WorldWideScience

Sample records for kaplan sea surface

  1. Surface reconstruction technique for kaplan turbine blades%轴流式水轮机叶片曲面重构技术

    Institute of Scientific and Technical Information of China (English)

    赖喜德; 李广府; 张惟斌; 汪礼发

    2012-01-01

    Some surface reconstruction related issues as Scattered point cloud data acquisition, data pretreatment, triangulation, NURBS-based surface reconstruction Methods, inspection of fairness and accuracy ,ect,were discussed in detail. Then the process of surface reconstructing free-form surfaces of mechanical parts such as tubomachine blades was presented. For solving the problem of surface reconstruction of kaplan turbine blade contours based on scattered data, the basic theory of surface reconstruction was reviewed and a blade surface was divided into various regional blocks based on its feature in shape; then a method for constructing a surface patch in a rectangular domain whose four boundaries were two streamlines and two interaction curves between a blade and a meridian plane was proposed. As a result of those, a 3D model of blade that meets design requirements was yielded. The efforts show that the digital geomety model constructed by this method has good smoothness and accuracy. It proposed a foundation for the subsequent work and provides an objective basis for reverse engineering applied in fluid machinery industry.%详细讨论了散乱点云数据采集、点云数据的预处理、点云三角化、采用NURBS为基础的曲面重构方法以及曲面光顺与精度检测等方面内容,为具有自由曲面特征的叶片类部件提供了曲面重构流程.针对基于散乱数据的轴流式水轮机叶片外形曲面重构问题,在阐述模型重构过程基本理论的基础上,根据曲面特征进行区域分块,提出了基于流线和轴面截线构造矩形域曲面片的方法,获得了符合设计要求的叶片实体模型.研究结果表明:该方法重构的数字化模型具有良好的光顺性和精确性,为后续作业奠定了基础,为逆向工程技术应用于流体机械行业提供了客观依据.

  2. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  3. Physicochemical Studies of the Sea Surface Microlayer.

    Science.gov (United States)

    Zhengbin; Liansheng; Zhijian; Jun; Haibing

    1998-08-15

    The sea surface microlayer and its thickness are theoretically analyzed. A multiple-layer model of the sea surface microlayer is proposed. Through in situ and laboratory imitation experiments using glass plate, rotating drum, screen, and funnel samplers, the relationships between pH, surface tension, the concentrations of dissolved trace metals Cu and Pb, phosphate, and particulate and sampling thicknesses are carefully investigated. The apparent sampling thickness of the sea surface microlayer is determined to be 50 +/- 10 µm, which is basically consistent with the mean thickness of the liquid boundary film in the models of gas exchange across the sea surface. Copyright 1998 Academic Press.

  4. NOAA NDBC SOS - sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  5. Sea Surface Salinity : Research Challenges and Opportunities

    Science.gov (United States)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  6. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  7. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Science.gov (United States)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  8. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  9. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  10. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  11. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  12. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  13. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  14. SMOS Sea Surface Salinity Validation in the South China Sea

    Science.gov (United States)

    Ren, Yongzheng; Li, Xiaoming; Dong, Qing

    2013-01-01

    In November 2009, the European Space Agency (ESA) launched the first soil moisture and ocean salinity (SMOS) satellite, which represented the first use of spaceborne remote sensing tools to probe global sea surface salinity (SSS). The SMOS satellite carries a microwave imaging radiometer with aperture synthesis (MIRAS) for detection in the microwave L-band as the only payload. The MIRAS instrument is expected to provide a global SSS distribution with a spatial resolution of approximately 100 km and an accuracy of 0.1-0.2 practical salinity units (psu). The South China Sea is semi-enclosed, and the sea conditions are relatively complex. The suitability of ESA SMOS salinity products for the South China Sea has not been validated. Therefore, using SSS data measured during an expedition in the South China Sea, which was sponsored by China Natural Science Foundation and conducted in the fall of 2011, this paper validated the SSS products released by ESA, which were retrieved using three sea surface roughness models. To analyze the effect of the spatial resolution on the weekly average SMOS SSS distribution, the weekly average salinity data were averaged to reduce the spatial resolution to 0.25 ° x 0.25°. These average data were then compared to the measured data, followed by an analysis of the error variation. In addition, the effects of the orbital track (ascending or descending) on the SSS retrieval were analyzed.

  15. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    The trends and periodicities of surface meteorological parameters (sea surface temperature, air temperature, cloudiness, wind speed and sea level pressure) over the western, central, eastern and southern Arabian Sea regions are studied...

  16. Microwave Radiometric Measurement of Sea Surface Salinity.

    Science.gov (United States)

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  17. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  18. Sea-surface salinity: the missing measurement

    Science.gov (United States)

    Stocker, Erich F.; Koblinsky, Chester

    2003-04-01

    Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

  19. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  20. Satellite monitoring of sea surface pollution

    Science.gov (United States)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  1. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  2. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  3. Biogeochemical patchiness at the sea surface

    Science.gov (United States)

    Mahadevan, A.; Campbell, J. W.

    2002-10-01

    The surface distributions of many tracers in the ocean are highly correlated in time and space on meso (~100 km) and smaller scales (refid="fig01" type="media">Figure 1). However, their characteristic scales of variability differ. Some variables like sea surface chlorophyll (Chl) are very fine-scaled or patchy, while others like sea surface temperature (SST) are not. We characterize the patchiness of a distribution quantitatively by the dependence of the variance V on the length scale L as V ~ Lp; smaller p corresponds to greater patchiness. Using scaling and a numerical model we show that patchiness, p, varies with the characteristic response time τ of the tracer to processes that alter its concentration in the upper ocean as p ~ log τ. This suggests that sea surface Chl is more patchy (has smaller p) than SST at mesoscales because the characteristic time scale of phytoplankton growth in response to the availability of nutrients is less than that for the equilibration of temperature in response to heat fluxes. Similarly, sea surface dissolved oxygen (O2) exhibits more fine-scaled variability than total dissolved inorganic carbon (TCO2) because O2 equilibrates with the atmosphere much more rapidly than TCO2. Tracers that are more patchy require higher resolution to model and sample; the sampling or model grid spacing required scales as exp(-1/log τ). The quantitative relationship between p and τ can be used to relate various biogeochemical distributions, particularly to those that are remotely sensed, and to deduce biogeochemical response times of various tracers or plankton species from the characteristics of their distributions in space or time.

  4. Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna

    2016-01-01

    A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing...... observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of -0.06 °C compared to moored buoys and a 0.46 °C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years......, with a negligible temporal trend when compared against drifting and moored buoys. Analysis of the SST CDR reveals that the monthly anomalies for the North Sea, the Danish straits, and the central Baltic Sea regions show a high degree of correlation for interannual and decadal time scales, whereas the monthly...

  5. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  6. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  7. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  8. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    have made an attempt to study the annual and inter-annual variability of certain prominent processes occurring over the tropical Indian Ocean. The monthly mean values of Wind Speed (FSU), Sea Surface Temperature (REYNOLDS) and Sea Surface Height Anomaly...

  9. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  10. Observed variability of sea surface salinity and thermal inversions in the Lakshadweep Sea during contrast monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Johnson, Z.; Salgaonkar, G.; Nisha, K.; Rajan, C.K.; Rao, R.R.

    The sea surface salinity (SSS) of the Lakshadweep Sea (LS) shows large seasonal variability due to horizontal advection of low (high) salinity waters from south (north) during winter (summer) monsoon. The measurements made in the LS during...

  11. The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    An analysis of thermal Structure in the East Central Arabian Sea associated with a moderate cyclone is presented. The heat storage and the heat budget components have been computed. Under the influence of the cyclone the Sea Surface Temperature (SST...

  12. Statistical Seasonal Sea Surface based Prediction Model

    Science.gov (United States)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  13. Comparison among four kinds of data of sea surface wind stress in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    谢强; 王卫强; 毛庆文

    2002-01-01

    By using remote sensing (ERS) data, FSU data, GOADS data and Hellerman & Rcsenstein objective analysis data to analyze the sea surface wind stress in the South China Sea, it is found that the remote sensing data have higher resolution and more reasonable values. Therefore we suggest that remote sensing data be chosen in the study of climatological features of sea surface wind stress and its seasonal variability in the South China Sea, especially in the study of small and middle scale eddies.

  14. Simulation of laser beam reflection at the sea surface

    Science.gov (United States)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  15. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  16. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  17. Understanding survival analysis: Kaplan-Meier estimate

    Science.gov (United States)

    Goel, Manish Kumar; Khanna, Pardeep; Kishore, Jugal

    2010-01-01

    Kaplan-Meier estimate is one of the best options to be used to measure the fraction of subjects living for a certain amount of time after treatment. In clinical trials or community trials, the effect of an intervention is assessed by measuring the number of subjects survived or saved after that intervention over a period of time. The time starting from a defined point to the occurrence of a given event, for example death is called as survival time and the analysis of group data as survival analysis. This can be affected by subjects under study that are uncooperative and refused to be remained in the study or when some of the subjects may not experience the event or death before the end of the study, although they would have experienced or died if observation continued, or we lose touch with them midway in the study. We label these situations as censored observations. The Kaplan-Meier estimate is the simplest way of computing the survival over time in spite of all these difficulties associated with subjects or situations. The survival curve can be created assuming various situations. It involves computing of probabilities of occurrence of event at a certain point of time and multiplying these successive probabilities by any earlier computed probabilities to get the final estimate. This can be calculated for two groups of subjects and also their statistical difference in the survivals. This can be used in Ayurveda research when they are comparing two drugs and looking for survival of subjects. PMID:21455458

  18. Recent advance in Mean Sea Surface estimates

    Science.gov (United States)

    Pujol, M. I.; Gerald, D.; Claire, D.; Raynal, M.; Faugere, Y.; Picot, N.; Guillot, A.

    2016-12-01

    Gridded Mean Sea Surface (MSS) estimate is an important issue for precise SLA computation along geodetic orbits. Previous studies emphasized that the error from MSS models older than Jason-1 GM was substantial: on average more than 10 to 15% of the SLA variance for wavelengths ranging from 30 to 150 km. Other MSS have been released this last 2 years, and they use geodetic missions such as CryoSat-2 and Jason-1 GM which strongly contribute to improve their resolution and accuracy.We evaluate in this paper the improvements of the recent MSS. This study, mainly based on spectral approach allows us to quantify the errors at various wavelengths. The use of new missions (e.g. SARAL-DP/AltiKa; Sentinel-3A) with low instrumental noise measurement levels (Ka, SAR) opens new perspectives to understand the MSS errors and improve MSS estimate for wavelengths lower than 100km.

  19. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  20. Comparison among sea surface roughness schemes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No.44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u*, drag coefficient Cd and wind stress τ indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%-50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The O02 scheme gives overestimated values for u* and Cd. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.

  1. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  2. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  3. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  4. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  5. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  6. Sea Spray Effects on Surface Heat and Moisture Fluxes

    Science.gov (United States)

    2016-06-07

    Andreas, E. L., and E. C. Monahan, 1999: The role of whitecap bubbles in air- sea heat and moisture exchange. J. Phys. Oceanogr., in press. ...1 Sea Spray Effects on Surface Heat and Moisture Fluxes Edgar L Andreas U. S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road...www.crrel.usace.army.mil LONG-TERM GOAL The goal is to investigate, theoretically and through analyzing existing data, the role that sea spray plays in

  7. Sea Surface Sound: discussion session on future research and applications

    Science.gov (United States)

    Buckingham, M. J.; Potter, J. R.

