WorldWideScience

Sample records for kappa receptor mrna

  1. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2009-01-01

    culture of the arteries, VSMC TP receptors were studied by using myography, real-time PCR and immunohistochemistry. We observed that organ culture for 24 and 48 h resulted in depressed TP receptor-mediated contraction in the VSMC, in parallel with decreased TP receptor mRNA and protein expressions....... Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...

  2. Transcriptional Down-Regulation of Thromboxane A(2) Receptor Expression via Activation of MAPK ERK1/2, p38/NF-kappaB Pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    culture of the arteries, VSMC TP receptors were studied by using myography, real-time PCR and immunohistochemistry. We observed that organ culture for 24 and 48 h resulted in depressed TP receptor-mediated contraction in the VSMC, in parallel with decreased TP receptor mRNA and protein expressions....... Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...

  3. Distribution of kappa opioid receptors in the brain of young and old male rats

    International Nuclear Information System (INIS)

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  4. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...... not require PTPase activity or posttranslational proteolytic cleavage of the R-PTP-kappa protein and is calcium independent. The results suggest that R-PTPases may provide a link between cell-cell contact and cellular signaling events involving tyrosine phosphorylation....

  5. [{sup 11}C]-MeJDTic: a novel radioligand for {kappa}-opioid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Poisnel, Geraldine; Oueslati, Farhana; Dhilly, Martine; Delamare, Jerome [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France); Perrio, Cecile [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: perrio@cyceron.fr; Debruyne, Daniele [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: debruyne@cyceron.fr; Barre, Louisa [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)

    2008-07-15

    Introduction: Radiopharmaceuticals that can bind selectively the {kappa}-opioid receptor may present opportunities for staging clinical brain disorders and evaluating the efficiency of new therapies related to stroke, neurodegenerative diseases or opiate addiction. The N-methylated derivative of JDTic (named MeJDTic), which has been recently described as a potent and selective antagonist of {kappa}-opioid receptor in vitro, was labeled with carbon-11 and evaluated for in vivo imaging the {kappa}-opioid receptor in mice. Methods: [{sup 11}C]-MeJDTic was prepared by methylation of JDTic with [{sup 11}C]-methyl triflate. The binding of [{sup 11}C]-MeJDTic to {kappa}-opioid receptor was investigated ex vivo by biodistribution and competition studies using nonfasted male CD1 mice. Results: [{sup 11}C]-MeJDTic exhibited a high and rapid distribution in peripheral organs. The uptake was maximal in lung where the {kappa} receptor is largely expressed. [{sup 11}C]-MeJDTic rapidly crossed the blood-brain barrier and accumulated in the brain regions of interest (hypothalamus). The parent ligand remained the major radioactive compound in brain during the experiment. Chase studies with U50,488 (a {kappa} referring agonist), morphine (a {mu} agonist) and naltrindole (a {delta} antagonist) demonstrated that this uptake was the result of specific binding to the {kappa}-opioid receptor. Conclusion: These findings suggested that [{sup 11}C]-MeJDTic appeared to be a promising selective 'lead' radioligand for {kappa}-opioid receptor PET imaging.

  6. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  7. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    Science.gov (United States)

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  8. DMPD: Signaling to NF-kappaB by Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available l Med. 2007 Nov;13(11):460-9. Epub 2007 Oct 29. (.png) (.svg) (.html) (.csml) Show Signaling to NF-kappaB by Toll-like receptors. Pub...medID 18029230 Title Signaling to NF-kappaB by Toll-like receptors. Authors Kawai T

  9. Differential regulation of. mu. , delta, kappa opioid receptors by Mn/sup + +/

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, M.; Oetting, G.M.; Coscia, C.J.

    1986-03-05

    Differential effects of Mn/sup + +/ on three opioid receptor subtypes of rat brain membranes were evaluated. Concentration dependency studies performed with 0.05-20 mM Mn/sup + +/ revealed that only the delta receptors are stimulated at any concentration. The binding of 1 nM /sup 3/H-DAGO was not stimulated by low concentrations (< 1mM) of Mn/sup + +/, and was significantly inhibited at higher concentrations (40% at 20 mM). 1 nM /sup 3/H-EKC (+100nM DAGO and 100nM DADLE) binding was inhibited by Mn/sup + +/ in the entire concentration range. While regulation of ..mu.. receptor binding did not change during postnatal development, delta and kappa binding displayed a pronounced developmental time-dependency. Kappa sites were hardly affected by Mn/sup + +/ at day 5, and adult levels of inhibition were reached only after the third week postnatal. In contrast, 1 nM /sup 3/H-DADLE (+10nM DAGO) binding was most sensitive to Mn/sup + +/ on day 5 after birth (100% stimulation with 5-20 mM). The ED/sub 50/ of Mn/sup + +/ stimulation was unchanged during maturation. These immature delta sites displayed a similar extent of Mn/sup + +/ reversal of Gpp(NH)p inhibition as seen in microsomes, which represent a good model of N/sub i/-uncoupled receptors. These data suggest that ..mu.., delta and kappa receptors are differently coupled to N/sub i/. Moreover, a second divalent cation binding site, in addition to that on N/sub i/ might exist for delta receptors.

  10. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  11. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  12. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  13. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  14. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  15. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    International Nuclear Information System (INIS)

    Tiberi, M.; Magnan, J.

    1990-01-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid [3H]D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid [3H]U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by [3H]U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan [3H]ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, [3H]ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of [3H]ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with [3H]U69593. Saturation studies using the nonselective opioid [3H]bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue)

  16. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiberi, M.; Magnan, J. (Universite de Montreal, Quebec (Canada))

    1990-05-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).

  17. NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries

    DEFF Research Database (Denmark)

    Zheng, Jian-Pu; Zhang, Yaping; Edvinsson, Lars

    2010-01-01

    Vascular smooth muscle cells (SMC) endothelin type B (ET(B)) receptor upregulation results in strong vasoconstriction and reduction of local blood flow. We hypothesizes that the underlying molecular mechanisms involve transcriptional factor nuclear factor-kappaB (NF-kappaB) pathway. ET(B) recepto...

  18. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography

    International Nuclear Information System (INIS)

    Tempel, A.; Zukin, R.S.

    1987-01-01

    Highly specific radioligands and quantitative autoradiography reveal strikingly different neuroanatomical patterns for the mu, delta, and kappa opioid receptors of rat brain. The mu receptors are most densely localized in patches in the striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus. In contrast, delta receptors are highly confined, exhibiting selective localization in layers I, II, and VIa of the neocortex, a diffuse pattern in the striatum, and moderate concentration in the pars reticulata of the substantia nigra and in the interpeduncular nucleus. delta receptors are absent in most other brain structures. This distribution is unexpected in that the enkephalins, the putative endogenous ligands of the delta receptor, occur essentially throughout the brain. The kappa receptors of rat brain exhibit a third pattern distinct from that of the mu and delta receptors. kappa receptors occur at low density in patches in the striatum and at particularly high density in the nucleus accumbens, along the pyramidal and molecular layers of the hippocampus, in the granular cell layer of the dentate gyrus, specific midline nuclei of the thalamus, and hindbrain regions. kappa receptors appear to be uniformly distributed across regions in the neocortex with the exception of layer III, which revealed only trace levels of binding. An important conclusion of the present study is that delta receptors occur at high density only in the forebrain and in two midbrain structures, whereas mu and kappa receptors exhibit discrete patterns in most major brain regions

  19. Evaluation of the kappa-opioid receptor-selective tracer [{sup 11}C]GR103545 in awake rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Schoultz, Bent W. [University of Oslo, Department of Chemistry, Oslo (Norway); Hjornevik, Trine; Willoch, Frode [University of Oslo, Centre for Molecular Biology and Neuroscience and Institute of Basic Medical Sciences, Oslo (Norway); Akershus University Hospital, Department of Nuclear Medicine, Loerenskog (Norway); Marton, Janos [ABX Advanced Biochemical Compounds GmbH, Radeberg (Germany); Noda, Akihiro; Murakami, Yoshihiro; Miyoshi, Sosuke; Nishimura, Shintaro [Medical and Pharmacological Research Center Foundation, Basic Research Department, Hakui City, Ishikawa (Japan); Aarstad, Erik [University College of London, Institute of Nuclear Medicine, London (United Kingdom); Drzezga, Alexander [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Matsunari, Ichiro [Medical and Pharmacological Research Center Foundation, Clinical Research Department, Hakui City, Ishikawa (Japan); Henriksen, Gjermund [University of Oslo, Department of Chemistry, Oslo (Norway); Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany)

    2010-06-15

    The recent development in radiosynthesis of the {sup 11}C-carbamate function increases the potential of [{sup 11}C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor ({kappa}-OR) with PET. In the present study, [{sup 11}C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [{sup 11}C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [{sup 11}C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for {kappa}-OR (K{sub i} = 0.02 {+-}0.01 nM) with excellent selectivity over {mu}-OR (6 x 10{sup 2}-fold) and {delta}-OR (2 x 10{sup 4}-fold). PET imaging revealed a volume of distribution (V{sub T}) pattern consistent with the known distribution of {kappa}-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [{sup 11}C]GR103545 is selective for {kappa}-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET. (orig.)

  20. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages.

    Science.gov (United States)

    Fock, Ricardo Ambrósio; Rogero, Marcelo Macedo; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Borges, Maria Carolina; Borelli, Primavera

    2010-04-01

    Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappaB is kept from binding to its consensus sequence by the inhibitor I kappaB alpha, which retains NF-kappaB in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappaB alpha is rapidly degraded and NF-kappaB is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappaB. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-alpha by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappaB alpha and NF-kappaB, NF-kappaB activation and TNF-alpha mRNA and protein synthesis in macrophages. Two-month-old male BALB/C mice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-alpha mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappaB activation after LPS stimulation. These results led us to conclude that PEM changes NF-kB signalling pathway in macrophages to LPS stimulus.

  1. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  2. Analgesia produced by exposure to 2450-MHz radiofrequency radiation (RFR) is mediated by brain mu- and kappa-opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, G.; Park, E.J.; Quock, R.M. (Univ. of Illinois, Rockford (United States))

    1992-02-26

    This study was conducted to identify the opioid receptor subtype(s) responsible for RFR-induced analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 20 mW/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested 15 min later in the abdominal constriction paradigm which detects {mu}- and {kappa}-opioid activity. Immediately following RFR exposure, different groups of mice were pretreated intracerebroventricularly with different opioid receptor blockers with selectivity for {mu}- or {kappa}-opioid receptors. Results show that RFR-induced analgesia was attenuated by higher but not lower doses of the non-selective antagonist naloxone, but the selective {mu}-opioid antagonist {beta}-funaltrexamine and by the selective {kappa}-opioid antagonist norbinaltorphimine. RFR-induced analgesia was also reduced by subcutaneous pretreatment with 5.0 mg/kg of the {mu}-/{kappa}-opioid antagonist({minus})-5,9-diethyl-{alpha}-5,9-dialkyl-2{prime}-hydroxy-6,7-benzomorphan(MR-2266). These findings suggest that RFR-induced analgesia may be mediated by both {mu}- and {kappa}-opioid mechanisms.

  3. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    Science.gov (United States)

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  4. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    Science.gov (United States)

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  5. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    Energy Technology Data Exchange (ETDEWEB)

    Benyhe, S.; Varga, E.; Hepp, J.; Magyar, A.; Borsodi, A.; Wollemann, M.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain. Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.

  7. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    International Nuclear Information System (INIS)

    Benyhe, S.; Varga, E.; Hepp, J.; Magyar, A.; Borsodi, A.; Wollemann, M.

    1990-01-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain. Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of [3H]ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain

  8. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    Energy Technology Data Exchange (ETDEWEB)

    Geldmeyer-Hilt, Kerstin, E-mail: kerstin.hilt@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Heine, Guido, E-mail: guido.heine@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Hartmann, Bjoern, E-mail: bjoern.hartmann@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Baumgrass, Ria, E-mail: baumgrass@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Radbruch, Andreas, E-mail: radbruch@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Worm, Margitta, E-mail: margitta.worm@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany)

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  9. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

    Science.gov (United States)

    Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G

    1998-01-01

    The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.

  10. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Science.gov (United States)

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  11. 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Zorica Janjetovic

    Full Text Available The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1 to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-kappaB (NF-kappaB plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-kappaB, using 1,25-dihydroxycholecalciferol (calcitriol as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFkappaB DNA binding activity as well as NF-kappaB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-kappaB inhibitor protein, IkappaB alpha, in a time dependent manner, while no changes in total NF-kappaB-p65 mRNA or protein levels were observed. Another measure of NF-kappaB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IkappaB alpha was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR, 20-hydroxycholecalciferol did not affect IkappaB alpha mRNA levels, indicating that it requires VDR for its action on NF-kappaB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-kappaB. Since NF-kappaB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases.

  12. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    Science.gov (United States)

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  13. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    Science.gov (United States)

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  14. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    International Nuclear Information System (INIS)

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  15. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists

    DEFF Research Database (Denmark)

    Sasmal, Pradip K; Krishna, C Vamsee; Sudheerkumar Adabala, S

    2015-01-01

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR a...... of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified....

  16. [Nuclear factor-kappaB mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and effect of jianwei yuyang granule on its expression].

    Science.gov (United States)

    Ling, Jiang-Hong; Li, Jia-Bang; Shen, Ding-Zhu; Zhou, Bing

    2006-03-01

    To observe the inflammatory reaction, nuclear factor-kappaB (NF-kappaB) mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and the effect of Jianwei Yuyang granule (JYG) on them. Gastric ulcer and its recurrent lesion were successively induced by acetic acid and interliukin1-beta (IL-1beta), and the model rats were divided into the sham operation group, the model group, the omeprazole (correction of omepraxole) group and the JYG group to observe the state of chronic inflammatory cell, neutrophil count, NF-kappaBmRNA and protein expression in stomach tissue. On the 16th and 92th day after administration, the increase of chronic inflammatory cell, neutrophil, NF-kappaBmRNA and protein expression in the model group was more significant than those in the sham operated group (P ulcer induced by acetic acid. JYG may suppress inflammatory reaction by inhibiting the activation and expression of NF-kappaB in stomach tissue, which may be one of the mechanisms of JYG in preventing the recurrence of gastric ulcer.

  17. Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, C.; Borrell, J.; Guaza, C. (Cajal Institute, Madrid (Spain))

    1990-01-01

    Using a paradigm by which rats forced to drink a weak ethanol solution develop ethanol preference in consecutive retention testing days, the effects of the administration of the kappa opioid antagonist MR-2266-BS, prior to or after the forced ethanol session, were studied. Pre-conditioning subcutaneous (s.c.) administration of 1 mg/kg of MR-2266-BS induced a decrease in subsequent ethanol consumption without significantly modifying the acquisition of ethanol preference. Post-conditioning administration of MR-2266-BS induced both a dose-dependent reduction in ethanol consumption and in preference throughout the three following days. The results of the present study provide further support of the involvement of kappa-type opioids on drinking behavior, and suggest that kappa receptors may be involved in the consumption and development of preference to ethanol.

  18. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    Science.gov (United States)

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  19. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Science.gov (United States)

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  20. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  1. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  2. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  3. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  4. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    OpenAIRE

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress...

  5. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Science.gov (United States)

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  6. Hypothalamic kappa opioid receptor mediates both diet- and MCH-induced liver damage through inflammation and ER stress

    NARCIS (Netherlands)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; Lopez, Miguel; Nogueiras, Ruben

    2016-01-01

    The opioid system is widely known to modulate the brain reward system and thus affect human and animal behaviour, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and

  7. Expression of ET(A) and ET(B) receptor mRNA in human cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, J; Szok, D; Edvinsson, L

    2002-01-01

    The vascular effects of endothelins (ET) are in mammals mediated via two receptor subtypes, endothelin A (ET(A), mainly constrictive) and endothelin B (ET(B), mainly dilating) receptors. We have examined the presence of ET(A) and ET(B) receptor mRNA using the reverse transcription polymerase chai...

  8. Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence.

    Science.gov (United States)

    Lalanne, L; Ayranci, G; Filliol, D; Gavériaux-Ruff, C; Befort, K; Kieffer, B L; Lutz, P-E

    2017-07-01

    Addiction is a chronic brain disorder that progressively invades all aspects of personal life. Accordingly, addiction to opiates severely impairs interpersonal relationships, and the resulting social isolation strongly contributes to the severity and chronicity of the disease. Uncovering new therapeutic strategies that address this aspect of addiction is therefore of great clinical relevance. We recently established a mouse model of heroin addiction in which, following chronic heroin exposure, 'abstinent' mice progressively develop a strong and long-lasting social avoidance phenotype. Here, we explored and compared the efficacy of two pharmacological interventions in this mouse model. Because clinical studies indicate some efficacy of antidepressants on emotional dysfunction associated with addiction, we first used a chronic 4-week treatment with the serotonergic antidepressant fluoxetine, as a reference. In addition, considering prodepressant effects recently associated with kappa opioid receptor signaling, we also investigated the kappa opioid receptor antagonist norbinaltorphimine (norBNI). Finally, we assessed whether fluoxetine and norBNI could reverse abstinence-induced social avoidance after it has established. Altogether, our results show that two interspaced norBNI administrations are sufficient both to prevent and to reverse social impairment in heroin abstinent animals. Therefore, kappa opioid receptor antagonism may represent a useful approach to alleviate social dysfunction in addicted individuals. © 2016 Society for the Study of Addiction.

  9. Does the kappa opioid receptor system contribute to pain aversion?

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    2014-11-01

    Full Text Available The kappa opioid receptor (KOR and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.

  10. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  12. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3 mRNA

    Directory of Open Access Journals (Sweden)

    Hector Albert-Gascó

    2018-01-01

    Full Text Available The medial septum (MS complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3. Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3, is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT mRNA- and parvalbumin (PV mRNA-positive GABA neurons in MS, whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive, while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

  13. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    Science.gov (United States)

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  14. Effect of Heat Stress on the Expression of GABA Receptor mRNA in the HPG Axis of Wenchang Chickens

    Directory of Open Access Journals (Sweden)

    LJ Xie

    Full Text Available ABSTRACT We investigated the effect of heat stress (HS on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.

  15. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  16. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  17. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  18. Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region

    DEFF Research Database (Denmark)

    Jiang, Y P; Wang, H; D'Eustachio, P

    1993-01-01

    We describe a new member of the receptor protein tyrosine phosphatase family, R-PTP-kappa, cDNA cloning predicts that R-PTP-kappa is synthesized from a precursor protein of 1,457 amino acids. Its intracellular domain displays the classical tandemly repeated protein tyrosine phosphatase homology, ...

  19. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase.

    Science.gov (United States)

    Kiss, A; Jurkovicova, D; Jezova, D; Krizanova, O

    2001-06-01

    To study functional interactions between angiotensin II AT1 receptors and nitric oxide (NO) activity in different brain areas in rats exposed to immobilization stress. Central inhibition of nitric oxide synthase (NOS) was provided by intracerebroventricular (i.c.v.) administration of (N-omega-nitro-L-arginine-methylester) L-NAME and analysis of AT1 receptor mRNA was performed using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The immobilization in prone position lasted 2 hrs and the rats were sacrificed 24 hr later. The hypothalamus, hippocampus, thalamus, and cortex were isolated from fresh brains. In the cortex, gene expression of AT1 receptors was unaffected either by L-NAME treatment, or by a single exposure to immobilization stress for 2 hours followed by 24 hours of rest. In the hippocampus, the repeated treatment with L-NAME increased mRNA levels of AT1 receptors approximately 9-times compared to those in the control (untreated) group. Immobilization also increased AT1 receptor mRNA levels in the hippocampus which was similar to that induced by the L-NAME. The increase of AT1 receptor mRNA levels in the hippocampus of immobilized rats was not further altered when the animals were pretreated with L-NAME. In control rats, exposure to immobilization resulted in a significant rise in mRNA levels coding for AT1 receptors in the hypothalamus, but not in the thalamus. L-NAME treatment showed a tendency of increase in AT1 receptor mRNA levels in the hypothalamus. Moreover, when animals treated with L-NAME were subjected to immobilization, a further increase in AT1 receptor mRNA levels was observed in the hypothalamus in comparison with corresponding controls. The present data indicate that a single immobilization stress results in increased gene expression of AT1 receptors in the hypothalamus and hippocampus. The rise in AT1 mRNA levels in the same brain structures after repeated treatment with L-NAME allow to suggest an

  20. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  1. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    Science.gov (United States)

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in the bone loss developed in this disease. PMID:23559954

  2. Distribution of mu, delta, and kappa opioid receptor binding sites in the brain of the one-day-old domestic chick (Gallus domesticus): An in vitro quantitative autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Csillag, A.; Bourne, R.C.; Stewart, M.G. (Open Univ., Milton Keynes (England))

    1990-12-15

    Three highly specific opioid ligands--(D-Ala2,Gly-ol)-enkephalin (DAGO) for mu (mu) receptor sites, (D-Pen2,D-Pen5)-enkephalin (DPDPE) for delta (delta) sites, and U-69593 for kappa (kappa) sites--were used to determine the regional distribution of the three major subtypes of opioid receptor binding sites in the brains of 1-day-old domestic chicks by the technique of quantitative receptor autoradiography. While there was a degree of heterogeneity in the binding levels of each of the ligands, some notable similarities existed in the binding of the mu and kappa ligands in several forebrain regions, and in the optic tectum of the midbrain where mu and delta binding was very high. In the forebrain there was a high level of binding of mu and kappa ligands in the hyperstriatum, and for the mu ligand there was a very distinct lamination of binding sites in hyperstriatum accessorium, intercalatum supremum, dorsale and ventrale. Levels of binding of the mu and kappa ligands were also high in nucleus basalis, and (for mu only) in the neostriatum. The distribution of binding of the delta specific ligand in the forebrain showed marked differences to that of mu and kappa, being particularly low in the hyperstriatum and neostriatum. Very high levels of labelling of delta binding sites were, however, found in the nucleus rotundus. Binding of the three ligands was generally low or absent in the cerebellum and medulla, apart from a distinct labelling of the granule cell layer by the mu-ligand. A kinetic analysis was made of the binding of the three ligands to whole forebrain sections using scintillation counting methods.

  3. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Science.gov (United States)

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  4. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.

    Science.gov (United States)

    Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R

    2001-08-10

    The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.

  5. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  6. Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis.

    Science.gov (United States)

    Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues

    2017-07-01

    Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.

  7. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence

    Directory of Open Access Journals (Sweden)

    Pierre eTrifilieff

    2013-06-01

    Full Text Available Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the Positron Emission Tomography (PET imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.

  8. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  9. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    Science.gov (United States)

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  10. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB cascade on human pulmonary alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Chin-Chung eLin

    2016-03-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 expression is frequently correlated with the lung inflammation. A bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P, was involved in inflammation through the adhesion molecules induction, and then caused lung injury. However, the transduction mechanisms of the S1P stimulation to induce ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs remain unclear. Here, we demonstrated that exposure of HPAEpiCs to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCdelta, PF431396 (PYK2, diphenyleneiodonium chloride (DPI, apocynin (NADPH oxidase, Edaravone (ROS, and Bay11-7082 (NF-kappaB. Consistently, knockdown with siRNA transfection of PKCdelta, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A and Gi/o-coupled receptor antagonist (GPA2 also blocked S1P-induced ICAM-1 protein and mRNA expression. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCdelta-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-kappaB p65 phosphorylation and translocation from the cytosol to the nucleus in HPAEpiCs, which was inhibited by Rottlerin, PF431396, APO, DPI, or Edaravone. In the in vitro study, we established that S1P induced monocyte adhesion via an ICAM-1-dependent pathway. In the in vivo study, we found that S1P induced ICAM-1 protein and mRNA levels in the lung fractions, pulmonary hematoma, and leukocyte (mainly eosinophils and neutrophils count in bronchoalveolar lavage (BAL fluid in mice via a PKCdelta/PYK2/NADPH oxidase/ROS/NF-kappaB signaling pathway. We concluded that S1P may induce lung

  11. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2007-01-01

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  12. Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Aurelie Le Mandat Schultz

    Full Text Available BACKGROUND: The etiology of necrotizing enterocolitis (NEC results from a combination of several risk factors that act synergistically and occurs in the same circumstances as those which lead to innate immunity activation. Pattern recognition molecules could be an important player in the initiation of an exaggerated inflammatory response leading to intestinal injury in NEC. METHODOLOGY/PRINCIPAL FINDINGS: We specifically evaluated intestinal epithelial cell (IEC expression of Toll-like receptor 2 (TLR-2, TLR-4, NOD2 and phosphorylated NF-kappaB (pNF-kappaB after mucosal injury in a rat model of NEC induced by prematurity, systemic hypoxia, and a rich protein formula. In the control group (group 1, neonatal rats were full-term and breast-fed; in the experimental groups, rat pups were preterm at day 21 of gestation and rat-milk fed (group 2 or hand-gavaged with a protein rich formula after a hypoxia-reoxygenation procedure (group 3. Morphological mucosal changes in the small bowel were scored on hematoxylin- and eosin-stained sections. Immunohistochemistry was performed on frozen tissue sections using anti TLR-2 and active pNF-kappaB p65 antibodies. Real-time RT-PCR was performed to assess mRNA expression of NOD2, TLR-2 and TLR-4. Proliferation and apoptosis were studied in paraffin sections using anti Ki-67 and caspase-3 antibodies, respectively. The combination of immaturity, protein rich formula and a hypoxia-reoxygenation procedure induces pathological mucosal damage consistent with NEC. There was an overexpression of TLR-2, and pNF-kappaB in IECs that was correlated with the severity of mucosal damage, together with an increase of apoptotic IECs and markedly impaired proliferation. In addition, these immunological alterations appeared before severe mucosal damage. TLR-2 mRNA were also increased in NEC together with TLR-4 mRNA using real-time RT-PCR whereas NOD2 expression was unchanged. CONCLUSIONS/SIGNIFICANCE: These results show that this

  13. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: Quantitative autoradiography, species differences and comparison with kappa receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, N.A.; Hughes, J. (Addenbrookes Hospital Site, Cambridge (England))

    1989-05-01

    The opioid peptides, (3H)DAGO and (3H)DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. (3H)DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, (3H)DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with hotspots in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra.

  14. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  15. Decreased alternative splicing of estrogen receptormRNA in the Alzheimer's disease brain

    NARCIS (Netherlands)

    Ishunina, Tatjana A.; Swaab, Dick F.

    2012-01-01

    In this study we identified 62 estrogen receptor alpha (ERα) mRNA splice variants in different human brain areas of Alzheimer's disease (AD) and control cases and classified them into 12 groups. Forty-eight of these splice forms were identified for the first time. The distribution of alternatively

  16. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  17. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    Science.gov (United States)

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  18. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    Gene expression analysis on messenger RNA (mRNA) purified from formalin-fixed, paraffin-embedded tissue is increasingly used for research purposes. Tissue heterogeneity may question specificity and interpretation of results from mRNA isolated from a whole slide section, and thresholds for minimal...... tumor content in the paraffin block or macrodissection are used to avoid contamination from non-neoplastic tissue. The aim was to test if mRNA from tissue surrounding breast cancer affected quantification of estrogen receptor α (ESR1), progesterone receptor (PGR) and human epidermal growth factor...... receptor 2 (ERBB2), by comparing gene expression from whole slide and tumor-enriched sections, and correlating gene expression from whole slide sections with corresponding immunohistochemistry. Gene expression, based on mRNA extracted from a training set (36 paraffin blocks) and two validation sets (133...

  19. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  20. A RNA transcript (Heg) in mononuclear cells is negatively correlated with CD14 mRNA and TSH receptor autoantibodies

    DEFF Research Database (Denmark)

    Habekost, G.; Bratholm, P.; Christensen, Niels Juel

    2008-01-01

    of the poly A(-) transcript (designated Heg) in mononuclear cells was correlated with CD14 mRNA in normal subjects and with CD14 mRNA and TSH receptor autoantibodies in patients with acute and untreated Graves' disease. mRNA was expressed in amol/mu g DNA. The main study groups were: (i) normal subjects; (ii......) patients with early and untreated Graves' disease; and (iii) patients with Graves' disease studied after treatment. In 18 normal subjects and in 20 patients with treated Graves' disease CD14 mRNA was negatively correlated with Heg (P Graves' disease Heg and thyroid...

  1. The upregulation of receptor activator NF-kappaB ligand expression by interleukin-1alpha and Porphyromonas endodontalis in human osteoblastic cells.

    Science.gov (United States)

    Chen, S-C; Huang, F-M; Lee, S-S; Li, M-Z; Chang, Y-C

    2009-04-01

    To investigate the receptor activator of nuclear factor-kappa B (NF-kappaB) ligand (RANKL) in osteoblastic cells stimulated with inflammatory mediators. The expression of RANKL in human osteoblastic cell line U2OS stimulated by pro-inflammatory cytokine interleukin (IL)-1alpha and black-pigmented bacteria Porphyromonas endodontalis was investigated by Western blot and enzyme-linked immunosorbent assay (ELISA). The significance of the results obtained from control and treated groups was statistically analysed by the paired Student's t-test. IL-1alpha was found to upregulate RANKL production in U2OS cells (P endodontalis also increased RANKL expression in U2OS cells after 4-h incubation period demonstrated by Western blot and ELISA (P endodontalis may be involved in developing apical periodontitis through the stimulation of RANKL production.

  2. Transcription factor Brn-3α mRNA in cancers, relationship with AR, ER receptors and AKT/m-TOR pathway components

    Science.gov (United States)

    Spirina, L. V.; Gorbunov, A. K.; Chigevskaya, S. Y.; Usynin, Y. A.; Kondakova, I. V.; Slonimskaya, E. M.; Usynin, E. A.; Choinzonov, E. L.; Zaitseva, O. S.

