport equations. The study reveals that, in the case of the Karoo, fracking will only be successful if and only if the upward methane and fracking fluid migration can be controlled, for example, by plugging the entire fracked reservoir with cement.

  2. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo basin, South Africa.

    Science.gov (United States)

    Ward, Peter D; Botha, Jennifer; Buick, Roger; De Kock, Michiel O; Erwin, Douglas H; Garrison, Geoffrey H; Kirschvink, Joseph L; Smith, Roger

    2005-02-04

    The Karoo basin of South Africa exposes a succession of Upper Permian to Lower Triassic terrestrial strata containing abundant terrestrial vertebrate fossils. Paleomagnetic/magnetostratigraphic and carbon-isotope data allow sections to be correlated across the basin. With this stratigraphy, the vertebrate fossil data show a gradual extinction in the Upper Permian punctuated by an enhanced extinction pulse at the Permian-Triassic boundary interval, particularly among the dicynodont therapsids, coinciding with negative carbon-isotope anomalies.

  3. Drought, climate change and vegetation response in the succulent karoo, South Africa

    Directory of Open Access Journals (Sweden)

    M. T. Hoffman

    2009-12-01

    Full Text Available For the winter-rainfall region of South Africa, the frequency of drought is predicted to increase over the next 100 years, with dire consequences for the vegetation of this biodiversity hotspot. We analysed historical 20th century rainfall records for six rainfall stations within the succulent karoo biome to determine if the signal of increasing drought frequency is already apparent, and whether mean annual rainfall is decreasing. We found no evidence for a decrease either in mean annual rainfall or in the incidence of drought, as measured by the Standardised Precipitation Index (SPI over the 20th century. Evidence points to a drying trend from 1900–1950 while no significant trend in rainfall and drought was found at most stations from 1951–2000. In a second analysis we synthesised the information concerning the response of adult succulent karoo biome plants and seedlings to extended drought conditions. General findings are that responses to drought differ between species, and that longevity is an important life history trait related to drought survival. Growth form is a poor predictor of drought response across the biome. There was a range of responses to drought among adult plants of various growth forms, and among non-succulent seedlings. Leaf-succulent seedlings, however, exhibited phenomenal drought resistance, the majority surviving drought long after all the experimentally comparative non-succulent seedlings had died. Our synthesis showed that previous studies on the impact of drought on succulent karoo biome plants differ greatly in terms of their location, sampling design, measured values and plant responses. A suite of coordinated long-term field observations, experiments and models are therefore needed to assess the response of succulent karoo biome species to key drought events as they occur over time and to integrate this information into conservation planning.

  4. The Agulhas-Karoo Geoscience Transect: Structures and processes along the southern African continental margin

    OpenAIRE

    N. Parsiegla; Gohl, K.; Uenzelmann-Neben, G.; Jacek Stankiewicz

    2008-01-01

    The southern African continental transform margin is of great interest for the understanding of processes related to continental breakup, transform fault formation and vertical plate motion. Open questions include the cause and consequences for the high topography of southern Africa, neotectonic activity along the Agulhas-Falkland Fracture Zone and the formation of the Outeniqua Basin. As a component of the project “Inkaby yeAfrica”, the 900 km long Agulhas-Karoo Geoscience Transect was carri...

  5. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    OpenAIRE

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.

    2016-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as...

  6. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, Markus; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.

    2016-01-01

    Replaced with published version. Added journal reference and DOI; International audience; This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin,...

  7. New insights on the Karoo shale gas potential from borehole KZF-1 (Western Cape, South Africa)

    Science.gov (United States)