    On one evening during the week of the workshop, a brain-storming session was held with a view to identifying important areas of research into sea surface sound that should be addressed in the future. Potential applications of sea surface sound were included in the discussion. Acting as chairman, Michael Buckingham (MB) introduced the session, which was attended by most of the participants at the workshop. The intention was to encourage the participants to explore, in an informal setting, the future of sea surface sound. A summary of comments and conclusions, compiled from MB's notes of the discussion, is presented below…

  8. An overview on SAR measurements of sea surface wind

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies show that synthetic aperture radar (SAR) has the capability of providing high-resolution (sub-kilometer) sea surface wind fields. This is very useful for applications where knowledge of the sea surface wind at fine scales is crucial. This paper aims to review the latest work on sea surface wind field retrieval using SAR images. As shown, many different approaches have been developed for retrieving wind speed and wind direction. However, much more work will be required to fully exploit the SAR data for improving the retrieval accuracy of high-resolution winds and for producing wind products in an operational sense.

  9. Fouling-resistant surfaces of tropical sea stars.

    Science.gov (United States)

    Guenther, Jana; Walker-Smith, Genefor; Warén, Anders; De Nys, Rocky

    2007-01-01

    Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.

  10. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  11. Future trends of the Sea Surface Temperature for the Caribbean and the Western Mediterranean Seas

    Directory of Open Access Journals (Sweden)

    L. Garcies

    2006-01-01

    Full Text Available Global Climate Models foresee a general warming of the atmosphere, with varying intensity depending on the characteristics of each model and the hypotheses made on the release of gases of antropic origin. The warming is not expected to be homogeneous over the planet. In this work we focus on the evolution of the sea surface temperature of the Caribbean and the Mediterranean seas, and its linked with the likely prolongation of the hurricane season and the increase of strength of the hurricanes in the Caribbean, as well as with the more apt conditions for severe weather in the Mediterranean sea. In both areas more frequent occurence and intensity of severe weather events are expected due to the predicted increment of the sea surface temperature, 1.5ºC for the Caribbean sea and 2.5ºC for the Mediterranean sea.

  12. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  13. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  14. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  15. OW AVISO Sea-Surface Height & Niiler Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  16. OW AVISO Sea-Surface Height & Levitus Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  17. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  18. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  19. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  20. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  1. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  2. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  3. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  4. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  5. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  6. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  7. Zooplankton incidence in abnormally high sea surface temperature in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Zooplankton in an abnormally high sea surface temperature (33.1 to 33.8 degrees C) and alternate bands of slick formation were studied in the Eastern Arabian Sea during 26 and 29 April 1981. The phenomenon which may be due to intense diurnal heating...

  8. Effects of the surface waves on air-sea interactions of the sea spray

    NARCIS (Netherlands)

    Francius, M.J.; Eijk, A.M.J. van

    2006-01-01

    Aerosols are important to a large number of processes in the marine boundary layer. On a micro-meteorological scale, they influence the heat and moisture budgets near the sea surface. Since the ocean acts both as a source and a sink for aerosols, the sea spray droplets may transfer water vapour and

  9. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  10. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  11. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  12. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  13. A microwave emissivity model of sea surface under wave breaking

    Institute of Scientific and Technical Information of China (English)

    Wei En-Bo; Ge Yong

    2005-01-01

    With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.

  14. On the spectra and coherence of some surface meteorological parameters in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    Spectra and cross-spectra of monthly time series of the surface meteorological parameters, sea surface temperature, air temperature, cloudiness, wind speed and sea level pressure were computed for the period 1948-1972 over the Arabian Sea...

  15. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    Science.gov (United States)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  16. The impact of land and sea surface variations on the Delaware sea breeze at local scales

    Science.gov (United States)

    Hughes, Christopher P.

    The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i

  17. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  18. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  19. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  20. Preliminary validation of SMOS sea surface salinity measurements in the South China Sea

    Science.gov (United States)

    Ren, Yongzheng; Dong, Qing; He, Mingxia

    2015-01-01

    The SMOS (soil moisture and ocean salinity) mission undertaken by the European Space Agency (ESA) has provided sea surface salinity (SSS) measurements at global scale since 2009. Validation of SSS values retrieved from SMOS data has been done globally and regionally. However, the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail. In this study, we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea (SCS) expedition during autumn 2011. The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data. Accuracy in terms of bias and root mean square error (RMS) of the SSS retrieved using three different sea surface roughness models is very consistent, regardless of ascending or descending orbits. When ascending and descending measurements are combined for comparison, the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements, with bias -0.33 practical salinity units and RMS 0.74. We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS. The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements. Therefore, accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.

  1. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Flores, Hauke; van Franeker, Jan-Andries; Cisewski, Boris; Leach, Harry; Van de Putte, Anton P.; Meesters, Erik (H. W. G.); Bathmann, Ulrich; Wolff, Wirn J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0-2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  2. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Franeker, van J.A.; Cisewski, B.; Leach, H.; Putte, van de A.P.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0–2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  3. Long-term Variability of Sea Surface Temperature in the East China Sea: A Review

    Directory of Open Access Journals (Sweden)

    Jae Hak Lee

    2013-06-01

    Full Text Available The long-term variability of sea surface temperature in the East China Sea was reviewed based mainly on published literatures. Though the quantitative results are not the same, it is generally shown that sea surface temperature is increasing especially in recent years with the rate of increase about 0.03oC/year. Other meaningful results presented in the literatures is that the difference of water properties between layers upper and lower than the thermocline in summer shows an increasing trend both in temperature and salinity, suggesting that the stratification has been intensified. As a mechanism by which to evaluate the wintertime warming trend in the region, the weakening of wind strength, which is related to the variation of sea level pressure and atmospheric circulation in the western North Pacific and northern Asian continent, is suggested in the most of related studies.

  4. SEA SURFACE ALTIMETRY BASED ON AIRBORNE GNSS SIGNAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    K. Yu

    2012-07-01

    Full Text Available In this study the focus is on ocean surface altimetry using the signals transmitted from GNSS (Global Navigation Satellite System satellites. A low-altitude airborne experiment was recently conducted off the coast of Sydney. Both a LiDAR experiment and a GNSS reflectometry (GNSS-R experiment were carried out in the same aircraft, at the same time, in the presence of strong wind and rather high wave height. The sea surface characteristics, including the surface height, were derived from processing the LiDAR data. A two-loop iterative method is proposed to calculate sea surface height using the relative delay between the direct and the reflected GNSS signals. The preliminary results indicate that the results obtained from the GNSS-based surface altimetry deviate from the LiDAR-based results significantly. Identification of the error sources and mitigation of the errors are needed to achieve better surface height estimation performance using GNSS signals.

  5. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    Science.gov (United States)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  6. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    OpenAIRE

    2014-01-01

    We analyse recent Mediterranean Sea surface temperatures (SSTs) and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR) daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea) and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin). Ensemble mean scenarios indicat...

  7. Barents Sea heat – transport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  8. STUDY OF NON-BOUSSINESQ EFFCET ON SEA SURFACE HEIGHT

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-yao; WANG Xuan; WANG Xiu-hong; QIAO Fang-li

    2004-01-01

    A set of equations was derived for a non-Boussinesq ocean model in this paper.A new time-splitting scheme was introduced which incorporates the 4th-order Runge-Kutta explicit scheme of low-frequency mode and an implicit scheme of high-frequency mode.With this model,potential temperature,salinity fields and sea surface height were calculated simultaneously such that the numerical error of extrapolation of density field from the current time level to the next one could be reduced while using the equation of mass conservation to determine sea surface height.The non-Boussinesq effect on the density field and sea surface height was estimated by numerical experiments in the final part of this paper.

  9. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  10. On an exponential bound for the Kaplan-Meier estimator.

    Science.gov (United States)

    Wellner, Jon A

    2007-12-01

    We review limit theory and inequalities for the Kaplan-Meier Kaplan and Meier (J Am Stat Assoc 53:457-481, 1958) product limit estimator of a survival function on the whole line [Formula: see text] . Along the way we provide bounds for the constant in an interesting inequality due to Biotouzé et al. (Ann Inst H Poincaré Probab Stat 35:735-763, 1999), and provide some numerical evidence in support of one of their conjectures.

  11. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  12. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  13. A new algorithm for microwave radiometer remote sensing of sea surface salinity and temperature

    Institute of Scientific and Technical Information of China (English)

    YIN; Xiaobin; LIU; Yuguang; WANG; Zhenzhan

    2006-01-01

    The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface temperature, sea surface salinity and incidence angle of observation are investigated. Based on the investigations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.

  14. Assessment of Sea Surface Temperature and Sea Ice Initial Conditions on Coupled Model Forecasts

    Science.gov (United States)

    Intrieri, J. M.; Solomon, A.; Persson, O. P. G.; Capotondi, A.; LaFontaine, F.; Jedlovec, G.

    2016-12-01

    We present weather-scale (0-10 day) sea ice forecast validation and skill results from an experimental coupled ice-ocean-atmosphere model during the fall freeze-up periods for 2015 and 2016. The model is a mesoscale, coupled atmosphere-ice-ocean mixed-layer model, termed RASM-ESRL, that was developed from the larger-scale Regional Arctic System Model (RASM) architecture. The atmospheric component of RASM-ESRL consists of the Weather Research and Forecasting (WRF) model, the sea-ice component is the Los Alamos CICE model, and the ocean model is POP. Experimental 5-day forecasts were run daily with RASM-ESRL from July through mid-November in 2015 and 2016. Our project focuses on how the modeled sea ice evolution compares to observed physical processes including atmospheric forcing of sea ice movement, melt, and freeze-up through energy fluxes. Model hindcast output is validated against buoy observations, satellite measurements, and concurrent in situ flux observations made from the R/V Sikuliaq in the fall of 2015. Model skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic features, cloud microphysical and ocean properties will be discussed. We will show results of using different initializations of ocean sea surface temperature and sea ice extent and the impacts on sea ice edge prediction.

  15. Sea surface microplastics in Slovenian part of the Northern Adriatic.

    Science.gov (United States)

    Gajšt, Tamara; Bizjak, Tine; Palatinus, Andreja; Liubartseva, Svitlana; Kržan, Andrej

    2016-12-15

    Plastics are the most common material of marine litter and have become a global pollution concern. They are persistent in the environment where they gradually degrade into increasingly smaller particles-microplastics (MP). Our study presents results of sea-surface monitoring for MP in the Slovenian part of the Trieste Bay in the Northern Adriatic Sea. In 17 trawls conducted over a 20-month period we found a high average concentration of 406×10(3)MPparticles/km(2). Over 80% of the particles were identified as polyethylene. The significant variability of MP concentrations obtained on different sampling dates is explained by use of surface current maps and a recently developed Markov chain marine litter distribution model for the Adriatic Sea.