    2017-09-01

    Transcription factors POU4F1 (neurogenic factor Brn-3α) play a pivotal role in cancers development. The aim of the study was to reveal the Brn-3α expression, AR, ER expression in cancers development, association with AKT/mTOR pathway activation. 30 patients with locally advanced prostate cancer, 20 patients with papillary thyroid cancer, T2-3N0-1M0 stages and 40 patients with renal cell cancer T2-3N0M0-1 were involved into the study. The expressions of Brn-3α, AR, ERα, components of AKT/m-TOR signaling pathway genes were performed by real-time PCR. The dependence of Brn-3α expression on mRNA levels of steroid hormone receptors and components of AKT/m-TOR signaling pathway in studied cancers were shown. High levels of mRNA of nuclear factor, steroid hormone receptors were found followed by the activation of this signaling pathway in prostate cancer tissue. The reduction of transcription factor Brn-3α was accompanied with tumor invasive growth with increasing rates of AR, ER and 4E-BP1 mRNA. Thyroid cancer development happened in a case of a Brn-3α and steroid hormone receptors decrease. The activation of AKT/m-TOR signaling pathway was established in the metastatic renal cancers, accompanied with the increase of ER mRNA. But there was no correlation between the steroid receptor and Brn-3α. One-direction changes of Brn-3α were observed in the development of prostate and thyroid cancer due to its effect on the steroid hormone receptors and the activation of AKT/m-TOR signaling pathway components. The influence of this factor on the development of the kidney cancer was mediated through m-TOR activity modifications, the key enzyme of oncogenesis.

  3. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  4. Muscarinic receptor subtype mRNA expression in the human prostate: association with age, pathological diagnosis, prostate size, or potentially interfering medications?

    NARCIS (Netherlands)

    Witte, Lambertus P. W.; Teitsma, Christine A.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2014-01-01

    As the prostate abundantly expresses muscarinic receptors and antagonists for such receptors are increasingly used in the treatment of men with voiding function and large prostates, we have explored an association of the mRNA expression of human M1, M2, M3, M4, and M5 receptors in human prostate

  5. mRNA levels of enzymes and receptors implicated in arachidonic acid metabolism in gliomas.

    Science.gov (United States)

    De Armas, Rafael; Durand, Karine; Guillaudeau, Angélique; Weinbreck, Nicolas; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Acosta, Gisela; Pebet, Matias; Chaunavel, Alain; Marin, Benoît; Labrousse, François; Denizot, Yves

    2010-07-01

    Gliomas are tumors of the central nervous system derived from glial cells. They show cellular heterogeneity and lack specific diagnostic markers. Although a possible role for the eicosanoid cascade has been suggested in glioma tumorigenesis, the relationship between enzymes and receptors implicated in arachidonic acid metabolism, with histological tumor type has not yet been determined. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure and compare transcript levels of enzymes and receptors implicated in both lipoxygenase and cyclooxygenase pathways between oligodendrogliomas, astrocytomas, glioblastomas and mixed oligoastrocytomas. Arachidonic acid metabolism-related enzymes and receptor transcripts (i) were underexpressed in classical oligodendrogliomas compared to astrocytomas and/or glioblastomas, (ii) differed between astrocytomas and glioblastomas and (iii) had an intermediate expression in mixed oligoastrocytomas. mRNA levels of enzymes and receptors implicated both in lipoxygenase and cyclooxygenase pathways differed significantly in gliomas according to the histological type. Copyright 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of the kappa-opioid receptor-selective tracer [11C]GR103545 in awake rhesus macaques

    International Nuclear Information System (INIS)

    Schoultz, Bent W.; Hjornevik, Trine; Willoch, Frode; Marton, Janos; Noda, Akihiro; Murakami, Yoshihiro; Miyoshi, Sosuke; Nishimura, Shintaro; Aarstad, Erik; Drzezga, Alexander; Matsunari, Ichiro; Henriksen, Gjermund

    2010-01-01

    The recent development in radiosynthesis of the 11 C-carbamate function increases the potential of [ 11 C]GR103545, which for the last decade has been regarded as promising for imaging the kappa-opioid receptor (κ-OR) with PET. In the present study, [ 11 C]GR103545 was evaluated in awake rhesus macaques. Separate investigations were performed to clarify the OR subtype selectivity of this compound. Regional brain uptake kinetics of [ 11 C]GR103545 was studied 0-120 min after injection. The binding affinity and opioid subtype selectivity of [ 11 C]GR103545 was determined in cells transfected with cloned human opioid receptors. In vitro binding assays demonstrated a high affinity of GR103545 for κ-OR (K i = 0.02 ±0.01 nM) with excellent selectivity over μ-OR (6 x 10 2 -fold) and δ-OR (2 x 10 4 -fold). PET imaging revealed a volume of distribution (V T ) pattern consistent with the known distribution of κ-OR, with striatum = temporal cortex > cingulate cortex > frontal cortex > parietal cortex > thalamus > cerebellum. [ 11 C]GR103545 is selective for κ-OR and holds promise for use to selectively depict and quantify this receptor in humans by means of PET. (orig.)

  7. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    Science.gov (United States)

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Peroxisome proliferator-activated receptor α (PPARα mRNA expression in human hepatocellular carcinoma tissue and non-cancerous liver tissue

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2011-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor α (PPARα regulates lipid metabolism in the liver. It is unclear, however, how this receptor changes in liver cancer tissue. On the other hand, mouse carcinogenicity studies showed that PPARα is necessary for the development of liver cancer induced by peroxisome proliferators, and the relationship between PPARα and the development of liver cancer have been the focus of considerable attention. There have been no reports, however, demonstrating that PPARα is involved in the development of human liver cancer. Methods The subjects were 10 patients who underwent hepatectomy for hepatocellular carcinoma. We assessed the expression of PPARα mRNA in human hepatocellular carcinoma tissue and non-cancerous tissue, as well as the expression of target genes of PPARα, carnitine palmitoyltransferase 1A and cyclin D1 mRNAs. We also evaluated glyceraldehyde 3-phosphate dehydrogenase, a key enzyme in the glycolytic system. Results The amounts of PPARα, carnitine palmitoyltransferase 1A and glyceraldehyde 3-phosphate dehydrogenase mRNA in cancerous sections were significantly increased compared to those in non-cancerous sections. The level of cyclin D1 mRNA tends to be higher in cancerous than non-cancerous sections. Although there was a significant correlation between the levels of PPARα mRNA and cyclin D1 mRNA in both sections, however the correlation was higher in cancerous sections. Conclusion The present investigation indicated increased expression of PPARα mRNA and mRNAs for PPARα target genes in human hepatocellular carcinoma. These results might be associated with its carcinogenesis and characteristic features of energy production.

  10. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  11. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    Science.gov (United States)

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P growth retarded as shown by a daily longitudinal tibia growth rate below (P growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  12. Seasonal Relationship between Gonadotropin, Growth Hormone, and Estrogen Receptor mRNA Expression in the Pituitary Gland of Largemouth Bass

    OpenAIRE

    Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.

    2009-01-01

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels ...

  13. Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues.

    Science.gov (United States)

    Garg, R R; Bally-Cuif, L; Lee, S E; Gong, Z; Ni, X; Hew, C L; Peng, C

    1999-07-20

    A full-length cDNA encoding for activin type IIB receptor (ActRIIB) was cloned from zebrafish embryos. It encodes a protein with 509 amino acids consisting of a signal peptide, an extracellular ligand binding domain, a single transmembrane region, and an intracellular kinase domain with predicted serine/threonine specificity. The extracellular domain shows 74-91% sequence identity to human, bovine, mouse, rat, chicken, Xenopus and goldfish activin type IIB receptors, while the transmembrane region and the kinase domain show 67-78% and 82-88% identity to these known activin IIB receptors, respectively. In adult zebrafish, ActRIIB mRNA was detected by RT-PCR in the gonads, as well as in non-reproductive tissues, including the brain, heart and muscle. In situ hybridization on ovarian sections further localized ActRIIB mRNA to cytoplasm of oocytes at different stages of development. Using whole-mount in situ hybridization, ActRIIB mRNA was found to be expressed at all stages of embryogenesis examined, including the sphere, shield, tail bud, and 6-7 somite. These results provide the first evidence that ActRIIB mRNA is widely distributed in fish embryonic and adult tissues. Cloning of zebrafish ActRIIB demonstrates that this receptor is highly conserved during vertebrate evolution and provides a basis for further studies on the role of activin in reproduction and development in lower vertebrates.

  14. Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men.

    Science.gov (United States)

    Buford, Thomas W; Cooke, Matthew B; Manini, Todd M; Leeuwenburgh, Christiaan; Willoughby, Darryn S

    2010-05-01

    Nuclear factor kappa B (NF-kappaB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. The present study examined lean mass, maximal force production, and skeletal muscle NF-kappaB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 +/- 6.59 year), physically active (OA, N = 14, 60.71 +/- 5.54 year), or young and sedentary (YS, N = 14, 21.35 +/- 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the beta subunit of IkB kinase (IKKbeta), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBalpha), and nuclear content of NF-kappaB subunits p50 and p65. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBalpha than OA and 61% more pIKBalpha than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKbeta. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBalpha. A sedentary lifestyle appears to play some role in increased IKBalpha; however, further research is needed to identify downstream effects of this increase.

  15. MAML1 regulates cell viability via the NF-{kappa}B pathway in cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kuncharin, Yanin [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Sangphech, Naunpun [Biotechnology Program, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Kueanjinda, Patipark [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Bhattarakosol, Parvapan [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Department of Microbiology, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand)

    2011-08-01

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing

  16. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Rodriguez-Miguelez, Paula; Cuevas, Maria José; Soares, Félix Alexandre Antunes; Barbosa, Nilda Vargas; González-Gallego, Javier

    2016-03-01

    Acute exercise is a stress stimulus that may cause cell damage through the activation of the toll-like receptor (TLR)4 pathway, resulting in the translocation of nuclear factor kappa B (NF-κB) into the cell nucleus and the upregulation of inflammatory genes. Nonsteroidal anti-inflammatory drugs, such as diclofenac, are often prescribed to counteract exercise-induced inflammation. This study analyzed effects of diclofenac pretreatment on the TLR4/NF-κB pathway in rat liver after an acute eccentric exercise. Twenty male Wistar rats were divided in four groups: control-saline, control-diclofenac, exercise-saline and exercise-diclofenac. The rats received saline or diclofenac (10mg/kg) for 7days prior to an eccentric exercise bout. After exercise there was an increase in TLR4, myeloid differentiation primary response gene 88 (MyD88), TIR domain-containing adaptor inducing interferon (TRIF) and p65 NF-κB subunit protein levels. Exercise also resulted in increased mRNA and protein expression of interleukin (IL)-6, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. Proinflammatory effects of exercise were prevented by the administration of diclofenac, which blunted the activation of the TLR4/NF-κB pathway and the inflammatory response in the liver of exercised rats. Results from the present study highlight the role of TLR4 as a target for anti-inflammatory interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  18. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP-kappa gene......-6596]. Nevertheless, since the transgene's expression is driven by the endogenous RPTP-kappa promoter, distribution of the truncated RPTP-kappa/beta-geo fusion protein should reflect the regional and cellular expression of wild-type RPTP-kappa, and thus may identify sites where RPTP-kappa is important. Towards...... that goal, we have used this mouse model to map the distribution of the truncated RPTP-kappa/beta-geo fusion protein in the adult mouse brain using beta-galactosidase as a marker enzyme. Visualization of the beta-galactosidase activity revealed a non-random pattern of expression, and identified cells...

  19. Interleukin-9 receptor α chain mRNA formation in CD8+ T cells producing anti-human immunodeficiency virus type 1 substance(s)

    International Nuclear Information System (INIS)

    Hossain, M.M.; Tsuchie, H.; Detorio, M.A.; Shirono, H.; Hara, C.; Nishimoto, A.; Saji, A.; Koga, J.; Takata, N.; Maniar, J.K.; Saple, D.G.; Taniguchi, K.; Kageyama, S.; Ichimura, H.; Kurimura, T.

    1998-01-01

    A search for gene(s) associated with anti-human immunodeficiency virus type 1 (HIV-l) activity of CD8 + T cells was attempted using molecular cloning and the relation between the anti-HIV activity of CD8 + T cells and the interleukin-9 receptor a chain (IL-9R-α) mRNA expression from the cDNA clones obtained was examined. The anti-HIV-l activity of CD8 + T cell culture supernatants was assessed by measuring the level of HIV-l replication in a CD4 + T cell line transfected with an infectious HIV-l DNA clone. IL-9R-a mRNA was assayed by reverse transcriptase-polymerase chain reaction (RT-PCR). Of 5 cases showing high level of anti-HIV-l activity (more than 80% suppression of HIV-l replication), the mRNA was detected in 4 cases. Of 10 cases showing low level of anti-HIV-l activity (less than 80% suppression of HIV-l replication), the mRNA was detected in one case. Soluble recombinant human IL-9 receptor (rhIL-9sR) did not suppress HIV-l replication at a concentration of 1 μg/ml. These data suggest that the IL-9R-a mRNA formation in CD8 + T cells may correlate with and play some role in the anti-HIV-l activity of CD8+ T cells from HIV-l-infected individuals. Key words: CD8+ T cells; anti-HIV-l activity; cytokines; interleukin-9 receptor (authors)

  20. Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1-3 in the ovine hypothalamus and pituitary gland: effects of age and gender.

    Science.gov (United States)

    Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Chambers, George Ballantine; Hastie, Peter; Padmanabhan, Vasantha; Thompson, Robert Charles; Evans, Neil Price

    2009-01-01

    The neurotransmitters/neuromodulators galanin (GAL) and galanin-like peptide (GALP) are known to operate through three G protein-coupled receptors, GALR1, GALR2 and GALR3. The aim of this study was to investigate changes in expression of mRNA for galanin, GALP and GALR1-3 in the hypothalamus and pituitary gland, of male and female sheep, to determine how expression changed in association with growth and the attainment of reproductive competence. Tissue samples from the hypothalami and pituitary glands were analysed from late foetal and pre-pubertal lambs and adult sheep. Although mRNA for galanin and GALR1-3 was present in both tissues, at all ages and in both genders, quantification of GALP mRNA was not possible due to its low levels of expression. mRNA expression for both galanin and its receptors was seen to change significantly in both tissues as a function of age. Specifically, hypothalamic galanin mRNA expression increased with age in the male, but decreased with age in the female pituitary gland. mRNA expression for all receptors increased between foetal and pre-pubertal age groups and decreased significantly between pre-pubertal and adult animals. The results indicate that the expression of mRNA for galanin and its receptors changes dynamically with age and those significant differences exist with regard to tissue type and gender. These changes suggest that galaninergic neuroendocrine systems could be involved in the regulation of ovine growth and or the development of reproductive competence. The roles played by these systems in the sheep, however, may differ from other species, in particular the neuroendocrine link between nutrition and reproduction and GALR1's role in pituitary signalling.

  1. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J

    1999-01-01

    that goal, we have used this mouse model to map the distribution of the truncated RPTP-kappa/beta-geo fusion protein in the adult mouse brain using beta-galactosidase as a marker enzyme. Visualization of the beta-galactosidase activity revealed a non-random pattern of expression, and identified cells......-6596]. Nevertheless, since the transgene's expression is driven by the endogenous RPTP-kappa promoter, distribution of the truncated RPTP-kappa/beta-geo fusion protein should reflect the regional and cellular expression of wild-type RPTP-kappa, and thus may identify sites where RPTP-kappa is important. Towards...

  2. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development. Copyright 2000 Wiley

  3. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  4. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.

    Directory of Open Access Journals (Sweden)

    Elisabeth Lippert

    2009-10-01

    Full Text Available Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-; NF-kappaB(EGFP mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA. NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice developed mild (day 5 and severe (day 14 ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

  5. Characterization of kappa opioid binding using dynorphin A1-13 and U69,593 in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, T.; Shoemaker, W.J. (Univ. of Connecticut Health Center, Farmington (USA))

    1990-05-01

    Previous studies of kappa opioid binding sites have suggested heterogeneous binding to this class of opioid receptors. To further investigate kappa receptor heterogeneity, we analyzed the binding properties of various kappa-selective ligands in rat brain homogenates. Displacement assays were carried out using (3H)bremazocine in the presence of various displacing ligands under mu and delta receptor-blocked conditions. Homologous displacement of (3H)bremazocine produced shallow displacement which best fit a two-site model of drug-receptor interaction. Dynorphin A1-13 and U69,593 exhibited similar biphasic displacement of (3H)bremazocine. Maximal displacement by these ligands, however, represented only approximately 55% of total (3H)bremazocine binding, which suggests the existence of a third component of (3H)bremazocine binding. Biphasic displacement by dynorphin A1-13 was detected in tissue throughout the brain and the spinal cord, whereas the dynorphin-resistant component of (3H)bremazocine binding was uniquely absent in the spinal cord. U50,488H, tifluadom and ethylketocyclazocine appeared to displace from additional, dynorphin-insensitive sites, as their maximal displacement exceeded that seen with either dynorphin A1-13 or U69,593. These results strongly suggest the existence of at least three components of non-mu, non-delta (3H)bremazocine binding in the rat brain: two with differential affinity for dynorphin A1-13 and U69-593 (kappa-1 and kappa-2 sites), and a third (termed here R1) that was further resolved into two binding sites by bremazocine. Preliminary analysis of the R1 component using naloxone revealed one high-affinity site, which may be opiate in nature, and a second site whose binding properties closely resemble those of the sigma receptor described by others.

  6. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states. Copyright 2001 Academic Press.

  7. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, Dipak V; Ploug, Kenneth B; Hay-Schmidt, Anders

    2012-01-01

    Triptans, a family of 5-hydroxytryptamine (5-HT) 1B, 1D, and 1F receptor agonists, are used in the acute treatment of migraine attacks. The site of action and subtypes of the 5-HT(1) receptor that mediate the antimigraine effect have still to be identified. This study investigated the mRNA expres......Triptans, a family of 5-hydroxytryptamine (5-HT) 1B, 1D, and 1F receptor agonists, are used in the acute treatment of migraine attacks. The site of action and subtypes of the 5-HT(1) receptor that mediate the antimigraine effect have still to be identified. This study investigated the m......RNA expression of these receptors and the role of 5-HT(1) receptor subtypes in controlling the release of calcitonin gene-related peptide (CGRP) in rat dura mater, trigeminal ganglion (TG), and trigeminal nucleus caudalis (TNC). The mRNA for each receptor subtype was quantified by quantitative real...

  8. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  9. The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17beta-estradiol.

    Science.gov (United States)

    Osterlund, M K; Overstreet, D H; Hurd, Y L

    1999-12-10

    The possible link between estrogen and serotonin (5-HT) in depression was investigated using a genetic animal model of depression, the Flinders Sensitive Line (FSL) rats, in comparison to control Flinders Resistant Line rats. The mRNA levels of the estrogen receptor (ER) alpha and beta subtypes and the 5-HT(1A) and 5-HT(2A) receptors were analyzed in several limbic-related areas of ovariectomized FSL and FRL rats treated with 17beta-estradiol (0.15 microg/g) or vehicle. The FSL animals were shown to express significantly lower levels of the 5-HT(2A) receptor transcripts in the perirhinal cortex, piriform cortex, and medial anterodorsal amygdala and higher levels in the CA 2-3 region of the hippocampus. The only significant difference between the rat lines in ER mRNA expression was found in the medial posterodorsal amygdala, where the FSL rats showed lower ERalpha expression levels. Overall, estradiol treatment increased 5-HT(2A) and decreased 5-HT(1A) receptor mRNA levels in several of the examined regions of both lines. Thus, in many areas, estradiol was found to regulate the 5-HT receptor mRNA expression in the opposite direction to the alterations found in the FSL rats. These findings further support the implication of 5-HT receptors, in particular the 5-HT(2A) subtype, in the etiology of affective disorders. Moreover, the ability of estradiol to regulate the expression of the 5-HT(1A) and 5-HT(2A) receptor genes might account for the reported influence of gonadal hormones in mood and depression.

  10. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  11. Differential expression of viral PAMP receptors mRNA in peripheral blood of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Riñón Marta

    2007-11-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMP receptors play a key role in the early host response to viruses. In this work, we determined mRNA levels of two members of the Toll-like Receptors family, (TLR3 and TLR7 and the helicase RIG-I, all of three recognizing viral RNA products, in peripheral blood of healthy donors and hepatitis C virus (HCV patients, to observe if their transcripts are altered in this disease. Methods IFN-α, TLR3, TLR7 and RIG-I levels in peripheral blood from healthy controls (n = 18 and chronic HCV patients (n = 18 were quantified by real-time polymerase chain reaction. Results Our results show that IFN-α, TLR3, TLR7 and RIG-I mRNA levels are significantly down-regulated in patients with chronic HCV infection when compared with healthy controls. We also found that the measured levels of TLR3 and TLR7, but not RIG-I, correlated significantly with those of IFN-α Conclusion Monitoring the expression of RNA-sensing receptors like TLR3, TLR7 and RIG-I during the different clinical stages of infection could bring a new source of data about the prognosis of disease.

  12. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism.

    Science.gov (United States)

    Wells, Audrey M; Ridener, Elysia; Bourbonais, Clinton A; Kim, Woori; Pantazopoulos, Harry; Carroll, F Ivy; Kim, Kwang-Soo; Cohen, Bruce M; Carlezon, William A

    2017-08-09

    Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness. SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in

  13. Persistent activation of NF-kappaB related to IkappaB's degradation profiles during early chemical hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    García-Román Rebeca

    2007-04-01

    Full Text Available Abstract Background To define the NF-kappaB activation in early stages of hepatocarcinogenesis and its IkappaB's degradation profiles in comparison to sole liver regeneration. Methods Western-blot and EMSA analyses were performed for the NF-kappaB activation. The transcriptional activity of NF-kappaB was determined by RT-PCR of the IkappaB-α mRNA. The IkappaB's degradation proteins were determined by Western-blot assay. Results We demonstrated the persistent activation of NF-kappaB during early stages of hepatocarcinogenesis, which reached maximal level 30 min after partial hepatectomy. The DNA binding and transcriptional activity of NF-kappaB, were sustained during early steps of hepatocarcinogenesis in comparison to only partial hepatectomy, which displayed a transitory NF-kappaB activation. In early stages of hepatocarconogenesis, the IkappaB-α degradation turned out to be acute and transitory, but the low levels of IkappaB-β persisted even 15 days after partial hepatectomy. Interestingly, IkappaB-β degradation is not induced after sole partial hepatectomy. Conclusion We propose that during liver regeneration, the transitory stimulation of the transcription factor response, assures blockade of NF-kappaB until recovery of the total mass of the liver and the persistent NF-kappaB activation in early hepatocarcinogenesis may be due to IkappaB-β and IkappaB-α degradation, mainly IkappaB-β degradation, which contributes to gene transcription related to proliferation required for neoplasic progression.

  14. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals

  15. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland.

    Science.gov (United States)

    Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S

    2007-08-01

    Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.

  16. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells

    International Nuclear Information System (INIS)

    Yoon, Hana; Oh, Young Taek; Lee, Jung Yeon; Choi, Ji Hyun; Lee, Ju Hie; Baik, Hyung Hwan; Kim, Sung Soo; Choe, Wonchae; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug

    2008-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. Kainic acid (KA), a prototype excitotoxin is known to induce brain-derived neurotrophic factor (BDNF) in brain. In this study, we examined the role of AMPK in KA-induced BDNF expression in C6 glioma cells. We showed that KA and KA receptor agonist induced activation of AMPK and KA-induced AMPK activation was blocked by inhibition of Ca 2+ /calmodulin-dependent protein kinase kinase (CaMKK) β. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPKα1 blocked KA-induced BDNF mRNA and protein expression. Inhibition of AMPK blocked KA-induced phosphorylation of CaMKII and I kappaB kinase (IKK) in C6 cells. Finally, we showed that inhibition of AMPK reduced DNA binding and transcriptional activation of nuclear factor-kappaB (NF-κB) in KA-treated cells. These results suggest that AMPK mediates KA-induced BDNF expression by regulating NF-κB activation

  17. A kinetic analysis of kappa-opioid agonist binding using the selective radioligand (/sup 3/H)U69593

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Hunter, J.C.; Hill, R.G.; Hughes, J.

    1989-07-01

    The interaction of the nonselective opioid ligand (3H)bremazocine and of the kappa-opioid (3H)U69593 with the kappa-receptor was investigated in guinea-pig cortical membranes. Each radioligand bound to a single population of high-affinity sites, although (3H)U69593 apparently recognised only 70% of those sites labelled by (3H)bremazocine. Naloxone and the kappa-selective ligands U69593 and PD117302 exhibited full inhibition of the binding of both radioligands. Kinetic analysis demonstrated biphasic rates of association and dissociation for both (3H)bremazocine and (3H)U69593. Detailed analysis of the binding of (3H)U69593 revealed that the fast rate of association was dependent on radioligand concentration, in contrast to the slow rate, which was independent of ligand concentration. Guanylyl-5'-imidodiphosphate (GppNHp) inhibited binding of (3H)U69593; saturation analysis demonstrated that the inhibitory effects of GppNHp resulted in a decrease in affinity without any significant change in binding capacity. GppNHp attenuated the formation of the slow component of (3H)U69593 binding, while accelerating the fast component. The data are consistent with the formation of a high-affinity complex between the kappa-receptor and a guanine nucleotide binding protein. Guanine nucleotides promote the dissociation of this ternary complex and the stabilisation of a lower-affinity state of the receptor.

  18. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, Ahmed [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Yacoub, Daniel [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Zaid, Younes [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Mourad, Walid [Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Merhi, Yahye, E-mail: yahye.merhi@icm-mhi.org [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  19. Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display

    Energy Technology Data Exchange (ETDEWEB)

    Yongmin, Yang [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Barankiewicz, Teresa J [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Mingyue, He [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Taussig, Michael J [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Chen, Swey-Shen [Institute of Genetics, San Diego, CA 92121-2233 (United States) and IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States)

    2007-07-27

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

  20. Polymorphisms of the Kappa Opioid Receptor and Prodynorphin Genes: HIV risk and HIV Natural History

    Science.gov (United States)

    Proudnikov, Dmitri; Randesi, Matthew; Levran, Orna; Yuferov, Vadim; Crystal, Howard; Ho, Ann; Ott, Jurg; Kreek, Mary Jeanne

    2013-01-01

    Objective Studies indicate cross-desensitization between opioid receptors (e.g., kappa opioid receptor, OPRK1), and chemokine receptors (e.g., CXCR4) involved in HIV infection. We tested whether gene variants of OPRK1 and its ligand, prodynorphin (PDYN), influence the outcome of HIV therapy. Methods Three study points, admission to the Women’s Interagency HIV Study (WIHS), initiation of highly active antiretroviral therapy (HAART) and the most recent visit were chosen for analysis as crucial events in the clinical history of the HIV patients. Regression analyses of 17 variants of OPRK1, and 11 variants of PDYN with change of viral load (VL) and CD4 count between admission and initiation of HAART, and initiation of HAART to the most recent visit to WIHS were performed in 598 HIV+ subjects including African Americans, Hispanics and Caucasians. Association with HIV status was done in 1009 subjects. Results Before HAART, greater VL decline (improvement) in carriers of PDYN IVS3+189C>T, and greater increase of CD4 count (improvement) in carriers of OPRK1 −72C>T, were found in African Americans. Also, greater increase of CD4 count in carriers of OPRK1 IVS2+7886A>G, and greater decline of CD4 count (deterioration) in carriers of OPRK1 −1205G>A, were found in Caucasians. After HAART, greater decline of VL in carriers of OPRK1 IVS2+2225G>A, and greater increase of VL in carriers of OPRK1 IVS2+10658G>T and IVS2+10963A>G, were found in Caucasians. Also, a lesser increase of CD4 count was found in Hispanic carriers of OPRK1 IVS2+2225G>A. Conclusion OPRK1 and PDYN polymorphisms may alter severity of HIV infection and response to treatment. PMID:23392455

  1. 5-hydroxytryptamine1C receptor density and mRNA levels in choroid plexus epithelial cells after treatment with mianserin and (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane.

    Science.gov (United States)

    Barker, E L; Sanders-Bush, E

    1993-10-01

    5-Hydroxytryptamine (5HT)1C and 5HT2 receptors display paradoxical down-regulation when exposed to receptor antagonists in vivo, a property that is unique to these two subtypes of serotonin (5HT) receptors. Because of the absence of cell culture model systems, the mechanisms involved in this paradoxical down-regulation have been difficult to explore. The present study focuses on the regulation of 5HT1C receptors in primary cultures of rat choroid plexus epithelial cells. Exposure of the epithelial cell cultures to 100 nM mianserin, a receptor antagonist, or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane, an agonist, for 72 hr caused a loss of 5HT1C receptor binding sites, as determined by [3H]mesulergine binding to crude membrane preparations. No significant changes in Kd values were observed. Neither the agonist nor antagonist caused a significant change in binding sites after 24 hr. A solution hybridization assay was used to determine whether the down-regulation by mianserin or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane was accompanied by a decrease in the steady state level of 5HT1C receptor mRNA. These studies showed that neither treatment caused an alteration in the levels of 5HT1C receptor mRNA. Thus, it is possible to reproduce the in vivo regulatory effects of drugs on 5HT1C receptors in choroid plexus epithelial cells in culture, including the atypical down-regulation by receptor antagonists. Using this cell culture model system, indirect transynaptic effects and decreases in receptor mRNA levels have been ruled out as mechanisms accounting for the down-regulation.

  2. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  3. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  4. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    Science.gov (United States)

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  5. Sex differences in kappa opioid receptor function and their potential impact on addiction

    Directory of Open Access Journals (Sweden)

    Elena eChartoff

    2015-12-01

    Full Text Available Behavioral, biological and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN, an endogenous ligand at kappa opioid receptors (KORs, is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain,mood and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN gene, genetic linkage with the melanocortin-1 receptor (MC1R, heterodimerization of KORs and mu opioid receptors (MORs, and gonadal hormones

  6. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction.

    Science.gov (United States)

    Chartoff, Elena H; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  7. Distribution of androgen and estrogen receptor mRNA in the brain and reproductive tissues of the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Rhen, T; Crews, D

    2001-09-03

    Incubation temperature during embryonic development determines gonadal sex in the leopard gecko, Eublepharis macularius. In addition, both incubation temperature and gonadal sex influence behavioral responses to androgen and estrogen treatments in adulthood. Although these findings suggest that temperature and sex steroids act upon a common neural substrate to influence behavior, it is unclear where temperature and hormone effects are integrated. To begin to address this question, we identified areas of the leopard gecko brain that express androgen receptor (AR) and estrogen receptor (ER) mRNA. We gonadectomized adult female and male geckos from an incubation temperature that produces a female-biased sex ratio and another temperature that produces a male-biased sex ratio. Females and males from both temperatures were then treated with equivalent levels of various sex steroids. Region-specific patterns of AR mRNA expression and ER mRNA expression were observed upon hybridization of radiolabeled (35S) cRNA probes to thin sections of reproductive tissues (male hemipenes and female oviduct) and brain. Labeling for AR mRNA was very intense in the epithelium, but not within the body, of the male hemipenes. In contrast, expression of ER mRNA was prominent in most of the oviduct but not in the luminal epithelium. Within the brain, labeling for AR mRNA was conspicuous in the anterior olfactory nucleus, the lateral septum, the medial preoptic area, the periventricular preoptic area, the external nucleus of the amygdala, the anterior hypothalamus, the ventromedial hypothalamus, the premammillary nucleus, and the caudal portion of the periventricular nucleus of the hypothalamus. Expression of ER mRNA was sparse in the septum and was prominent in the ventromedial hypothalamus, the caudal portion of the periventricular nucleus of the hypothalamus, and a group of cells near the torus semicircularis. Many of these brain regions have been implicated in the regulation of hormone

  8. Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways.