    Campbell, Stuart A.; Götz, Annette E.; Montenari, Michael

    2016-04-01

    A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2013 concluded that there could be as much as 390 Tcf recoverable reserves of shale gas in the southern and south-western parts of the Karoo Basin. This would make it the 8th-largest shale gas resource in the world. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. Within the framework of the Karoo Research Initiative (KARIN), two deep boreholes were drilled in the Eastern and Western Cape provinces of South Africa. Here we report on new core material from borehole KZF-1 (Western Cape) which intersected the Permian black shales of the Ecca Group, the Whitehill Formation being the main target formation for future shale gas production. To determine the original source potential for shale gas we investigated the sedimentary environments in which the potential source rocks formed, addressing the research question of how much sedimentary organic matter the shales contained when they originally formed. Palynofacies indicates marginal marine conditions of a stratified basin setting with low marine phytoplankton percentages (acritarchs, prasinophytes), good AOM preservation, high terrestrial input, and a high spores:bisaccates ratio (kerogen type III). Stratigraphically, a deepening-upward trend is observed. Laterally, the basin configuration seems to be much more complex than previously assumed. Furthermore, palynological data confirms the correlation of marine black shales of the Prince Albert and Whitehill formations in the southern and south-western parts of the Karoo Basin with the terrestrial coals of the Vryheid Formation in the north-eastern part of the basin. TOC values (1-6%) classify the Karoo black shales as promising shale gas resources, especially with regard to the high thermal maturity (Ro >3). The recently drilled deep boreholes in the southern and south-western Karoo Basin, the first since the

  8. A review of stratigraphy and sedimentary environments of the Karoo Basin of South Africa

    Science.gov (United States)

    Smith, R. M. H.

    The Karoo Supergroup covers almost two thirds of the present land surface of southern Africa. Its strata record an almost continuous sequence of continental sedimentation that began in the Permo-Carboniferous (280 Ma) and terminated in the early Jurassic 100 million years later. The glacio-marine to terrestrial sequence accumulated in a variety of tectonically controlled depositories under progressively more arid climatic conditions. Numerous vertebrate fossils are preserved in these rocks, including fish, amphibians, primitive aquatic reptiles, primitive land reptiles, more advanced mammal-like reptiles, dinosaurs and even the earliest mammals. Palaeoenvironmental analysis of the major stratigraphic units of the Karoo sequence demonstrates the effects of more localised tectonic basins in influencing depositional style. These are superimposed on a basinwide trend of progressive aridification attributed to the gradual northward migration of southwestern Gondwanaland out of polar climes and accentuated by the meteoric drying effect of the surrounding land masses. Combined with progressive climatic drying was a gradual shrinking of the basin brought about by the northward migration of the subducting palaeo-Pacific margin to the south. Following deposition of the Cape Supergroup in the pre-Karoo basin there was a period of uplift and erosion. At the same time the southern part of Gondwana migrated over the South Pole resulting in a major ice-sheet over the early Karoo basin and surrounding highlands. Glacial sedimentation in both upland valley and shelf depositories resulted in the basal Karoo Dwyka Formation. After glaciation, an extensive shallow sea remained over the gently subsiding shelf fed by large volumes of meltwater. Black clays and muds accumulated under relatively cool climatic conditions (Lower Ecca) with perhaps a warmer "interglacial" during which the distinctive Mesosaurus-bearing, carbonaceous shales of the Whitehill Formation were deposited

  9. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  10. Water resources in the Klein Karoo: the challenge of sustainable development in a water-scarce area

    Directory of Open Access Journals (Sweden)

    Ashton Maherry

    2009-12-01

    Full Text Available The Klein Karoo is situated in the Western Cape, South Africa, and is characterised by low rainfall (100–450 mm yr–1. The Klein Karoo is situated in the primary catchment of the Gouritz River. The mean annual runoff (MAR for the three major tributaries of the Gouritz River arising in or feeding the Klein Karoo (Touws, Gamka, Olifants is 540 Mm3 yr–1. Groundwater recharge in the three Klein Karoo catchments is ±257 Mm3 yr–1, but only a portion of this reaches the rivers. The very variable flows result in low 1:50 year yield of 161 Mm3 (30% of MAR. The current demand for water in these catchments is 182 Mm3 yr–1, which exceeds the yield, and demand is projected to increase between 23% and 150% by 2025. Changes in the approach to water management are required, including improving the efficiency of irrigation and land restoration to improve water infiltration and reduce soil erosion. We believe that it is time to change to a water management approach that is designed to anticipate and manage the inherent variability in water resources in the Klein Karoo, thereby placing the region on a path to sustainable development.

  11. A check list of the spider fauna of the Karoo National Park, South Africa (Arachnida: Araneae

    Directory of Open Access Journals (Sweden)

    Anna S. Dippenaar-Schoeman

    1999-01-01

    Full Text Available A check list of the spider species of the Karoo National Park collected over a period of 10 years is presented. Thirty-eight families, represented by 102 genera and 116 species have been collected. Of these species, 76 (66.4 were wanderers and 39 (33.6 web builders. The Araneidae have the highest number of species (14 followed by the Thomisidae (10 and the Gnaphosidae (8, while 14 families are represented by a single species. Information on spider guilds, their habitat preference and web types is provided. This study forms part of the South African National Survey of Arachnida (SANSA.