  16. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  17. Sea surface temperature development of the Baltic Sea in the period 1990-2004

    Directory of Open Access Journals (Sweden)

    Herbert Siegel

    2006-06-01

    Full Text Available Sea Surface Temperature (SST maps derived from NOAA weathersatellites for the period 1990-2004 were used to investigateseasonal and inter-annual variations in the Baltic Sea. A comparison between monthly mean SST and in situ measurements at the MARNET station "Arkona Sea" showed goodagreement with differences in July and August. Monthly means reflect strong seasonal and inter-annualvariations. The yearly means show a slight positive trend withan increase of 0.8 K in 15 years. In particular, summer and autumnmonths contribute to this positive trend, with stronger trendsin the northern than in the southern Baltic. The winters arecharacterised by a slightly negative trend. The winter minimumSST in the Arkona Sea correlates best with the WIBIX climateindex derived for the Baltic region.

  18. Polarized infrared emissivity of one-dimensional Gaussian sea surfaces with surface reflections.

    Science.gov (United States)

    Li, Hongkun; Pinel, Nicolas; Bourlier, Christophe

    2011-08-10

    Surface reflection is an important phenomenon that must be taken into account when studying sea surface infrared emissivity, especially at large observation angles. This paper models analytically the polarized infrared emissivity of one-dimensional sea surfaces with shadowing effect and one surface reflection, by assuming a Gaussian surface slope distribution. A Monte Carlo ray-tracing method is employed as a reference. It is shown that the present model agrees well with the reference method. The emissivity calculated by the present model is then compared with measurements. The comparisons show that agreements are greatly improved by taking one surface reflection into account. The Monte Carlo ray-tracing results of sea surface infrared emissivity with two and three reflections are also determined. Their contributions are shown to be negligible.

  19. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Science.gov (United States)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  20. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  1. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  2. Mapping sea-surface roughness using microwave radiometry.

    Science.gov (United States)

    Strong, A. E.

    1971-01-01

    Microwave radiometry data (1.55 cm) taken by aircraft over the Salton Sea have been corrected for viewing angle and atmospheric effects, rectified, and mapped. No fetch-limited conditions are observed along the upwind shore despite a 15 m/sec wind, which indicates that the radiometer is sensitive to the short wavelength surface roughness but not to the longer wavelengths. The brightness temperature field can be represented as a nearly linear function of the surface wind speed.

  3. WIND STRESS AND SURFACE ROUGHNESS AT AIR-SEA INTERFACE

    Science.gov (United States)

    Based on the compiled data of thirty independent observations, the report presents the wind - stress coefficient, the surface roughness and the...boundary layer flow regime at the air-sea interface under various wind conditions. Both the wind - stress coefficient and the surface roughness are found to...data and Charnock’s proportionality constant is determined. Finally, two approximate formulae for the wind - stress coefficient, one for light wind and the other for strong wind are suggested.

  4. Mean Sea Surface (mss) Model Determination for Malaysian Seas Using Multi-Mission Satellite Altimeter

    Science.gov (United States)

    Yahaya, N. A. Z.; Musa, T. A.; Omar, K. M.; Din, A. H. M.; Omar, A. H.; Tugi, A.; Yazid, N. M.; Abdullah, N. M.; Wahab, M. I. A.

    2016-09-01

    The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  5. MEAN SEA SURFACE (MSS MODEL DETERMINATION FOR MALAYSIAN SEAS USING MULTI-MISSION SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    N. A. Z. Yahaya

    2016-09-01

    Full Text Available The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH. The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS. The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  6. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  7. Temporal and spatial variability of the sea surface salinity in the Nordic Seas

    Science.gov (United States)

    Furevik, Tore; Bentsen, Mats; Drange, Helge; Johannessen, Johnny A.; Korablev, Alexander

    2002-12-01

    In this paper, the temporal and spatial variability of the sea surface salinity (SSS) in the Nordic Seas is investigated. The data include a Russian hydrographical database for the Nordic Seas and daily to weekly observations of salinity at Ocean Weather Station Mike (OWSM) (located at 66°N, 2°E in the Norwegian Sea). In addition, output from a medium-resolution version of the Miami Isopycnic Coordinate Ocean Model (MICOM), forced with daily National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, is used to complement the analysis of the temporal and spatial fields constructed from the observational data sets. The Nordic Seas show a strong seasonal variability in the vertical density stratification and the mixed layer (ML) depth, with a weak stratification and a several hundred meters deep ML during winter and a well-defined shallow ML confined to the upper few tens of meters during summer. The seasonal variability strongly influences the strength of the high-frequency variability and to what extent subsurface anomalies are isolated from the surface. High-frequency variability has been investigated in terms of standard deviation of daily SSS, calculated for the different months of the year. From observations at OWSM, typical winter values range from 0.03 to 0.04 psu and summer values range from 0.06 to 0.07 psu. Results from the model simulation show that highest variability is found in frontal areas and in areas with strong stratification and lowest variability in the less stratified areas in the central Norwegian Sea and south of Iceland. Investigation of the interannual variability over the last 50 years shows a marked freshening of the Atlantic Water in the Norwegian and Greenland Seas. Moreover, the strength of the southern sector of the Polar front, as defined by the 34.8-35.0 psu isohalines along the western boundary of the inflowing Atlantic Water, undergoes significant interannual variability

  8. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia;

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  9. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  10. Seasonal variations of air-sea heat fluxes and sea surface temperature in the northwestern Pacific marginal seas

    Institute of Scientific and Technical Information of China (English)

    LIU Na; WU Dexing; LIN Xiaopei; MENG Qingjia

    2014-01-01

    Using a net surface heat flux (Qnet) product obtained from the objectively analyzed air-sea fluxes (OAFlux) project and the international satellite cloud climatology project (ISCCP), and temperature from the simple ocean data assimilation (SODA), the seasonal variations of the air-sea heat fluxes in the northwestern Pa-cific marginal seas (NPMS) and their roles in sea surface temperature (SST) seasonality are studied. The seasonal variations of Qnet, which is generally determined by the seasonal cycle of latent heat flux (LH), are in response to the advection-induced changes of SST over the Kuroshio and its extension. Two dynamic regimes are identified in the NPMS:one is the area along the Kuroshio and its extension, and the other is the area outside the Kuroshio. The oceanic thermal advection dominates the variations of SST and hence the sea-air humidity plays a primary role and explains the maximum heat losing along the Kuroshio. The heat transported by the Kuroshio leads to a longer period of heat losing over the Kuroshio and its Extension. Positive anomaly of heat content corresponds with the maximum heat loss along the Kuroshio. The oceanic advection controls the variations of heat content and hence the surface heat flux. This study will help us understand the mechanism controlling variations of the coupled ocean-atmosphere system in the NPMS. In the Kuroshio region, the ocean current controls the ocean temperature along the main stream of the Ku-roshio, and at the same time, forces the air-sea fluxes.

  11. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    Science.gov (United States)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2016-04-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  12. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    Science.gov (United States)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2017-02-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  13. Comparison of satellite and airborne sensor data on sea surface temperature and suspended solid distribution

    Science.gov (United States)

    Nishimura, Y.; Saito, K.; Hayakawa, S.; Narigasawa, K.

    1992-07-01

    Sea surface temperature and suspended solid were observed simultaneously by LANDSAT TM, NOAA AVHRR and airborne MSS. The authors compared the following items through the data, i.e., 1) Sea surface temperature, 2) Suspended solid in the sea water, 3) Monitoring ability on ocean environment. It was found that distribution patterns of sea surface temperature and suspended solid in the Ariake Sea obtained from LANDSAT TM are similar with those from airborne MSS in a scale of 1:300,000. Sea surface temperature estimated from NOAA AVHRR data indicates a fact of an ocean environment of the Ariake Sea and the around sea area. It is concluded that the TM data can be used for the monitoring of sea environment. The NOAA AVHRR data is useful for the estimation of sea surface temperature with the airborne MSS data.

  14. The global mean sea surface model WHU2013

    Institute of Scientific and Technical Information of China (English)

    Taoyong Jin; Jiancheng Li; Weiping Jiang

    2016-01-01

    The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change.A global MSS model named WHU2013,with 2′ × 2′ spatial resolution between 80°S and 84°N,is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P),Jason-1,Jason-2,ERS-2,ENVISAT and GFO Exact Repeat Mission (ERM) data,ERS-1/168,Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM) data.All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH),and the combined dataset of T/P,Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data.The sea level variations in the non-ERM data (geodetic mission data and LRM data) are mainly investigated,and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations.In the crossover adjustment between multi-altimetric data,a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions.The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models,and the standard derivation.(STD) of the differences between the models is about 5 cm between 80°S and 84°N,less than 3 cm between 66°S and 66°N,and less than 4 cm in the China Sea and its adjacent sea.Furthermore,the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  15. A Computer Model for Bistatic Sea Surface Microwave Reflectivity

    Science.gov (United States)

    2014-08-14

    height of the rough surface in the z-direction. The rough sea surface is then modeled as a two-dimensional Gaussian random surface according to Beckmann ...Bistatic RCS In Beckmann and Spizzichino, [1] an equation was derived for the bistatic RCS based on an evaluation of the statistical properties of the...x y G x y S x y x y     (10) In Eq. (10),  ( , )G x y accounts for the wave-slope statistics (the classical Beckmann and Spizzichino

  16. Low frequency variability of the Indian Ocean from TOPEX/POSEIDON sea surface height anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Murty, V.S.N.; Sarma, Y.V.B.

    The sea surface height (SSH) anomalies derived from TOPEX/POSEIDON altimeter have been utilized to study the variability of surface circulation in the Indian Ocean during 1993-1999. The Western Bay, southeastern Arabian Sea, regions off Somalia...

  17. Sea Surface Height, Absolute, Aviso, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Absolute Sea Surface Height is the Sea Surface Height Deviation plus the long term mean dynamic height. This is Science Quality data.

  18. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  19. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  20. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  1. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  2. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  3. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  4. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  5. Electromagnetic fields induced by surface ring waves in the deep sea

    OpenAIRE

    Kozitskiy, S. B.

    2014-01-01

    The paper deals with electromagnetic effects associated with a radially symmetric system of progressive surface waves in the deep sea, induced by underwater oscillating sources or by dispersive decay of the initial localized perturbations of the sea surface.

  6. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  7. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  8. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  9. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  10. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  11. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  12. Interannual variations of surface winds over China marginal seas

    Institute of Scientific and Technical Information of China (English)

    SUN Che; YAN Xiaomei

    2012-01-01

    In a study of surface monsoon winds over the China marginal seas,Sun et al.(2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability.This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric,oceanic and land factors.The findings include:1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastem China,Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal,strengthening in the La Ni(n)a phase and weakening in the El Ni(n)o phase.This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.