    Science.gov (United States)

    Jang, Byeong-Churl; Kim, Do-Hyun; Park, Jong-Wook; Kwon, Taeg Kyu; Kim, Sang-Pyo; Song, Dae-Kyu; Park, Jong-Gu; Bae, Jae-Hoon; Mun, Kyo-Chul; Baek, Won-Ki; Suh, Min-Ho; Hla, Timothy; Suh, Seong-Il

    2004-04-02

    Induction of COX-2 by catalase in smooth muscle cells, endothelial cells, and neuronal cells has been previously reported. However, the mechanism by which catalase up-regulates COX-2 remains poorly understood. In this study, we investigated the effect of catalase on induction of COX-2 in macrophages. The addition of catalase into Raw 264.7 macrophages induced COX-2 expression that was correlated with increased COX-2 transcription and mRNA stability. Catalase also induced activation of NF-kappaB, PI3K, ERKs, p38s, or JNKs. Catalase-induced COX-2 expression was abrogated by treatment of MG-132 (a NF-kappaB inhibitor) or LY294002 (a PI3K inhibitor), but not by treatment of PD98059 (an ERK inhibitor), SB203580 (a p38 inhibitor), or SP600125 (a JNK inhibitor). Moreover, inhibition of PI3K by LY294002 caused partial decrease of catalase-induced COX-2 transcription and steady-state COX-2 transcript levels, but not COX-2 mRNA stability. Together, these results suggest that catalase induces the expression of COX-2 in Raw 264.7 macrophages, and the induction is related with activation of NF-kappaB transcription factor and PI3K signaling pathway.

  9. RANKL/RANK/OPG cytokine receptor system: mRNA expression pattern in BPH, primary and metastatic prostate cancer disease.

    Science.gov (United States)

    Christoph, Frank; König, Frank; Lebentrau, Steffen; Jandrig, Burkhard; Krause, Hans; Strenziok, Romy; Schostak, Martin

    2018-02-01

    The cytokine system RANKL (receptor activator of NF-κB ligand), its receptor RANK and the antagonist OPG (osteoprotegerin) play a critical role in bone turnover. Our investigation was conducted to describe the gene expression at primary tumour site in prostate cancer patients and correlate the results with Gleason Score and PSA level. Seventy-one samples were obtained from prostate cancer patients at the time of radical prostatectomy and palliative prostate resection (n = 71). Patients with benign prostate hyperplasia served as controls (n = 60). We performed real-time RT-PCR after microdissection of the samples. The mRNA expression of RANK was highest in tumour tissue from patients with bone metastases (p BPH or locally confined tumours, also shown in clinical subgroups distinguished by Gleason Score (BPH tissue but did not exceed as much as in the tumour tissue. We demonstrated that RANK, RANKL and OPG are directly expressed by prostate cancer cells at the primary tumour site and showed a clear correlation with Gleason Score, serum PSA level and advanced disease. In BPH, mRNA expression is also detectable, but RANK expression does not exceed as much as compared to tumour tissue.

  10. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB.

    Science.gov (United States)

    Reinecke, Kirstin; Lucius, Ralph; Reinecke, Alexander; Rickert, Uta; Herdegen, Thomas; Unger, Thomas

    2003-11-01

    The AT2 receptor regulates several functions of nerve cells, e.g., ionic fluxes, cell differentiation, and axonal regeneration, but also modulates programmed cell death. We tested the hypothesis that angiotensin II (ANG II) via its AT2 receptor not only promotes regeneration but also functional recovery after sciatic nerve crush in adult rats. ANG II (10(-7), 10(-9), 10(-11) M) applied locally via osmotic minipumps promoted functional recovery with maximal effects after the lowest concentration. The toe spread distance as a parameter for re-innervation after 20 days was significantly (Pelectrical stimulation (return of sensorimotor function) was reduced to 14.6 days vs. 17.9 days in the control group (PSchwann cells. Histological criteria, morphometric analyses, and electron microscopy confirmed the functional data. These results are the first to present direct evidence for an involvement of the AT2 receptor and NF-kappaB in peripheral nerve regeneration.

  11. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  12. Differential between Protein and mRNA Expression of CCR7 and SSTR5 Receptors in Crohn's Disease Patients

    Directory of Open Access Journals (Sweden)

    Nathalie Taquet

    2009-01-01

    Full Text Available Crohn's disease (CD is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 ± 71 times in CD peripheral blood mononuclear cells (PBMCs. Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 ± 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.

  13. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Leissner, Philippe; Verjat, Thibault; Bachelot, Thomas; Paye, Malick; Krause, Alexander; Puisieux, Alain; Mougin, Bruno

    2006-01-01

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  14. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Krause Alexander

    2006-08-01

    Full Text Available Abstract Background One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1. In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. Methods The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. Results uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS and Breast Cancer specific Survival (BCS were significantly shorter in patients expressing high levels of PAI-1 mRNA (p PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR = 10.12; p = 0.0002 and for BCS (HR = 13.17; p = 0.0003. Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41 nor with BCS (p = 0.19. In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. Conclusion These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer patients.

  15. Chemokine-Like Receptor 1 mRNA Weakly Correlates with Non-Alcoholic Steatohepatitis Score in Male but Not Female Individuals

    Directory of Open Access Journals (Sweden)

    Maximilian Neumann

    2016-08-01

    Full Text Available The chemokine-like receptor 1 (CMKLR1 ligands resolvin E1 and chemerin are known to modulate inflammatory response. The progression of non-alcoholic fatty liver disease (NAFLD to non-alcoholic steatohepatitis (NASH is associated with inflammation. Here it was analyzed whether hepatic CMKLR1 expression is related to histological features of NASH. Therefore, CMKLR1 mRNA was quantified in liver tissue of 33 patients without NAFLD, 47 patients with borderline NASH and 38 patients with NASH. Hepatic CMKLR1 mRNA was not associated with gender and body mass index (BMI in the controls and the whole study group. CMKLR1 expression was similar in controls and in patients with borderline NASH and NASH. In male patients weak positive correlations with inflammation, fibrosis and NASH score were identified. In females CMKLR1 was not associated with features of NAFLD. Liver CMKLR1 mRNA tended to be higher in type 2 diabetes patients of both genders and in hypercholesterolemic women. In summary, this study shows that hepatic CMKLR1 mRNA is weakly associated with features of NASH in male patients only.

  16. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  17. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    Science.gov (United States)

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  18. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats.

    Science.gov (United States)

    Nemeth, Christina L; Paine, Tracie A; Rittiner, Joseph E; Béguin, Cécile; Carroll, F Ivy; Roth, Bryan L; Cohen, Bruce M; Carlezon, William A

    2010-06-01

    Disruptions in perception and cognition are characteristic of psychiatric conditions such as schizophrenia. Studies of pharmacological agents that alter perception and cognition in humans might provide a better understanding of the brain substrates of these complex processes. One way to study these states in rodents is with tests that require attention and visual perception for correct performance. We examined the effects of two drugs that cause disruptions in perception and cognition in humans-the kappa-opioid receptor (KOR) agonist salvinorin A (salvA; 0.125-4.0 mg/kg) and the non-competitive NMDA receptor antagonist ketamine (0.63-20 mg/kg)-on behavior in rats using the 5-choice serial reaction time task (5CSRTT), a food-motivated test that quantifies attention. We also compared the binding profiles of salvA and ketamine at KORs and NMDA receptors. SalvA and ketamine produced the same pattern of disruptive effects in the 5CSRTT, characterized by increases in signs often associated with reduced motivation (omission errors) and deficits in processing (elevated latencies to respond correctly). Sessions in which rats were fed before testing suggest that reduced motivation produces a subtly different pattern of behavior. Pretreatment with the KOR antagonist JDTic (10 mg/kg) blocked all salvA effects and some ketamine effects. Binding and function studies revealed that ketamine is a full agonist at KORs, although not as potent or selective as salvA. SalvA and ketamine have previously under-appreciated similarities in their behavioral effects and pharmacological profiles. By implication, KORs might be involved in some of the cognitive abnormalities observed in psychiatric disorders such as schizophrenia.

  19. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  20. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  1. Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4

    Directory of Open Access Journals (Sweden)

    Karlsson Mattias

    2012-01-01

    Full Text Available Abstract Background Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs, and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation. Results Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB. Conclusions The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1

  2. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain

    DEFF Research Database (Denmark)

    Zondag, G C; Koningstein, G M; Jiang, Y P

    1995-01-01

    and is found in diverse transmembrane proteins, is not known. We previously reported that both RPTP mu and RPTP kappa can mediate homophilic cell interactions when expressed in insect cells. Here we show that despite their striking structural similarity, RPTP mu and RPTP kappa fail to interact...... in a heterophilic manner. To examine the role of the MAM domain in homophilic binding, we expressed a mutant RPTP mu lacking the MAM domain in insect Sf9 cells. Truncated RPTP mu is properly expressed at the cell surface but fails to promote cell-cell adhesion. Homophilic cell adhesion is fully restored...... in a chimeric RPTP mu molecule containing the MAM domain of RPTP kappa. However, this chimeric RPTP mu does not interact with either RPTP mu or RPTP kappa. These results indicate that the MAM domain of RPTP mu and RPTP kappa is essential for homophilic cell-cell interaction and helps determine the specificity...

  3. [mRNA expression of dopamine receptor D2 and dopamine transporter in peripheral blood lymphocytes before and after treatment in children with tic disorder].

    Science.gov (United States)

    Ji, Xiao-Yi; Wu, Min

    2016-04-01

    To investigate the mRNA expression of dopamine receptor D2 (DRD2) and dopamine transporter (DAT) in peripheral blood lymphocytes before and after treatment in children with tic disorder (TD). RT-PCR was used to measure the mRNA expression of DRD2 and DAT in peripheral blood lymphocytes before and after treatment in 60 children with TD. The correlations between mRNA expression of DRD2 and DAT and the severity of TD were analyzed. Sixty healthy children served as the control group. Before treatment, the children with TD had a significant increase in the mRNA expression of DRD2 and DAT compared with the control group (PTic Severity Scale (YGTSS) score (P<0.05). In the children with moderate TD, the mRNA expression of DAT was positively correlated with YGTSS score (P<0.05). In children with TD, the mRNA expression of DRD2 in peripheral blood lymphocytes can be used as one of the indicators for diagnosing TD, assessing the severity of TD, and evaluating clinical outcomes.

  4. 125I-DPDYN, monoiodo [D-Pro10]- dynorphin (1-11), is an effective and useful tool for the study of kappa opioid receptors

    International Nuclear Information System (INIS)

    Gairin, J.E.; Jomary, C.; Cros, J.; Meunier, J.C.

    1986-01-01

    Iodination of the kappa-selective peptide DPDYN, [D-Pro10]-dynorphin (1-11), has been performed. The non radioactive monoiodo derivative of DPDYN retains kappa-selectivity (kappa/mu = 48 and kappa/delta = 140), despite a general but moderate decrease in affinity. Radioiodination of DPDYN leads to the monoiodinated peptide (S.A 700-800 Ci/mmol) which interacts specifically and reversibly with the kappa-sites in guinea-pig cerebellum membranes with high affinity (KD = 0.12-0.18 nM). In guinea-pig brain (mu-delta-kappa) and rabbit cerebellum (kappa much less than mu), 125 I-DPDYN discriminates between kappa- and other (mu, delta) binding sites. We have used this new labelled probe for the direct, precise and rapid (exposure time less than 100 hours) visualization of kappa-sites in guinea-pig and rabbit cerebellar slices using autoradiography

  5. mRNA expression profile of prostaglandin D2 receptors in rat trigeminovascular system, and effect of prostaglandins in rat migraine models

    DEFF Research Database (Denmark)

    Sekeroglu, A.; Jansen-Olesen, I.; Gupta, S.

    2015-01-01

    not changed in the trigeminal nucleus caudalis. Conclusions: PGD2 induced vasodilation of MMA is mainly mediated by activation of DP1 receptors. Furthermore, high expression of DP1 mRNA in TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. However, infusion of PG mix in awake rats did...

  6. Spironolactone induces apoptosis and inhibits NF-kappaB independent of the mineralocorticoid receptor

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Woetmann, Anders; Odum, Niels

    2006-01-01

    mononuclear cells (MNC). To elucidate the mechanism behind SPIR's apoptotic effect, we investigated the relation between apoptosis and cytokine suppression for SPIR along with the apoptosis-inducing and antiinflammatory drug sulfasalazine (SFZ). Using human MNC, we found that SPIR and SFZ, at concentrations...... 10 and 1000 muM, respectively, significantly increased both apoptosis and cell death. Production of inflammatory cytokines was significantly reduced by 3 to 30 muM SPIR and by 300 to 1000 muM SFZ. We also found that 0.4 muM SPIR and 300 muM SFZ significantly reduced the activity of NF......-kappaB, a transcription factor involved in both apoptosis and immunoinflammation. ALDO, the MR antagonist, eplerenone, and the SPIR metabolite, 7alpha-thiomethyl-spironolactone, slightly reduced NF-kappaB activity, but they did not interfere with SPIR's effect, showing that MR binding is not involved in SPIR...

  7. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Babcock

    2017-01-01

    Full Text Available Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR and hypoxia inducible factor-1α (HIF-1α. The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D out of four potential HIF response elements of the hKOR gene (HIFA–D synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing, suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.

  8. Differential conserted activity induced regulation of Nogo receptors (1-3, LOTUS and Nogo mRNA in mouse brain.

    Directory of Open Access Journals (Sweden)

    Tobias E Karlsson

    Full Text Available Nogo Receptor 1 (NgR1 mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.

  9. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  10. Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Rakić Mia

    2013-01-01

    Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.

  11. Increased Expression Of Toll-Like Receptor 2 Mrna Following Permanent Middle Cerebral Artery Occlusion In Rat: Role Of TRPV1 Receptors

    Directory of Open Access Journals (Sweden)

    Amir Moghadam Ahmadi

    2017-02-01

    Full Text Available Background: Stroke is a major cause of mortality and long term disability in adults. TRPV1 has a pivotal role in neuroinflammation. Among TLRs, TLR2 significantly participate in induction of inflammation in brain. In this study, the effect of TRPV1 receptor agonist and antagonist on outcome and gene expression of TLR2 in a rat model of permanent middle cerebral artery occlusion (MCAO was investigated. Methods: Forty male rats were assigned to the following groups: sham, vehicle stroke, AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke, and capsaicin (1 mg/kg; 3 h after stroke. Stroke was induced by permanent middle cerebral artery occlusion and behavioral functions were assessed 1, 3, and 7 days after stroke. Infarct volume, brain edema and mRNA expression of TLR2 were also evaluated at the end of the study. Results: While stroke animals showed infarctions and behavioral functions, we did not observe any cerebral infarction and behavioral functions in sham-operated animals. AMG9810 decreased neurological deficits 7 days after cerebral ischemia (P<0.01. In the ledged beam-walking test, the slip ratio was increased following ischemia (*P < 0.05. AMG9810 improved this index in animals undergone stroke. However, capsaicin enhanced the slip ratio 3 and 7 days after cerebral ischemia (#P<0.05. TLR2 P<0.05(mRNA expression was elevated in ischemic rats.   Conclusion: Our data indicate that pharmacological blockade of TRPV1 by AMG9810 attenuates behavioral function and mRNA expression of TLR2. Therefore, it might be useful as a potential target for the treatment of ischemic stroke.

  12. Significant differences in physicochemical properties of human immunoglobulin kappa and lambda CDR3 regions

    Directory of Open Access Journals (Sweden)

    Catherine L Townsend

    2016-09-01

    Full Text Available Antibody variable regions are composed of a heavy and a light chain and in humans there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain CDR-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 - light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains, and probed the Protein Data Bank (PDB to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda and heavy chain gene rearrangements are correlated within donors, but can differ between donors. This indicates that TdT may work with differing efficiencies between different people, but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

  13. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions.

    Science.gov (United States)

    Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

  14. An Automation Interface for Kappa PC

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    The reports documents an automation interface for Kappa PC. The automation interface can be used to embed Kappa applications in 32-bit Windowsapplications.The interface includes functions for initialising Kappa, for loading an application, for settingvalues, for getting values, and for stopping...

  15. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  16. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    International Nuclear Information System (INIS)

    Lucy, M.C.; Boyd, C.K.; Koenigsfeld, A.T.; Okamura, C.S.

    1998-01-01

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  17. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  18. Correlation of Adiponectin mRNA Abundance and Its Receptors with Quantitative Parameters of Sperm Motility in Rams

    Directory of Open Access Journals (Sweden)

    Ali Kadivar

    2016-05-01

    Full Text Available Background: Adiponectin and its receptors (AdipoR1 and AdipoR2, known as adiponectin system, have some proven roles in the fat and glucose metabolisms. Several studies have shown that adiponectin can be considered as a candidate in linking metabolism to testicular function. In this regard, we evaluated the correlation between sperm mRNA abundance of adiponectin and its receptors, with sperm motility indices in the present study. Materials and Methods: In this completely randomized design study, semen samples from 6 adult rams were fractionated on a two layer discontinuous percoll gradient into high and low motile sperm cells, then quantitative parameters of sperm motility were determined by computer-assisted sperm analyzer (CASA. The mRNA abundance levels of Adiponectin, AdipoR1 and AdipoR2 were measured quantitatively using real-time reverse transcriptase polymerase chain reaction (qRT-PCR in the high and low motile groups. Results: Firstly, we showed that adiponectin and its receptors (AdipoR1 and AdipoR2 were transcriptionally expressed in the ram sperm cells. Using Pfaff based method qRTPCR, these levels of transcription were significantly higher in the high motile rather than low motile samples. This increase was 3.5, 3.6 and 2.5 fold change rate for Adiponectin, AdipoR1 and AdipoR2, respectively. Some of sperm motility indices [curvilinear velocity (VCL, straight-line velocity (VSL, average path velocity (VAP, linearity (LIN, wobble (WOB and straightness (STR] were also significantly correlated with Adiponectin and AdipoR1 relative expression. The correlation of AdipoR2 was also significant with the mentioned parameters, although this correlation was not comparable with adiponectin and AdipoR1. Conclusion: This study revealed the novel association of adiponectin system with sperm motility. The results of our study suggested that adiponectin is one of the possible factors which can be evaluated and studied in male infertility disorders.

  19. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  20. Cdc25A promotes cell survival by stimulating NF-{kappa}B activity through I{kappa}B-{alpha} phosphorylation and destabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hey-Young; Choi, Jiyeon [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701 (Korea, Republic of); Cho, Young-Wook [Korea Basic Science Institute, Chuncheon Center, Gangwondaehak-gil 1, Chuncheon 200-701 (Korea, Republic of); Kim, Byung-Chul, E-mail: bckim@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701 (Korea, Republic of)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer We examine the antiapoptotic mechanisms of Cdc25A. Black-Right-Pointing-Pointer Smad7 decreases the phosphorylation of I{kappa}B-alpha at Ser-32. Black-Right-Pointing-Pointer Smad7 positively regulates NF-{kappa}B activity through I{kappa}B-alpha ubiquitination. -- Abstract: Cell division cycle 25A (Cdc25A), a dual specificity protein phosphatase, exhibits anti-apoptotic activity, but the underlying molecular mechanisms are poorly characterized. Here we report that Cdc25A inhibits cisplatin-induced apoptotic cell death by stimulating nuclear factor-kappa B (NF-{kappa}B) activity. In HEK-293 cells, Cdc25A decreased protein level of inhibitor subunit kappa B alpha (I{kappa}-B{alpha}) in association with increased serine 32-phosphorylation, followed by stimulation of transcriptional activity of NF-{kappa}B. Inhibition of NF-{kappa}B activity by chemical inhibitor or overexpression of I{kappa}-B{alpha} in Cdc25A-elevated cancer cells resistant to cisplatin improved their sensitivity to cisplatin-induced apoptosis. Our data show for the first time that Cdc25A has an important physiological role in NF-{kappa}B activity regulation and it may be an important survival mechanism of cancer cells.

  1. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adenosine A1, A2a, A2B, and A3 receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Štreitová, Denisa; Hofer, Michal; Holá, Jiřina; Vacek, Antonín; Pospíšil, Milan

    2010-01-01

    Roč. 59, č. 1 (2010), s. 139-144 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptors * macrophage * mRNA expression Subject RIV: BO - Biophysics Impact factor: 1.646, year: 2010

  3. Effect of PGD2 on middle meningeal artery and mRNA expression profile of L-PGD2 synthase and DP receptors in trigeminovascular system and other pain processing structures in rat brain

    DEFF Research Database (Denmark)

    Sekeroglu, Aysegül; Jacobsen, Julie Mie; Jansen-Olesen, Inger

    2017-01-01

    Background Prostaglandins (PGs), particularly prostaglandin D2 (PGD2), E2 (PGE2), and I2 (PGI2), are considered to play a role in migraine pain. In humans, infusion of PGD2 causes lesser headache as compared to infusion of PGE2 and PGI2. Follow-up studies in rats have shown that infusion of PGE2...... and PGI2 dilate the middle meningeal artery (MMA), and mRNA for PGE2 and PGI2 receptors is present in rat trigeminovascular system (TVS) and in the brain structures associated with pain. In the present study, we have characterized the dilatory effect of PGD2 on rat MMA and studied the relative m...... tested tissues. DP1 receptor mRNA was expressed maximally in trigeminal ganglion (TG) and in cervical dorsal root ganglion (DRG). Conclusions High expression of DP1 mRNA in the TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. Activation of the DP1 receptor in MMA was mainly...

  4. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  5. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  6. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.

    Science.gov (United States)

    Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian

    2002-11-18

    Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.

  7. The disagreeable behaviour of the kappa statistic.

    Science.gov (United States)

    Flight, Laura; Julious, Steven A

    2015-01-01

    It is often of interest to measure the agreement between a number of raters when an outcome is nominal or ordinal. The kappa statistic is used as a measure of agreement. The statistic is highly sensitive to the distribution of the marginal totals and can produce unreliable results. Other statistics such as the proportion of concordance, maximum attainable kappa and prevalence and bias adjusted kappa should be considered to indicate how well the kappa statistic represents agreement in the data. Each kappa should be considered and interpreted based on the context of the data being analysed. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Site-specific effects of the nonsteroidal anti-inflammatory drug lysine clonixinate on rat brain opioid receptors.

    Science.gov (United States)

    Ortí, E; Coirini, H; Pico, J C

    1999-04-01

    In addition to effects in the periphery through inhibition of prostaglandin synthesis, several lines of evidence suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) act in the central nervous system. The possibility that the central action of NSAIDs involves regulation of opioid receptors was investigated by quantitative autoradiography of mu, delta, and kappa sites in rat brain slices. Increased (p lysine clonixinate. Labeling of delta receptors was lower in the lateral septum, and kappa sites decreased in thalamic nuclei. These effects were not mediated through direct interaction with opioid-binding sites, since receptor-binding assays using rat brain membranes confirmed that clonixinate up to 1 x 10(-4) mol/l does not inhibit mu, delta, and kappa receptor specific binding. Central effects of NSAIDs might, therefore, involve interaction with the opioid receptor system through indirect mechanisms.

  9. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    Science.gov (United States)

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  10. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction.

    Science.gov (United States)

    Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R

    2017-01-01

    The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic. © 2017 Elsevier Inc. All rights reserved.

  11. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  12. {kappa}-deformed realization of D=4 conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

    1995-07-01

    We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

  13. Sex differences in spatiotemporal expression of AR, ERα, and ERβ mRNA in the perinatal mouse brain.

    Science.gov (United States)

    Mogi, Kazutaka; Takanashi, Haruka; Nagasawa, Miho; Kikusui, Takefumi

    2015-01-01

    It has been shown that every masculinized function might be organized by a particular contribution of androgens vs. estrogens in a critical time window. Here, we aimed to investigate the sex differences in brain testosterone levels and in the spatiotemporal dynamics of steroid receptor mRNA expression in perinatal mice, by using enzyme immunoassay and real-time PCR, respectively. We found that testosterone levels in the forebrain transiently increased around birth in male mice. During the perinatal period, levels of androgen receptor mRNA in the hypothalamus (hypo) and prefrontal cortex (PFC) were higher in male mice than in female mice. Estrogen receptor α (ERα) mRNA levels in the hypo and hippocampus were higher in male mice than in female mice before birth. In contrast, ERβ mRNA expression in the PFC was higher in female mice immediately after birth. These spatiotemporal sex differences in steroid receptor expression might contribute to organizing sex differences of not only reproductive function, but also anxiety, stress responses, and cognition in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. (/sup 3/H)diprenorphine binding to kappa-sites in guinea-pig and rat brain: Evidence for apparent heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.S.; Traynor, J.R.

    1989-07-01

    The binding of the unselective opioid antagonist (/sup 3/H)diprenorphine to homogenates prepared from rat brain and from guinea-pig brain and cerebellum has been studied in HEPES buffer containing 10 mM Mg2+ ions. Sequential displacement of bound (/sup 3/H)diprenorphine by ligands with selectivity for mu-, delta-, and kappa-opioid receptors uncovers the multiple components of binding. In the presence of cold ligands that occupy all mu-, delta-, and kappa-sites, opioid binding still remains. This binding represents 20% of total specific sites and is displaced by naloxone. The nature of these undefined opioid binding sites is discussed.

  15. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus).

    Science.gov (United States)

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A

    2014-04-01

    The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.

  16. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  17. Angle Kappa and its importance in refractive surgery

    Directory of Open Access Journals (Sweden)

    Majid Moshirfar

    2013-01-01

    Full Text Available Angle kappa is the difference between the pupillary and visual axis. This measurement is of paramount consideration in refractive surgery, as proper centration is required for optimal results. Angle kappa may contribute to MFIOL decentration and its resultant photic phenomena. Adjusting placement of MFIOLs for angle kappa is not supported by the literature but is likely to help reduce glare and haloes. Centering LASIK in angle kappa patients over the corneal light reflex is safe, efficacious, and recommended. Centering in-between the corneal reflex and the entrance pupil is also safe and efficacious. The literature regarding PRK in patients with an angle kappa is sparse but centering on the corneal reflex is assumed to be similar to centering LASIK on the corneal reflex. Thus, centration of MFIOLs, LASIK, and PRK should be focused on the corneal reflex for patients with a large angle kappa. More research is needed to guide surgeons′ approach to angle kappa.

  18. Preliminary Estimation of Kappa Parameter in Croatia

    Science.gov (United States)

    Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep

    2017-12-01

    Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.

  19. NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.

    Science.gov (United States)

    Chengedza, Shylet; Benbrook, Doris Mangiaracina

    2010-03-01

    Treatment of cancer with tumor necrosis factor-alpha (TNF-alpha) is hindered by resistance and toxicity. The flexible heteroarotinoid, SHetA2, sensitizes resistant ovarian cancer cells to TNF-alpha-induced extrinsic apoptosis, and also induces intrinsic apoptosis as a single agent. This study tested the hypothesis that nuclear factor-kappaB (NF-kappaB) is involved in SHetA2-regulated intrinsic and extrinsic apoptosis. SHetA2 inhibited basal and TNF-alpha-induced or hydrogen peroxide-induced NF-kappaB activity through counter-regulation of upstream kinase (IkappaB kinase) activity, inhibitor protein (IkappaB-alpha) phosphorylation, and p-65 NF-kappaB subunit nuclear translocation, but independently of reactive oxygen species generation. Ectopic over-expression of p-65, or treatment with TNF-alpha receptor 1 (TNFR1) small interfering RNA or a caspase-8 inhibitor, each attenuated synergistic apoptosis by SHetA2 and TNF-alpha, but did not affect intrinsic apoptosis caused by SHetA2. In conclusion, NF-kappaB repression is involved in SHetA2 circumvention of resistance to TNF-alpha-induced extrinsic apoptosis, but not in SHetA2 induction of intrinsic apoptosis.

  20. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    Science.gov (United States)

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  1. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  2. Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus

    International Nuclear Information System (INIS)

    Mahoney, Megan M.; Padmanabhan, Vasantha

    2010-01-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5 mg/kg/day) from day 30 to 90 of gestation (term 147 d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F 2α , just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  3. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus.

    Science.gov (United States)

    Mahoney, Megan M; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5mg/kg/day) from day 30 to 90 of gestation (term 147d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F(2alpha), just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female. 2010 Elsevier Inc. All rights reserved.

  4. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye; Rho, Seung-Sik; Park, Hyojin [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Young-Myeong [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Guen, E-mail: ygkwon@yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and is involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.

  5. Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

    Science.gov (United States)

    Ward, Melissa; Norman, Haval; D'Souza, Manoranjan S

    2018-02-15

    Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis of high specific activity tritium labelled 1S,2S-(-)-trans-2-isothiocyanato-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)benzene acetamide, a specific irreversible ligand for kappa opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B.R. de; Thurkauf, A.; Rothman, R.R. (National Inst. of Mental Health, Bethesda, MD (USA)); Jacobson, A.E.; Rice, K.C. (National Inst. of Digestive Diabetes, and Kidney Diseases, Bethesda, MD (USA))

    1990-11-01

    Optically pure tritium labeled 1S,2S-(-)-trans-2-isothiocyanato-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl )benzeneacetamide, an affinity ligand specific for the kappa opioid receptor was synthesized from optically pure 1S,2S-(-)-trans-2-amino-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide via the sequence of dibromination (57%) followed by catalytic tritiation of the dibromide. The resulting tritium labelled aniline (14% yield, specific activity 31.2 Ci/mmol) was transformed to the title compound in 13.3% yield and 99+% radiochemical purity by treatment with thiophosgene. (author).