  12. Linking ecosystem services and water resources: landscape-scale hydrology of the Little Karoo

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2007-07-01

    Full Text Available relatively high rainfall (> 900 mm per year), but the Little Karoo is in a rain shadow and receives only 150–350 mm annually. The rainfall season occurs in summer in the east and in winter in the west. Most of the water in the major river systems... infiltration and overland flow determines the amount of water and waterborne materials that are retained or exported from a patch and, ultimately, a hillslope, to river systems and the ocean. The responses of large spatial units may not simply be the sum...

  13. The karoo biome: a preliminary synthesis. Part 2- vegetation and history

    CSIR Research Space (South Africa)

    Cowling, RM

    1987-01-01

    Full Text Available experiences summer drought. This has important implications for biological processes. Growth, flowering. germination and recruitment are closely tied to this relatively predictable autumn rain. However, like other arid and semi-arid regions, a single large... the development of an annual f lo ra . The west coast forelands i n the Succulent Karoo experience a r e l a t i ve ly predictable winter r a i n f a l l regime (Figure 1.2). Dicotyledo- nous annuals, par t i cu la r ly i n the Asteraceae...

  14. NRAO Very Long Baseline Array (VLBA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  15. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  16. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 166 9. Space telescopes Figure 9.1: Paraboloid telescope. In the following sections, NI...planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid ; Figure 9.1) has...rotation of the whole instrument (see SUMER/SOHO, Wilhelm et al (1995) and EIS/Hinode, Culhane et al (2007)). The paraboloid field curvature (Petzval

  17. Karoo-fynbos biomass along an elevational gradient in the western Cape.

    Directory of Open Access Journals (Sweden)

    M. C. Rutherford

    1978-12-01

    Full Text Available A short characterization of the vegetational gradient from two basic physiognomic forms of fynbos, through Renosterbosveld to arid Karoo vegetation of the south-western Cape, is given with reference to possible vegetational analogues within similar gradients in winter-rainfall areas elsewhere. Description is limited to some aspects affecting biomass and its measurement, as well as to consideration of community stability needed for valid comparison of community biomass. Live individuals, including single dominant species, all other shrubs, graminoids and other herbaceous species as well as dead individuals were harvested separately in each major community type within an elevational gradient corresponding to the vegetational gradient described. Greatest biomass (14311 kg ha-1 was found in a summit restionaceous community, while lowest biomass (7564 kg ha-1 was found in a low-lying succulent Karoo community. There was an inverse relationship between elevation and percentage dead material mass and a strongly positive relationship between elevation and percentage biomass of the graminoid group. Total biomass values appear to be in keeping with available data for analogue communities in different Mediterranean climate areas, although distinct differences sometimes occur in the relative biomass contributions of component groups.

  18. Vegetation of the Hantam-Tanqua-Roggeveld subregion, South Africa Part 2: Succulent Karoo Biome related vegetation

    Directory of Open Access Journals (Sweden)

    Helga van der Merwe

    2008-05-01

    Full Text Available The Hantam-Tanqua-Roggeveld subregion lies within the Succulent Karoo Hotspot that stretches along the western side of the Republic of South Africa and Namibia. This project, carried out to document the botanical diversity in the Hantam-Tanqua-Roggeveld subregion, was part of a project identified as a priority during the SKEP (Succulent Karoo Ecosystem Programme initiative in this Hotspot. Botanical surveys were conducted in an area covering over three million hectares. Satellite images of the area and topocadastral, land type and geology maps were used to stratify the area into relatively homogeneous units. An analysis of the floristic data of 390 sample plots identified two major floristic units, i.e. the Fynbos Biome related vegetation and the Succulent Karoo Biome related vegetation. A description of the vegetation related to the Succulent Karoo Biome is presented in this article. Seven associations, 16 subassociations and several mosaic vegetation units, consisting of more than one vegetation unit, were identified and mapped. Various threats to the vegetation in the region were identified during the survey and are briefly discussed.

  19. Why law enforcement is not enough: lessons from the Central Karoo on breaking the cycle of crime and violence.

    CSIR Research Space (South Africa)

    Holtmann, B

    2008-03-01

    Full Text Available are obvious and logical if we are to raise young people with good self esteem, who are capable and prepared to contribute to society in a constructive manner. Yet in the Central Karoo (and many other communities) our children’s needs are being ignored. As a...