  13. REE geochemistry of surface sediments in the Chukchi Sea

    Institute of Scientific and Technical Information of China (English)

    陈志华; 高爱国; 刘焱光; 孙海清; 石学法; 杨作升

    2003-01-01

    Analyses of rare earth elements (REEs) in 26 surface sediment samples obtained from the Chukchi Sea were conducted using ICP-MS. In general, REEs are relatively rich in fine-grained sediments and deplete in coarse-grained sediments in the Chukchi Sea although REEs have large concentration spans in different types of sediments. Except that a few samples have weak enrichments of light or heavy REEs,most samples exhibit flat shale-normalized REE pattern, indicating that surface sediments in the Chukchi Sea are composed dominantly of terrigenous components experiencing weak chemical weathering. In terms of REE concentrations and other characteristic parameters, we inferred that sediments on the eastern and western sides of the Chukchi Sea are derived from landmasses of Alaska and Siberia, respectively; the midsouth sediments are possibly related to northward dispersion of the Yukon River materials. The Herald Shoal in the center of the study area is covered with relict sediment, which has large ratios of light-to-heavy REEs (∑Ce/∑Y ratio) and lacks evident negative Ce anomaly; cerium enrichment is possibly related to manganese transfer under oxidizing conditions in early diagenesis.

  14. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982–2012. These data indicate significant annual warming (from 0.24 °C decade−1 west of the Strait of Gibraltar to 0.51 °C decade−1 over the Black Sea and significant spatial variation in annual average SST (from 15 °C over the Black Sea to 21 °C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6 °C century−1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  15. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  16. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    Science.gov (United States)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  17. Sea surface salinity and temperature seasonal changes in the Solomon and Bismarck Seas

    Science.gov (United States)

    Delcroix, Thierry; Radenac, Marie-Helene; Cravatte, Sophie; Gourdeau, Lionel; Alory, Gael

    2014-05-01

    Small SST and SSS (an indicator of iron-rich Papua New Guinea river outflows) changes in the Solomon and Bismarck Seas may be transported to the equatorial Pacific and have strong climatic and biological impacts. We analyze mean and seasonal change of SST and SSS in the Solomon and Bismarck Seas, using 1977-2009 in situ data collected from Voluntary Observing Ships. Co-variability of these two variables with surface wind, altimeter-derived current anomalies, precipitation, and Sepik river discharge is examined. SST and SSS show large annual oscillations in the Solomon Sea, with the coldest and saltiest waters occurring in July/August mainly due to horizontal advection. In contrast, they show large semi-annual oscillations in the Bismarck Sea. There, the coldest and saltiest waters happen in January/February, when the northwest monsoon winds drive coastal upwelling, and in July/August, when the New Guinea Coastal Current advects cold and high-salinity waters from the Solomon Sea through Vitiaz Strait. The low SSS values observed in April/May, stuck between the two SSS maxima, are further enhanced by the Sepik river discharge annual maximum. A high-resolution model strengthens the conclusions we derive from observations. The impacts of ENSO on SST and SSS are also discussed.

  18. Seasonal Variability of the Yellow Sea/East China Sea Surface Fluxes and Thermohaline Structure

    Institute of Scientific and Technical Information of China (English)

    Peter CHU; CHEN Yuchun; Akira KUNINAKA

    2005-01-01

    We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) for the Yellow Sea/East China Sea (YES) to investigate the climatological water mass features and the seasonal and non-seasonal variabilities of the thermohaline structure, and use the Comprehensive Ocean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes (momentum, heat, and moisture) across the air-ocean interface and the formation of the water mass features. After examining the major current systems and considering the local bathymetry and water mass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin, Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KG) region. The long term mean surface heat balance corresponds to a heat loss of 30 W m-2 in the ESC and CB regions, a heat loss of 65 W m-2 in the KG and TWC regions, and a heat gain of 15 W m-2 in the YS region. The surface freshwater balance is defined by precipitation minus evaporation. The annual water loss from the surface for the five subareas ranges from 1.8 to 4 cm month-1. The fresh water loss from the surface should be compensated for from the river run-off. The entire water column of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle with maximum values of temperature during summer and maximum mixed layer depths during winter. However, only the surface waters of the TWC and KG regions exhibit a seasonal thermal cycle.We also found two different relations between surface salinity and the Yangtze River run-off, namely, out-of-phase in the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study that the summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinity plume-like structure extending offshore on average towards the northeast.

  19. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  20. Full polarization scattering characteristics of sea fractal surface

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; He Yijun; Nan Chengfeng

    2006-01-01

    In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.

  1. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-03-01

    Full Text Available Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-year sea ice and "dry" and "wet" snow types that suggest black carbon is the dominating absorbing impurity. The albedo response of first year and multi-year sea ice to increasing black carbon, from 1–1024 ng g−1, in a top 5 cm layer of a 155 cm thick sea ice was calculated using the radiative transfer model: TUV-snow. Sea ice albedo is surprisingly unresponsive to black carbon additions up to 100 ng g−1 with a decrease in albedo to 98.7% of the original albedo value due to an addition of 8 ng g−1 of black carbon in first year sea ice compared to an albedo decrease to 99.6% for the same black carbon mass ratio increase in multi-year sea ice. The first year sea ice proved more responsive to black carbon additions than the multi-year ice. Comparison with previous modelling of black carbon in sea ice suggests a more scattering sea ice environment will be less responsive to black carbon additions. Snow layers on sea ice may mitigate the effects of black carbon in sea ice. "Wet" and "dry" snow layers of 0.5, 1, 2, 5 and 10 cm were added onto the sea ice surface and the snow surface albedo calculated with the same increase in black carbon in the underlying sea ice. Just a 0.5 cm layer of snow greatly diminishes the effect of black carbon on surface albedo, and a 2–5 cm layer (less than half the e-folding depth of snow is enough to "mask" any change in surface albedo owing to additional black carbon in sea ice, but not thick enough to ignore the underlying sea ice.

  2. SMOS: The Challenging Sea Surface Salinity Measurement From Space

    OpenAIRE

    Font, Jordi; Camps, Adriano; Borges, A; Martin-Neira, Manuel; Boutin, Jacqueline; Reul, Nicolas; Kerr, Yann; Hahne, A.; Mecklenburg, Suzanne

    2010-01-01

    Soil Moisture and Ocean Salinity, European Space Agency, is the first satellite mission addressing the challenge of measuring sea surface salinity from space. It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed. The retrieval of salinity requires very demanding performances of the instrument in terms of calibration and stability. This paper highlights the importa...

  3. Determination of apparent sampling thickness of sea surface microlayer

    Science.gov (United States)

    Li, Jun; Ding, Hai-Bing; Wu, Zhi-Jian; Zhang, Zheng-Bin; Liu, Lian-Sheng

    1998-06-01

    In situ and laboratory studies of sea—surface microlayer sampling methods using glass plate, rotating drum, screen and funnel samplers were conducted. For glass plate and rotating drum samplers, surface microlayer samples of different thickness were collected by controlling their withdrawal rate and rotating rate. The relationships between pH, surface tension, the concentration of dissolved trace metals Cu and Pb, phosphate, particulate matters and sampling thickness were carefully investigated. It was shown that physicochemical and biological properties change obviously at the sampling thickness of about 50 μm, which is consistent with the mean thickness of the boundary film in the models of gas exchange across the sea surface. It is proposed that the apparent sampling thickness of the surface microlayer should be less than 40 μm. The factors affecting the sampling thickness are discussed, and the feasibility and applicable conditions for different sampling methods are evaluated.

  4. An Analysis of the Steric Sea Level Change by Introducing Sea Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    SUN Ruili; LI Lei; LI Peiliang

    2013-01-01

    In this paper,we use the optimum interpolation sea surface temperature (OISST) provided by the National Center for Environmental Prediction (NCEP) to replace the temperature in the top three layers in the ISHII data,and make use of the modified ISHII temperature data to calculate the thermosteric sea level (called modified steric sea level (SSL) hereafter).We subtract the modified SSL and the steric sea level (called ordinary SSL hereafter) derived from the ISHII temperature and salinity from the steric sea level (SSL) provided by the Gravity Recovery and Climate Experiment (GRACE),respectively,and find that the rms error of the difference of the former is obviously smaller than that of the latter.Therefore we reach the conclusion that under the assumption that the GRACE SSL is accurate,the modified SSL can reflect the true steric sea level more accurately.Making use of the modified SSL,we can find that the modified SSL in sea areas of different spatial scales shows an obvious rising trend in the upper 0-700 m layer for the period 1982-2006.The global mean SSL rises with a rate of 0.6 mm year-1.The modified SSLs in sea areas of different spatial scales all show obvious oscillations with period of one year.There are oscillations with periods of 4-8 years in global oceans and with periods of 2-7 years in the Pacific.The Empirical Orthogonal Function method is applied to the sea areas of different spatial scales and we find that the first modes all have obvious 1-year period oscillations,the first mode of the global ocean has 4-8 year period oscillations,and that of the Pacific has 2-6 year period oscillations.The spatial distribution of the linear rising trend of the global modified SSL in the upper 0-700 m layer is inhomogeneous with intense regional characteristics.The modified SSL linear trend indicates a zonal dipole in the tropical Pacific,rising in the west and descending in the east.In the North Atlantic,the modified SSL indicates a meridional dipole,rising in

  5. An empirically derived inorganic sea spray source function incorporating sea surface temperature

    Directory of Open Access Journals (Sweden)

    M. E. Salter

    2015-05-01

    Full Text Available We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with increasing seawater temperature (between −1 and 30 °C similar to previous findings. In addition, we observed that the particle effective radius as well as the particle-surface, -volume and -mass, increased with increasing seawater temperature due to increased production of super-micron particles. By combining these measurements with the volume of air entrained by the plunging jet we have determined the size-resolved particle flux as a function of air entrainment. Through the use of existing parameterisations of air entrainment as a function of wind speed we were subsequently able to scale our laboratory measurements of particle production to wind speed. By scaling in this way we avoid the difficulties associated with defining the "white-area" of the laboratory whitecap – a contentious issue when relating laboratory measurements of particle production to oceanic whitecaps using the more frequently applied whitecap method. The here-derived inorganic sea spray sea spray source function was implemented in a Lagrangian particle dispersion model (FLEXPART. An estimated annual global flux of inorganic sea spray aerosol of 5.9 ± 0.2 Pg yr−1 was derived that is close to the median of estimates from the same model using a wide range of existing sea spray source functions. When using the source function derived here, the model also showed good skill in predicting measurements of Na+ concentration at a number of field sites further underlining the validity of our source function. In a final step, the sensitivity of a large-scale model (NorESM to our new source function was tested. Compared to the previously

  6. Elastic Properties of Natural Sea Surface Films Incorporated with Solid Dust Particles: Model Baltic Sea Studies

    Directory of Open Access Journals (Sweden)

    Adriana Z. Mazurek

    2012-01-01

    Full Text Available Floating dust-originated solid particles at air-water interfaces will interact with one another and disturb the smoothness of such a composite surface affecting its dilational elasticity. To quantify the effect, surface pressure (Π versus film area (A isotherm, and stress-relaxation (Π-time measurements were performed for monoparticulate layers of the model hydrophobic material (of μm-diameter and differentiated hydrophobicity corresponding to the water contact angles (CA ranging from 60 to 140° deposited at surfaces of surfactant-containing original seawater and were studied with a Langmuir trough system. The composite surface dilational modulus predicted from the theoretical approach, in which natural dust load signatures (particle number flux, daily deposition rate, and diameter spectra originated from in situ field studies performed along Baltic Sea near-shore line stations, agreed well with the direct experimentally derived data. The presence of seawater surfactants affected wettability of the solid material which was evaluated with different CA techniques applicable to powdered samples. Surface energetics of the particle-subphase interactions was expressed in terms of the particle removal energy, contact cross-sectional areas, collapse energies, and so forth. The hydrophobic particles incorporation at a sea surface film structure increased the elasticity modulus by a factor K (1.29–1.58. The particle-covered seawater revealed a viscoelastic behavior with the characteristic relaxation times ranging from 2.6 to 68.5 sec.