  7. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Harunori [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi [Department of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima Kobe, Hyogo 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Miyazawa, Keiji [Discovery Research III, Research and Development, Kissei Pharmaceutical Company, 4365-1 Hodakakashiwara, Azumino, Nagano 399-8304 (Japan); Hla, Timothy [Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Box 69, NY 10065 (United States); Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  8. Studies on mRNA expression of the somatostatin receptor family in lung cancer

    International Nuclear Information System (INIS)

    Wang Jing; Deng Jinglan; Wu Shengxi; Qiao Hongqing

    2000-01-01

    Objective: To investigate the characteristics of expression and distribution of 5 subtypes of somatostatin receptors (SSTR1∼5) in lung cancer. Methods: With [α- 35 S]dATP labelled oligonucleotides of the 5 SSTR subtypes as probes, using in situ hybridization, patterns of mRNA expression were detected in lung cancer tissue sections of 21 cases which fell in varied pathologic types. Additionally, Leica Q-500 image analyzing device was employed to semi-quantitatively analyze density of the expression. Results: Patterns of SSTR1∼5 expression in lung cancer were as follows: SSTR2 expression was dominant in small cell lung cancer (SCLC) while in non-small cell lung cancer (NSCLC) such as adenous and squamous, SSTR1 expression was stronger than that of the other 4 subtypes, In density of SSTR1∼5 expression in lung cancer, NSCLC was higher than SCLC (P<0.01). Conclusions: even though patterns and density of expression of SSTR subtypes in the lung cancer showed heterogeneity in different histopathologic types, as in SCLC and in NSCLC. Therefore, it has positive prospects for somatostatin analog-oriented agents to be used in treatment of both types of the lung cancers

  9. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  10. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  11. Generation of a KOR-Cre knockin mouse strain to study cells involved in kappa opioid signaling.

    Science.gov (United States)

    Cai, Xiaoyun; Huang, Huizhen; Kuzirian, Marissa S; Snyder, Lindsey M; Matsushita, Megumi; Lee, Michael C; Ferguson, Carolyn; Homanics, Gregg E; Barth, Alison L; Ross, Sarah E

    2016-01-01

    The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non-neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR-Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR-Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR-Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR-Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR-Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR. © 2015 Wiley Periodicals, Inc.

  12. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  13. Insulin-like Growth Factor Receptor 1 mRNA Expression as a Prognostic Marker in Advanced Non-small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Vilmar, Adam; Santoni-Rugiu, Eric; Cillas, Jesus Garcia-Fon

    2014-01-01

    BACKGROUND: The insulin-like growth factor 1 receptor (IGF1R) has yet to be established as a biomarker in non-small cell lung cancer (NSCLC) but could prove useful in customized chemotherapy. We explored its prognostic value using both quantitative real-time reverse transcriptase polymerase chain......-points. RESULTS: Surgical tissue samples were available from 33 patients deemed inoperable. IGF1R status varied according to histopathology. Patients with tumors positive for IGF1R mRNA expression had a shorter progression-free and overall survival when compared to the negative sub-group (6.1 vs. 7.4 months, p=0...

  14. In situ hybridization on the change of m1 receptor mRNA in different brain areas of aged rats and the effect of Yin tonic Zhimu studied

    International Nuclear Information System (INIS)

    Hu Yaer; Xia Zongqin; Yi Ningyu

    1996-01-01

    The change of gene expression of m1 receptors in different brain areas of aged rats and the effects of water extract of the Yin tonic Zhimu and its active principle ZMS was studied. In situ hybridization using 35 S-labelled m1 and m2 probes and analysis of the autoradiographs using a computerized image-analyzer was selected. The grain density of m1 mRNA in striatum was significantly lowered in old rats as compared with young rats (decreased by 12.26 +- 3.60, P<0.01). Long-term oral administration of ZMS, the active principle of Yin tonic Zhimu but not the water extraction of Zhimu, elevated the m1 mRNA in striatum of aged rats (increased by 15.71 +- 3.27, P<0.01). Neither significant change of the grain density of m1 mRNA in old rats nor significant effect of Zhimu or ZMS was observed in cerebral cortex and hippocampus. The m1 mRNA level in striatum is decreased in aged rats and ZMS is able to elevate it

  15. NF-kappaB in Lung Tumorigenesis

    International Nuclear Information System (INIS)

    Cai, Zhenjian; Tchou-Wong, Kam-Meng; Rom, William N.

    2011-01-01

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis

  16. NF-kappaB in Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhenjian [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-12-14

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis.

  17. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Biasi, Glenn; Anderson, John G

    2007-01-01

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (∼20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: (1) The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in

  18. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, Glenn; Anderson, John G

    2007-12-05

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (~20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: 1. The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in ground

  19. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We...... are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT2A R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  20. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells.

    Science.gov (United States)

    Bae, Chang Hoon; Choi, Yoon Seok; Na, Hyung Gyun; Song, Si-Youn; Kim, Yong-Dae

    2018-03-01

    Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.

  1. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    DEFF Research Database (Denmark)

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    of the ERα mRNA level, but only significantly for prochloraz, dieldrin, and tolchlofos-methyl. Alone no pesticides affected the ERβ mRNA level significantly, but chlorpyrifos increased the mRNA level weakly. Co-exposure with E2 elicited a significant increased ERβ mRNA level by prochloraz, fenarimol...

  2. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Hoffmann Erik

    2012-03-01

    Full Text Available Abstract Background Androgens induce male characters by activating androgen receptors (AR. Previous quantitative studies on AR in fishes have been limited to few tissues and/or a single season/reproductive state. The aim of this investigation was to study the possible role of AR-beta expression levels in the control of male traits in the three-spined stickleback. To that end, AR-beta expression levels in major tissues in breeding and post-breeding male and female sticklebacks were examined. Methods AR-beta mRNA levels were quantified in ten tissues; eye, liver, axial muscle, heart, brain, intestine, ovary, testis, kidney and pectoral muscle in six breeding and post-breeding males and females using reverse transcription quantitative PCR. Results Breeding in contrast to post-breeding males built nests and showed secondary sexual characters (e.g. kidney hypertrophy and elevated androgen levels. Post-breeding females had lower ovarian weights and testosterone levels than breeding females. AR-beta was expressed in all studied tissues in both sexes and reproductive states with the highest expression in the gonads and in the kidneys. The kidney is an androgen target organ in sticklebacks, from which breeding males produce the protein spiggin, which is used in nest-building. There was also high AR-beta expression in the intestine, an organ that appears to take over hyperosmo-regulation in fresh water when the kidney hypertrophies in mature males and largely loses this function. The only tissue that showed effects of sex or reproductive state on AR-beta mRNA levels was the kidneys, where post-breeding males displayed higher AR-beta mRNA levels than breeding males. Conclusion The results indicate that changes in AR-beta mRNA levels play no or little role in changes in androgen dependent traits in the male stickleback.

  3. Association of suboptimal health status with psychosocial stress, plasma cortisol and mRNA expression of glucocorticoid receptor α/β in lymphocyte.

    Science.gov (United States)

    Yan, Yu-Xiang; Dong, Jing; Liu, You-Qin; Zhang, Jie; Song, Man-Shu; He, Yan; Wang, Wei

    2015-01-01

    Suboptimal health status (SHS) has become a new public health challenge in China. This study investigated whether high SHS is associated with psychosocial stress, changes in cortisol level and/or glucocorticoid receptor (GR) isoform expression. Three-hundred eighty-six workers employed in three companies in Beijing were recruited. The SHS score was derived from data collection in the SHS questionnaire (SHSQ-25). The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. The mean value of the five scales of COPSOQ and distribution of plasma cortisol and mRNA expression of GRα/GRβ between the high level of SHS group and the low level of SHS group were compared using a general linear model procedure. Multiple linear regression analysis was used to analyze the effect of psychosocial stress on SHS. We identified three factors that were predictive of SHS, including "demands at work", "interpersonal relations and leadership" and "insecurity at work". Significantly higher levels of plasma cortisol and GRβ/GRα mRNA ratio were observed among the high SHS group. High level of SHS is associated with decreased mRNA expression of GRα. This study confirmed the association between chronic psychosocial stress and SHS, indicating that improving the psychosocial work environment may reduce SHS and then prevent chronic diseases effectively.

  4. IL-4 mRNA Is Downregulated in the Liver of Pancreatic Cancer Patients Suffering from Cachexia.

    Science.gov (United States)

    Prokopchuk, Olga; Steinacker, Jürgen M; Nitsche, Ulrich; Otto, Stephanie; Bachmann, Jeannine; Schubert, Elaine C; Friess, Helmut; Martignoni, Marc E

    2017-01-01

    Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia. Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1. We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness. We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.

  5. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  6. Scalar field propagation in the phi^4 kappa-Minkowski model

    OpenAIRE

    Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M.

    2011-01-01

    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact repres...

  7. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    Science.gov (United States)

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  8. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7-Induced Nuclear Factor-Kappa B (NF-κB Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC Therapy

    Directory of Open Access Journals (Sweden)

    Vincent Wing Sun Liu

    2017-05-01

    Full Text Available A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7, nuclear factor-kappa B (NF-κB was activated and could result in up-regulated interleukin (IL-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  9. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  10. Interaction of trimebutine and Jo-1196 (fedotozine) with opioid receptors in the canine ileum

    Energy Technology Data Exchange (ETDEWEB)

    Allescher, H.D.; Ahmad, S.; Classen, M.; Daniel, E.E. (Technical Univ., Munich, (West Germany))

    1991-05-01

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg) and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.

  11. Toll-like receptor mRNA expression is selectively increased in the colonic mucosa of two animal models relevant to irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Declan P McKernan

    2009-12-01

    Full Text Available Irritable bowel syndrome (IBS is largely viewed as a stress-related disorder caused by aberrant brain-gut-immune communication and altered gastrointestinal (GI homeostasis. Accumulating evidence demonstrates that stress modulates innate immune responses; however, very little is known on the immunological effects of stress on the GI tract. Toll-like receptors (TLRs are critical pattern recognition molecules of the innate immune system. Activation of TLRs by bacterial and viral molecules leads to activation of NF-kB and an increase in inflammatory cytokine expression. It was our hypothesis that innate immune receptor expression may be changed in the gastrointestinal tract of animals with stress-induced IBS-like symptoms.In this study, our objective was to evaluate the TLR expression profile in the colonic mucosa of two rat strains that display colonic visceral hypersensitivity; the stress-sensitive Wistar-Kyoto (WKY rat and the maternally separated (MS rat. Quantitative PCR of TLR2-10 mRNA in both the proximal and distal colonic mucosae was carried out in adulthood. Significant increases are seen in the mRNA levels of TLR3, 4 & 5 in both the distal and proximal colonic mucosa of MS rats compared with controls. No significant differences were noted for TLR 2, 7, 9 & 10 while TLR 6 could not be detected in any samples in both rat strains. The WKY strain have increased levels of mRNA expression of TLR3, 4, 5, 7, 8, 9 & 10 in both the distal and proximal colonic mucosa compared to the control Sprague-Dawley strain. No significant differences in expression were found for TLR2 while as before TLR6 could not be detected in all samples in both strains.These data suggest that both early life stress (MS and a genetic predisposition (WKY to stress affect the expression of key sentinels of the innate immune system which may have direct relevance for the molecular pathophysiology of IBS.

  12. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  13. Nonequilibrium approach regarding metals from a linearised kappa distribution

    Science.gov (United States)

    Domenech-Garret, J. L.

    2017-10-01

    The widely used kappa distribution functions develop high-energy tails through an adjustable kappa parameter. The aim of this work is to show that such a parameter can itself be regarded as a function, which entangles information about the sources of disequilibrium. We first derive and analyse an expanded Fermi-Dirac kappa distribution. Later, we use this expanded form to obtain an explicit analytical expression for the kappa parameter of a heated metal on which an external electric field is applied. We show that such a kappa index causes departures from equilibrium depending on the physical magnitudes. Finally, we study the role of temperature and electric field on such a parameter, which characterises the electron population of a metal out of equilibrium.

  14. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  15. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis.

    Science.gov (United States)

    Defrère, Sylvie; González-Ramos, Reinaldo; Lousse, Jean-Christophe; Colette, Sébastien; Donnez, Olivier; Donnez, Jacques; Van Langendonckt, Anne

    2011-08-01

    Endometriosis is a chronic pelvic inflammatory process. Local inflammation is known to play a role in pain and infertility associated with the disease, and may be extensively involved in molecular and cellular processes leading to endometriosis development. In this review, we focus on two inflammatory mediators clearly implicated in the pathogenesis of endometriosis, iron and NF-kappaB, and their potential association. Iron is essential for all living organisms, but excess iron results in toxicity and is linked to pathological disorders. In endometriosis patients, iron overload has been demonstrated in the different compartments of the peritoneal cavity (peritoneal fluid, endometriotic lesions, peritoneum and macrophages). This iron overload affects numerous mechanisms involved in endometriosis development. Moreover, iron can generate free radical species able to react with a wide range of cellular constituents, inducing cellular damage. Overproduction of reactive oxygen species also impairs cellular function by altering gene expression via regulation of redox-sensitive transcription factors such as NF-kappaB, which is clearly implicated in endometriosis. Indeed, NF-kappaB is activated in endometriotic lesions and peritoneal macrophages of endometriosis patients, which stimulates synthesis of proinflammatory cytokines, generating a positive feedback loop in the NF-kappaB pathway. NF-kappaB-mediated gene transcription promotes a variety of processes, including endometriotic lesion establishment, maintenance and development. In conclusion, iron and NF-kappaB appear to be linked and both are clearly involved in endometriosis development, making these pathways an attractive target for future treatment and prevention of this disease.

  16. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  17. Induction of hepatic carbonyl reductase/20β-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    International Nuclear Information System (INIS)

    Albertsson, E.; Larsson, D.G.J.; Foerlin, L.

    2010-01-01

    Carbonyl reductase/20β-hydroxysteroid dehydrogenase (CR/20β-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20β-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20β-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20β-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist β-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20β-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  18. Nonplanar ion acoustic waves with kappa-distributed electrons

    International Nuclear Information System (INIS)

    Sahu, Biswajit

    2011-01-01

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing κ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.

  19. Increased dopamine DRD4 receptor mRNA expression in lymphocytes of musicians and autistic individuals: bridging the music-autism connection.

    Science.gov (United States)

    Emanuele, Enzo; Boso, Marianna; Cassola, Francesco; Broglia, Davide; Bonoldi, Ilaria; Mancini, Lara; Marini, Mara; Politi, Pierluigi

    2010-01-01

    People with autistic spectrum disorder (ASD) are affected by a long-life disabling condition, characterized by communication deficits, severe impairments in social functioning, and stereotyped behaviors. Although ASD individuals display several problems in interactions, it has been reported that they may show a peculiar interest in music. Previous studies have suggested a pivotal role for the dopaminergic system in the psychobiology of reward, including the pleasure of music. In the present study, we sought to investigate dopamine DRD3 and DRD4 receptor expression in peripheral blood lymphocytes of adult healthy musicians and age- and gender-matched patients with ASD against the background hypothesis that the dopaminergic system may contribute a biological cause to the reward dimensions of the musical experience in both healthy and autistic individuals. ANOVA showed significant differences in DRD4 mRNA expression between the groups (P = 0.008). Post-hoc analysis showed significant differences between the control group and both musicians (P dopamine DRD4 receptor, music and autism, possibly via mechanisms involving the reward system and the appraisal of emotions.

  20. A Novel Mechanism of Androgen Receptor Action

    National Research Council Canada - National Science Library

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  1. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  2. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  3. Numerical solution of High-kappa model of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  4. Steroid receptor expression in the fish inner earvaries with sex, social status, and reproductive state

    Directory of Open Access Journals (Sweden)

    Fernald Russell D

    2010-04-01

    Full Text Available Abstract Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR and aromatase in the main hearing organ of the inner ear (saccule in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral

  5. Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference

    Directory of Open Access Journals (Sweden)

    Ream eAl-Hasani

    2013-08-01

    Full Text Available Stress increases the risk of drug abuse, causes relapse to drug seeking, and potentiates the rewarding properties of both nicotine and cocaine. Understanding the mechanisms by which stress regulates the rewarding properties of drugs of abuse provides valuable insight into potential treatments for drug abuse. Prior reports have demonstrated that stress causes dynorphin release, activating kappa-opioid receptors (KOR in monoamine circuits resulting in both potentiation and reinstatement of cocaine and nicotine conditioned place preference. Here we report that kappa-opioid dependent reinstatement of cocaine and nicotine place preference is reduced when the mice are exposed to a randomized chronic mild stress regime prior to training in a conditioned place preference-reinstatement paradigm. The chronic mild stress schedule involves seven different stressors (removal of nesting for 24hr, 5min forced swim stress at 15°C, 8hr food and water deprivation, damp bedding overnight, white noise, cage tilt and disrupted home cage lighting rotated over a three-week period. This response is KOR-selective, because chronic mild stress does not protect against cocaine or nicotine drug-primed reinstatement. This protection from reinstatement is also observed following sub-chronic social defeat stress, where each mouse is placed in an aggressor mouse home cage for a period of 20 min over five days. In contrast, a single acute stressor resulted in a potentiation of KOR-induced reinstatement, similarly to previously reported. Prior studies have shown that stress alters sensitivity to opioids and prior stress can influence the pharmacodynamics of the opioid receptor system. Together, these findings suggest that exposure to different forms of stress may cause a dysregulation of kappa opioid circuitry and that changes resulting from mild stress can have protective and adaptive effects against drug relapse.

  6. Differential ontogenetic patterns of levocabastine-sensitive neurotensin NT2 receptors and of NT1 receptors in the rat brain revealed by in situ hybridization.

    Science.gov (United States)

    Lépée-Lorgeoux, I; Betancur, C; Rostène, W; Pélaprat, D

    1999-03-12

    The postnatal ontogeny of the levocabastine-sensitive neurotensin receptor (NT2) mRNA was studied by in situ hybridization in the rat brain and compared with the distribution of the levocabastine-insensitive NT1 receptor. NT2 receptor mRNA was absent at birth from all brain structures except the ependymal cell layer lining the ventricles. The development of NT2 receptor mRNA followed three ontogenetic patterns. The first pattern, involving the majority of the cerebral gray matter, was characterized by a continuous increase from postnatal day 5 (P5) to P30. The second one, involving regions rich in myelinated fibers such as the corpus callosum and lacunosum moleculare layer of the hippocampus, exhibited a pronounced increase between P5 and P10, peaked at P15 and was followed by a plateau or a slight decrease. The third pattern was observed in the ependymal cell layer lining the olfactory and lateral ventricles, where the high labeling already present at birth continued to increase during development. These different developmental patterns could reflect the variety of cells expressing NT2 receptor mRNA, including neurons, protoplasmic astrocytes in gray matter, fibrous astrocytes present in myelinated fibers tracts, and ependymal cells. In contrast, NT1 receptor mRNA, which seems to be associated only with neurons, was highly and transiently expressed during the perinatal period in the cerebral cortex, hippocampus and striatal neuroepithelium. Other regions, notably the ventral tegmental area and substantia nigra compacta, exhibited a gradual increase in NT1 receptor signal, reaching adult levels by P21. Both the differential localization and ontogenetic profiles of NT1 and NT2 receptor mRNAs suggest different involvement of these two receptors in brain functions and development. Copyright 1999 Elsevier Science B.V.

  7. Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females

    Science.gov (United States)

    Robles, Cindee F.; McMackin, Marissa Z.; Campi, Katharine L.; Doig, Ian E.; Takahashi, Elizabeth Y.; Pride, Michael; Trainor, Brian C.

    2014-01-01

    The effects of kappa opioid receptors (KOR) on motivated behavior are well established based on studies in male rodents, but relatively little is known about the effects of KOR in females. We examined the effects of KOR activation on conditioned place aversion and social interaction in the California mouse (Peromyscus californicus). Important differences were observed in long-term (place aversion) and short-term (social interaction) effects. Females but not males treated with a 2.5mg/kg dose of U50,488 formed a place aversion, whereas males but not females formed a place aversion at the 10 mg/kg dose. In contrast the short term effects of different doses of U50,488 on social interaction behavior were similar in males and females. Acute injection with 10 mg/kg of U50,488 (but not lower doses) reduced social interaction behavior in both males and females. The effects of U50,488 on phosphorylated extracellular signal regulated kinase (pERK) and p38 MAP kinase were cell type and region specific. Higher doses of U50,488 increased the number of pERK neurons in the ventrolateral bed nucleus of the stria terminals in males but not females, a nucleus implicated in male aggressive behavior. In contrast, both males and females treated with U50,488 had more activated p38 cells in the nucleus accumbens shell. Unexpectedly, cells expressing activated p38 co-expressed Iba-1, a widely used microglia marker. In summary we found strong sex differences in the effects of U50,488 on place aversion whereas the acute effects on U50,488 induced similar behavioral effects in males and females. PMID:24445073

  8. ESTUDIO PRELIMINAR SOBRE LA INFLUENCIA DE LA CARRAGENINA KAPPA, KAPPA I.II Y GOMA TARA EN LA VISCOSIDAD Y TIXOTROPÍA DE LAS SALMUERAS DE INYECCIÓN PARA JAMONES COCIDOS PICADOS DE CERDO PRELIMINARY STUDY ON THE INFLUENCE OF KAPPA, KAPPA I.II CARRAGEENAN AND TARA GUM IN THE VISCOSITY AND THIXOTROPY OF INJECTION BRINES FOR COOKED CHOPPED HAMS OF PORK

    Directory of Open Access Journals (Sweden)

    Fabio Alexander Molina Cote

    2010-12-01

    Full Text Available El presente estudio determinó el efecto que sobre la viscosidad y la tixotropía de una salmuera de masajeo para jamones picados cocidos de cerdo, tiene la adición de carragenina kappa, carragenina kappa I.II y goma tara, cuando son usadas a un nivel del 1% en la salmuera. Para tal efecto se incorporaron seis mezclas distintas de hidrocoloides provenientes de la carragenina kappa, kappa I.II y goma tara (individualmente, en mezclas binarias y mezclas terciarias, en una salmuera de inyección y masajeo para jamones; a las cuales se les determinó su comportamiento viscoso y tixotrópico a 4 ºC. Los datos obtenidos de índice de tixotropía (máximos, se analizaron mediante un modelo cuadrático derivado de un arreglo de mezclas. Los resultados mostraron que todas las salmueras se comportaron tixotrópicamente, presentando mayor área de histéresis, las mezclas que contenían goma tara. El modelo usado para el índice de tixotropía arrojó, con un nivel de significancia de 0,05, que la relación óptima, es la que contiene la mezcla de carragenina kappa I.II-goma tara (79% y 21%. Adicionalmente, las salmueras que contenían carragenina kappa, carragenina kappa I.II y carragenina kappa-carragenina kappa I.II presentaron menor viscosidad que las mezclas que contenían goma tara.The aim of this study was to determine the thixotropy´s effect of a massage brine in cooked chopped pork hams with addition of kappa, kappa I.II carrageenan, tara gum and their mixtures, when were used at 1% injection level of brine to meat. Six mixtures were evaluated. A protocol for thixotropy measurement adjusted to the conditions of brines used taking in account salinity, pH, temperature and shear stress. Data obtained from thixotropy index (maximum were analyzed with quadratic model derived from blends array. Results showed thixotropic measurement to brines presented a very small area, showing structural changes, but with very fast recovery. It was observed

  9. Salvinorin A, a kappa-opioid receptor (KOP-r agonist hallucinogen: Pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Eduardo eButelman

    2015-09-01

    Full Text Available Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins in higher functions, including cognition, and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A- containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and drug reinforcers (including drugs of abuse. KOPr activation (including by salvinorin A can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike all other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects, with a reduced burden of undesirable effects associated with salvinorin A.

  10. Sucralfate prevents the delay of wound repair in intestinal epithelial cells by hydrogen peroxide through NF-kappaB pathway.

    Science.gov (United States)

    Shindo, Kenichi; Iizuka, Masahiro; Sasaki, Kenji; Konno, Shiho; Itou, Hiroaki; Horie, Yasuo; Watanabe, Sumio

    2006-05-01

    Recent studies have shown that sucralfate (SF) has therapeutic effects on colonic inflammation in ulcerative colitis. The aim of this study was to clarify the function of SF for wound repair in intestinal epithelial cells (IEC). (1) Activation of signal proteins [ERK1/2 mitogen-activated protein kinase (MAPK), IkappaB-alpha] in IEC-6 cells after stimulation with 10(-4) M potassium sucrose octasulfate (SOS), which is the functional element of SF, was assessed by Western blot. (2) Induction of transforming growth factor (TGF)-beta1, TGF-alpha, EGF, and cyclooxygenase-2 (COX-2) mRNA after stimulation of IEC-6 cells with SOS was assessed by reverse transcriptase-polymerase chain reaction. (3) IEC-6 cells were wounded and cultured for 24 h with various concentrations of SOS in the absence or presence of 20 microM H(2)O(2). Epithelial migration or proliferation was assessed by counting migrating cells or bromodeoxyuridine (BrdU)-positive cells across the wound border. (1) SOS activated IkappaB-alpha, but it did not activate ERK1/2 MAPK. (2) SOS enhanced the expression of COX-2 mRNA, but it did not change the mRNA expression of other growth factors. (3) SOS did not enhance wound repair in IEC-6 cells, but it decreased the number of dead cells (maximum, 74%) (P < 0.01) in a dose-dependent manner and prevented the diminishment of epithelial migration (maximum, 61%) (P < 0.01) and proliferation (maximum, 37%) (P < 0.05) induced by H(2)O(2). These functions of SOS were suppressed by the NF-kappaB and COX-2 inhibitors. SOS prevented the delay of wound repair in IEC-6 cells induced by H(2)O(2), probably through induction of COX-2 and an anti-apoptotic mechanism. These effects of SOS might be given through the activation of the NF-kappaB pathway.

  11. Toll-like receptors and cytokines as surrogate biomarkers for evaluating vaginal immune response following microbicide administration.

    Science.gov (United States)

    Gupta, Sadhana M; Aranha, Clara C; Mohanty, Madhu C; Reddy, K V R

    2008-01-01

    Topical microbicides are intended for frequent use by women in reproductive age. Hence, it is essential to evaluate their impact on mucosal immune function in the vagina. In the present study, we evaluated nisin, a naturally occurring antimicrobial peptide (AMP), for its efficacy as an intravaginal microbicide. Its effect on the vaginal immune function was determined by localizing Toll-like receptors (TLRs-3, 9) and cytokines (IL-4, 6 , 10 and TNF-alpha) in the rabbit cervicovaginal epithelium following intravaginal administration of high dose of nisin gel for 14 consecutive days. The results revealed no alteration in the expression of TLRs and cytokines at both protein and mRNA levels. However, in SDS gel-treated group, the levels were significantly upregulated with the induction of NF-kappaB signalling cascade. Thus, TLRs and cytokines appear as sensitive indicators for screening immunotoxic potential of candidate microbicides.

  12. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  13. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    Science.gov (United States)

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may

  14. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    International Nuclear Information System (INIS)

    Santos, M. S. dos; Ziebell, L. F.; Gaelzer, R.

    2015-01-01

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase in the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population

  15. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    Science.gov (United States)

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  16. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance. © 2015 International Society for Neurochemistry.

  17. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    Science.gov (United States)

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  18. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...

  19. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    Science.gov (United States)

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  20. Chimeric opioid peptides: tools for identifying opioid receptor types.

    OpenAIRE

    Xie, G X; Miyajima, A; Yokota, T; Arai, K; Goldstein, A

    1990-01-01

    We synthesized several chimeric peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the kappa opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surf...

  1. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  2. Introducing spatial information into predictive NF-kappaB modelling--an agent-based approach.

    Directory of Open Access Journals (Sweden)

    Mark Pogson

    2008-06-01

    Full Text Available Nature is governed by local interactions among lower-level sub-units, whether at the cell, organ, organism, or colony level. Adaptive system behaviour emerges via these interactions, which integrate the activity of the sub-units. To understand the system level it is necessary to understand the underlying local interactions. Successful models of local interactions at different levels of biological organisation, including epithelial tissue and ant colonies, have demonstrated the benefits of such 'agent-based' modelling. Here we present an agent-based approach to modelling a crucial biological system--the intracellular NF-kappaB signalling pathway. The pathway is vital to immune response regulation, and is fundamental to basic survival in a range of species. Alterations in pathway regulation underlie a variety of diseases, including atherosclerosis and arthritis. Our modelling of individual molecules, receptors and genes provides a more comprehensive outline of regulatory network mechanisms than previously possible with equation-based approaches. The method also permits consideration of structural parameters in pathway regulation; here we predict that inhibition of NF-kappaB is directly affected by actin filaments of the cytoskeleton sequestering excess inhibitors, therefore regulating steady-state and feedback behaviour.

  3. Colorectal cancer: can nutrients modulate NF-kappaB and apoptosis?

    Science.gov (United States)

    Ravasco, Paula; Aranha, Márcia M; Borralho, Pedro M; Moreira da Silva, Isabel B; Correia, Luís; Fernandes, Afonso; Rodrigues, Cecília M P; Camilo, Maria

    2010-02-01

    NF-kappaB may promote carcinogenesis by altering cell cycle, inflammatory responses and apoptosis-related gene expression, though cell mechanisms relating diet and colorectal cancer (CRC) remain unveiled in humans. This study in patients with CRC aimed to explore potential interactions between the dietary pattern, nutrient intake, expression of NF-kappaB, apoptosis and tumour histological aggressiveness. Usual diet was assessed by diet history; nutrient composition was determined by DIETPLAN software. Histologically classified patient tissue samples (adenoma, adenocarcinoma and normal surrounding mucosa) were obtained via biopsies during colonoscopy (n=16) or surgery (n=8). NF-kappaB expression was determined by immunohistochemistry and apoptosis by TUNEL assay. NF-kappaB expression and apoptosis were higher in tumours (p<0.01), greater along with histological aggressiveness (p<0.01). Highest intake terciles of animal protein, refined carbohydrates, saturated fat, n-6 fatty acids and alcohol were associated with higher NF-kappaB, apoptosis and histological aggressiveness (p<0.01); the opposite tissue characteristics were associated with highest intake terciles of n-3 fatty acids, fibre, vitamin E, flavonoids, isoflavones, beta-carotene and selenium (p<0.002). Additionally, higher n-6:n-3 fatty acids ratio (median 26:1) was associated with higher NF-kappaB (p<0.006) and apoptosis (p<0.01), and more aggressive histology (p<0.01). Conversely, lower n-6:n-3 fatty acids ratio (median 6:1) was associated with lower NF-kappaB (p<0.002) and apoptosis (p<0.002), and less aggressive histology (p<0.002). NF-kappaB expression and apoptosis increased from adenoma to poorly differentiated adenocarcinoma. This degenerative transition, recognized as key in carcinogenesis, appear to have been influenced by a diet promoting a pro-inflammatory milieu that can trigger NF-kappaB. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules

    DEFF Research Database (Denmark)

    Schlemmer, B O; Sorensen, B S; Overgaard, J

    2004-01-01

    of a subset of ligands from the EGF system is increased in bladder cancer. Furthermore, measurement of the mRNA concentration gives important information such as the expression of these ligands correlated to the survival of the patients. In addition to the alterations at the mRNA level, changes also can occur...... at the DNA level in the EGF system. Thus, it has been demonstrated that the number of genes coding for the human epidermal growth factor receptor 2 (HER2) is increased in a number of breast tumors. It is now possible to treat breast cancer patients with a humanized antibody reacting with HER2...... of mRNA or DNA in biological samples. In this study quantitative PCR was used to investigate the role of the EGF (epidermal growth factor) system in cancer both for measurements of mRNA concentrations and for measurements of the number of copies of specific genes. It is shown that the mRNA expression...