  20. Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589

    Science.gov (United States)

    H. E. S. S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöh, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Klużniak, D.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-05-01

    The Carina arm region, containing the supernova remnant SNR G284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSR J1016-5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNR G284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSR J1016-5857. A soft (Γ = 2.7 ± 0.5stat)photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018-589 and the

  1. A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa

    Science.gov (United States)

    Smith, R. M. H.; Eriksson, P. G.; Botha, W. J.

    1993-02-01

    The Karoo Basin of South Africa was one of several contemporaneous intracratonic basins in southwestern Gondwana that became active in the Permo-Carboniferous (280 Ma) and continued to accumulate sediments until the earliest Jurassic, 100 million years later. At their maximum areal extent, during the early Permian, these basins covered some 4.5 million km 2. The present outcrop area of Karoo rocks in southern Africa is about 300 000 km 2 with a maximum thickness of some 8000 m. The economic importance of these sediments lies in the vast reserves of coal within the Ecca Group rocks of northern and eastern Transvaal and Natal, South Africa. Large reserves of sandstone-hosted uranium and molybdenum have been proven within the Beaufort Group rocks of the southern Karoo trough, although they are not mineable in the present market conditions. Palaeoenvironmental analysis of the major stratigraphic units of the Karoo succession in South Africa demonstrates the changes in depositional style caused by regional and localized tectonism within the basin. These depocentres were influenced by a progressive aridification of climate which was primarily caused by the northward drift of southwestern Gondwana out of a polar climate and accentuated by the meteoric drying effect of the surrounding land masses. Changing palaeoenvironments clearly influenced the rate and direction of vertebrate evolution in southern Gondwana as evidenced by the numerous reptile fossils, including dinosaurs, which are found in the Karoo strata of South Africa, Lesotho, Namibia and Zimbabwe. During the Late Carboniferous the southern part of Gondwana migrated over the South Pole resulting in a major ice sheet over the early Karoo basin and surrounding highlands. Glacial sedimentation in upland valleys and on the lowland shelf resulted in the Dwyka Formation at the base of the Karoo Sequence. After glaciation, an extensive shallow sea covered the gently subsiding shelf, fed by large volumes of meltwater

  2. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  3. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  4. Design concepts for the Cherenkov Telescope Array CTA : An advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis et al., M.; Cazaux, Stéphanie

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  5. The Karoo fracking debate: a christian contribution to the world communities of faith.

    Science.gov (United States)

    Tucker, A Roger; van Tonder, Gerrit

    2015-06-01

    The fracking debate is a product of the tension between the environmental degradation it may cause, on the one hand, and on the other the greater energy demands of a rapidly increasing South African population with expectations of an ever-increasing standard of living. Shale gas fracking in the Karoo of South Africa promises to make vast reserves of oil and gas available to help meet a significant percentage of the country's energy needs for many years to come. This will aid development and contribute to raising the standard of living of many. This article seeks to apprise the South African faith communities of the technology and risks involved. Christian theological guidelines are presented by which its benefits and dangers may be interrogated so that the community may be able come to an informed decision as to whether or not to support fracking.

  6. Burrow casts from the Lystrosaurus-Procolophon Assemblage-zone, Karoo Sequence, South Africa

    Directory of Open Access Journals (Sweden)

    G.H. Groenewald

    1991-09-01

    Full Text Available Five types of burrow casts from the Lystrosaurus- Procolophon Assemblage-zone (Palingkloof Member and Katberg Formation, Triassic, Karoo sequence. South Africa are associated with casts of desiccation cracks and red mudstone. Vertebrate remains of Lystrosaurus sp. and Procolophon sp. indicate that these animals probably made the burrows during the Triassic. It is possible that burrowing was an adaptive advantage during periods of severe and unfavourable climatic conditions. Similar burrow casts were found in the Dicynodon-Theriognathus Assemblage-zone, suggesting a burrowing habit for fauna represented in this zone. In structure, the burrow casts resemble those of Scoyenia, Thalassinoides, Histioderma, Gyrolithes and Planolites reported from Germany, France, Asia, Ireland, Spain and the United States of America.

  7. Palynology of Sub-Saharan Karoo Basins: Key to Early Mesozoic palaeoclimate reconstruction

    Science.gov (United States)

    Götz, Annette E.