  7. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  8. SMOS sea surface salinity maps of the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six

  9. SEASONAL REVERSE OF SEA SURFACE SLOPE IN THE NORTHERN YELLOW SEA AND ITS DYNAMIC RELATION WITH MONSOON EFFECTS

    Institute of Scientific and Technical Information of China (English)

    PU Shu-zhen; CHENG Jun; ZHANG Yi-jun; SHI Qiang

    2004-01-01

    Based on the monthly average sea level data from the tide gauge measurement(1999-2001),the seasonal variability of the sea level in the Northern and Middle Yellow Sea is studied to reveal that the sea surface height at all the tide gauges becomes higher in summer than that in winter.In addition,the sea surface height of the Northern Yellow Sea is higher than the one of the Middle Yellow Sea with a slope downward from the north to the south in summer,while it is lower with a reversed slope in winter.The seasonal reverse of the sea surface slope can be attributed to the monsoon effects i.e.the annual reverse of the monsoon direction and the annual variation of the monsoon rainfall.A set of equations are established in light of the dynamic principles to expound how the monsoon forcing and the sea surface slope generate a summer outflow and a winter inflow in the Yellow Sea.

  10. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    Science.gov (United States)

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable.

  11. Adjusting altimetric sea surface height observations in coastal regions. Case study in the Greek Seas

    Directory of Open Access Journals (Sweden)

    Mintourakis Ioannis

    2014-09-01

    Full Text Available When processing satellite altimetry data for Mean Sea Surface (MSS modelling in coastal environments many problems arise. The degradation of the accuracy of the Sea Surface Height (SSH observations close to the coastline and the usually irregular pattern and variability of the sea surface topography are the two dominant factors which have to be addressed. In the present paper, we study the statistical behavior of the SSH observations in relation to the range from the coastline for many satellite altimetry missions and we make an effort to minimize the effects of the ocean variability. Based on the above concepts we present a process strategy for the homogenization of multi satellite altimetry data that takes advantage ofweighted SSH observations and applies high degree polynomials for the adjustment and their uniffcation at a common epoch. At each step we present the contribution of each concept to MSS modelling and then we develop a MSS, a marine geoid model and a grid of gravity Free Air Anomalies (FAA for the area under study. Finally, we evaluate the accuracy of the resulting models by comparisons to state of the art global models and other available data such as GPS/leveling points, marine GPS SSH’s and marine gravity FAA’s, in order to investigate any progress achieved by the presented strategy

  12. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  13. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea

    Science.gov (United States)

    Yeh, Sang-Wook; Park, Young-Gyu; Min, HongSik; Kim, Cheol-Ho; Lee, Jae-Hak

    2010-06-01

    We examine the characteristics of sea surface temperature (SST) variability in the East/Japan Sea (EJS) for the period of 1891-2005 using 1°×1° latitude and longitude resolution datasets from the Japan Meteorological Agency and the Hadley Centre. A significant warming trend that manifests itself more strongly over the southern part of the sea is observed. In addition, it is found in the EJS that warming during the boreal winter is more significant than that during the summer. The EJS SST index, obtained from the time series of monthly SST anomaly averaged over the western half of the EJS, where large SST anomaly standard deviation is observed, has a primary spectral density at a frequency longer than a decade and a secondary peak at the annual frequency band. The variability of the low-frequency EJS SST, which is mostly explained by that during winter, is characterized by significant warming from the early 1940s to the late 1940s and from the mid-1980s to the present. Between the two warming periods, the EJS SST variability is dominated by decadal fluctuations. Finally, we discuss possible mechanisms of the low frequency EJS SST variability in conjunction with atmospheric variability. When the northwesterly winter monsoon becomes weaker (stronger), less (greater) amount of cold air is advected to the EJS. Sensible heat loss from the sea to the air becomes smaller (greater) producing a warm (cold) SST anomaly.

  14. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  15. Spatial heterogeneity of ocean surface boundary conditions under sea ice

    Science.gov (United States)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues

    2016-06-01

    The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.

  16. Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas-A Case Study with Implications for Climatology

    Institute of Scientific and Technical Information of China (English)

    LI Man; ZHANG Suping

    2013-01-01

    A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model,with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog.Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea,creating conditions favorable for sea fog/stratus formation.The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus.The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer),the sinking branch of which on the cold flank of SSTF helps lower the stratus layer further to reach the sea surface.The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence.The secondary circulation becomes weak and the fog patches are shrunk heavily with the smoothed SSTF.A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas.Finally,the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global warming.

  17. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  18. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    and autonomous weather station) were utilized for measuring sea truth parameters such as sea surface temperature (SST), Sea Surface Wind Speed (WS) and Columnar Water Vapor (WV). Total match-ups for SST and WS measured from various platforms exceeded 1400 (2 hrs...

  19. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  20. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  1. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    Science.gov (United States)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  2. Holocene coastal sea surface temperature changes in the northern South China Sea

    Science.gov (United States)

    Zhu, K.; Kong, D.; Wei, G.; Liu, Z.

    2016-12-01

    Holocene sea surface temperature (SST) changes in the northern South China Sea (SCS) coastal region are affected by complex factors. Previous studies have identified a long-term cooling trend, attributed to coastal mixing and intensified East Asian Winter Monsoon (EAWM), yet spatial patterns of coastal cooling along the southern China are still not well established. Here we reconstructed a Holocene Sea Surface Temperature (SST) record, derived from long-chain alkenone unsaturation index - UK'37, in the northern SCS. Our result reveals that a gentle cooling trend dominates the mid-late Holocene. The gradual warming trend occurring during the early Holocene might have resulted from the rising sea level or the rebound of "8.2 ka cold event". Besides, the C37-content also shows an extremely-low level before 8 ka. Later, both alkenone-derived SST and C37-content reach their highest levels during approximately 7-4.5 ka, corresponding to the Holocene Climate Optimum (HCO). Consistent with previous studies, the long-term cooling trend identified in coastal regions, but not offshore ones, presumably indicates intensified EAWM toward present. Further, during the late Holocene, coastal SST changes in the northern SCS show heterogeneous responses to global climatic conditions. In the Mirs Bay, SST was warmer during the Little Ice Age (LIA) than the Medieval Warm Period (WMP) and the current warm period, interpreted as reflecting intensified coastal mixing, due to strengthened East Asian Summer Monsoon (EASM) during warmer periods. However, SST records at other coastal sites, as well as offshore regions, show fluctuations consistent with global/northern hemisphere temperature changes, suggesting that these regions are less influenced by the EASM-induced coastal mixing, probably with the aid of Pearl River freshwater input.

  3. An evaluation of surface micro- and mesoplastic pollution in pelagic ecosystems of the Western Mediterranean Sea.

    Science.gov (United States)

    Faure, Florian; Saini, Camille; Potter, Gaël; Galgani, François; de Alencastro, Luiz Felippe; Hagmann, Pascal

    2015-08-01

    This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (Sea.

  4. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high......-resolution 1 min global MDT called DNSC08 MDT derived from the slightly smoothed difference between the DNSC08 MSS and the EGM2008 geoid. The derivation and quality control of the new DNSC08 MSS and DNSC08 MDT is presented in this paper along with suggestions for time period standardization of the MSS and MDT...

  5. Multi-objective shape optimization of runner blade for Kaplan turbine

    Science.gov (United States)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  6. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: liaoweili2004@163.co [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)

    2010-08-15

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  7. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    with Chlorophyll values at 1 m depth. Relatively high enrichment factors, sea-surface microlayer (SML), in coastal waters could be attributed to the influence of freshwater carrying considerable quantities of nutrients into the sea either from land runoff or from...

  8. Attributing extreme precipitation in the Black Sea region to sea surface warming

    Science.gov (United States)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  9. Mean sea surface and gravity investigations using TOPEX/Poseidon altimeter data

    Science.gov (United States)

    Rapp, Richard H.

    1991-01-01

    From a broad point of view, we will be concerned with studying global ocean circulation patterns on the basis of ocean surface determinations with geoid undulation information. In addition, we will study local variations of the gravity field implied by the altimeter data. These general goals are reflected in the title of our investigation. To meet our general goal, we have defined a number of specific objectives: (1) sea surface topography representation; (2) mean sea surface determination; (3) development of local geoid models; (4) mean sea surface comparisons; (5) sea surface topographic files; and (6) gravity anomaly determination.

  10. Kaplan turbines: design trends in the last decade

    Energy Technology Data Exchange (ETDEWEB)

    Lugaresi, A.; Massa, A. (ELC-Electroconsult, Milan (IT))

    1988-05-01

    This article provides an update to the results previously published on the Kaplan hydraulic turbine. The approach has been essentially statistical, based on data supplied by various manufacturers. The investigation took into account 72 units, designed, with few exceptions, after the year 1976. The research has been limited to the main parameters, such as specific speed and cavitation coefficient, and dimensions that allow for the basic unit to be selected and overall unit size to be determined. The various relationships presented here have been calculated by a regression, and the results are accurate enough for a comparison of options for preliminary design and layout. (author).

  11. A model of the tropical Pacific sea surface temperature climatology

    Science.gov (United States)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  12. Sea Surface Infrared Radiance Simulator. Part 1: Roughness and Temperature Models of the Sea Surface Radiance

    Science.gov (United States)

    2010-12-01

    simulateur infrarouge de la radiance de la surface de l’eau. Des documents ultérieurs suivront pour décrire le modèle de discrétisation de l’espace...géométrique, le modèle infrarouge de sillages des navires ainsi que la performance du simulateur. vi DRDC Atlantic TM 2010-280 Table of contents

  13. NOAA Climate Data Record (CDR) of Sea Surface Temperature -WHOI, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  14. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    Remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS) are used to estimate biological heating rate and investigate the biological modulation of the sea surface temperature (SST) in a bulk mixed layer model...