  5. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  6. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System.

    Science.gov (United States)

    Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  7. A trigger for opioid misuse: Chronic pain and stress dysregulate the mesolimbic pathway and kappa opioid system

    Directory of Open Access Journals (Sweden)

    Nicolas Massaly

    2016-11-01

    Full Text Available Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in acute pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  8. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    Science.gov (United States)

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  9. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  10. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  11. Expression of mRNA for proglucagon and glucagon-like peptide-2 (GLP-2) receptor in the ruminant gastrointestinal tract and the influence of energy intake

    DEFF Research Database (Denmark)

    Taylor-Edwards, C C; Burrin, D G; Matthews, J C

    2010-01-01

    Glucagon-like peptide-2 (GLP-2) is a potent trophic gut hormone, yet its function in ruminants is relatively unknown. Experiment 1 was conducted as a pilot study to establish the presence of GLP-2 in ruminants and to ascertain whether it was responsive to increased nutrition, as in non-ruminants....... Concentrations of intact GLP-2 in the blood and gut epithelial mRNA expression of proglucagon (GCG) and the GLP-2 receptor (GLP2R) were measured in 4 ruminally, duodenally, and ileally cannulated steers. Steers were fed to meet 0.75 x NE(M) for 21 d, and then increased to 1.75 x NE(M) requirement for another 29...... d. Blood samples and ruminal, duodenal, and ileal epithelium biopsies were collected at low intake (Days -6 and -3), acute high intake (Days 1 and 3), and chronic high intake (Days 7 and 29) periods. Experiment 2 investigated the mRNA expression pattern of GCG and GLP2R in epithelial tissue obtained...

  12. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  13. Detection and Quantization of the Expression of Two mu-Opioid Receptor Splice Variants mRNA (hMOR-1A and hMOR-1O in Peripheral Blood Lymphocytes of Long-Term Abstinent Former Opioid Addicts

    Directory of Open Access Journals (Sweden)

    N Vousooghi, Pharm

    2012-05-01

    Full Text Available

    Background and Objectives

    The mu-Opioid receptor (MOR exerts a critical role on effects of opiodis. The objective of this study is to find a peripheral bio-marker in addiction studies through quantization of the expression of two MOR splice variants mRNA (hMOR-1A and hMOR-1O in peripheral blood lymphocytes (PBLs of long-term abstinent former opioids addicts.

    Methods

    In this case-control study, case and control people were male and divided in two groups: people who gave up addiction to opioids (case and healthy individuals without history of addiction (control. The mRNA expression in PBLs of participants was detected and measured by real-time Polymerase Chain Reaction (PCR using SYBR Green Dye.

    Results

    The hMOR-1A mRNA expression in PBLs of abstinent group was significantly reduced and reached to 0.33 of the control group (p<0.001. Similar results were obtained for the other splice variant with the mRNA expression of hMOR-1O in PBLs of abstinent group reaching to 0.38 of that of the control group (p < 0.001.

    Conclusion

    mRNA expression deficiency of two mu-opioid receptor splice variants, hMOR-1A and nMOR-1O, seams to be a risk factor making individuals vulnerable to drug addiction. Based on this analysis measuring the amount of mRNA expression of these two splice variants in PBLs can serve as a peripheral bio-marker for detecting people at risk.

  14. [The expression and significance of receptor activator of nuclear factor kappaB ligand and osteoprotegerin in periapical cyst and periapical granuloma].

    Science.gov (United States)

    Zhang, Meihua; Yu, Yunzhi; Miao, Yu

    2012-08-01

    To investigate the expression of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) in periapical cyst and periapical granuloma by comparison with the expression in the normal periodontal tissue as control, and to identify their functional mechanism in the bone destruction of periapical cyst and granuloma. 20 periapical cyst tissues (cyst group), 20 periapical granuloma tissues (granuloma group), and 20 normal periodontal tissues (control group) were collected respectively. Immunohistochemical technology was performed to detect the expression of RANKL and OPG in above three groups. In cyst group, granuloma group and control group, the expression of RANKL were 75.00 +/- 7.54, 68.40 +/- 6.74 and 29.40 +/- 2.46, respectively. The expression of OPG were 38.10 +/- 7.09, 47.65 +/- 13.85 and 58.60 +/- 5.88, respectively. The differences among the three groups were statistically significant (Pcysts group were negatively correlated (r=-0.56, P=0.01) and were not correlated with granuloma and control group (P>0.05). RANKL and OPG play roles in the bone absorption of periapical disease. In periapical disease, abnormal expression of RANKL and OPG are detected, RANKL significantly increase, OPG decrease, bone absorption accelerate and osteolytic lesion are observed. In periapical cyst, the bone absorption is more active compared with periapical granuloma.

  15. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    Directory of Open Access Journals (Sweden)

    Sayaka Aizawa

    Full Text Available The pars tuberalis (PT is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD, such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2 mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.

  16. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Directory of Open Access Journals (Sweden)

    Evren Eraslan

    2015-01-01

    Full Text Available Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON, acute noise exposure (ANE, and chronic noise exposure (CNE. The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR. The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  17. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  18. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  19. Pattern-Recognition Receptor Signaling Regulator mRNA Expression in Humans and Mice, and in Transient Inflammation or Progressive Fibrosis

    Science.gov (United States)

    Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej

    2013-01-01

    The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023

  20. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.

    Science.gov (United States)

    Che, Tao; Majumdar, Susruta; Zaidi, Saheem A; Ondachi, Pauline; McCorvy, John D; Wang, Sheng; Mosier, Philip D; Uprety, Rajendra; Vardy, Eyal; Krumm, Brian E; Han, Gye Won; Lee, Ming-Yue; Pardon, Els; Steyaert, Jan; Huang, Xi-Ping; Strachan, Ryan T; Tribo, Alexandra R; Pasternak, Gavril W; Carroll, F Ivy; Stevens, Raymond C; Cherezov, Vadim; Katritch, Vsevolod; Wacker, Daniel; Roth, Bryan L

    2018-01-11

    The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells.

    Science.gov (United States)

    Oh, Young Taek; Lee, Jung Yeon; Lee, Jinhwa; Lee, Ju Hie; Kim, Ja-Eun; Ha, Joohun; Kang, Insug

    2010-05-03

    Oleamide (cis-9-octadecenamide) is an endogenous sleep-inducing fatty acid amide that accumulates in the cerebrospinal fluid of the sleep-deprived animals. Microglia are the major immune cells involved in neuroinflammation causing brain damage during infection, ischemia, and neurodegenerative disease. In this study, we examined the effects of oleamide on LPS-induced production of proinflammatory mediators and the mechanisms involved in BV2 microglia. Oleamide inhibited LPS-induced production of NO and prostaglandin E2 as well as expression of iNOS and COX-2. We showed that oleamide blocked LPS-induced NF-kappaB activation and phosphorylation of inhibitor kappaB kinase (IKK). We also showed that oleamide inhibited LPS-induced phosphorylation of Akt, p38 MAPK, and ERK, activation of PI 3-kinase, and accumulation of reactive oxygen species (ROS). Finally, we showed that a specific antagonist of the CB2 receptor, AM630, blocked the inhibitory effects of oleamide on LPS-induced production of proinflammatory mediators and activation of NF-kappaB. Taken together, our results suggest that oleamide shows an anti-inflammatory effect through inhibition of NF-kappaB activation in LPS-stimulated BV2 microglia. 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    Science.gov (United States)

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. In vivo studies of opiate receptors

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented

  4. In vivo studies of opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  5. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  6. Molecular docking study of Papaver alkaloids to some alkaloid receptors

    Directory of Open Access Journals (Sweden)

    A. Nofallah

    2017-11-01

    Full Text Available Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides like mu, delta, and kappa receptors. Therefore, studying the effects of these alkaloids on different receptors is essential. Methods: Molecular docking is a well-known method in exploring the protein-ligand interactions. In this research, five important alkaloids were docked to crystal structure of human mu opioid receptor (4DKL, human delta opioid receptor (4EJ4 and human kappa opioid receptor (4DJH which were retrieved from protein databank. The 3D-structures of alkaloids were drawn by chembiooffice2010 and minimized with hyperchem package and submitted to molecular docking utilizing autodock-vina. Flexibility of the proteins was considered. The docking studies were performed to compare the affinity of these five alkaloids to the mentioned receptors. Results: We computationally docked each alkaloid compound onto each receptor structure and estimated their binding affinity based on dock scores. Dock score is a criteria including binding energy which utilized here for prediction and comparison of the binding affinities. Binding interactions of the docked alkaloids in receptor pockets were also visually inspected and compared. Conclusion: In this approach, using docking study as a computational method provided a valuable insight of opioid receptor pocket structures which would be essential to design more efficient drugs in pain managements and addiction treatments.

  7. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    International Nuclear Information System (INIS)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-01-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors α (TRα) and βA (TRβA) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TRα gene expression whereas a marked up-regulation of TRβA mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TRβA mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TRβA mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TRβA gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TRβA expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TRβA mRNA up-regulation. Results of this study suggest that TRβA mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in

  8. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  9. Kappa. -electron capture probability in sup 167 Tm

    Energy Technology Data Exchange (ETDEWEB)

    Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L. (Andhra Univ., Visakhapatnam (India). Labs. for Nuclear Research); Chintalapudi, S.N. (Variable Energy Cyclotron Centre, Calcutta (India))

    1990-07-01

    The {Kappa}-electron capture probability in the decay of {sup 167}Tm for the first-forbidden transition 1/2{sup +}{yields}3/2{sup -} was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P{sub {Kappa}} value is found to be 0.835{plus minus}0.029, in agreement with the theoretical value of 0.829. (author).

  10. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  11. Functional inhibition of NF-kappa B signal transduction in alpha v alpha beta 3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant I kappa B gene

    NARCIS (Netherlands)

    Ogawara, K; Kuldo, JM; Oosterhuis, K; Kroesen, BJ; Rots, MG; Trautwein, C; Kimura, T; Haisma, HJ; Molema, G

    2006-01-01

    In order to selectively block nuclear factor kappa B (NF-kappa B)-dependent signal transduction in angiogenic endothelial cells, we constructed an alpha v beta 3 integrin specific adenovirus encoding dominant negative I kappa B (dnI kappa B) as a therapeutic gene. By virtue of RGD modification of

  12. Kappa statistic for clustered matched-pair data.

    Science.gov (United States)

    Yang, Zhao; Zhou, Ming

    2014-07-10

    Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Physico Chemical Characteristic of Kappa Carrageenan Degraded Using Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Rizky Febriansyah Siregar

    2017-02-01

    Full Text Available AbstractKappa carrageenan is polysaccharide that widely used in food, pharmaceutical, cosmetic, textile and printing industries as coagulate agent, stabilizer and gelling agent. Hydrogen peroxide (H2O2 is strong oxidator to degrade polysaccharide. Hydrogen peroxide has some advantades such as cheap, easy to get and savety environment. Degradation method using hydrogen peroxide is a technology based on establishment radical hydoxile reactive that attack the glycosidic of polysaccharides as a result reducing in molecular weight of polysaccharide. The aims of this study were to analyze the effect of hydrogen peroxide concentration, temperature and degradation time to molecular weight of refined kappa carrageenan. Structural changes on kappa carrageenan degradation were characterized by viscometer, SEM and FTIR. Hydrogen peroxide concentration, temperature and degradation time were significantly reducing molecular weight and changes in the structural function of refined kappa carrageenan. The lowest molecular weight of refined kappa carrageenan degraded was obtained from the treatment 3% of hydrogen peroxide at temperature 80°C and degradation time for 4 hours.

  14. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    Science.gov (United States)

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  15. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  16. Study Of Calcium And Potassium Different Nature Strength Gel Kappa-Carrageenan

    Directory of Open Access Journals (Sweden)

    Петро Васильович Гурський

    2015-07-01

    Full Text Available The influence of certain organic and mineral salts of potassium and calcium for strength gel kappa-carrageenan. The influence of the mass concentration of individual calcium for strength gels with different content kappa-carrageenan. Grounded mass concentration of some calcium salts for use in the composition of the jelly for sweet and savory dishes based on kappa-carrageenan

  17. The effect of various opiate receptor agonists on the seizure threshold in the rat. Is dynorphin an endogenous anticonvulsant?

    Science.gov (United States)

    Przewłocka, B; Stala, L; Lasoń, W; Przewłocki, R

    1983-01-01

    The effects of various opiate receptor agonists on the seizure threshold after an intravenous infusion of pentylenetetrazol were investigated in rats. The mu- and epsilon-receptor agonists, morphine (20-40 micrograms) and beta-endorphin (5-10 micrograms) show proconvulsant properties towards clonic and tonic seizures. The delta-receptor agonist (D-Ala2,D-Leu5-enkephalin, DADL 5-40 micrograms) and alpha-neoendorphin (20-40 micrograms) show pro- and anticonvulsant properties towards clonic and tonic seizures, respectively. Anticonvulsant properties of DADL are possibly due to its action on the spinal cord, since after the intrathecal injection this effect is still observed. Similarities between DADL and alpha-neoendorphin suggest that they may act through the same receptor. The kappa-receptor agonist dynorphin A (5-20 micrograms) and its degradation-resistant analogue D-Arg-dynorphin1-13 (10 micrograms) show significant anticonvulsant properties. Our present results suggest that the kappa-receptor agonist dynorphin may act physiologically as an endogenous anticonvulsant, in contrast to other opioid peptides.

  18. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    Science.gov (United States)

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2

  19. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  20. Circumvention of nuclear factor kappaB-induced chemoresistance by cytoplasmic-targeted anthracyclines.

    Science.gov (United States)

    Bilyeu, Jennifer D; Panta, Ganesh R; Cavin, Lakita G; Barrett, Christina M; Turner, Eddie J; Sweatman, Trevor W; Israel, Mervyn; Lothstein, Leonard; Arsura, Marcello

    2004-04-01

    Nuclear factor kappaB (NF-kappaB) has been implicated in inducible chemoresistance against anthracyclines. In an effort to improve the cytotoxicity of anthracyclines while reducing their cardiotoxic effects, we have developed a novel class of extranuclear-localizing 14-O-acylanthracyclines that bind to the phorbol ester/diacylglycerol-binding C1b domain of conventional and novel protein kinase C (PKC) isoforms, thereby promoting an apoptotic response. Because PKCs have been shown to be involved in NF-kappaB activation, in this report, we determined the mechanism of NF-kappaB activation by N-benzyladriamycin-14-valerate (AD 198) and N-benzyladriamycin-14-pivalate (AD 445), two novel 14-O-acylanthracylines. We show that the induction of NF-kappaB activity in response to drug treatment relies on the activation of PKC-delta and NF-kappaB-activating kinase (NAK), independent of ataxia telengectasia mutated and p53 activities. In turn, NAK activates the IKK complex through phosphorylation of the IKK-2 subunit. We find that neither NF-kappaB activation nor ectopic expression of Bcl-X(L) confers protection from AD 198-induced cell killing. Overall, our data indicate that activation of novel PKC isoforms by cytoplasmic-targeted 14-O-acylanthracyclines promotes an apoptotic response independent of DNA damage, which is unimpeded by inducible activation of NF-kappaB.

  1. Localization of the glucocorticoid receptor mRNA in cartilage and bone cells of the rat. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    G Silvestrini

    2009-06-01

    Full Text Available The in vivo localization of glucocorticoid receptor (GR mRNA expression was studied in the cartilage and bone cells of the femur of young adult rats to compare its distribution with that of the GR protein, which had previously been shown histochemically in the same areas. To achieve this, we used a synthetic oligodeoxynucleotide as a probe, in line with the published human GR (hGR cDNA sequence. The probe was coupled to fluorescein (FL, applying a rapid Fast-Tag TM FL nucleic acid labeling method. Negative controls were achieved by using sense sequences of the hGR oligoprobe, similarly coupled by using the Fast-Tag TM FL labeling kit. Dewaxed sections were treated for in situ hybridization (ISH histochemistry with the antisense and sense oligoprobes. The ISH reaction product was more intense in the cytoplasm of proliferative and maturative chondrocytes of the growth plate cartilage than in that shown in the hypertrophic ones. In the metaphyseal secondary ossification zone, osteoblasts (OBs and osteocytes (OCs were variably labeled, whereas osteoclasts (OCLs were always intensely stained. The labeling was also visible in some bone marrow cells, in articular chondrocytes, in the cells of tendon-bone junctions, and in the perichondrium and periosteal cells. Our results confirm a cellular co-location of GR protein and mRNA. In agreement with GR immunolocalization, the variability of labeling appeared to be related to the cell cycle, the stage of differentiation and cell-type differences.

  2. Identification of endogenous opioid receptor components in rat brain using a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bero, L.A.; Roy, S.; Lee, N.M.

    1988-11-01

    A monoclonal antibody generated against the tertiary structure of a partially purified opioid binding protein was used to probe the structure of the dynorphin and beta-endorphin receptors. The Fab fragment 3B4F11 inhibited completely the binding of 125I-beta-endorphin and (3H)dynorphin to rat brain P2 membranes with IC50 values of 26 ng/ml and 40 ng/ml, respectively. To explore further the interaction of 3B4F11 with the beta-endorphin receptor, the effect of the Fab fragment on 125I-beta-endorphin cross-linking to rat brain membranes was examined. 125I-beta-endorphin was covalently bound to three major species of approximate molecular weights 108,000, 73,000, and 49,000. The delta-selective ligand D-Pen2, D-pen5enkephalin was least effective at inhibiting the cross-linking of beta-endorphin, whereas the micro-selective ligand Tyr-D-Ala-Gly-NMe-Phe-Gly-ol and kappa-selective ligand U50488 inhibited beta-endorphin cross-linking to the 108,000 and 73,000 Da species. Both 3B4F11 and beta-endorphin prevented the covalent binding of 125I-beta-endorphin to all three labeled species. These findings suggest that micro and kappa receptor types might have some structural similarities, whereas the delta receptor type might differ in molecular size. In addition, the micro, kappa, and delta ligands might have different primary sequences, whereas their tertiary structures might share regions of molecular homology with all three receptor constituents labeled by 125I-beta-endorphin. 3B4F11 will be a valuable tool for the purification and isolation of the several components of the beta-endorphin receptor complex.

  3. Quantitation of the mRNA expression of the epidermal growth factor system

    DEFF Research Database (Denmark)

    Sørensen, B S; Tørring, N; Bor, M V

    2000-01-01

    ) and for the quantitation of mRNA for the receptors HER-1 and its preferred dimerization partner, HER-2. The method is based on the generation of specific RNA standards, which are amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) with the sample RNA and a set of calibrators. The resulting calibration...

  4. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  5. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis.

    Science.gov (United States)

    Bakkar, Nadine; Guttridge, Denis C

    2010-04-01

    NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.

  6. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    Science.gov (United States)

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  7. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer.

    Science.gov (United States)

    Osipo, Clodia; Gajdos, Csaba; Liu, Hong; Chen, Bin; Jordan, V Craig

    2003-11-05

    Long-term tamoxifen treatment of breast cancer can result in tamoxifen-stimulated breast cancer, in which estrogen inhibits tumor growth after tamoxifen withdrawal. We investigated the molecular mechanism(s) of estradiol-induced tumor regression by using an in vivo model of tamoxifen-stimulated human breast cancer. Growth of parental estradiol-stimulated MCF-7E2 and long-term tamoxifen-stimulated MCF-7TAMLT xenografts in athymic mice was measured during treatment with vehicle, estradiol, estradiol plus tamoxifen, tamoxifen alone, estradiol plus fulvestrant, or fulvestrant alone. Apoptosis was detected by the terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Protein expression was assessed by western blot analysis. mRNA expression was assessed by real-time reverse transcription-polymerase chain reaction. All statistical tests were two-sided. MCF-7E2 tumor growth was stimulated by estradiol (cross-sectional area at week 13 = 1.06 cm2, 95% confidence interval [CI] = 0.82 to 1.30 cm2; Pestradiol-induced regression to 0.18 cm2 (95% CI = 0.15 to 0.21 cm2; P<.001), and tamoxifen or estradiol plus fulvestrant enhanced tumor growth to 1.00 cm2 (95% CI = 0.88 to 1.22 cm2). Estradiol increased the number of apoptotic cells in tumors by 23% (95% CI = 20% to 26%; P<.001) compared with all other treatments, decreased estrogen receptor alpha(ERalpha) protein expression, increased the expression of Fas mRNA and protein, decreased the expression of HER2/neu mRNA and protein and nuclear factor kappaB (NF-kappaB) protein but did not affect Fas ligand protein expression compared with control. Paradoxically, fulvestrant reversed this effect and stimulated MCF-7TAMLT tumor growth apparently through ERalpha-mediated regulation of Fas, HER2/neu, and NF-kappaB. Physiologic levels of estradiol induced regression of tamoxifen-stimulated breast cancer tumors, apparently by inducing the death receptor Fas and suppressing the antiapoptotic

  8. Improvement of Pulping Uniformity by Measurement of Single Fiber Kappa Number

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Gustafson; James B. Callis

    2001-11-20

    A method to measure the kappa of single fibers by staining with a fluorescent dye, Acridine Orange (AO), has been developed. This method is now applied to develop and automated flow-through instrument that permits routine kappa analysis on thousands of images of AO stained fibers to give the fiber kappa number distribution of a pulp sample in a few minutes. The design and operation of the instrument are similar to that of a flow cytometer but with the addition of extensive fiber imaging capability. Fluorescence measurements in the flow-through instrument are found to be consistent with those made with fluorescence microscope provided the signal processing in the flow-thou instrument is handled propertly. The kappa distributions of pulps that were analyzed by means of a density gradient column are compared to those measured with the flow-through instrument with good results. The kappa distributions of various laboratory pulps and commercial pulps have been measured. It has been found that all pulps are non-uniform but that ommercial pulps generally have broader kappa distributions thatn their laboratory counterparts. The effects of different pulping methods and chip pretreatments on pulp uniformity are discussed in the report. Finally, the application of flow-through fluorescence technology to other single fiber measurements are presented.

  9. Characterization of immunoglobulin A kappa autoantibodies to human lactate dehydrogenase isoenzyme-3

    NARCIS (Netherlands)

    Weijers, R. N.; Oude Elferink, R. P.; Mulder, J.; Kruijswijk, H.

    1987-01-01

    We have purified with a cumulative recovery of 48% from the serum of a patient the immunoglobulin A kappa subunit of the lactate dehydrogenase-immunoglobulin A kappa (LD-IgA kappa) complex. It appears that the pI range of the complex is 5.4-5.8. The Ig part of the complex showed a monoclonal

  10. Ion and electron Kappa distribution functions in the plasma sheet.

    Science.gov (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  11. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Tzvia Abramson

    Full Text Available Filamentous hemagglutinin (FHA is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-kappaB transcription factor family in these host cell responses, we examined the effect of FHA on NF-kappaB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection.Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-kappaB pathway, as manifested by the degradation of cytosolic IkappaB alpha, by NF-kappaB DNA binding, and by the subsequent secretion of NF-kappaB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IkappaB alpha, and the failure of TNF-alpha to activate NF-kappaB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells.These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-kappaB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.

  12. Kappa statistic to measure agreement beyond chance in free-response assessments.

    Science.gov (United States)

    Carpentier, Marc; Combescure, Christophe; Merlini, Laura; Perneger, Thomas V

    2017-04-19

    The usual kappa statistic requires that all observations be enumerated. However, in free-response assessments, only positive (or abnormal) findings are notified, but negative (or normal) findings are not. This situation occurs frequently in imaging or other diagnostic studies. We propose here a kappa statistic that is suitable for free-response assessments. We derived the equivalent of Cohen's kappa statistic for two raters under the assumption that the number of possible findings for any given patient is very large, as well as a formula for sampling variance that is applicable to independent observations (for clustered observations, a bootstrap procedure is proposed). The proposed statistic was applied to a real-life dataset, and compared with the common practice of collapsing observations within a finite number of regions of interest. The free-response kappa is computed from the total numbers of discordant (b and c) and concordant positive (d) observations made in all patients, as 2d/(b + c + 2d). In 84 full-body magnetic resonance imaging procedures in children that were evaluated by 2 independent raters, the free-response kappa statistic was 0.820. Aggregation of results within regions of interest resulted in overestimation of agreement beyond chance. The free-response kappa provides an estimate of agreement beyond chance in situations where only positive findings are reported by raters.

  13. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls.

    Science.gov (United States)

    Baud, Véronique; Karin, Michael

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.

  14. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    Science.gov (United States)

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  16. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    Science.gov (United States)

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual

  17. PENGARUH KONSUMSI KAPPA-KARAGENAN TERHADAP GLUKOSA DARAH TIKUS WISTAR (Ratus norvegicus DIABETES [The Effect of Kappa-Carrageenan Consumption on Blood Glucose Level of Diabetic Wistar Rat (Ratus norwegicus

    Directory of Open Access Journals (Sweden)

    Hardoko

    2006-04-01

    Full Text Available The effect of kappa-carrageenan consumption on blood glucose level were studied on diabetic male wistar rat (Ratus norvegicus.The rats were made diabetic by aloxan injection, and then were given that a ration contains 5, 10, 15, 20% (w/w kappa-carrageenan, standard ration (negative control, and parental glibenklamid (positive control. The results showed that the standard ration could not reduce blood glucose from hyperglycemic to normal level, while the ration contained kappacarrageenan could. The higher kappa-carrageenan seaweed level in the ration has higher capacity to decrease blood glucose level. The ration containing 20% and 15% kappa-carrageenan could reduce blood glucose in 18 and 21 days, respectively.The effect of this ration was similar to that of glibenklamid which reduced blood glucose to normal level in 18 days. The ration containing 5 and 10% kappa-carrageenan could reduce blood glucose level; Blood glucose leve return to normal on the 21st day.

  18. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    Science.gov (United States)

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  19. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core

    Directory of Open Access Journals (Sweden)

    Tamara Bruna-Larenas

    2012-01-01

    Full Text Available We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31 levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  20. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression.

    Directory of Open Access Journals (Sweden)

    Eva-K Pauli

    2008-11-01

    Full Text Available The type I interferon (IFN system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1. Here we present data indicating that influenza A viruses not only suppress IFNbeta gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3 protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNalpha/beta, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1 was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5' triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kappaB-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.

  1. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Science.gov (United States)

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  2. The regulation of MS-KIF18A expression and cross talk with estrogen receptor.

    Directory of Open Access Journals (Sweden)

    Margalit Zusev

    2009-07-01

    Full Text Available This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERalpha which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERalpha and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-kappaB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-precipitation (ChIP assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10(-8 M estrogen and 10(-7M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERalpha and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERalpha is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro.

  3. Nomogram for sample size calculation on a straightforward basis for the kappa statistic.

    Science.gov (United States)

    Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo

    2014-09-01

    Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice.

    Science.gov (United States)

    Murakami, G; Hunter, R G; Fontaine, C; Ribeiro, A; Pfaff, D

    2011-08-01

    The incidence of social disorders such as autism and schizophrenia is significantly higher in males, and the presentation more severe, than in females. This suggests the possible contribution of sex hormones to the development of these psychiatric disorders. There is also evidence that these disorders are highly heritable. To contribute toward our understanding of the mechanisms underlying social behaviors, particularly social interaction, we assessed the relationship of social interaction with gene expression for two neuropeptides, oxytocin (OT) and arginine vasopressin (AVP), using adult male mice. Social interaction was positively correlated with: oxytocin receptor (OTR) and vasopressin receptor (V1aR) mRNA expression in the medial amygdala; and OT and AVP mRNA expression in the paraventricular nucleus of the hypothalamus (PVN). When mice representing extremes of social interaction were compared, all of these mRNAs were more highly expressed in high social interaction mice than in low social interaction mice. OTR and V1aR mRNAs were highly correlated with estrogen receptor α (ERα) mRNA in the medial amygdala, and OT and AVP mRNAs with estrogen receptor β (ERβ) mRNA in the PVN, indicating that OT and AVP systems are tightly regulated by estrogen receptors. A significant difference in the level of ERα mRNA in the medial amygdala between high and low social interaction mice was also observed. These results support the hypothesis that variations of estrogen receptor levels are associated with differences in social interaction through the OT and AVP systems, by upregulating gene expression for those peptides and their receptors. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Caractérisation des processus d'ubiquitination régulant le facteur de transcription NF-kappaB au cours de l’activation lymphocytaire Rôle de l’E3 ligase TRIM13 et de la déubiquitinase USP34

    OpenAIRE

    Hatchi , Emeline

    2014-01-01

    The transcription factor NF-KappaB plays a critical role in the development, homeostasis, the survival of the immune system, but also in the propagation of certain lymphomas. The optimal activation of NF-KappaB in response to the engagement of many immunoreceptors rely on the implementation of large signalosomes where specific adaptors are recruited and poly-Ubiquitinylated in a non-Degradative manner. In response to proinflammatory cytokines or activation of antigen receptors, these Ubiquiti...