    2014-05-01

    Palynological data of Permian-Triassic formations of the Sub-Saharan Karoo basins play a crucial role in the study and for the understanding of Gondwana's climate history and biodiversity in this time of major global changes in terrestrial and marine ecosystems. The palynological record reflects changes in land plant communities and vegetational patterns related to climate change and thus provides significant data for high-resolution palaeoclimate reconstructions in deep time. Recent palynological investigations of Triassic successions of South Africa, Mozambique and Tanzania document major changes in palaeoclimate. The spore/pollen ratios are used as a proxy for humidity changes. Stratal variations in the composition of the pollen group indicate warming and cooling phases. Variations in the amount and in the type, size and shape of phytoclasts reflect short-term changes in transport and weathering. The detected palaeoclimate signals are used for high-resolution correlation on basin-wide, intercontinental and intra-Gondwanic scales.

  8. Effects of Acacia nilotica and Acacia karoo diets on Haemonchus contortus infection in goats.

    Science.gov (United States)

    Kahiya, C; Mukaratirwa, S; Thamsborg, S M

    2003-07-29

    This study was carried out to determine the effects of Acacia karoo and Acacia nilotica diets on Haemonchus contortus infections in goats. Twenty-four Boer goats of mixed sex (live weight 17-22 kg) were randomly assigned to four treatment groups, namely: A. nilotica (AN) group, A. karoo (AK) group, control infected with H. contortus (HC) group and the non-infected control (NHC) group. Animals in the AN, AK and HC groups were orally infected with a single dose of 3000 HC third stage larvae. The AN and AK groups had dried leaves of AN and AK, respectively, included in their basal diet at a rate of 40% dry matter (DM) while the HC and NHC groups had the basal diet throughout the experiment. All animals received a total feed allowance of 500 g DM per day and Katambora Rhodes grass hay ad libitum for roughage. Parameters measured included faecal egg counts and live weight. At the end of the experiment, three animals from each group were slaughtered and abomasal worm burdens were determined. A significant decrease in the faecal egg counts was recorded in animals in the AK group (P<0.05) relative to those in the AN and HC groups. The worm burdens were reduced by 34% in the AK group (P<0.05) and by 10% in the AN group (non-significant) relative to the infected control group. The study indicates that the difference in the effects of the two forages on HC infections may be related to type and concentration of tannins.

  9. Deflating the shale gas potential of South Africa's Main Karoo basin

    Directory of Open Access Journals (Sweden)

    Michiel O. de Kock

    2017-09-01

    Full Text Available The Main Karoo basin has been identified as a potential source of shale gas (i.e. natural gas that can be extracted via the process of hydraulic stimulation or ‘fracking’. Current resource estimates of 0.4–11x109 m3 (13–390 Tcf are speculatively based on carbonaceous shale thickness, area, depth, thermal maturity and, most of all, the total organic carbon content of specifically the Ecca Group’s Whitehill Formation with a thickness of more than 30 m. These estimates were made without any measurements on the actual available gas content of the shale. Such measurements were recently conducted on samples from two boreholes and are reported here. These measurements indicate that there is little to no desorbed and residual gas, despite high total organic carbon values. In addition, vitrinite reflectance and illite crystallinity of unweathered shale material reveal the Ecca Group to be metamorphosed and overmature. Organic carbon in the shale is largely unbound to hydrogen, and little hydrocarbon generation potential remains. These findings led to the conclusion that the lowest of the existing resource estimates, namely 0.4x109 m3 (13 Tcf, may be the most realistic. However, such low estimates still represent a large resource with developmental potential for the South African petroleum industry. To be economically viable, the resource would be required to be confined to a small, well-delineated ‘sweet spot’ area in the vast southern area of the basin. It is acknowledged that the drill cores we investigated fall outside of currently identified sweet spots and these areas should be targets for further scientific drilling projects. Significance: This is the first report of direct measurements of the actual gas contents of southern Karoo basin shales. The findings reveal carbon content of shales to be dominated by overmature organic matter. The results demonstrate a much reduced potential shale gas resource presented by the Whitehill

  10. The 3D geometry of regional-scale dolerite saucer complexes and their feeders in the Secunda Complex, Karoo Basin

    Science.gov (United States)