  15. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    Science.gov (United States)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles 60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on upwind (windward) face of the tilting wave. Retrieval of Bragg roughness properties shows that omni-directional saturation spectra at ~1000 rad/m are 2-3 times higher (0.01 at 10 m/s wind speed) than the spectra obtained from optical measurements of regular sea surface without wave breaking. This suggests that observed difference can arise

  16. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    Science.gov (United States)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  17. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    Science.gov (United States)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  18. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  19. Space-based observation of chlorophyll, sea surface temperature, nitrate, and sea surface height anomaly over the Bay of Bengal and Arabian Sea

    Science.gov (United States)

    Sarangi, R. K.; Devi, K. Nanthini

    2017-01-01

    Monthly chlorophyll and sea surface temperature (SST) images were generated using MODIS-Aqua data sets during 2014 and 2015 in the Bay of Bengal and Arabian Sea. The in situ data-based nitrate algorithm was used to generate nitrate images by using the satellite-derived chlorophyll and SST images. To link ocean productivity with the sea surface features and sea level anomaly, the Indo-French altimeter mission SARAL-ALTIKA-derived sea surface height anomaly (SSHa) data sets were processed and maps were generated. The monthly average chlorophyll concentration ranged from 0.001 to 3.0 mg m-3, SST ranged from 24 to 32 °C, nitrate concentration ranged from 0.01 to 6.0 μM, and overall SSH anomaly ranged from -52 to +40 cm. Nitrate concentration was observed to be high (3-5 μM) during December-January, possibly due to convective eddies and winter cooling as well as atmospheric aerosols and dust inducing ocean productivity. The nitrate concentration was observed to be associated more with chlorophyll than SST, as nitrate inherently enhances the ocean chlorophyll and productivity, acting as proxy. The SSH anomaly showed irregular features and depicting few eddies, upwelling, and ocean circulation features. The low SSHa was mostly due to high chlorophyll concentration. It was observed that the low SST (∼24-26 °C) is attributed to high chlorophyll concentration (1.5-3.0 mg m-3) over the study area. The lag phase and enhancement in chlorophyll mean during September was due to the decrease in average SST during August. The SSHa showed seasonal trend over the study area during the monsoon period with observation of negative anomaly. Arabian Sea was found to have more negative SSH anomaly monthly mean values than Bay of Bengal. The impact and interrelationship of SSHa indicated better relationship with chlorophyll than with nitrate and SST, as observed from multiple regression analysis. The analysis of variance (ANOVA) results between the 2-year monthly data showed that the

  20. Sea-surface bioproductivity changes in the Northwest Pacific over the last 25 kyr

    Science.gov (United States)

    Ovsepyan, E. A.; Ivanova, E. V.; Murdmaa, L. O.; Alekhina, G. N.

    2014-07-01

    The sea-surface bioproductivity changes over the last 25 kyr were inferred from published data on 30 sediment cores from the open Northwest Pacific (NWP), Sea of Okhotsk, Bering Sea and Sea of Japan accounting for the glacioeustatic sea-level changes. A novel method was developed to compare the variations of several independent productivity proxies relative to the present-day values. During the Last Glacial Maximum, the bioproductivity in the Sea of Okhotsk and the western Bering Sea (BS) was lower than at present, whereas the southern and southeastern Bering Sea and the open NWP are characterized by enhanced bioproductivity. During the early deglacial stage, an increase in bioproductivity was estimated only for the southeastern Bering Sea. High and fairly high bioproductivity was estimated for Heinrich 1 in the open NWP, above the Umnak Plateau and on the Shirshov and Bowers Ridges in the Bering Sea. The high productivity in the Bering Sea, Sea of Okhotsk and NWP during the Bølling/Allerød was caused by the global warming and enhanced nutrient supply by meltwater from the continent. During the Early Holocene, high productivity was estimated for almost the entire NWP. The Late Holocene sea-surface bioproductivity was generally lower than that of the Early Holocene. Proposed factors that have controlled the sea-surface bioproductivity during the last 25 kyr include: the location of the sea ice margin, the river runoff, gradual flooding of the Bering Sea and the Sea of Okhotsk shelf areas, the water mass exchange between the marginal seas and the open NWP, the eolian supply and the deep vertical mixing of the water column.

  1. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    Science.gov (United States)

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  2. Physicochemical Studies of the Sea-Surface Microlayer

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhengbin; Liu Chunying; Liu Lianshen

    2006-01-01

    In physicochemical studies on the sea-surface microlayer(SML)in seawater,the main researches conducted were as follows:(1)It was found that there is an objective layer of sudden change in physical and chemical properties between the SML and the subsurface layer in seawater.(2)The SML thickness was determined and should be about 50±10 μm.(3)The Gibbs model of the SML was extended,and the multilayer model of the SML was advanced.(4)The original-location method,which corresponds with the traditional removal-location method,was founded and used to determine the SML thickness.The results obtained from the two methods were almost identical.(5)An abnormal phenomenon was found when the Gibbs solution adsorption was applied to the seawater system,the reason for which was discussed preliminarily.

  3. Satellite techniques for determining the geopotential of sea surface elevations

    Science.gov (United States)

    Pisacane, V. L.

    1986-01-01

    Spaceborne altimetry with measurement accuracies of a few centimeters which has the potential to determine sea surface elevations necessary to compute accurate three-dimensional geostrophic currents from traditional hydrographic observation is discussed. The limitation in this approach is the uncertainties in knowledge of the global and ocean geopotentials which produce satellite and height uncertainties about an order of magnitude larger than the goal of about 10 cm. The quantitative effects of geopotential uncertainties on processing altimetry data are described. Potential near term improvements, not requiring additional spacecraft, are discussed. Even though there is substantial improvements at the longer wavelengths, the oceanographic goal will be achieved. The geopotential research mission (GRM) is described which should produce geopotential models that are capable of defining the ocean geoid to 10 cm and near-earth satellite position. The state of the art and the potential of spaceborne gravimetry is described as an alternative approach to improve our knowledge of the geopotential.

  4. Change point detection of the Persian Gulf sea surface temperature

    Science.gov (United States)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  5. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; GUO Li-Xin; WANG An-Qi; WU Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional(1D)rough sea surface with the Pierson-Moskowitz(PM)spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic(EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments.

  6. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    Science.gov (United States)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  7. Sea Surface Salinity signature of tropical Atlantic interannual modes

    Science.gov (United States)

    Awo, Mesmin; Alory, Gael; Da-Allada, Casimir; Jouanno, Julien; Delcroix, Thierry; Baloitcha, Ezinvi

    2017-04-01

    Interannual climate variability in the tropical Atlantic is dominated by two internal modes: an equatorial and a meridional mode. The equatorial mode is partly responsible for sea surface temperature (SST) anomalies observed in boreal summer in the Gulf of Guinea. The meridional mode peaks in boreal spring as an inter-hemispheric SST fluctuation. Previous studies show that these modes affect the migration of the inter tropical convergence zone which drives regional precipitation. In this study, we extracted the Sea Surface Salinity (SSS) signature of these modes from in situ data. The results indicate strong SSS anomalies in the equatorial, north west and south east tropical Atlantic related to the equatorial mode. Moreover, the results also indicate the existence of a meridional SSS dipole in the equatorial region, strong SSS anomalies in north and south tropical Atlantic and in runoff regions, related to the meridional mode. Using a mixed-layer salt budget in a realistic model, we investigated the oceanic and/or atmospheric processes responsible for this signature: For the equatorial mode, both fresh water flux and horizontal advection explain the observed signature in the north equatorial region, but in the south equatorial region, the signature is explained by the combined contribution of total (horizontal and vertical) advection and vertical diffusion. For the meridional mode, changes in fresh water flux explain the observed equatorial dipole while the signature in runoff regions is explained by the total advection. In the north west and south east tropical Atlantic, only horizontal advection is important for explaining the signature of these two modes.

  8. Comparison of different Geostatistical Approaches to map Sea Surface Temperature (SST) of Southern South China Sea

    Science.gov (United States)

    Ali, Azizi; Mohd Muslim, Aidy; Lokman Husain, Mohd; Fadzil Akhir, Mohd

    2013-04-01

    Sea surface temperature (SST) variation provides vital information for weather and ocean forecasting especially when studying climate change. Conventional methods of collecting ocean parameters such as SST, remains expensive and labor intensive due to the large area coverage and complex analytical procedure required. Therefore, some studies need to be conducted on the spatial and temporal distribution of ocean parameters. This study looks at Geo-statisctical methods in interpolating SST values and its impact on accuracy. Two spatial Geo-statistical techniques, mainly kriging and inverse distance functions (IDW) were applied to create variability distribution maps of SST for the Southern South China Sea (SCS). Data from 72 sampling station was collected in July 2012 covering an area of 270 km x 100 km and 263 km away from shore. This data provide the basis for the interpolation and accuracy analysis. After normalization, variograms were computed to fit the data sets producing models with the least RSS value. The accuracy were later evaluated based on on root mean squared error (RMSE) and root mean kriging variance (RMKV). Results show that Kriging with exponential model produced most accuracy estimates, reducing error in 17.3% compared with inverse distance functions.

  9. Numerical investigation of tip clearance cavitation in Kaplan runners

    Science.gov (United States)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  10. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    Science.gov (United States)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  11. Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects

    Science.gov (United States)

    Gaube, P.; Chelton, D. B.; O'Neill, L. W.

    2011-12-01

    Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction

  12. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    Directory of Open Access Journals (Sweden)

    J. K. Sweeney

    2013-09-01

    Full Text Available The sensitivity of sea breeze structure to sea surface temperature (SST and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  13. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    Science.gov (United States)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  14. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  15. Horizontal advection, diffusion and plankton spectra at the sea surface.

    Science.gov (United States)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  16. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea...

  17. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2011-01-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoreti

  18. Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea

    Science.gov (United States)

    Eleveld, Marieke A.; Pasterkamp, Reinold; van der Woerd, Hendrik J.; Pietrzak, Julie D.

    2008-10-01

    An algorithm is presented for estimating near-surface SPM concentrations in the turbid Case 2 waters of the southern North Sea. The single band algorithm, named POWERS, was derived by parameterising Gordon's approximation of the radiative transfer model with measurements of Belgian and Dutch inherent optical properties. The algorithm was used to calculate near-surface SPM concentration from 491 SeaWiFS datasets for 2001. It was shown to be a robust algorithm for estimating SPM in the southern North Sea. Regression of annual geometric mean SPM concentration derived from remote sensing (SPM rs), against in situ (SPM is) data from 19 Dutch monitoring stations was highly significant with an r2 of 0.87. Further comparison and statistical testing against independent datasets for 2000 confirmed the consistency of this relationship. Moreover, time series of SPM rs concentrations derived from the POWERS algorithm, were shown to follow the same temporal trends as individual SPM is data recorded during 2001. Composites of annual, winter and summer SPM rs for 2001 highlight the three dominant water masses in the southern North Sea, as well as their winter-fall and spring-summer variability. The results indicate that wind induced wave action and mixing cause high surface SPM signals in winter in regions where the water column becomes well mixed, whereas in summer stratification leads to a lower SPM surface signal. The presented algorithm gives accurate near-surface SPM concentrations and could easily be adapted for other water masses and seas.

  19. The mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of Western Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western Pacific using an improved high truncated spectral model. Our results show that the wave-wave interaction and the wave-mean flow interactions are weaker in the inner dynamic process of atmospheric circulation, when atmospheric circulation is forced by the sea surface temperature of El Ni-o pattern. With the external thermal forcing changed from winter to summer pattern, the range of ridgeline surface of western Pacific moving northward is smaller, which causes the ridgeline surface of western Pacific on south of normal. On the contrary, the wave-wave interaction and the wave-mean flow interaction are stronger, when atmospheric circulation is forced by the sea surface temperature of La Ni-a pattern. With the external thermal forcing turning from winter to summer pattern, the ridgeline surface of western Pacific shifts northward about 19 latitude degrees, which conduces the ridgeline surface of western Pacific on north of normal. After moving to certain latitude, the ridgeline surface of western Pacific oscillates with the most obvious 30-60 d period and the 4°-7° amplitude. It is one of the important reasons for the interannual variation of ridgeline surface of Western Pacific that the at- mospheric inner dynamical process forced out by different sea surface temperature anomaly pattern is different.