  6. Hepatic chemerin mRNA in morbidly obese patients with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kajor, Maciej; Kukla, Michał; Waluga, Marek; Liszka, Łukasz; Dyaczyński, Michał; Kowalski, Grzegorz; Żądło, Dominika; Berdowska, Agnieszka; Chapuła, Mateusz; Kostrząb-Zdebel, Anna; Bułdak, Rafał J; Sawczyn, Tomasz; Hartleb, Marek

    The aim of this study was to investigate hepatic chemerin mRNA, serum chemerin concentration, and immunohistochemical staining for chemerin and and chemokine receptor-like 1 (CMKLR1) in hepatic tissue in 56 morbidly obese women with nonalcoholic fatty liver disease (NAFLD) and to search for a relationship with metabolic and histopathological features. Chemerin mRNA was assessed by quantitative real-time PCR, chemerin, and CMKLR1 immunohistochemical expression with specific antibodies, while serum chemerin concentration was assessed with commercially available enzyme-linked immunosorbent assays. Serum chemerin concentration reached 874.1 ±234.6 ng/ml. There was no difference in serum chemerin levels between patients with BMI steatosis, and definite nonalcoholic steatohepatitis (NASH). Liver chemerin mRNA was observed in all included patients and was markedly, but insignificantly, higher in those with BMI ≥ 40 kg/m2, hepatocyte ballooning, greater extent of steatosis, and definite NASH. Hepatic chemerin mRNA might be a predictor of hepatic steatosis, hepatocyte ballooning, and NAFLD activity score (NAS) but seemed not to be a primary driver regulating liver necroinflammatory activity and fibrosis. The lack of association between serum chemerin and hepatic chemerin mRNA may suggest that adipose tissue but not the liver is the main source of chemerin in morbidly obese women.

  7. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions.

    Science.gov (United States)

    Nakao, Takehiro; Chishima, Fumihisa; Sugitani, Masahiko; Tsujimura, Ryusuke; Hayashi, Chuyu; Yamamoto, Tatsuo

    2017-01-01

    The aim of this study was to evaluate the gene and protein expression of angiotensin type (AT) 1, AT2 receptors in endometriotic lesions and its relation to prostaglandin (PG) synthases. Endometriosis samples were obtained from 32 patients with endometriotic cysts. Endometrial tissues were obtained during operations for benign gynecological conditions. The expression of the AT1 and AT2 receptor mRNA and that of PG-endoperoxide synthase 2 and microsomal PGE2 synthase-1 (mPGES-1) was examined by quantitative RT-PCR. Immunohistochemical staining was performed for these receptors. AT1 and AT2 receptor proteins were mostly located in endometrial glandular epithelium and some stromal cells. Immunoreactivity of the receptor proteins was observed in both the eutopic endometrium and endometriotic lesions. The AT1/AT2 ratio in endometriotic cysts (median 7.29, range 1.88-187.60) was significantly increased compared with that in the eutopic endometrium in the proliferative-phase in controls (median 1.01, range 0.37-2.09, p < 0.001). There was a relationship between the AT1 mRNA expression and that of mPGES-1 mRNA in the endometriotic cysts (r = 0.394089, p < 0.05). There was a significant relationship between the mRNA expression of the AT2 receptor and that of mPGES-1 in eutopic endometrium of non-endometriotic control (r = 0.610714, p < 0.05). Renin-angiotensin system may play an important role in the pathophysiology of endometriosis. © 2016 S. Karger AG, Basel.

  8. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  9. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  10. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    Science.gov (United States)

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  11. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  12. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Science.gov (United States)

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  13. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  14. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  15. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  16. Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-α hydroxylase mRNA expression in human vascular smooth muscle cells.

    Science.gov (United States)

    Somjen, D; Knoll, E; Sharon, O; Many, A; Stern, N

    2015-04-01

    Estrogen receptors (ERα and ERβ), the vitamin D receptor (VDR) and 25 hydroxyy vitamin D 1-α hydroxylase (1OHase) mRNA are expressed in vascular smooth muscle cells (VSMC). In these cells estrogenic hormones modulate cell proliferation as measured by DNA synthesis (DNA). In the present study we determined whether or not the calciotrophic hormones PTH 1-34 (PTH) and less- calcemic vitamin D analog QW as well as hyperglycemia can regulate DNA synthesis and CK. E2 had a bimodal effect on VSMC DNA synthesis, such that proliferation was inhibited at 30nM but stimulated at 0.3nM. PTH at 50nM increased, whereas QW at 10nM inhibited DNA synthesis. Hyperglycemia inhibited the effects on high E2, QW and PTH on DNA only. Both QW and PTH increased ERα mRNA expression, but only PTH increased ERβ expression. Likewise, both PTH and QW stimulated VDR and 1OHase expression and activity. ERβ, VDR and 1OHase expression and activity were inhibited by hyperglycemia, but ERα expression was unaffected by hyperglycemia. In conclusion, calcitrophic hormones modify VSMC growth and concomitantly affect ER expression in these cells as well as the endogenous VSMC vitamin D system elements, including VDR and 1OHase. Some of the later changes may likely participate in growth effects. Of importance in the observation is that several regulatory effects are deranged in the presence of hyperglycemia, particularly the PTH- and vitamin D-dependent up regulation of VDR and 1OHase in these cells. The implications of these effects require further studies. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  18. Abundance of adiponectin system and G-protein coupled receptor GPR109A mRNA in adipose tissue and liver of F2 offspring cows of Charolais × German Holstein crosses that differ in body fat accumulation.

    Science.gov (United States)

    Mielenz, M; Kuhla, B; Hammon, H M

    2013-01-01

    In addition to its role in energy storage, adipose tissue (AT) is an important endocrine organ and it secretes adipokines. The adipokine adiponectin improves insulin sensitivity by activation of its receptors AdipoR1 and AdipoR2. Lipolysis in AT is downregulated by the G-protein coupled receptor (GPR109A), which binds the endogenous ligand β-hydroxybutyrate (BHBA). Insulin sensitivity is reduced during the transition from late pregnancy to early lactation in dairy cattle and BHBA is increased postpartum, implying the involvement of the adiponectin system and GPR109A in this process. The aim of the current investigation was to study the effect of the genetic background of cows on the mRNA abundance of the adiponectin system, as well as GPR109A, in an F(2) population of 2 Charolais × German Holstein families. These families were deduced from full- and half-sibs sharing identical but reciprocal paternal and maternal Charolais grandfathers. The animals of the 2 families showed significant differences in fat accretion and milk secretion and were designated fat-type (high fat accretion but low milk production) and lean-type (low fat accretion but high milk production). The mRNA of the adiponectin system and GPR109A were quantified by real-time PCR in different fat depots (subcutaneous from back, mesenteric, kidney) and liver. The mRNA data were correlated with AT masses (intermuscular topside border fat, kidney, mesenteric, omental, total inner fat mass, total subcutaneous fat mass, and total fat mass) and blood parameters (glucose, nonesterified fatty acids, BHBA, urea, insulin, and glucagon). The abundance of adiponectin system mRNA was higher in discrete AT depots of fat-type cows [adiponectin mRNA in mesenteric fat (trend), AdipoR1 in kidney and mesenteric AT, and AdipoR2 in subcutaneous fat (trend)] than in lean-type cows. More GPR109A mRNA was found in kidney fat of the lean-type family than in that of the fat-type family. In liver, the abundance of AdipoR2 and

  19. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Spilsbury, Alison [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom); Vauzour, David; Spencer, Jeremy P.E. [Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP (United Kingdom); Rattray, Marcus, E-mail: m.a.n.rattray@reading.ac.uk [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  20. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  2. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  3. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer.

    Science.gov (United States)

    Rennie, P S; Mawji, N R; Coldman, A J; Godolphin, W; Jones, E C; Vielkind, J R; Bruchovsky, N

    1993-12-15

    Although smaller variant forms of estrogen receptor (ER) messenger RNA (mRNA) have been detected in breast tumors, neither their prevalence nor their prognostic significance have been evaluated. Similarly, TRPM-2 mRNA, the product of a gene induced principally during the onset of apoptosis, is present in mouse and human breast cancer cell lines, but whether it also occurs in primary breast tumors and is related to disease outcome is unknown. The relative expression and transcript size of ER mRNA and TRPM-2 mRNA in 126 primary breast tumors were measured by Northern analysis and compared with tumor grade, hormone receptor status, extent of tumor necrosis, and survival. In ER-positive tumors, 64% of the tumors had only the normal 6.5 kb ER mRNA, an additional 9% had the normal plus smaller ER mRNA, and 2% had variant forms. Only 8% of ER-negative tumors had ER mRNA transcripts. There were significant relationships between the occurrence of ER mRNA and low tumor grade, ER-positive receptor status, and better survival. In contrast, TRPM-2 mRNA was found in only 17% of breast tumors, none of which could be grouped with respect to grade, hormone receptor status, or survival. The presence of smaller variant forms of ER mRNA either alone or in association with the normal ER transcript is not indicative of an unfavorable prognosis, whereas TRPM-2 mRNA occurs in many primary breast tumors, but has no apparent relationship to survival.

  4. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery....... The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase...... in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training...

  5. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice.

    Science.gov (United States)

    Laman-Maharg, Abigail R; Copeland, Tiffany; Sanchez, Evelyn Ordoñes; Campi, Katharine L; Trainor, Brian C

    2017-08-14

    Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Immunoglobulin gene expression and regulation of rearrangement in kappa transgenic mice

    International Nuclear Information System (INIS)

    Ritchie, K.A.

    1986-01-01

    Transgenic mice were produced by microinjection of the functionally rearranged immunoglobulin kappa gene from the myeloma MOPC-21 into the male pronucleus of fertilized mouse eggs, and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were detected by hybridizing tail DNA dots with radioactively labelled pBR322 plasmid DNA, which detects pBR322 sequences left as a tag on the microinjected DNA. Mice that integrated the injected gene (six males) were mated and the DNA, RNA and serum kappa chains of their offspring were analyzed. A rabbit anti-mouse kappa chain antiserum was also produced for use in detection of mouse kappa chains on protein blots. Hybridomas were produced from the spleen cells of these kappa transgenic mice to immortalize representative B cells and to investigate expression of the transgenic kappa gene, its effect on allelic exclusion, and its effect on the control of light chain gene rearrangement and expression. The results show that the microinjected DNA is integrated as concatamers in unique single or, rarely, two separate sites in the genome. The concatamers are composed of several copies (16 to 64) of injected DNA arranged in a head to tail fashion. The transgene is expressed into protein normally and in a tissue specific fashion. For the first time in these transgenic mice, all tissues contain a functionally rearranged and potentially expressible immunoglobulin gene. The transgene is expressed only in B cells and not in hepatocytes, for example. This indicates that rearrangement of immunoglobulin genes is necessary but not sufficient for the tissue specific expression of these genes by B cells

  7. Sequence genomic organization and expression of two channel catfish Ictalurus punctatus Ghrelin receptors

    Science.gov (United States)

    Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration ...

  8. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, N; Madsen, Klavs

    2013-01-01

    RNA expression of components involved in Ca(2+) regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca(2+)-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL...

  9. Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus)

    International Nuclear Information System (INIS)

    Mimeault, C.; Trudeau, V.L.; Moon, T.W.

    2006-01-01

    The lipid regulator gemfibrozil (GEM) is one of many human pharmaceuticals found in the aquatic environment. We previously demonstrated that GEM bioconcentrates in blood and reduces plasma testosterone levels in goldfish (Carassius auratus). In this study, we address the potential of an environmentally relevant waterborne concentration of GEM (1.5 μg/l) to induce oxidative stress in goldfish liver and whether this may be linked to GEM acting as a peroxisome proliferator (PP). We also investigate the autoregulation of the peroxisome proliferator-activated receptors (PPARs) as a potential index of exposure. The three PPAR subtypes (α, β, and γ) were amplified from goldfish liver cDNA. Goldfish exposed to a concentration higher (1500 μg/l) than environmentally relevant for 14 and 28 days significantly reduce hepatic PPARβ mRNA levels (p < 0.001). Levels of CYP1A1 mRNA were unchanged. GEM exposure significantly induced the antioxidant defense enzymes catalase (p < 0.001), glutathione peroxidase (p < 0.001) and glutathione-S-transferase (p = 0.006) but not acyl-CoA oxidase or glutathione reductase. As GEM exposure failed to increase levels of thiobarbituric reactive substances (TBARS), we conclude that a sub-chronic exposure to GEM upregulates the antioxidant defense status of the goldfish as an adaptive response to this human pharmaceutical

  10. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    OpenAIRE

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clin...

  11. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    Science.gov (United States)

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  12. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  13. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system.

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2010-02-01

    Full Text Available Inflammatory response following central nervous system (CNS injury contributes to progressive neuropathology and reduction in functional recovery. Axons are sensitive to mechanical injury and toxic inflammatory mediators, which may lead to demyelination. Although it is well documented that degenerated myelin triggers undesirable inflammatory responses in autoimmune diseases such as multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE, there has been very little study of the direct inflammatory consequences of damaged myelin in spinal cord injury (SCI, i.e., there is no direct evidence to show that myelin debris from injured spinal cord can trigger undesirable inflammation in vitro and in vivo. Our data showed that myelin can initiate inflammatory responses in vivo, which is complement receptor 3 (CR3-dependent via stimulating macrophages to express pro-inflammatory molecules and down-regulates expression of anti-inflammatory cytokines. Mechanism study revealed that myelin-increased cytokine expression is through activation of FAK/PI3K/Akt/NF-kappaB signaling pathways and CR3 contributes to myelin-induced PI3K/Akt/NF-kappaB activation and cytokine production. The myelin induced inflammatory response is myelin specific as sphingomyelin (the major lipid of myelin and myelin basic protein (MBP, one of the major proteins of myelin are not able to activate NF-kappaB signaling pathway. In conclusion, our results demonstrate a crucial role of myelin as an endogenous inflammatory stimulus that induces pro-inflammatory responses and suggest that blocking myelin-CR3 interaction and enhancing myelin debris clearance may be effective interventions for treating SCI.

  14. A new structural class of proteasome inhibitors that prevent NF-kappa B activation.

    Science.gov (United States)

    Lum, R T; Kerwar, S S; Meyer, S M; Nelson, M G; Schow, S R; Shiffman, D; Wick, M M; Joly, A

    1998-05-01

    The multicatalytic proteinase or proteasome is a highly conserved cellular structure that is responsible for the ATP-dependent proteolysis of many proteins involved in important regulatory cellular processes. We have identified a novel class of inhibitors of the chymotrypsin-like proteolytic activity of the 20S proteasome that exhibit IC50 values ranging from 0.1 to 0.5 microgram/mL (0.1 to 1 microM). In cell proliferation assays, these compounds inhibit growth with an IC50 ranging from 5 to 10 micrograms/mL (10-20 microM). A representative member of this class of inhibitors was tested in other biological assays. CVT-634 (5-methoxy-1-indanone-3-acetyl-leu-D-leu-1-indanylamide) prevented lipopolysaccharide (LPS), tumor necrosis factor (TNF)-, and phorbol ester-induced activation of nuclear factor kappa B (NF-kappa B) in vitro by preventing signal-induced degradation of I kappa B-alpha. In these studies, the I kappa B-alpha that accumulated was hyperphosphorylated, indicating that CVT-634 did not inhibit I kappa B-alpha kinase, the enzyme responsible for signal-induced phosphorylation of I kappa B-alpha. In vivo studies indicated that CVT-634 prevented LPS-induced TNF synthesis in a murine macrophage cell line. In addition, in mice pretreated with CVT-634 at 25 and 50 mg/kg and subsequently treated with LPS, serum TNF levels were significantly lower (225 +/- 59 and 83 +/- 41 pg/mL, respectively) than in those mice that were treated only with LPS (865 +/- 282 pg/mL). These studies suggest that specific inhibition of the chymotrypsin-like activity of the proteasome is sufficient to prevent signal-induced NF-kappa B activation and that the proteasome is a novel target for the identification of agents that may be useful in the treatment of diseases whose etiology is dependent upon the activation of NF-kappa B.

  15. Nuclear factor-kappaB activation correlates with better prognosis and Akt activation in human gastric cancer.

    Science.gov (United States)

    Lee, Byung Lan; Lee, Hye Seung; Jung, Jieun; Cho, Sung Jin; Chung, Hee-Yong; Kim, Woo Ho; Jin, Young-Woo; Kim, Chong Soon; Nam, Seon Young

    2005-04-01

    Because the biological significance of constitutive nuclear factor-kappaB (NF-kappaB) activation in human gastric cancer is unclear, we undertook this study to clarify the regulatory mechanism of NF-kappaB activation and its clinical significance. Immunohistochemistry for NF-kappaB/RelA was done on 290 human gastric carcinoma specimens placed on tissue array slides. The correlations between NF-kappaB activation and clinicopathologic features, prognosis, Akt activation, tumor suppressor gene expression, or Bcl-2 expression were analyzed. We also did luciferase reporter assay, Western blot analysis, and reverse transcription-PCR using the SNU-216 human gastric cancer cell line transduced with retroviral vectors containing constitutively active Akt or the NF-kappaB repressor mutant of IkappaBalpha. Nuclear expression of RelA was found in 18% of the gastric carcinomas and was higher in early-stage pathologic tumor-node-metastasis (P = 0.019). A negative correlation was observed between NF-kappaB activation and lymphatic invasion (P = 0.034) and a positive correlation between NF-kappaB activation and overall survival rate of gastric cancer patients (P = 0.0228). In addition, NF-kappaB activation was positively correlated with pAkt (P = 0.047), p16 (P = 0.004), adenomatous polyposis coli (P Smad4 (P = 0.002), and kangai 1 (P Akt. NF-kappaB activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis and Akt activation. These findings suggest that NF-kappaB activation is a valuable prognostic variable in gastric carcinoma.

  16. Memory extinction entails the inhibition of the transcription factor NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Emiliano Merlo

    Full Text Available In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a transcription factor, NF-kappaB, in memory extinction. In the crab context-signal memory, the activation of NF-kappaB plays a critical role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of a NF-kappaB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement experiments showed that the original memory was not affected and that NF-kappaB inhibition by sulfasalazine impaired spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully consolidated memory, a brief re-exposure to the training context induced neuronal NF-kappaB activation and reconsolidation, while prolonged re-exposure induced NF-kappaB inhibition and memory extinction. These data constitutes a novel insight into the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose the inhibition of NF-kappaB as the engaged mechanism underlying extinction, supporting a novel approach for the pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support memory extinction is potentially useful for developing new strategies

  17. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Reimers, Kerstin [Klinik fuer Plastische, Hand-und Wiederherstellungschirurgie, Podbielskistrasse 380, D-30659 Hannover (Germany); Buchholz, Katja [Institut fuer Medizinische Mikrobiologie, Otto-von-Guericke-Universitaet Magdeburg, Leipzigerstrasse 44, D-39120 Magdeburg (Germany); Werchau, Hermann [Institut fuer Medizinische Mikrobiologie, Otto-von-Guericke-Universitaet Magdeburg, Leipzigerstrasse 44, D-39120 Magdeburg (Germany)

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cells revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.

  18. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  19. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  20. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice.

    Science.gov (United States)

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-02-21

    Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. The results suggest that

  1. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Directory of Open Access Journals (Sweden)

    Baskin Laurence S

    2006-02-01

    Full Text Available Abstract Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females, we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias and masculinizing females (longer urethras. Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl

  2. Uterine-embryonic interaction in pit : activin, follistatin, and activin receptor II in uterus and embryo during early gestation

    NARCIS (Netherlands)

    Pavert, van de S.A.; Boerjan, M.L.; Stroband, H.W.J.; Taverne, M.A.M.; Hurk, van der R.

    2001-01-01

    The mRNA expression patterns of activin A and follistatin in the uterus and embryo, the mRNA expression of the activin receptor II in the embryo, and the localization in the uterus of the immunoreactive activin A and the receptor II proteins in the uterus were examined at gestation days 7-12 after

  3. Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia.

    Science.gov (United States)

    Cascallana, Jose Luis; Bravo, Ana; Donet, Eva; Leis, Hugo; Lara, Maria Fernanda; Paramio, Jesús M; Jorcano, José L; Pérez, Paloma

    2005-06-01

    Hypohidrotic ectodermal dysplasia is a human syndrome defined by maldevelopment of one or more ectodermal-derived tissues, including the epidermis and cutaneous appendices, teeth, and exocrine glands. The molecular bases of this pathology converge in a dysfunction of the transcription factor nuclear factor of the kappa-enhancer in B cells (NF-kappaB), which is essential to epithelial homeostasis and development. A number of mouse models bearing disruptions in NF-kappaB signaling have been reported to manifest defects in ectodermal derivatives. In ectoderm-targeted transgenic mice overexpressing the glucocorticoid receptor (GR) [keratin 5 (K5)-GR mice], the NF-kappaB activity is greatly decreased due to functional antagonism between GR and NF-kappaB. Here, we report that K5-GR mice exhibit multiple epithelial defects in hair follicle, tooth, and palate development. Additionally, these mice lack Meibomian glands and display underdeveloped sweat and preputial glands. These phenotypic features appear to be mediated specifically by ligand-activated GR because the synthetic analog dexamethasone induced similar defects in epithelial morphogenesis, including odontogenesis, in wild-type mice. We have focused on tooth development in K5-GR mice and found that an inhibitor of steroid synthesis partially reversed the abnormal phenotype. Immunostaining revealed reduced expression of the inhibitor of kappaB kinase subunits, IKKalpha and IKKgamma, and diminished p65 protein levels in K5-GR embryonic tooth, resulting in a significantly reduced kappaB-binding activity. Remarkably, altered NF-kappaB activity elicited by GR overexpression correlated with a dramatic decrease in the protein levels of DeltaNp63 in tooth epithelia without affecting Akt, BMP4, or Foxo3a. Given that many of the 170 clinically distinct ectodermal dysplasia syndromes still remain without cognate genes, deciphering the molecular mechanisms of this mouse model with epithelial NF-kappaB and p63 dysfunction may

  4. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  5. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  6. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    International Nuclear Information System (INIS)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D.

    1990-01-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study

  7. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    International Nuclear Information System (INIS)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET B ) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-κB specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET B receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET B receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET B receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET B receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET B receptors. Thus, the MAPK-mediated upregulation of contractile ET B receptors in cerebral arteries might be a

  8. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  9. Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain.

    Science.gov (United States)

    Palasz, Artur; Rojczyk, Ewa; Golyszny, Milosz; Filipczyk, Lukasz; Worthington, John J; Wiaderkiewicz, Ryszard

    2016-04-01

    The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.

  10. Decrease in TSH Receptor Autoantibodies during Antithyroid Treatment

    DEFF Research Database (Denmark)

    Christensen, Niels Juel; Habekost, Gurli; Bratholm, Palle

    2011-01-01

    We have previously shown that a long noncoding RNA transcript Heg is negatively correlated with TSH receptor autoantibodies (TRAb) in patients with untreated Graves' disease and with CD14 mRNA in treated patients and controls. Thus patients with high concentrations of Heg RNA have low levels...... of TRAb or CD14 mRNA, respectively. Here we show that an additional factor, gene expression of Cdk1 in mononuclear cells, is positively related to concentrations of TRAb in patients with untreated Graves' disease. Cdk1 mRNA is very important for regulation of cell cycle activity. It is well known...

  11. Exogenous glucagon-like peptide-2 (GLP-2) augments GLP-2 receptor mRNA and maintains proglucagon mRNA levels in resected rats

    DEFF Research Database (Denmark)

    Koopmann, Matthew C; Nelson, David W; Murali, Sangita G

    2008-01-01

    BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent proglucagon-derived hormone that stimulates intestinal adaptive growth. Our aim was to determine whether exogenous GLP-2 increases resection-induced adaptation without diminishing endogenous proglucagon and GLP-2 receptor express...... augments adaptive growth and digestive capacity of the residual small intestine in a rat model of mid-small bowel resection by increasing plasma GLP-2 concentrations and GLP-2 receptor expression without diminishing endogenous proglucagon expression.......BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent proglucagon-derived hormone that stimulates intestinal adaptive growth. Our aim was to determine whether exogenous GLP-2 increases resection-induced adaptation without diminishing endogenous proglucagon and GLP-2 receptor...

  12. Macromolecular complexes of lysozyme with kappa carrageenan

    NARCIS (Netherlands)

    Antonov, Y.A.; Zhuravleva, I.L.; Cardinaels, R.; Moldenaers, P.

    2018-01-01

    We present a structural study of the complexation and binding of lysozyme (Lys) with kappa carrageenan (kCG) by means of turbidity measurements, phase analysis, dynamic and electrophoretic light scattering, differential scanning microcalorimetry (DSMC), confocal laser scanning (CLSM) microscopy,

  13. Stimulation of monocytes by placental microparticles involves Toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells

    Directory of Open Access Journals (Sweden)

    Marianne Simone Joerger-Messerli

    2014-04-01

    Full Text Available Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggests a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro.STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR and fluorescence microscopy.STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation was blocked.Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  14. The utility of peripheral thyrotropin receptor mRNA in the management of differentiated thyroid cancer.

    Science.gov (United States)

    Aliyev, Altay; Soundararajan, Saranya; Bucak, Emre; Gupta, Manjula; Hatipoglu, Betul; Nasr, Christian; Siperstein, Allan; Berber, Eren

    2015-10-01

    Our aim was to analyze the utility of peripheral thyrotropin receptor (TSHR) messenger RNA (mRNA) in predicting and detecting the recurrence of differentiated thyroid cancer. Peripheral blood TSHR-mRNA was obtained in 103 patients before and after total thyroidectomy. An analysis was performed to correlate peripheral blood TSHR-mRNA concentration with oncologic outcomes. Tumor types were papillary (n = 92), follicular (n = 9) and Hürthle cell (n = 2) cancer. Preoperative TSHR-mRNA was ≥1.02 ng/μg in 85% (88/103). On follow-up (median 48 months), 10 patients (10 %) developed recurrence. Recurrence rate in patients with a preoperative TSHR-mRNA ≥ 1.02 ng/μg was 11% versus 0% in those with a lesser concentration. TSHR-mRNA correctly diagnosed 7 (70%) of 10 recurrences. Of 19 patients with positive thyroglobulin (Tg) antibodies, TSHR-mRNA confirmed disease-free status in 12 (63%) and recurrence in 1 (5%). For Tg, TSHR-mRNA and whole-body radioactive iodine scan, sensitivity was 70%, 70%, and 75%; specificity 94%, 76%, 97%; PPV 54%, 24%, and 67%; and NPV 97%, 96%, and 98%, respectively, in detecting recurrent disease. This study shows that patients with preoperative TSHR-mRNA ≥1.02 ng/μg may be at a greater risk for recurrence compared with those with a lesser concentration. In the presence of Tg antibodies, TSHR-mRNA accurately predicted disease status in 68% of patients. Its overall performance in detecting recurrence was similar to Tg and whole-body radioactive iodine scan, albeit with lower specificity and PPV. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail.

    Science.gov (United States)

    Zimmer, C; Spencer, K A

    2014-12-01

    Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions. © 2014 The Authors. Journal of Neuroendocrinology published by

  17. A new gene in A. rubens: A sea star Ig kappa gene.

    Science.gov (United States)

    Vincent, Nadine; Osteras, Magne; Otten, Patricia; Leclerc, Michel

    2014-12-01

    The sea star Asterias rubens reacts specifically to the antigen:HRP (horse-radish peroxydase) and produces an antibody anti-HRP. We previously identified a candidate Ig kappa gene corresponding to this manuscript. We show now the gene referred to as: "sea star Ig kappa gene in its specificity".

  18. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    DEFF Research Database (Denmark)

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao

    2006-01-01

    In cardiovascular diseases, endothelin type B (ET(B)) receptors in arterial smooth muscle cells are upregulated. The present study revealed that organ culture of rat mesenteric artery segments enhanced endothelin ET(B) receptor-mediated contraction paralleled with increase in the receptor mRNA an...

  19. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  20. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  1. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  2. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  3. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens.

    Science.gov (United States)

    Ghareeb, Khaled; Awad, Wageha A; Soodoi, Chimidtseren; Sasgary, Soleman; Strasser, Alois; Böhm, Josef

    2013-01-01

    An experiment was conducted to investigate the individual and combined effects of dietary deoxynivalenol (DON) and a microbial feed additive on plasma cytokine level and on the expression of immune relevant genes in jejunal tissues of broilers. A total of 40 broiler chicks were obtained from a commercial hatchery and divided randomly into four groups (10 birds per group). Birds were reared in battery cages from one day old for 5 weeks. The dietary groups were 1) control birds fed basal diet; 2) DON group fed basal diet contaminated with 10 mg DON/ kg feed; 3) DON + Mycofix group fed basal diet contaminated with 10 mg DON/ kg feed and supplemented with a commercial feed additive, Mycofix® Select (MS) (2.5 kg/ton of feed); 4) Mycofix group fed basal diet supplemented with MS (2.5 kg/ton of feed). At 35 days, the plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) were quantified by ELISA test kits. Furthermore, the mRNA expression of TNF-α, IL-8, IL-1β, interferon gamma (IFNγ), transforming growth factor beta receptor I (TGFBR1) and nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κβ1) in jejunum were quantified by qRT-PCR. The results showed that the plasma TNF-α decreased in response to DON, while in combination with MS, the effect of DON was reduced. DON down-regulated the relative gene expression of IL-1β, TGFBR1 and IFN-γ, and addition of MS to the DON contaminated diet compensates these effects on IL-1β, TGFBR1 but not for IFN-γ. Furthermore, supplementation of MS to either DON contaminated or control diet up-regulated the mRNA expression of NF-κβ1. In conclusion, DON has the potential to provoke and modulate immunological reactions of broilers and subsequently could increase their susceptibility to disease. The additive seemed to have almost as much of an effect as DON, albeit on different genes.

  4. Human placenta: relative content of antibodies of different classes and subclasses (IgG1-IgG4) containing lambda- and kappa-light chains and chimeric lambda-kappa-immunoglobulins.