    Coetzee, André; Kisters, Alexander

    2016-05-01

    Dolerites in the Karoo Basin of South Africa commonly represent kilometre-scale, interconnected saucer-shaped structures that consist of inner sills, bounded by inclined sheets connected to stratigraphically higher outer sills. Based on information from over 3000 boreholes and mining operations extending over an area of ca. 500 km2 and covering a > 3 km vertical section from Karoo strata into underlying basement rocks, this paper presents the results of a 3D modelling exercise that describes the geometry and spatial relationships of a regional-scale saucer complex, locally referred to as the number 8 sill, from the Secunda (coal mine) Complex in the northern parts of the Karoo Basin. The composite number 8 sill complex consists of three main dolerite saucers (dolerites A to C). These dolerite saucers are hosted by the Karoo Supergroup and the connectivity and geometry of the saucers support a lateral, sill-feeding-sill relationship between dolerite saucers A, B and C. The saucers are underlain and fed by a shallowly-dipping sheet (dolerite D) in the basement rocks below the Karoo sequence. The 3D geometric strata model agrees well with experimental results of saucer formation from underlying feeders in sedimentary basins, but demonstrates a more intricate relationship where a single feeder can give rise to several split level saucers in one regionally extensive saucer complex. More localised dome- or ridge-shape protrusions are common in the flat lying sill parts of the regional-scale saucers. We suggest a mode of emplacement for these kilometre-scale dome- and ridge structures having formed as a result of lobate magma flow processes. Magma lobes, propagating in different directions ahead of the main magma sheet, undergo successive episodes of lobe arrest and inflation. The inflation of lobes initiates failure of the overlying strata and the formation of curved faults. Magma exploiting these faults transgresses the stratigraphy and coalesces to form a ring

  11. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  12. The South Pole Telescope

    CERN Document Server

    Ruhl, J E; Carlstrom, J E; Cho, H M; Crawford, T; Dobbs, M; Greer, C H; Halverson, W; Holzapfel, W L; Lanting, T M; Lee, A T; Leong, J; Leitch, E M; Lu, W; Lueker, M; Mehl, J; Meyer, S S; Mohr, J J; Padin, S; Plagge, T; Pryke, C L; Schwan, D; Sharp, M K; Runyan, M C; Spieler, H; Staniszewski, Z; Stark, A A

    2004-01-01

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency...

  13. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    OpenAIRE

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV to 10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will con...

  14. Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2014-01-01

    We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57~EeV in the northern sky using data collected over a 5 year period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20$\\degr$-radius circles. The hotspot has a statistical significance of 5.1$\\sigma$, and is centered at ${\\rm R.A.}=146\\fdg7$, ${\\rm Dec.}=43\\fdg2$. The position of the hotspot is about 19$\\degr$ off of the supergalactic plane. The probability of a cluster of events of 5.1$\\sigma$ significance, found using 20$\\degr$ radius oversampling, appearing by chance in an isotropic cosmic-ray sky is calculated to be 1.4$\\times$10$^{-4}$ (3.6$\\sigma$).

  15. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Schimp, M; Schmidt, T; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; :,; Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Diaz, J C Chirinos; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Tibolla, O; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Abbasi, R U; Abe, M; Abu-Zayyad, T; Allen, M; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshii, H; Zollinger, R; Zundel, Z

    2016-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the sear...

  16. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  17. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  18. Geochemical Characterisation as a means of Distinguishing between Deep and Shallow Groundwater in the Karoo Basin, South Africa

    Science.gov (United States)

    Swana, K.

    2015-12-01

    Although heralded as the solution to the world's energy shortage, shale-gas is proving to be extremely problematic from an environmental perspective. Fracking has in many instances led to the contamination of shallow groundwater resources in the vicinity of extraction sites. South Africa has significant energy issues and fracking has many attractions for the country as whole from an alternative energy supply perspective and also from a development perspective. However, the target region, the Karoo Basin, is a very water stressed region with significant ecological and agricultural value. The aim of this project was to establish whether it is possible to distinguish between deep and shallow groundwater throughout the Karoo using a wide variety of geochemical tracers. However, it is not possible to access groundwater located at depths of > 2500m. Therefore, waters derived from thermal springs and boreholes were used as proxies for deep groundwater. Eight locations within the Karoo Basin were chosen for sampling. Two sites were sampled at each location, one from a thermal spring or borehole and one from a shallow borehole in close proximity to the deep site. All of the samples were measured for temperature, pH, EC and alkalinity in the field and collected for major cations and anions, trace elements, O and H isotopes, Sr, B, Ra, Rn and CDIC isotopes, carbon 14, tritium, chlorine 36, He 4, and noble gases. From these analyses it was possible to differentiate thermal groundwater from shallow groundwater. The thermal groundwaters are interpreted to be deep because of their low carbon 14 content and further work, such as comparison of residence times using applicable tracers, is being completed to confirm this. A provisional list of tracers most reliable in identifying deep and shallow groundwater in the area has been developed and this can be used for monitoring programmes to assess the interaction of deep and shallow groundwater should fracking commence in the Karoo.