  20. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  1. Snow melt on sea ice surfaces as determined from passive microwave satellite data

    Science.gov (United States)

    Anderson, Mark R.

    1987-01-01

    SMMR data for the year 1979, 1980 and 1984 have been analyzed to determine the variability in the onset of melt for the Arctic seasonal sea ice zone. The results show melt commencing in either the Kara/Barents Seas or Chukchi Sea and progressing zonally towards the central Asian coast (Laptev Sea). Individual regions had interannual variations in melt onset in the 10-20 day range. To determine whether daily changes occur in the sea ice surface melt, the SMMR 18 and 37 GHz brightness temperature data are analyzed at day/night/twilight periods. Brightness temperatures illustrate diurnal variations in most regions during melt. In the East Siberian Sea, however, daily variations are observed in 1979, throughout the analysis period, well before any melt would usually have commenced. Understanding microwave responses to changing surface conditions during melt will perhaps give additional information about energy budgets during the winter to summer transition of sea ice.

  2. Global monitoring of Sea Surface Salinity with Aquarius

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  3. Sound scattering by bubble clouds near the sea surface

    Science.gov (United States)

    Gaunaurd; Huang

    2000-01-01

    The classical exact formulation required to evaluate the form function (or the scattering cross-section, SCS) of a single, ideal, air bubble in a boundless liquid is briefly recalled. It is then immediately generalized to the case of a round cloud of many possibly interacting such bubbles of known volume concentration, contained within the same boundless medium. This is further generalized to the case when the bubble cloud is near a free surface. The presence of the nearby pressure release surface, assumed flat, substantially alters the cloud's scattering cross-section relative to its value in the absence of boundaries. We then use an earlier technique of ours [i.e., see I.E.E.E. J. Ocean. Eng. 20, 285-293 (1995)] based on the method of images that uses the addition theorem for the spherical wave functions, to relate all the scattered sound fields to a common origin and thus obtain the (modified) SCS of the cloud now near the boundary. This formulation accounts for all orders of multiple scattering and yields an infinite set of coupled algebraic equations for the coupling coefficients. This set is then solved for the coupling coefficients in terms of infinite sums of products of pairs of Wigner 3-j symbols, which are then used to construct and evaluate the form function. We display numerical results in four cases that correspond to geographical sites in which the bubble concentrations within the cloud have been measured along a couple of oblique upward directions, or have been assumed to have increasing (and in a few instances, purposely unrealistically high) values. In all cases considered here the bubble clouds are only a few meters beneath the sea surface and consist of ideal bubbles. The results are also compared to those found in the absence of a boundary in all the cases considered.

  4. Mean sea surface and geoid gradient comparisons with TOPEX altimeter data

    Science.gov (United States)

    Rapp, Richard H.; Yi, Yuchan; Wang, Yan Ming

    1994-01-01

    Cycles 4 to 54 of TOPEX data have been analyzed through comparisons with the mean sea surface given on the disturbed geophysical data record (GDR). Two inverted barometer correction procedures were considered for the data reduction. One used a constant atmospheric pressure for all data while the one adopted for use, for most computations, introduced a cycle average pressure. The maximum difference between the two estimates was 3.0 cm with a clear annual signal. With the modified correction the TOPEX sea surface was compared to The Ohio State University (OSU) mean sea surface, given on the GDR, to estimate three translations ( delta x = -2.3 cm; delta y = 25.0 cm; delta z = -0.3 cm) and a bias (43.3 cm) between the two surfaces. The only significant translation is delta y which indicates the reference frame of the TOPEX system differs from that used in the OSU mean sea surface system. The bias between the TOPEX mean sea surface and the OSU mean sea surface was used to estimate an equatorial radius of 6,378,136.55 m based on an 18-cm biased estimate of the TOPEX altimeter. Examination of the average difference, by cycle, between the TOPEX sea surface and the OSU mean sea surface suggested a bias change of 3.1 +/- 2.2 mm/yr with a positive sign indicating the average ocean surface is rising or the altimeter measured distance is decreasing. Models were implemented that solved directly for a bias, bias rate annual/semiannual, and tide correction terms. The computations indicated that a simultaneous solution for this bias, bias rate, and annual/semiannual terms gave the most accurate results. Nonsimultaneous solutions led to slightly different bias rate values. The root mean square difference between the TOPEX sea surface and OSU sea surface, after translation and bias correction, was +/- 17 cm for a typical cycle. Some locations were indentified where the difference could reach 2.3 cm and were repeated over several cycles indicating errors in the mean sea surface. Most

  5. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  6. Radioactive 129I in surface water of the Celtic Sea

    DEFF Research Database (Denmark)

    He, Peng; Hou, Xiaolin; Aldahan, Ala

    2014-01-01

    Relatively large amounts of radioactive iodine 129I (T 1/2 = 15.7 Ma) have been documented in seawater such as the English Channel, the Irish Sea and the North Sea. Data on the concentration of the iodine isotopes in waters of the Celtic Sea are missing. Aiming to provide first 129I data in the C......Relatively large amounts of radioactive iodine 129I (T 1/2 = 15.7 Ma) have been documented in seawater such as the English Channel, the Irish Sea and the North Sea. Data on the concentration of the iodine isotopes in waters of the Celtic Sea are missing. Aiming to provide first 129I data...

  7. Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea

    Science.gov (United States)

    Horvat, Milena; Kotnik, Jože; Logar, Martina; Fajon, Vesna; Zvonarić, Tomislav; Pirrone, Nicola

    A summary of data recently obtained for mercury analysis and speciation (reactive Hg, total Hg and monomethylmercury (MMHg)) in filtered and non-filtered seawater samples, dissolved gaseous mercury (DGM) and dimethylmercury (DMHg) in open and coastal waters of the Mediterranean Sea is presented. The majority of the results were obtained during an oceanographic cruise aboard the research vessel Urania from 14 July to 9 August, 2000, as part of the MED-OCEANOR Project funded by the National Research Council of Italy. The results are compared with those obtained in contaminated coastal environments of the Adriatic (The Gulf of Trieste and Kaštela Bay) and non-contaminated coastal waters of the eastern Adriatic coast obtained in 1998. Total mercury concentrations in surface ocean waters are relatively low with an average of 0.81 pM (0.49-1.91 pM). Reactive Hg represents a substantial part with an average of 57% of total Hg (15-97%). Most mercury in open ocean waters was present in the dissolved form (32-95%, av. 70%), which is mainly due to the low abundance of particulate matter, a phenomenon well known for the Mediterranean open ocean waters. On average the percentage of Hg as MMHg was about 20%, of which about 66% was present in the dissolved form. The percentage of DGM in the surface ocean waters represents about 9% of total Hg (2.5-24.5%) and may originate from photochemical, biologically mediated mechanisms or diffusion from deeper layer either due to biological and/or to tectonic activity which is typical of the Mediterranean region. The presence of DMHg was confirmed only in waters below 20 m (up to 12 fM), while in surface waters DMHg was below the limit of detection (<0.1 fM). Surface concentrations of Hg in the eastern and western parts are comparable, except for DGM which shows significantly higher concentrations in the eastern part (mean value: 0.22 pM) as compared to the western Mediterranean (mean value: 0.09 pM). The distribution of Hg species with

  8. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Science.gov (United States)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  9. SeaWIFS Postlaunch Technical Report Series. Volume 13; The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM) Field Commissioning

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)

    2000-01-01

    This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.

  10. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month

    Science.gov (United States)

    Kettle, A. J.; Andreae, M. O.; Amouroux, D.; Andreae, T. W.; Bates, T. S.; Berresheim, H.; Bingemer, H.; Boniforti, R.; Curran, M. A. J.; Ditullio, G. R.; Helas, G.; Jones, G. B.; Keller, M. D.; Kiene, R. P.; Leck, C.; Levasseur, M.; Malin, G.; Maspero, M.; Matrai, P.; McTaggart, A. R.; Mihalopoulos, N.; Nguyen, B. C.; Novo, A.; Putaud, J. P.; Rapsomanikis, S.; Roberts, G.; Schebeske, G.; Sharma, S.; Simó, R.; Staubes, R.; Turner, S.; Uher, G.

    1999-06-01

    A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°×1° latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.

  11. Influence of Rough Flow over Sea Surface on Dry Atmospheric Deposition Velocities

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available A Meteorological model and a dry deposition module were used to estimate the effects of sea surface rough flow (SSRF over the sea surface on dry deposition velocities. The dry deposition turbulence resistance, Ra, and sub-layer resistance, Rb, decreased more than 10% and 5% due to SSRF, respectively. For example, for HNO3, the mean dry deposition velocities (Vd were 0.51 cm s-1 in January, 0.58 in April, 0.65 cm s-1 in July and 0.79 cm s-1 in October with only smooth flow over the sea surface. However, the SSRF increased the Vd of HNO3 by 5 - 20% in the east China seas. These results show that SSRF is an important factor in estimating surface roughness to further improve calculation of the dry deposition velocities over the ocean. Improvements in parameterization of sea roughness length will be a worthwhile effort in related future studies.

  12. Spatial Statistical Estimation for Massive Sea Surface Temperature Data

    Science.gov (United States)

    Marchetti, Y.; Vazquez, J.; Nguyen, H.; Braverman, A. J.

    2015-12-01

    We combine several large remotely sensed sea surface temperature (SST) datasets to create a single high-resolution SST dataset that has no missing data and provides an uncertainty associated with each value. This high resolution dataset will optimize estimates of SST in critical parts of the world's oceans, such as coastal upwelling regions. We use Spatial Statistical Data Fusion (SSDF), a statistical methodology for predicting global spatial fields by exploiting spatial correlations in the data. The main advantages of SSDF over spatial smoothing methodologies include the provision of probabilistic uncertainties, the ability to incorporate multiple datasets with varying footprints, measurement errors and biases, and estimation at any desired resolution. In order to accommodate massive input and output datasets, we introduce two modifications of the existing SSDF algorithm. First, we compute statistical model parameters based on coarse resolution aggregated data. Second, we use an adaptive spatial grid that allows us to perform estimation in a specified region of interest, but incorporate spatial dependence between locations in that region and all locations globally. Finally, we demonstrate with a case study involving estimations on the full globe at coarse resolution grid (30 km) and a high resolution (1 km) inset for the Gulf Stream region.

  13. Quality control methods for KOOS operational sea surface temperature products

    Institute of Scientific and Technical Information of China (English)

    YANG Chansu; KIM Sunhwa

    2016-01-01

    Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System (KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC (OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.

  14. Bias correction methods for decadal sea-surface temperature forecasts

    Directory of Open Access Journals (Sweden)

    Balachandrudu Narapusetty

    2014-04-01

    Full Text Available Two traditional bias correction techniques: (1 systematic mean correction (SMC and (2 systematic least-squares correction (SLC are extended and applied on sea-surface temperature (SST decadal forecasts in the North Pacific produced by Climate Forecast System version 2 (CFSv2 to reduce large systematic biases. The bias-corrected forecast anomalies exhibit reduced root-mean-square errors and also significantly improve the anomaly correlations with observations. The spatial pattern of the SST anomalies associated with the Pacific area average (PAA index (spatial average of SST anomalies over 20°–60°N and 120°E–100°W is improved after employing the bias correction methods, particularly SMC. Reliability diagrams show that the bias-corrected forecasts better reproduce the cold and warm events well beyond the 5-yr lead-times over the 10 forecasted years. The comparison between both correction methods indicates that: (1 prediction skill of SST anomalies associated with the PAA index is improved by SMC with respect to SLC and (2 SMC-derived forecasts have a slightly higher reliability than those corrected by SLC.