    Science.gov (United States)

    Lekchnov, Evgenii A; Sedykh, Sergey E; Dmitrenok, Pavel S; Buneva, Valentina N; Nevinsky, Georgy A

    2015-06-01

    The specific organ placenta is much more than a filter: it is an organ that protects, feeds and regulates the growth of the embryo. Affinity chromatography, ELISA, SDS-PAGE and matrix-assisted laser desorption ionization mass spectrometry were used. Using 10 intact human placentas deprived of blood, a quantitative analysis of average relative content [% of total immunoglobulins (Igs)] was carried out for the first time: (92.7), IgA (2.4), IgM (2.5), kappa-antibodies (51.4), lambda-antibodies (48.6), IgG1 (47.0), IgG2 (39.5), IgG3 (8.8) and IgG4 (4.3). It was shown for the first time that placenta contains sIgA (2.5%). In the classic paradigm, Igs represent products of clonal B-cell populations, each producing antibodies recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, similarly to human milk Igs, placenta antibodies undergo extensive half-molecule exchange and the IgG pool consists of 43.5 ± 15.0% kappa-kappa-IgGs and 41.6 ± 17.0% lambda-lambda-IgGs, while 15.0 ± 4.0% of the IgGs contained both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained, respectively (%): IgG1 (47.7 and 34.4), IgG2 (36.3 and 44.5), IgG3 (7.4 and 11.8) and IgG4 (7.5 and 9.1), while chimeric kappa-lambda-IgGs consisted of (%): 43.5 IgG1, 41.0 IgG2, 5.6 IgG3 and 7.9 IgG4. Our data are indicative of the possibility of half-molecule exchange between placenta IgGs of various subclasses, raised against different antigens, which explains a very well-known polyspecificity and cross-reactivity of different human IgGs. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  6. DMPD: New insights into NF-kappaB regulation and function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18775672 New insights into NF-kappaB regulation and function. Sun SC, Ley SC. Trend...ction. PubmedID 18775672 Title New insights into NF-kappaB regulation and function....s Immunol. 2008 Oct;29(10):469-78. Epub 2008 Sep 3. (.png) (.svg) (.html) (.csml) Show New insights into NF-kappaB regulation and fun

  7. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  8. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    International Nuclear Information System (INIS)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-01-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-α and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-α-induced responses, in this study we examined the TNF-α-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-α (rTNF-α) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5 + or sIgM + cells and these cells showed resistance to TNF-α-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-α-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection

  9. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  10. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 1698221...1 Title Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Author

  11. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L; Costantino, Joseph P; Baehner, Frederick L; Baker, Joffre; Cronin, Maureen T; Watson, Drew; Shak, Steven; Bohn, Olga L; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L; Vogel, Victor G; McCaskill-Stevens, Worta; Ford, Leslie G; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-11-01

    Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) -positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors.

  12. Quantification and molecular characterization of the feline leukemia virus A receptor.

    Science.gov (United States)

    Katrin Helfer-Hungerbuehler, A; Cattori, Valentino; Bachler, Barbara; Hartnack, Sonja; Riond, Barbara; Ossent, Pete; Lutz, Hans; Hofmann-Lehmann, Regina

    2011-12-01

    Virus receptors and their expression patterns on the cell surface determine the cell tropism of the virus, host susceptibility and the pathogenesis of the infection. Feline thiamine transport protein 1 (fTHTR1) has been identified as the receptor for feline leukemia virus (FeLV) A. The goal of the present study was to develop a quantitative, TaqMan real-time PCR assay to investigate fTHTR1 mRNA expression in tissues of uninfected and FeLV-infected cats, cats of different ages, in tumor tissues and leukocyte subsets. Moreover, the receptor was molecularly characterized in different feline species. fTHTR1 mRNA expression was detected in all 30 feline tissues investigated, oral mucosa scrapings and blood. Importantly, identification of significant differences in fTHTR1 expression relied on normalization with an appropriate reference gene. The lowest levels were found in the blood, whereas high levels were measured in the oral mucosa, salivary glands and the musculature. In the blood, T lymphocytes showed significantly higher fTHTR1 mRNA expression levels than neutrophil granulocytes. In vitro activation of peripheral blood mononuclear cells with concanavalin A alone or followed by interleukin-2 led to a transient increase of fTHTR1 mRNA expression. In the blood, but not in the examined tissues, FeLV-infected cats tended to have lower fTHTR1 mRNA levels than uninfected cats. The fTHTR1 mRNA levels were not significantly different between tissues with lymphomas and the corresponding non-neoplastic tissues. fTHTR1 was highly conserved among different feline species (Iberian lynx, Asiatic and Indian lion, European wildcat, jaguarundi, domestic cat). In conclusion, while ubiquitous fTHTR1 mRNA expression corresponded to the broad target tissue range of FeLV, particularly high fTHTR1 levels were found at sites of virus entry and shedding. The differential susceptibility of different species to FeLV could not be attributed to variations in the fTHTR1 sequence. Copyright

  13. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  14. Expression of LDL receptor-related proteins (LRPs in common solid malignancies correlates with patient survival.

    Directory of Open Access Journals (Sweden)

    Steven L Gonias

    Full Text Available LDL receptor-related proteins (LRPs are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional databases in The Cancer Genome Atlas (TCGA to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research.

  15. CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel.

    Science.gov (United States)

    Dutta, Jui; Fan, Gaofeng; Gélinas, Céline

    2008-11-01

    The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.

  16. VDR mRNA overexpression is associated with worse prognostic factors in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    June Young Choi

    2017-03-01

    Full Text Available The purpose of this study was to assess the relationship between vitamin D receptor gene (VDR expression and prognostic factors in papillary thyroid cancer (PTC. mRNA sequencing and somatic mutation data from The Cancer Genome Atlas (TCGA were analyzed. VDR mRNA expression was compared to clinicopathologic variables by linear regression. Tree-based classification was applied to find cutoff and patients were split into low and high VDR group. Logistic regression, Kaplan–Meier analysis, differentially expressed gene (DEG test and pathway analysis were performed to assess the differences between two VDR groups. VDR mRNA expression was elevated in PTC than that in normal thyroid tissue. VDR expressions were high in classic and tall-cell variant PTC and lateral neck node metastasis was present. High VDR group was also associated with classic and tall cell subtype, AJCC stage IV and lower recurrence-free survival. DEG test reveals that 545 genes were upregulated in high VDR group. Thyroid cancer-related pathways were enriched in high VDR group in pathway analyses. VDR mRNA overexpression was correlated with worse prognostic factors such as subtypes of papillary thyroid carcinoma that are known to be worse prognosis, lateral neck node metastasis, advanced stage and recurrence-free survival.

  17. Spectroscopy of the fractional vortex eigenfrequency in a long Josephson 0-{kappa} junction

    Energy Technology Data Exchange (ETDEWEB)

    Buckenmaier, K.; Gaber, T.; Schittenhelm, I.; Kleiner, R.; Koelle, D.; Goldobin, E. [Physikalisches Inst., Experimentalphysik II, Univ. Tuebingen (Germany); Siegel, M. [Univ. Karlsruhe (Germany). Inst. fuer Mikro- und Nanoelektronische Systeme

    2007-07-01

    In long Josephson junctions with a {kappa}-phase discontinuity, created by two current injectors, a fractional Josephson vortex (FJV) is spontaneously formed at the interface between the 0- and {kappa}-part. A FJV carries an arbitrary fraction {phi}/{phi}{sub 0}={kappa}/2{pi} of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. In contrast to fluxons, FJVs are pinned at the discontinuity point, but in underdamped systems they are able to oscillate around their equilibrium point with characteristic eigenfrequencies. To experimentally determine the eigenfrequency we stimulated a FJV by irradiating our sample with microwaves. At resonance the junction switches to the resistive state. A measurement of the switching probability thus allows to determine the FJV eigenfrequency as a function of bias current and {kappa}. We compare our results with the prediction of the perturbed sine-Gordon equation. (orig.)

  18. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    Science.gov (United States)

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  19. Progesterone increases ex vivo testosterone production and decreases the expression of progestin receptors and steroidogenic enzymes in the fathead minnow (Pimephales promelas) ovary.

    Science.gov (United States)

    Chishti, Yasmin Z; Feswick, April; Martyniuk, Christopher J

    2014-04-01

    Progesterone (P4) is a metabolic precursor for a number of steroids, including estrogens and androgens. P4 also has diverse roles within the vertebrate ovary that include oocyte growth and development. The objectives of this study were to measure the effects of P4 on testosterone (T) and 17β-estradiol (E2) production in the fathead minnow (FHM) ovary and on the mRNA abundance of transcripts involved in steroidogenesis and steroid receptor signaling. Ovary explants were treated with P4 (10(-6)M) for 6 and 12h. P4 administration significantly increased T production ∼3-fold at both 6 and 12h, whereas E2 production was not affected, consistent with the hypothesis that excess P4 is not converted to terminal estrogens in the mature ovary. Nuclear progesterone receptor mRNA was decreased at 6h and membrane progesterone receptor gamma-2 mRNA was significantly down-regulated at both 6 and 12h; however there was no change in membrane progesterone receptor alpha or beta mRNA levels. Androgen receptor (ar) and estrogen receptor 2a (esr2a) mRNA were significantly reduced at 6h with P4 treatment, but there was no change in esr2b mRNA at either time point. Transcripts for enzymes in the steroid pathway (star, hsd11b2) were significantly lower at 6h compared to controls, whereas cyp17a and cyp19a mRNA abundance did not change with treatments at either time point. These data suggest that P4 incubation can lead to increased T production in the FHM ovary without a concomitant change in E2, and that the membrane bound progestin receptors are differentially regulated by P4 in the teleost ovary. As environmental progestins have received increased attention due to their suspected role as endocrine disruptors, mechanistic data on the role of exogenous P4 treatments in the male and female gonad is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A note on the kappa statistic for clustered dichotomous data.

    Science.gov (United States)

    Zhou, Ming; Yang, Zhao

    2014-06-30

    The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Molecular cloning and expression of bovine kappa-casein in Escherichia coli

    International Nuclear Information System (INIS)

    Kang, Y.C.; Richardson, T.

    1988-01-01

    A cDNA library was constructed using poly(A) + RNA from bovine mammary gland. This cDNA library of 6000 clones was screened employing colony hybridization using 32 P-labelled oligonucleotide probes and restriction endonuclease mapping. The cDNA from the selected plasmid, pKR76, was sequenced using the dideoxy-chain termination method. The cDNA insert of pKR76 carries the full-length sequence, which codes for mature kappa-casein protein. The amino acid sequence deduced from the cDNA sequence fits the published amino acid sequence with three exceptions; the reported pyroglutamic acid at position 1, tyrosine at position 35, and aspartic acid at position 81 are, respectively, a glutamine, a histidine, and an asparagine in the clone containing pKR76. The MspI-, NlaIV-cleaved fragment (630 base pair) from the kappa-casein cDNA insert has been subcloned into expression vectors pUC18 and pKK233-2, which contain a lac promoter and a trc promoter, respectively. Escherichia coli cells carrying the recombinant expression plasmids were shown to produce kappa-casein protein having the expected mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and being recognized by specific antibodies raised against natural bovine kappa-casein

  2. Successful treatment with risperidone increases 5-HT 3A receptor gene expression in patients with paranoid schizophrenia - data from a prospective study.

    Science.gov (United States)

    Chen, Hongying; Fan, Yong; Zhao, Lei; Hao, Yong; Zhou, Xiajun; Guan, Yangtai; Li, Zezhi

    2017-09-01

    The relationship between peripheral 5-HT3A receptor mRNA level and risperidone efficiency in paranoid schizophrenia patients is still unknown. A total 52 first-episode and drug-naive paranoid schizophrenia patients who were treated with risperidone and 53 matched healthy controls were enrolled. Patients were naturalistically followed up for 8 weeks. Positive and Negative Syndrome Scale (PANSS) was applied to assess symptom severity of the patients at baseline and at the end of 8th week. There was no difference in 5-HT3A receptor mRNA level between paranoid schizophrenia patients and healthy controls at baseline ( p  = .24). Among 47 patients who completed 8-week naturalistic follow-up, 37 were responders to risperidone treatment. 5-HT3A receptor mRNA level of paranoid schizophrenia patients did not change in overall patients after 8-week treatment with risperidone ( p  = .29). However, 5-HT3A receptor mRNA level in responders increased significantly ( p  = .04), but not in nonresponders ( p  = .81). Successful treatment with risperidone increases 5-HT3A receptor gene expression in patients with paranoid schizophrenia, indicating that 5-HT3A receptor may be involved in the mechanism of risperidone effect.

  3. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Muromoto, Ryuta; Takahashi, Miki [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Takeda, Yukimasa; Jetten, Anton M. [National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (United States); Matsuda, Tadashi [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2012-03-15

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides

  4. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi

    2012-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10 −6 M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides suppress

  5. Method for rapidly determining a pulp kappa number using spectrophotometry

    Science.gov (United States)

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  6. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  7. Interleukin-1/toll-like receptor-induced nuclear factor kappa B signaling participates in intima hyperplasia after carotid artery balloon injury in goto-kakizaki rats: a potential target therapy pathway.

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    Full Text Available The value of restenosis after percutaneous coronary intervention (PCI is recognized worldwide, especially for diabetic patients. Interleukin-1/Toll-like receptor (IL-1/TLR signaling is involved in innate and adaptive immune responses, but whether and how the IL-1/TLR-induced nuclear factor kappa B (NFκB pathway plays key roles in intimal formation is unclear. The underlying mechanism of intima hyperplasia was investigated with a model of carotid balloon injury in Goto-Kakizaki (GK and Wistar rats and with lipopolysaccharide-stimulated macrophages. Elastic-van Gieson staining showed the medial area peakedon Day 3 post-injury and decreased by Day 7 post-injury in both GK and Wistar rats. The N/M at Day 7 in GK rats was significantly higher than in Wistar rats (p<0.001. The percent of 5-ethynyl-2'-deoxyuridine (EdU staining-positive cells on Day 3 post-injury was greater than seen on Day 7 post-injury in GK and Wistar rats. The percent of EdU-positive cells on Days 3 and 7 post-injury in Wistar rats was less than that found in GK rats (p<0.01; p<0.05. NFκBp65 immunostaining had increased by Day 7 post-injury. Agilent Whole Genome Oligo Microarray verified that the IL-1/TLR-induced NFκB pathway was activated by carotid balloon injury. TLR4, IL-1 receptor associated kinase, inhibitors α of NFκB, human antigen R, c-Myc (Proto-Oncogene Proteins, EGF-like module-containing mucin-like hormone receptor-like 1 and Interleukin-6 were up-regulated or down-regulated according to immunochemistry, quantitative real-time PCR, Western blotting and Enzyme linked immunosorbent assay. Overall, we conclude that the IL-1/TLR-induced NFκB pathway participates in the intimal hyperplasia after carotid injury in GK and Wistar rats and that GK rats respond more intensely to the inflammation than Wistar rats.

  8. Regulation of development and function of different T cell subtypes by Rel/NF-{kappa}B family members

    Energy Technology Data Exchange (ETDEWEB)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-{kappa}B family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-{kappa}B via the classical I{kappa}B{alpha}-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1{sup -} precursors to mature NK1.1{sup +} NKT cells. The Rel/NF-{kappa}B family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1{sup -} precursors. NF-{kappa}B-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-{kappa}B induction. Thus, Rel/NF-{kappa}B complexes activated by the classical I{kappa}B{alpha}-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  9. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    International Nuclear Information System (INIS)

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-01-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling

  10. Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials.

    Science.gov (United States)

    Carlezon, William A; Krystal, Andrew D

    2016-10-01

    Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans. © 2016 Wiley Periodicals, Inc.

  11. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  12. The Role of Sigma Receptor in Breast Cancer

    National Research Council Canada - National Science Library

    Pusztai, Lajos

    2004-01-01

    We have completed specific tasks #1 and #2. Sigma 1 receptor (Sig 1 R) mRNA expression was examined in 109 human tissue specimens including normal breast, hyperplasia, ductal carcinoma in situ, and invasive cancer...

  13. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  15. Association between p75 neurotrophin receptor gene expression and cell apoptosis in tissues surrounding hematomas in rat models of intracerebral hemorrhage.

    Science.gov (United States)

    He, Baixiang; Bao, Gang; Guo, Shiwen; Xu, Gaofeng; Li, Qi; Wang, Ning

    2012-03-15

    Animal models of intracerebral hemorrhage were established by injection of autologous blood into the caudate nucleus in rats. Cell apoptosis was measured by flow cytometry and immunohistochemical staining of the p75 neurotrophin receptor. p75 neurotrophin receptor protein was detected by immunohistochemistry. p75 neurotrophin receptor mRNA was examined by quantitative real-time polymerase chain reactions. At 24 hours after modeling, cellular apoptosis occured around hematoma with upregulation of p75 neurotrophin receptor protein and mRNA was observed, which directly correlated to apoptosis. This observation indicated that p75 neurotrophin receptor upregulation was associated with cell apoptosis around hematomas after intracerebral hemorrhage.

  16. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K

    1996-01-01

    the corresponding cDNA. The gene, designated SORL1, maps to chromosome 11q 23/24 and encodes a 2214-residue type 1 receptor containing a furin cleavage site immediately preceding the N terminus determined in the purified protein. The receptor, designated sorLA-1, has a short cytoplasmic tail containing a tyrosine...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis......The 39-40-kDa receptor-associated protein (RAP) binds to the members of the low density lipoprotein receptor gene family and functions as a specialized endoplasmic reticulum/Golgi chaperone. Using RAP affinity chromatography, we have purified a novel approximately 250-kDa brain protein and isolated...

  17. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  18. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  19. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    Science.gov (United States)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  20. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  1. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  2. DMPD: NF-kappaB activation by reactive oxygen species: fifteen years later. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16723122 NF-kappaB activation by reactive oxygen species: fifteen years later. Gloi...svg) (.html) (.csml) Show NF-kappaB activation by reactive oxygen species: fifteen years later. PubmedID 167...23122 Title NF-kappaB activation by reactive oxygen species: fifteen years later.

  3. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    International Nuclear Information System (INIS)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions

  4. Cationization of kappa- and iota-carrageenan--Characterization and properties of amphoteric polysaccharides.

    Science.gov (United States)

    Barahona, Tamara; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L; Fissore, Eliana L; Gerschenson, Lia N; Matulewicz, María C

    2015-08-01

    Commercial kappa- and iota carrageenans were cationized with 3-chloro-2-hydroxypropyltrimethylammonium chloride in aqueous sodium hydroxide solution. For kappa-carrageenan three derivatives with different degrees of substitution were obtained. Native and amphoteric kappa-carrageenans were characterized by NMR and infrared spectroscopy, scanning electron and atomic force microscopy; methanolysis products were studied by electrospray ionization mass spectrometry. Young moduli and the strain at break of films, differential scanning calorimetry, rheological and flocculation behavior were also evaluated; the native and the amphoteric derivatives showed different and interesting properties. Cationization of iota-carrageenan was more difficult, indicating as it was previously observed for agarose, that substitution starts preferentially on the 2-position of 3,6-anhydrogalactose residues; in iota-carrageenan this latter unit is sulfated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  6. mRNA Cancer Vaccines-Messages that Prevail.

    Science.gov (United States)

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  7. NMR study on the network structure of a mixed gel of kappa and iota carrageenans.

    Science.gov (United States)

    Hu, Bingjie; Du, Lei; Matsukawa, Shingo

    2016-10-05

    The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. Copyright © 2016. Published by Elsevier Ltd.

  8. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Tsuruo, Takashi [Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Umezawa, Kazuo [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061 (Japan); Higashihara, Masaaki [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Watanabe, Toshiki [Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Horie, Ryouichi, E-mail: rhorie@med.kitasato-u.ac.jp [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.

  9. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  10. NIK and IKKbeta interdependence in NF-kappaB signalling--flux analysis of regulation through metabolites.

    Science.gov (United States)

    Kim, Hong-Bum; Evans, Iona; Smallwood, Rod; Holcombe, Mike; Qwarnstrom, Eva E

    2010-02-01

    Activation of the transcription factor NF-kappaB is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, IkappaBalpha and regulation by the IKKbeta kinase. In addition, the NF-kappaB is activated through the NF-kappaB-inducing kinase, NIK. Analysis of the IKK/NIK inter-relationship and its impact on NF-kappaB control, were analysed by mathematical modelling, using matrix formalism and stoichiometrically balanced reactions. The analysis considered a range of bio-reactions and core metabolites and their role in relation to kinase activation and in control of specific steps of the NF-kappaB pathway. The model predicts a growth-rate and time-dependent transfer of the primary kinase activity from IKKbeta to NIK. In addition, it suggests that NIK/IKKbeta interdependence is controlled by intermediates of phosphoribosylpyrophosphate (PRPP) within the glycolysis pathway, and thus, identifies a link between specific metabolic events and kinase activation in inflammatory signal transduction. Subsequent in vitro experiments, carried out to validate the impact of IKK/NIK interdependence, confirmed signal amplification at the level of the NF-kappaB/IkappaBalpha complex control in the presence of both kinases. Further, they demonstrate that the induced potentiation is due to synergistic enhancement of relA-dependent activation. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  12. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  13. on skin keratinocytes by nuclear factor-kappa B

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-06-21

    Jun 21, 2012 ... Effects of advanced glycation end-products (AGEs) on ... AGE levels, nuclear factor-kappa B (NF-κB) localization and cell viability were measured in vivo. ..... and related alteration in NF-κB activity, we treated normal cells by ...

  14. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  15. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors.

    Science.gov (United States)

    Tritto, Simona; Botta, Laura; Zampini, Valeria; Zucca, Gianpiero; Valli, Paolo; Masetto, Sergio

    2009-06-29

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to) H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  16. Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per; Svane, Inge Marie

    2016-01-01

    Adoptive T-cell therapy based on the infusion of patient’s own immune cells after ex vivo culturing is among the most potent forms of personalized treatment among recent clinical developments for the treatment of cancer. However, despite high rates of successful initial clinical responses, only...... infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred Tcells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting...

  17. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  18. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  19. Commutators of Littlewood-Paley gκ∗$g_{\\kappa}^{*} $-functions on non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Lu Guanghui

    2017-11-01

    Full Text Available The main purpose of this paper is to prove that the boundedness of the commutator Mκ,b∗$\\mathcal{M}_{\\kappa,b}^{*} $ generated by the Littlewood-Paley operator Mκ∗$\\mathcal{M}_{\\kappa}^{*} $ and RBMO (μ function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of Mκ∗$\\mathcal{M}_{\\kappa}^{*} $ satisfies a certain Hörmander-type condition, the authors prove that Mκ,b∗$\\mathcal{M}_{\\kappa,b}^{*} $ is bounded on Lebesgue spaces Lp(μ for 1 < p < ∞, bounded from the space L log L(μ to the weak Lebesgue space L1,∞(μ, and is bounded from the atomic Hardy spaces H1(μ to the weak Lebesgue spaces L1,∞(μ.

  20. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  1. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination

    OpenAIRE

    Louise S. Matheson; Daniel J. Bolland; Peter Chovanec; Felix Krueger; Simon Andrews; Hashem Koohy; Anne E. Corcoran

    2017-01-01

    V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive o...

  2. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, G.A.L. [Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Milazzotto, M.P. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Nichi, M.; Lúcio, C.F.; Silva, L.C.G.; Angrimani, D.S.R.; Vannucchi, C.I. [Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-02-13

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.

  3. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches

    International Nuclear Information System (INIS)

    Veiga, G.A.L.; Milazzotto, M.P.; Nichi, M.; Lúcio, C.F.; Silva, L.C.G.; Angrimani, D.S.R.; Vannucchi, C.I.

    2015-01-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs

  4. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches.

    Science.gov (United States)

    Veiga, G A L; Milazzotto, M P; Nichi, M; Lúcio, C F; Silva, L C G; Angrimani, D S R; Vannucchi, C I

    2015-04-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.

  5. nor-BNI Antagonism of Kappa Opioid Agonist-Induced Reinstatement of Ethanol-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Erin Harshberger

    2016-01-01

    Full Text Available Recent work suggests that the dynorphin (DYN/kappa opioid receptor (KOR system may be a key mediator in the behavioral effects of alcohol. The objective of the present study was to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI to attenuate relapse to ethanol seeking due to priming injections of the KOR agonist U50,488 at time points consistent with KOR selectivity. Male Wistar rats were trained to self-administer a 10% ethanol solution, and then responding was extinguished. Following extinction, rats were injected with U50,488 (0.1–10 mg/kg, i.p. or saline and were tested for the reinstatement of ethanol seeking. Next, the ability of the nonselective opioid receptor antagonist naltrexone (0 or 3.0 mg/kg, s.c. and nor-BNI (0 or 20.0 mg/kg, i.p. to block U50,488-induced reinstatement was examined. Priming injections U50,488 reinstated responding on the previously ethanol-associated lever. Pretreatment with naltrexone reduced the reinstatement of ethanol-seeking behavior. nor-BNI also attenuated KOR agonist-induced reinstatement, but to a lesser extent than naltrexone, when injected 24 hours prior to injections of U50,488, a time point that is consistent with KOR selectivity. While these results suggest that activation of KORs is a key mechanism in the regulation of ethanol-seeking behavior, U50,488-induced reinstatement may not be fully selective for KORs.

  6. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  7. Observer variability in the assessment of type and dysplasia of colorectal adenomas, analyzed using kappa statistics

    DEFF Research Database (Denmark)

    Jensen, P; Krogsgaard, M R; Christiansen, J

    1995-01-01

    . The kappa values for Observer A vs. B and Observer C vs. B were 0.3480 and 0.3770, respectively (both type and dysplasia). Values for type were better than for dysplasia, but agreement was only fair to moderate. CONCLUSION: The interobserver agreement was moderate to almost perfect, but the intraobserver...... agreement was only fair to moderate. A simpler classification system or a centralization of assessments would probably increase kappa values....... of adenomas were assessed twice by three experienced pathologists, with an interval of two months. Results were analyzed using kappa statistics. RESULTS: For agreement between first and second assessment (both type and grade of dysplasia), kappa values for the three specialists were 0.5345, 0.9022, and 0...

  8. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  9. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Adaptive evolution of relish, a Drosophila NF-kappaB/IkappaB protein.

    OpenAIRE

    Begun, D J; Whitley, P

    2000-01-01

    NF-kappaB and IkappaB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-kappaB/IkappaB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appear...

  11. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Park Sang Won

    2011-11-01

    Full Text Available Abstract Background Repeated exposure to methamphetamine (METH can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown. Methods The present study determined whether resistance of the μ-opioid receptor (μ-OR knockout mice to behavioral sensitization is due to differential expression of the stimulatory G protein α subunit (Gαs or regulators of G-protein signaling (RGS coupled to the dopamine D1 receptor. Mice received daily intraperitoneal injections of saline or METH (10 mg/kg for 7 consecutive days to induce sensitization. On day 11(following 4 abstinent days, mice were either given a test dose of METH (10 mg/kg for behavioral testing or sacrificed for neurochemical assays without additional METH treatment. Results METH challenge-induced stereotyped behaviors were significantly reduced in the μ-opioid receptor knockout mice when compared with those in wild-type mice. Neurochemical assays indicated that there is a decrease in dopamine D1 receptor ligand binding and an increase in the expression of RGS4 mRNA in the striatum of METH-treated μ-opioid receptor knockout mice but not of METH-treated wild-type mice. METH treatment had no effect on the expression of Gαs and RGS2 mRNA in the striatum of either strain of mice. Conclusions These results indicate that down-regulation of the expression of the dopamine D1 receptor and up-regulation of RGS4 mRNA expression in the striatum may contribute to the reduced response to METH-induced stereotypy behavior in μ-opioid receptor knockout mice. Our results highlight the interactions of the μ-opioid receptor system to METH-induced behavioral responses by influencing the expression of RGS of dopamine D1 receptors.

  12. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    Science.gov (United States)

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  14. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.

    Science.gov (United States)

    Zhang, Yan; Igwe, Orisa J

    2018-01-01

    Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  16. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA.

    OpenAIRE

    Esumi, H; Takahashi, Y; Sekiya, T; Sato, S; Nagase, S; Sugimura, T

    1982-01-01

    Analbuminemic rats, which lack serum albumin, were previously found to have no albumin mRNA in the cytoplasm of the liver. In the present study, the existence of nuclear albumin mRNA precursors in the liver of analbuminemic rats was examined by RNA X cDNA hybridization kinetics. Albumin mRNA precursors were present in the nuclei of analbuminemic rat liver at almost normal levels, despite the absence of albumin mRNA from the cytoplasm. Nuclear RNA of analbuminemic rat liver was subjected to el...

  17. Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-kappaB pathway.

    Science.gov (United States)

    Ren, Ke; Zhang, Wei; Shi, Yujun; Gong, Jianping

    2010-06-01

    Pim-2 is proved to be relevant to the tumorigenesis of hepatocellular carcinoma (HCC), but the mechanism is unclear. We studied the relationship among Pim-2, NF-kappaB and API-5. In our experiment, expression level of the three factors and phosphorylation level of API-5, as well as NF-kappaB activity, were detected in HCC tissues and the nontumorous controls. Then Pim-2 gene was transfected into nontumorous liver cells L02, and Pim-2 SiRNA was transfected into hepatoblastoma cell line HepG2. Parthenolide was added as NF-kappaB inhibitor. The same detections as above were repeated in the cells, along with the apoptosis analysis. We found the levels of Pim-2, NF-kappaB and API-5, as well as NF-kappaB activity, were significantly higher in HCC tissues. Pim-2 level was increased in L02 cells after the transfection of Pim-2 gene, but decreased in HepG2 cells after the transfection of Pim-2 SiRNA. The levels of NF-kappaB and API-5, as well as NF-kappaB activity and API-5 phosphorylation level, were in accordance with Pim-2 level, but could be reversed by Parthenolide. Cell apoptosis rates were negatively correlated with API-5 phosphorylation level. Therefore, we infer that Pim-2 could activate API-5 to inhibit the apoptosis of liver cells, and NF-kappaB is the key regulator.

  18. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones.

    Science.gov (United States)

    Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi

    2013-02-28

    Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion.

  19. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones

    International Nuclear Information System (INIS)

    Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi

    2013-01-01

    Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion

  20. Expression and Localization of Peroxisome Proliferator-Activated Receptors and Nuclear Factor κB in Normal and Lesional Psoriatic Skin

    DEFF Research Database (Denmark)

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus

    2003-01-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent...... activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei...... in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology...

  1. Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    Science.gov (United States)

    Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim

    2012-01-01

    C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850

  2. Statins Activate Human PPAR Promoter and Increase PPAR mRNA Expression and Activation in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Makoto Seo

    2008-01-01

    Full Text Available Statins increase peroxisome proliferator-activated receptor (PPAR mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1 Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2 PPAR mRNA expression was increased by statin treatment. (3 The PPAR levels in nuclear fractions were increased by statin treatment. (4 Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.