  19. Key success factors in managing the visitors' experience at the Klein Karoo National Arts Festival / Erasmus L.J.J.

    OpenAIRE

    Erasmus, Lourens Johannes Jacobus

    2011-01-01

    The ABSA Klein Karoo National Arts Festival (KKNK) is one of the biggest and most popular Afrikaans arts festivals in South Africa, and since its modest beginnings in 1994, the festival has grown significantly with an estimated 85518 visitors attending the festival in 2010. The festival furthermore has a considerable economic impact on the host community of Oudtshoorn and the surrounding regions. The direct spending by festival visitors during the 2010 festival was estimated at...

  20. H I observations of galaxies in the southern filament of the Virgo Cluster with the Square Kilometre Array Pathfinder KAT-7 and the Westerbork Synthesis Radio Telescope

    Science.gov (United States)

    Sorgho, A.; Hess, K.; Carignan, C.; Oosterloo, T. A.

    2017-01-01

    We map the H I distribution of galaxies in a ˜1.5 × 2.5° region located at the virial radius south of the Virgo Cluster using the KAT-7 and the Westerbork Synthesis Radio Telescope interferometers. Because of the different beam sizes of the two telescopes, a similar column density sensitivity of NH I ˜ 1 × 1018 atoms cm- 2 was reached with the two observations over 16.5 km s-1. We pioneer a new approach to combine the observations and take advantage of their sensitivity to both the large- and small-scale structures. Out to an unprecedented extent, we detect an H I tail of ˜60 kpc being stripped off NGC 4424, a peculiar spiral galaxy. The properties of the galaxy, together with the shape of the tail, suggest that NGC 4424 is a post-merger galaxy undergoing ram pressure stripping as it falls towards the centre of the Virgo Cluster. We detect a total of 14 galaxies and three H I clouds lacking optical counterparts. One of the clouds is a new detection with an H I mass of 7 × 107 M⊙ and a strong H I profile with W50 = 73 km s-1. We find that 10 out of the 14 galaxies present H I deficiencies not higher than those of the cluster's late spirals, suggesting that the environmental effects are not more pronounced in the region than elsewhere in the cluster.

  1. Geothermal energy from the Main Karoo Basin (South Africa): An outcrop analogue study of Permian sandstone reservoir formations

    Science.gov (United States)

    Campbell, Stuart A.; Lenhardt, Nils; Dippenaar, Matthys A.; Götz, Annette E.

    2016-04-01

    The geothermal potential of the South African Main Karoo Basin has not been addressed in the past, although thick siliciclastic successions in geothermal prone depths are promising target reservoir formations. A first assessment of the geothermal potential of the Karoo Basin is based on petro- and thermophysical data gained from an outcrop analogue study of Permian sandstones in the Eastern Cape Province, and evaluation of groundwater temperature and heat flow values from literature. A volumetric approach of the sandstones' reservoir potential leads to a first estimation of 2240 TWh (8.0 EJ) of power generation within the central and southern part of the basin. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Karoo for future geothermal resource exploration, development and production. The mainly low permeability lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas auto-convective thermal water circulation might be expected and direct heat use becomes reasonable. The data presented here serve to identify exploration areas and are valuable attributes for reservoir modeling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization.

  2. Characterization of a 6×6-mm{sup 2} 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, G., E-mail: giuseppe.romeo@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm{sup 2}) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm{sup 2} version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm{sup 2} MPPC response versus the angle of incidence are provided for the characterized device.

  3. Soil organic carbon erosion and its subsequent fate in the Karoo rangeland

    Science.gov (United States)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus

    2016-04-01

    The rangelands of the Great Karoo region in South Africa have experienced a number of environmental changes. With the settling of European farmers in the second half of the 18th century, agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. Ongoing land-use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and complex gully systems in valley bottoms. Many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods, as a consequence