  3. Measurement of Interobserver Disagreement: Correction of Cohen’s Kappa for Negative Values

    Directory of Open Access Journals (Sweden)

    Tarald O. Kvålseth

    2015-01-01

    Full Text Available As measures of interobserver agreement for both nominal and ordinal categories, Cohen’s kappa coefficients appear to be the most widely used with simple and meaningful interpretations. However, for negative coefficient values when (the probability of observed disagreement exceeds chance-expected disagreement, no fixed lower bounds exist for the kappa coefficients and their interpretations are no longer meaningful and may be entirely misleading. In this paper, alternative measures of disagreement (or negative agreement are proposed as simple corrections or modifications of Cohen’s kappa coefficients. The new coefficients have a fixed lower bound of −1 that can be attained irrespective of the marginal distributions. A coefficient is formulated for the case when the classification categories are nominal and a weighted coefficient is proposed for ordinal categories. Besides coefficients for the overall disagreement across categories, disagreement coefficients for individual categories are presented. Statistical inference procedures are developed and numerical examples are provided.

  4. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baluku, T. K.; Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2012-01-15

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low {kappa} values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-{kappa} distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  5. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-01-01

    Research highlights: → Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ. → GW9662 treatment alone increased RAGE mRNA levels in tubular cells. → Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-β gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.

  6. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    Science.gov (United States)

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  7. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  8. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Sheng [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Kawamura, Tomohiro; Peng, Ximei [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tochigi, Naobumi [Department of Pathology, University of Pittsburgh Medical Center, PA (United States); Shigemura, Norihisa [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Billiar, Timothy R. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Nakao, Atsunori, E-mail: anakao@imap.pitt.edu [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Toyoda, Yoshiya [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  9. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  10. Effects of electroacupuncture on orphanin FQ immunoreactivity and preproorphanin FQ mRNA in nucleus of raphe magnus in the neuropathic pain rats.

    Science.gov (United States)

    Ma, Fei; Xie, Hong; Dong, Zhi-Qiang; Wang, Yan-Qing; Wu, Gen-Cheng

    2004-07-15

    Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats. Copyright 2004 Elsevier Inc.

  11. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  12. Syncytin-1 and its receptor is present in human gametes

    DEFF Research Database (Denmark)

    Bjerregaard, B; Lemmen, J G; Petersen, M R

    2014-01-01

    and around the equatorial segment. The receptor ASCT-2 is expressed in the acrosomal region and in the sperm tail. Moreover, ASCT-2, but not syncytin-1, is expressed in oocytes and the mRNA level increases with increasing maturity of the oocytes. CONCLUSIONS: Syncytin and its receptor are present in human......MAIN PURPOSE AND RESEARCH QUESTION: To determine whether the true fusogen Syncytin-1 and its receptor (ASCT-2) is present in human gametes using qRT-PCR, immunoblotting and immunofluorescence. METHODS: Donated oocytes and spermatozoa, originating from a fertility center in tertiary referral...

  13. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.

    Science.gov (United States)

    Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne

    2008-12-01

    Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.

  14. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  16. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    Science.gov (United States)

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  17. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  18. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    Science.gov (United States)

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.

  19. Mapping the transcription termination region of the mouse immunoglobulin kappa gene

    International Nuclear Information System (INIS)

    Xu, M.; Garrard, W.T.

    1986-01-01

    To define the transcription termination region of the mouse immunoglobulin kappa gene, they have subcloned single copy DNA sequences corresponding to both the template and the non-template strands of this locus. In vitro nuclear transcription with isolated MPC-11 nuclei was performed and the resulting 32 P-labeled RNA was hybridized to slot-blotted, single-stranded M13 probes covering regions within and flanking the kappa gene. The hybridization pattern for the template-strand reveals that transcription terminates within the region between 1.1 to 2.3 kb downstream from the poly(A) site. Ten different short sequences (8-13 bp) reside within 460 bp of this region that exhibit homology with sequences found in the termination regions of mouse β-globin and chicken ovalbumin genes. Transcription of the non-template strand occurs on either side of this termination region. They note that no transcription is detectable on the non-template strand downstream of the enhancer, indicating that if RNA polymerase II enters at this site, it does not initiate transcription during transit to the promoter region. They conclude that transcription of the kappa gene passes the poly(A) addition site and terminates within 2.3 Kb downstream

  20. DMPD: Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17349209 Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Carmody...uclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Authors Carmody

  1. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  2. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist.

    Science.gov (United States)

    Hoffman, Hal M; Rosengren, Sanna; Boyle, David L; Cho, Jae Y; Nayar, Jyothi; Mueller, James L; Anderson, Justin P; Wanderer, Alan A; Firestein, Gary S

    Familial cold autoinflammatory syndrome (FCAS) is an autosomal dominant disorder characterised by recurrent episodes of rash, arthralgia, and fever after cold exposure. The genetic basis of this disease has been elucidated. Cryopyrin, the protein that is altered in FCAS, is one of the adaptor proteins that activate caspase 1, resulting in release of interleukin 1. An experimental cold challenge protocol was developed to study the acute inflammatory mechanisms occurring after a general cold exposure in FCAS patients and to investigate the effects of pretreatment with an antagonist of interleukin 1 receptor (IL-1Ra). ELISA, real-time PCR, and immunohistochemistry were used to measure cytokine responses. After cold challenge, untreated patients with FCAS developed rash, fever, and arthralgias within 1-4 h. Significant increases in serum concentrations of interleukin 6 and white-blood-cell counts were seen 4-8 h after cold challenge. Serum concentrations of interleukin 1 and cytokine mRNA in peripheral-blood leucocytes were not raised, but amounts of interleukin 1 protein and mRNA were high in affected skin. IL-1Ra administered before cold challenge blocked symptoms and increases in white-blood-cell counts and serum interleukin 6. The ability of IL-1Ra to prevent the clinical features and haematological and biochemical changes in patients with FCAS indicates a central role for interleukin 1beta in this disorder. Involvement of cryopyrin in activation of caspase 1 and NF-kappaB signalling suggests that it might have a role in many chronic inflammatory diseases. These findings support a new therapy for a disorder with no previously known acceptable treatment. They also offer insights into the role of interleukin 1beta in more common inflammatory diseases.

  3. Caseinomacropeptide self-association is dependent on whether the peptide is free or restricted in kappa-casein

    DEFF Research Database (Denmark)

    Mikkelsen, T.L.; Frokiaer, H.; Topp, C.

    2005-01-01

    There is a general agreement that the experimentally determined molecular weight (MW) of caseinomacropeptide (CMP) is greater than the theoretical MW. Some studies suggest that this is due to a pH-dependent aggregation of monomeric CMP. How this aggregation is influenced by pH is not understood. ...... are irreversibly associated, CMP in kappa-CN may associate reversibly in a pH-dependent manner. We suggest that interactions between para-kappa-CN parts of the kappa-CN molecules may be a requisite for the pH-dependent dissociation/association....

  4. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao

    2002-01-01

    with ET-1 (unspecific ET(A) and ET(B) agonist), S6c (specific ET(B) agonist) and 5-CT (5-HT(1) agonist). Levels of mRNA coding for the ET(A), ET(B), 5-HT(1B) and 5-HT(1D) receptors were analysed using real-time RT-PCR. 3. Classical PKC's are critically involved in the appearance of the ET(B) receptor; co....... 2. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhibitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments......-culture with RO 31-7549 abolished the contractile response (6.9 +/- 1.8%) and reduced the ET(B) receptor mRNA by 44 +/- 4% as compared to the cultured control. Correlation between decreased ET(B) receptor mRNA and abolished contractile function indicates upstream involvement of PKC. 4. Inhibition of PKA generally...

  5. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  6. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Pudhom, Khanitha [Department of Chemistry, Faculty of Science and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  7. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    Directory of Open Access Journals (Sweden)

    Mejía Salvador

    2006-02-01

    Full Text Available Abstract Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  8. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    Science.gov (United States)

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  9. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  10. Bradykinin B2 receptor expression in the bronchial mucosa of allergic asthmatics: the role of NF-kB

    NARCIS (Netherlands)

    Ricciardolo, F. L. M.; Petecchia, L.; Sorbello, V.; Di Stefano, A.; Usai, C.; Massaglia, G. M.; Gnemmi, I.; Mognetti, B.; Hiemstra, P. S.; Sterk, P. J.; Sabatini, F.

    2016-01-01

    Bradykinin (BK) mediates acute allergic asthma and airway remodelling. Nuclear factor-kappa B (NF-kB) is potentially involved in BK B2 receptor (B2R) regulation. In this observational cross-sectional study, B2R and NF-kB expression was evaluated in bronchial biopsies from mild asthmatics (after

  11. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    Science.gov (United States)

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  12. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Molecular characterization of cytochrome P450 1A and 3A and the effects of perfluorooctanoic acid on their mRNA levels in rare minnow (Gobiocypris rarus) gills

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yong; Wang Jianshe; Wei Yanhong; Zhang Hongxia; Liu Yang [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Dai Jiayin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China)], E-mail: daijy@ioz.ac.cn

    2008-07-07

    Perfluorooctanoic acid (PFOA), a potentially toxic perfluorinated compound (PFC), has been widely disseminated in the environment. In the present study, rare minnows (Gobiocypris rarus) exposed to PFOA exhibited histopathological gill damage, including epithelial hyperplasia of the lamellae, inflammatory cell infiltration, and lamellar fusion. Cytochrome P450s (CYPs) play a central role in the metabolism and biotransformation of a wide range of endogenous substrates and foreign compounds. Thus, we studied the CYPs and the effects of waterborne PFOA on their corresponding mRNA levels in the gills of rare minnows. Two novel CYP cDNAs (CYP1A and CYP3A) were identified in rare minnow and their mRNAs were ubiquitously expressed in all tissues examined. Upregulation of CYP3A mRNA was observed in the gills of male rare minnows exposed to 30 mg/L PFOA, while no significant changes occurred in exposed females. In contrast, down regulation of CYP1A mRNA was detected in the gills of male and female minnows exposed to PFOA. However, the effect of PFOA on gill mRNA levels of their potential regulators, aryl hydrocarbon receptor (AhR) for CYP1A, and pregnane X receptor (PXR) for CYP3A, were not consistent with the observed effects of PFOA on the corresponding CYP mRNA concentrations. This suggests a different or more complex transcriptional regulation of CYP expression following PFOA exposure.

  14. Triiodothyronine affects the alternative splicing of thyroid hormone receptor alpha mRNA

    NARCIS (Netherlands)

    Timmer, D. C.; Bakker, O.; Wiersinga, W. M.

    2003-01-01

    The c-erbAalpha gene encodes two thyroid hormone receptors, TRalpha1 and TRalpha2, that arise from alternative splicing of the TRalpha pre-mRNA. TRalpha2 is not able to bind triiodothyronine (T-3) and acts as a weak antagonist of TRs. It has been suggested that the balance of TRalpha1 to TRalpha2 is

  15. Evaluation of estrogen receptor alpha and beta and progesterone receptor expression and correlation with clinicopathologic factors and proliferative marker Ki-67 in breast cancers

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Caldeira, José R F; Felipes, Joice

    2008-01-01

    To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative ana...

  16. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  17. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    International Nuclear Information System (INIS)

    Jiang, Lili; Wu, Jueheng; Yang, Yi; Liu, Liping; Song, Libing; Li, Jun; Li, Mengfeng

    2012-01-01

    The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappaB/MMP-9 pathway and therefore might represent a novel therapeutic

  18. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    Directory of Open Access Journals (Sweden)

    Jiang Lili

    2012-09-01

    Full Text Available Abstract Background The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1 has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. Methods A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Results Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Conclusions Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappa

  19. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  20. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway.

    NARCIS (Netherlands)

    Lorenz, C.; Fotin-Mleczek, M.; Roth, G.; Becker, C.; Dam, T.C.; Verdurmen, W.P.R.; Brock, R.E.; Probst, J.; Schlake, T.

    2011-01-01

    Insertional mutagenesis and the inherent risk of malignancy compromise the clinical use of DNA-based therapies. Being a transient copy of genetic material, mRNA is a safe alternative, overcoming this limitation. As a prerequisite for the development of efficient mRNA-based therapies, we investigated

  1. GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus.

    Science.gov (United States)

    McAllister, C E; Creech, R D; Kimball, P A; Muma, N A; Li, Q

    2012-08-01

    Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Gene Expression of Tumor Necrosis Factor α and TNF-α Receptors (p55 and p75) in Nonalcoholic Steatohepatitis Patients

    International Nuclear Information System (INIS)

    Soliman, S.ET.; Abo-Madyan, A.A.

    2010-01-01

    The main objective of this study was to analyze the pathogenic role of the tumor necrosis factor (TNF-) system in the development of nonalcoholic steatohepatitis (NASH). Fifty obese patients were studied. We investigated: 1) the expression of mRNA of TNF- and their p55 and p75 receptors by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) in hepatic and adipose tissues; and 2) the relationship between TNF-, p55, and p75 and the severity of NASH. Obese patients without NASH were the control group. A remarkable increase in the expression of mRNA of TNF- was found in patients with NASH in hepatic tissue (0.65 ± 0.54) and in peripheral fat (0.43 ± 0.45); in the control samples, the mRNA expression was 0.30 ± 0.32, P < .006, and 0.28 ± 0.22, P < .016, respectively. Furthermore, we found significant increase in the mRNA levels of p55 receptor (2.94 ± 1.71 vs. 1.46 ± 1.27; P<.04); however, the mRNA expression of the p75 receptor was similar in both patients. Those patients with NASH with significant fibrosis presented an increase in the expression of mRNA TNF- in comparison with those with slight or nonexistent fibrosis. The levels of mRNA-p55 are increased in the liver tissue of NASH patients. This over expression is more elevated in patients with more advanced NASH. These findings suggest that the TNF- system may be involved in the pathogenesis of NASH.

  3. Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export.

    Science.gov (United States)

    Krebber, H; Taura, T; Lee, M S; Silver, P A

    1999-08-01

    Npl3p, the major mRNA-binding protein of the yeast Saccharomyces cerevisiae shuttles between the nucleus and the cytoplasm. A single amino acid change in the carboxyl terminus of Npl3p (E409 --> K) renders the mutant protein largely cytoplasmic because of a delay in its import into the nucleus. This import defect can be reversed by increasing the intracellular concentration of Mtr10p, the nuclear import receptor for Npl3p. Conversely, using this mutant, we show that Npl3p and mRNA export out of the nucleus is significantly slowed in cells bearing mutations in XPO1/CRM1, which encodes the export receptor for NES-containing proteins and in RAT7, which encodes an essential nucleoporin. Interestingly, following induction of stress by heat shock, high salt, or ethanol, conditions under which most mRNA export is blocked, Npl3p is still exported from the nucleus. The stress-induced export of Npl3p is independent of both the activity of Xpo1p and the continued selective export of heat-shock mRNAs that occurs following stress. UV-cross-linking experiments show that Npl3p is bound to mRNA under normal conditions, but is no longer RNA associated in stressed cells. Taken together, we suggest that the uncoupling of Npl3p and possibly other mRNA-binding proteins from mRNAs in the nucleus provides a general switch that regulates mRNA export. By this model, under normal conditions Npl3p is a major component of an export-competent RNP complex. However, under conditions of stress, Npl3p no longer associates with the export complex, rendering it export incompetent and thus nuclear.

  4. Novel selective kappa-opioid ligands.

    Science.gov (United States)

    Peeters, O M; Jamroz, D; Blaton, N M; De Ranter, C J

    1999-03-15

    The single-crystal X-ray structures of (-)-dimethyl[(2S)-1-(5,6,7,8- tetrahydro-5-oxonaphthalene-2-acetyl)piperidin-2-ylmethyl ]ammonium chloride, C20H29N2O2+.Cl-(BRL-53001A), and (-)-ethylmethyl[(2S)-1-(5,6,7,8-tetrahydro-5-oxonaphthalene- 2- acetyl)piperidin-2-ylmethyl]-ammonium chloride dihydrate, C21H31N2O2+.Cl-.2H2O (BRL-53188A), have been determined. The two molecules have different conformations in the 1-tetralon-6-ylacetyl residue but the same conformation in the 1-acetyl-2-(dialkylaminomethyl)piperidine moiety. The conformations found are in agreement with the required chemical features for kappa affinity and antinociceptive potency.

  5. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  6. Receptors for luteinizing hormone-releasing hormone (LHRH) in benign prostatic hyperplasia (BPH) as potential molecular targets for therapy with LHRH antagonist cetrorelix.

    Science.gov (United States)

    Rozsa, Bernadett; Nadji, Mehrdad; Schally, Andrew V; Dezso, Balazs; Flasko, Tibor; Toth, Gyorgy; Mile, Melinda; Block, Norman L; Halmos, Gabor

    2011-04-01

    The majority of men will develop symptoms of benign prostatic hyperplasia (BPH) after 70 years of age. Various studies indicate that antagonists of LHRH, such as cetrorelix, exert direct inhibitory effects on BPH mediated by specific LHRH receptors. Our aim was to investigate the mRNA for LHRH and LHRH receptors and the expression of LHRH receptors in specimens of human BPH. The expression of mRNA for LHRH (n=35) and LHRH receptors (n=55) was investigated by RT-PCR in surgical specimens of BPH, using specific primers. The characteristics of binding sites for LHRH on 20 samples were determined by ligand competition assays. The LHRH receptor expression was also examined in 64 BPH specimens by immunohistochemistry. PCR products for LHRH were found in 18 of 35 (51%) BPH tissues and mRNA for LHRH receptors was detected in 39 of 55 (71%) BPH specimens. Eighteen of 20 (90%) samples showed a single class of high affinity binding sites for [D-Trp(6) ]LHRH with a mean K(d) of 4.04 nM and a mean B(max) of 527.6 fmol/mg membrane protein. LHRH antagonist cetrorelix showed high affinity binding to LHRH receptors in BPH. Positive immunohistochemical reaction for LHRH receptors was present in 42 of 64 (67%) BPH specimens. A high incidence of LHRH receptors in BPH supports the use of LHRH antagonists such as cetrorelix, for treatment of patients with lower urinary tract symptoms from BPH. Copyright © 2010 Wiley-Liss, Inc.

  7. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  8. Profiles of mRNA expression of genes related to sex differentiation of the gonads in the chicken embryo.

    Science.gov (United States)

    Yamamoto, I; Tsukada, A; Saito, N; Shimada, K

    2003-09-01

    Sex is determined genetically in birds. The homogametic sex is male (ZZ), whereas the heterogametic sex is female (ZW). According to the genetic sex, gonads develop into testes or ovary. In this study, we performed experiments to reveal mRNA expression patterns in the gonad between d 5.5 and 8.5 of incubation and examined a possible role of Dss-Ahc critical region on the X chromosome 1 (Dax1), Steroidogenic factor 1 (Sf1), P450aromatase (P450arom), Estrogen receptor alpha (ER alpha), doublesex and mab3 related transcription factor 1 (Dmrt1), Sry-related HMG box gene 9 (Sox9), Gata binding protein 4 (Gata4), and anti-müllerian hormone (Amh) in sex differentiation in chicken embryonic gonads using RNase protection assay. In embryonic chicken gonads, Dax1 mRNA was expressed in both sexes but was higher in females than in males at d 6.5 and 7.5 of incubation. The Sf1 mRNA was expressed in both sexes, but it was expressed more in males at d 5.5 than in females but more in females than in males at d 7.5 and 8.5 of incubation. The P450arom mRNA was expressed only in female gonads from d 5.5 of incubation. The ER alpha mRNA was expressed in both sexes, but it did not show a sex difference. On the other hand, the Dmrt1 mRNA was expressed in both sexes, but it showed a male-specific expression pattern. The male-specific expression pattern was observed in Sox9 mRNA, but it was not expressed in female gonads. The Gata4 mRNA was expressed in both sexes, and sex differences were not revealed throughout the observational period. Amh mRNA was expressed in both sexes, but it had male-specific mRNA expression pattern at d 6.5 to 8.5 of incubation. These results indicate that Dax1, Sf1, and P450arom have possible roles in ovary formation, whereas Dmrt1, Sox9, and Amh are related to testis formation in differentiating chicken gonads at d 5.5 to 8.5 of incubation.

  9. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  10. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    Science.gov (United States)

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-08-26

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.

  11. "Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats".

    Science.gov (United States)

    Valenza, Marta; Butelman, Eduardo R; Kreek, Mary Jeanne

    2017-08-01

    The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.

  12. Expression of the melatonin receptor Mel(1c) in neural tissues of the reef fish Siganus guttatus.

    Science.gov (United States)

    Park, Yong-Ju; Park, Ji-Gweon; Jeong, Hyung-Bok; Takeuchi, Yuki; Kim, Se-Jae; Lee, Young-Don; Takemura, Akihiro

    2007-05-01

    The golden rabbitfish, Siganus guttatus, is a reef fish exhibiting a restricted lunar-related rhythm in behavior and reproduction. Here, to understand the circadian rhythm of this lunar-synchronized spawner, a melatonin receptor subtype-Mel(1c)-was cloned. The full-length Mel(1c) melatonin receptor cDNA comprised 1747 bp with a single open reading frame (1062 bp) that encodes a 353-amino acid protein, which included 7 presumed transmembrane domains. Real-time PCR revealed high Mel(1c) mRNA expression in the retina and brain but not in the peripheral tissues. When the fish were reared under light/dark (LD 12:12) conditions, Mel(1c) mRNA in the retina and brain was expressed with daily variations and increased during nighttime. Similar variations were noted under constant conditions, suggesting that Mel(1c) mRNA expression is regulated by the circadian clock system. Daily variations of Mel(1c) mRNA expression with a peak at zeitgeber time (ZT) 12 were observed in the cultured pineal gland under LD 12:12. Exposure of the cultured pineal gland to light at ZT17 resulted in a decrease in Mel(1c) mRNA expression. When light was obstructed at ZT5, the opposite effect was obtained. These results suggest that light exerts certain effects on Mel(1c) mRNA expression directly or indirectly through melatonin actions.

  13. Application of iota and kappa carrageenans to traditional several food using modified cassava flour

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Rizqiati, H.; Widayat; Septianingrum, A.; Sabrina, H. N.; Arganis, L. M.; Saraswati, R. O.; Mochtar, Rr C. P. R.

    2018-01-01

    Carrageenan has been known well as hydrocolloids that forming viscous dispersions and gels when dispersed in water. The carrageenan has not been widely applied to traditional foods. Therefore, the aim of this research was to determine the effect of kappa and iota carrageenans in traditional food models using modified cassava flour, sugar, and coconut milk. The textural properties, i.e. hardness, cohesiveness, springiness and adhesiveness have been measured using texture analyzer. The study indicated that traditional food models added kappa carrageenan at 2% generated remarkably higher in the hardness, cohesiveness, and springiness than those added iota carrageenan. On the other hand, the reserve result were found in the adhesiveness parameter. As conclusion, kappa carrageenan scan be potentially used for producing traditional foods based on the hard-texture-oriented foods whereas iota carrageenan can be used for the traditional foods with better adhesiveness.

  14. Cirhin up-regulates a canonical NF-{kappa}B element through strong interaction with Cirip/HIVEP1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bin; Mitchell, Grant A. [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada); Richter, Andrea, E-mail: andrea.richter@umontreal.ca [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada)

    2009-11-01

    North American Indian childhood cirrhosis (NAIC/CIRH1A) is a severe autosomal recessive intrahepatic cholestasis. All NAIC patients have a homozygous mutation in CIRH1A that changes conserved Arg565 to Trp (R565W) in Cirhin, a nucleolar protein of unknown function. Subcellular localization is unaffected by the mutation. Yeast two-hybrid screening identified Cirip (Cirhin interaction protein) and found that interaction between Cirip and R565W-Cirhin was weakened. Co-immunoprecipitation of the two proteins from nuclear extracts of HeLa cells strongly supports the yeast two hybrid results. Cirip has essentially the same sequence as the C-terminal of HIVEP1, a regulator of a canonical NF-{kappa}B sequence. Since Cirip has the zinc fingers required for this interaction, we developed an in vitro assay based on this element in mammalian cells to demonstrate functional Cirhin-Cirip interaction. The strong positive effect of Cirip on the NF-{kappa}B sequence was further increased by both Cirhin and R565W-Cirhin. Importantly, the effect of R565W-Cirhin was weaker than that of the wild type protein. We observed increased levels of Cirhin-Cirip complex in nuclear extracts in the presence of this NF-{kappa}B sequence. Our hypothesis is that Cirhin is a transcriptional regulatory factor of this NF-{kappa}B sequence and could be a participant in the regulation of other genes with NF-{kappa}B responsive elements. Since the activities of genes regulated through NF-{kappa}B responsive elements are especially important during development, this interaction may be a key to explain the perinatal appearance of NAIC.

  15. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    Science.gov (United States)

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  16. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors

    International Nuclear Information System (INIS)

    Chang, C.; Kokontis, J.; Liao, S.

    1988-01-01

    Structural analysis of cDNAs for human and rat androgen receptors (ARs) indicates that the amino-terminal regions of ARs are rich in oligo- and poly(amino acid) motifs as in some homeotic genes. The human AR has a long stretch of repeated glycines, whereas rat AR has a long stretch of glutamines. There is a considerable sequence similarity among ARs and the receptors for glucocorticoids, progestins, and mineralocorticoids within the steroid-binding domains. The cysteine-rich DNA-binding domains are well conserved. Translation of mRNA transcribed from AR cDNAs yielded 94- and 76-kDa proteins and smaller forms that bind to DNA and have high affinity toward androgens. These rat or human ARs were recognized by human autoantibodies to natural Ars. Molecular hybridization studies, using AR cDNAs as probes, indicated that the ventral prostate and other male accessory organs are rich in AR mRNA and that the production of AR mRNA in the target organs may be autoregulated by androgens

  17. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  18. Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Campos Maria M

    2010-12-01

    Full Text Available Abstract Background Kinin B1 receptors are inducible molecules up-regulated after inflammatory stimuli. This study evaluated the relevance of kinin B1 receptors in a mouse depression behavior model. Methods Mice were exposed to a 5-min swimming session, and 30 min later they were injected with E. coli lipopolysaccharide (LPS. Depression-like behavior was assessed by determining immobility time in a tail suspension test. Different brain structures were collected for molecular and immunohistochemical studies. Anhedonia was assessed by means of a sucrose intake test. Results Our protocol elicited an increase in depression-like behavior in CF1 mice, as assessed by the tail-suspension test, at 24 h. This behavior was significantly reduced by treatment with the selective B1 receptor antagonists R-715 and SSR240612. Administration of SSR240612 also prevented an increase in number of activated microglial cells in mouse hippocampus, but did not affect a reduction in expression of mRNA for brain-derived neurotrophic factor. The increased immobility time following LPS treatment was preceded by an enhancement of hippocampal and cortical B1 receptor mRNA expression (which were maximal at 1 h, and a marked production of TNFα in serum, brain and cerebrospinal fluid (between 1 and 6 h. The depression-like behavior was virtually abolished in TNFα p55 receptor-knockout mice, and increased B1 receptor mRNA expression was completely absent in this mouse strain. Furthermore, treatment with SSR240612 was also effective in preventing anhedonia in LPS-treated mice, as assessed using a sucrose preference test. Conclusion Our data show, for the first time, involvement of kinin B1 receptors in depressive behavioral responses, in a process likely associated with microglial activation and TNFα production. Thus, selective and orally active B1 receptor antagonists might well represent promising pharmacological tools for depression therapy.

  19. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax

    International Nuclear Information System (INIS)

    Boy, Christian; Poeppel, Thorsten D.; Jentzen, Walter; Brandau, Wolfgang; Bockisch, Andreas; Heusner, Till A.; Antoch, Gerald; Redmann-Bischofs, Anja; Unger, Nicole; Mann, Klaus; Petersenn, Stephan

    2011-01-01

    By targeting somatostatin receptors (sst) radiopeptides have been established for both diagnosis and therapy. For physiologically normal human tissues the study provides a normative database of maximum standardized uptake value (SUV max ) and sst mRNA. A total of 120 patients were subjected to diagnostic 68 Ga-DOTATOC positron emission tomography (PET)/CT (age range 19-83 years). SUV max values were measured in physiologically normal tissues defined by normal morphology, absence of surgical intervention and absence of metastatic spread during clinical follow-up. Expression of sst subtypes (sst1-sst5) was measured independently in pooled adult normal human tissue by real-time reverse transcriptase polymerase chain reaction (RT-PCR). SUV max revealed a region-specific pattern (e.g., mean ± SD, spleen 31.1 ± 10.9, kidney 16.9 ± 5.3, liver 12.8 ± 3.6, stomach 7.0 ± 3.1, head of pancreas 6.2 ± 2.3, small bowel 4.8 ± 1.8, thyroid 4.7 ± 2.2, bone 3.9 ± 1.3, large bowel 2.9 ± 0.8, muscle 2.1 ± 0.5, parotid gland 1.9 ± 0.6, axillary lymph node 0.8 ± 0.3 and lung 0.7 ± 0.3). SUV max was age independent. Gender differences were evident within the thyroid (female/male: 3.7 ± 1.6/5.5 ± 2.4, p max values exclusively correlated with sst2 expression (r = 0.846, p max with the expression of the other four subtypes. In normal human tissues 68 Ga-DOTATOC imaging has been related to the expression of sst2 at the level of mRNA. The novel normative database may improve diagnostics, monitoring and therapy of sst-expressing tumours or inflammation on a molecular basis. (orig.)

  20. New treatment of periodontal diseases by using NF-kappaB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Morita, Shosuke; Tsukamoto, Ikuyo; Osako, Mariana Kiomy; Nakagami, Futoshi; Shimosato, Takashi; Minobe, Noriko; Morishita, Ryuichi

    2009-09-01

    Nuclear factor-kappa B (NF-kappaB) is involved in osteoclast differentiation and activation. Thus, the blockade of the NF-kappaB pathway might be a novel therapeutic strategy for treating bone metabolic diseases. Periodontitis is subgingival inflammation caused by bacterial infection; this disease also is thought to be a chronic focal point responsible for systemic diseases. In this study, NF-kappaB decoy oligodeoxynucleotides (ODNs) were topically applied for experimental periodontitis in a debris-accumulation model and wound healing in a bone-defect model of beagle dogs to investigate the effect of decoy ODN on bone metabolism. Application of NF-kappaB decoy ODN significantly reduced interleukin-6 activity in crevicular fluid and improved alveolar bone loss in the analysis of dental radiographs and DEXA. Direct measurement of exposed root that lost alveolar bone support revealed that NF-kappaB decoy treatment dramatically protected bone from loss. In a bone-defect model, NF-kappaB decoy ODN promoted the healing process as compared with control scrambled decoy in micro-CT analysis. Overall, inhibition of NF-kappaB by decoy strategy prevented the progression of bone loss in periodontitis and promoted the wound healing in bone defects through the inhibition of osteoclastic bone resorption. Targeting of NF-kappaB might be a potential therapy in various bone metabolic diseases.