  15. GHRSST Level 4 RTO Terra MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  16. GHRSST Level 4 RTO Aqua MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  17. GHRSST Level 4 RTO Terra MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  18. GHRSST Level 4 RTO Aqua MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  19. GHRSST Level 4 CMC0.2deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  20. GHRSST Level 4 REMO_OI_SST_5km Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis by the...

  1. NOAA Climate Data Record (CDR) of Sea Surface Temperature (SST) from AVHRR Pathfinder, Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  2. GHRSST Level 4 ODYSSEA North-Western Europe Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  3. GHRSST Level 4 MW_IR_OI Global Foundation Sea Surface Temperature analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.81 degree grid at Remote Sensing...

  4. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset (four day latency) and...

  5. Holocene Sea Surface and Subsurface Water Mass Variability Reconstructed from Temperature and Sea-ice Proxies in Fram Strait

    Science.gov (United States)

    Werner, Kirstin; Spielhagen, Robert F.; Müller, Juliane; Husum, Katrine; Kandiano, Evgenia S.; Polyak, Leonid

    2016-04-01

    In two high-resolution sediment cores from the West Spitsbergen continental margin we investigated planktic foraminiferal, biomarker and dinocyst proxy data in order to reconstruct surface and subsurface water mass variability during the Holocene. The two study sites are today influenced by northward flowing warm and saline Atlantic Water. Both foraminiferal and dinocyst (de Vernal et al., 2013) temperature reconstructions indicate a less-stratified, ice-free, nutrient-rich summer surface ocean with strong Atlantic Water advection between 10.6 and 8.5 cal ka BP, likely related to maximum July insolation during the early Holocene. Sea surface to subsurface water temperatures of up to 6°C prevailed until ca 5 cal ka BP. A weakened contribution of Atlantic Water is found when subsurface temperatures strongly decreased with minimum values between ca 4 and 3 cal ka BP. High planktic foraminifer shell fragmentation and increased oxygen isotope values of the subpolar planktic foraminifer species Turborotalita quinqueloba as well as increasing concentrations of the sea ice biomarker IP25 further indicate cool conditions. Indices associated with IP25 as well as dinocyst data suggest a sustained cooling and consequently sea-ice increase during the late Holocene. However, planktic foraminiferal data indicate a slight return of stronger subsurface influx of Atlantic Water since ca 3 cal ka BP. The observed decoupling of cooling surface and warming subsurface waters during the later Holocene might be attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface Atlantic Water advection. Reference: de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111-121.

  6. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    Science.gov (United States)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  7. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    Science.gov (United States)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  8. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model

    Institute of Scientific and Technical Information of China (English)

    谢涛; William Perrie; 赵尚卓; 方贺; 于文金; 何宜军

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.

  9. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  10. The seasonal variations in the significant wave height and sea surface wind speed of the China’s seas

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chongwei; PAN Jing; TAN Yanke; GAO Zhansheng; RUI Zhenfeng; CHEN Chaohui

    2015-01-01

    Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China’s seas WS and SWH are determined based on 24 a (1988–2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China’s WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China’s seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF;the smallest area was apparent in SON. In contrast to the WS, almost all of China’s seas exhibited a significant increase in SWH in MAM and DJF;the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China’s seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.

  11. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    Science.gov (United States)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

  12. Blade Profile Optimization of Kaplan Turbine Using CFD Analysis

    Directory of Open Access Journals (Sweden)

    Aijaz Bashir Janjua

    2013-10-01

    Full Text Available Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models.

  13. Experiences with environmentally adapted Kaplan runners; Erfarenheter med miljoeanpassade Kaplanloephjul

    Energy Technology Data Exchange (ETDEWEB)

    Ukonsaari; Jan

    2012-08-15

    This study concerns environmentally adapted Kaplan runners, which have no oil for lubricating the blade regulation mechanisms and bearings. The runners are water or air filled with self lubricated bearings. Recent design also includes regulation system pressure increase and servo motor placement below runner centre and environmentally adapted synthetic ester as hydraulic fluid. These together with power output increase and efficiency optimization are suspected sources of poor runner function. Of 37 runners 43 % have had some kind of problem and 30 % bearing or mechanism related ones. When the axial blade bearing problems are excluded the problems occurred at 16 %. Deeper look into the design of newer runners shows that only bronze based runner hubs is significantly more problem dense regarding regulation mechanisms (50 %). Hidden figures of increased runner regulation forces are suspected. All problems cannot be explained and the young machines limit the experiences. The working group's opinion and bring ups of historical and present examples during the work show evidence that the old oil filled runners function is far from perfect, nor the life length. The future is not with oil filled runner hubs. Main parts of the discovered problems have been solved and can be resolved by thorough design analysis. One future concern is what effects the recent design changes will cause due to increase demand for power output changes including the number of starts and stops. That is why the working group's recommendation is to put joint effort into material fatigue and in which a first step is to identify the real forces the runners are exposed to.

  14. Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years

    Directory of Open Access Journals (Sweden)

    G. M. Ganssen

    2011-12-01

    Full Text Available The oxygen isotopic composition of planktonic foraminifera tests is one of the widest used geochemical tools to reconstruct past changes of physical parameters of the upper ocean. It is common practice to analyze multiple individuals from a mono-specific population and assume that the outcome reflects a mean value of the environmental conditions during calcification of the analyzed individuals. Here we present the oxygen isotope composition of individual specimens of the surface-dwelling species Globigerinoides ruber and Globigerina bulloides from sediment cores in the Western Arabian Sea off Somalia, inferred as indicators of past seasonal ranges in temperature. Combining the δ18O measurements of individual specimens to obtain temperature ranges with Mg/Ca based mean calcification temperatures allows us to reconstruct temperature extrema. Our results indicate that over the past 20 kyr the seasonal temperature range has fluctuated from its present value of 16 °C to mean values of 13 °C and 11 °C for the Holocene and LGM, respectively. The data for the LGM suggest that the maximum temperature was lower, whilst minimum temperature remained approximately constant. The rather minor variability in lowest summer temperatures during the LGM suggests roughly constant summer monsoon intensity, while upwelling-induced productivity was lowered.

  15. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.

    Science.gov (United States)

    Van Houtan, Kyle S; Halley, John M; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr(-1) (range 0.01-0.09°C yr(-1)); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology.

  16. A comparison between Kaplan-Meier and weighted Kaplan-Meier methods of five-year survival estimation of patients with gastric cancer.

    Science.gov (United States)

    Zare, Ali; Mahmoodi, Mahmood; Mohammad, Kazem; Zeraati, Hojjat; Hosseini, Mostafa; Holakouie Naieni, Kourosh

    2014-01-01

    The 5-year survival rate is a good prognostic indicator for patients with Gastric cancer that is usually estimated based on Kaplan-Meier. In situations where censored observations are too many, this method produces biased estimations. This study aimed to compare estimations of Kaplan-Meier and Weighted Kaplan-Meier as an alternative method to deal with the problem of heavy-censoring. Data from 330 patients with Gastric cancer who had undergone surgery at Iran Cancer Institute from 1995- 1999 were analyzed. The Survival Time of these patients was determined after surgery, and the 5-year survival rate for these patients was evaluated based on Kaplan-Meier and Weighted Kaplan-Meier methods. A total of 239 (72.4%) patients passed away by the end of the study and 91(27.6%) patients were censored. The mean and median of survival time for these patients were 24.86±23.73 and 16.33 months, respectively. The one-year, two-year, three-year, four-year, and five-year survival rates of these patients with standard error estimation based on Kaplan-Meier were 0.66 (0.0264), 0.42 (0.0284), 0.31 (0.0274), 0.26 (0.0264) and 0.21 (0.0256) months, respectively. The estimations of Weighted Kaplan-Meier for these patients were 0.62 (0.0251), 0.35 (0.0237), 0.24 (0.0211), 0.17 (0.0172), and 0.10 (0.0125) months, consecutively. In cases where censoring assumption is not made, and the study has many censored observations, estimations obtained from the Kaplan-Meier are biased and are estimated higher than its real amount. But Weighted Kaplan-Meier decreases bias of survival probabilities by providing appropriate weights and presents more accurate understanding.

  17. A comparison between Kaplan-Meier and weighted Kaplan-Meier methods of five-year survival estimation of patients with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Ali Zare

    2014-10-01

    Full Text Available The 5-year survival rate is a good prognostic indicator for patients with Gastric cancer that is usually estimated based on Kaplan-Meier. In situations where censored observations are too many, this method produces biased estimations. This study aimed to compare estimations of Kaplan-Meier and Weighted Kaplan-Meier as an alternative method to deal with the problem of heavy-censoring. Data from 330 patients with Gastric cancer who had undergone surgery at Iran Cancer Institute from 1995- 1999 were analyzed. The Survival Time of these patients was determined after surgery, and the 5-year survival rate for these patients was evaluated based on Kaplan-Meier and Weighted Kaplan-Meier methods. A total of 239 (72.4% patients passed away by the end of the study and 91(27.6% patients were censored. The mean and median of survival time for these patients were 24.86±23.73 and 16.33 months, respectively. The one-year, two-year, three-year, four-year, and five-year survival rates of these patients with standard error estimation based on Kaplan-Meier were 0.66 (0.0264, 0.42 (0.0284, 0.31 (0.0274, 0.26 (0.0264 and 0.21 (0.0256 months, respectively. The estimations of Weighted Kaplan-Meier for these patients were 0.62 (0.0251, 0.35 (0.0237, 0.24 (0.0211, 0.17 (0.0172, and 0.10 (0.0125 months, consecutively. In cases where censoring assumption is not made, and the study has many censored observations, estimations obtained from the Kaplan-Meier are biased and are estimated higher than its real amount. But Weighted Kaplan-Meier decreases bias of survival probabilities by providing appropriate weights and presents more accurate understanding.

  18. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... assessments of how species and ecosystems have responded to past temperature changes and how they may react to future temperature changes. (C) 2007 Elsevier B.V. All rights reserved....

  19. Surface and basal sea ice melt from autonomous buoy arrays during the 2014 sea ice retreat in the Beaufort/Chukchi Seas

    Science.gov (United States)

    Maksym, T. L.; Wilkinson, J.; Hwang, P. B.

    2014-12-01

    As the Arctic continues its transition to a seasonal ice cover, the nature and role of the processes driving sea ice retreat are expected to change. Key questions revolve around how the coupling between dynamics and thermodynamic processes and potential changes in the role of melt ponds contribute to an accelerated seasonal ice retreat. To address these issues, 44 autonomous platforms were deployed in four arrays in the Beaufort Sea in March, 2014, with an additional array deployed in August in the Chukchi Sea to monitor the evolution of ice conditions during the seasonal sea ice retreat. Each "5-dice" array included four or five co-sited ice mass balance buoys (IMB) and wave buoys with digital cameras, and one automatic weather station (AWS) at the array center. The sensors on these buoys, combined with satellite imagery monitoring the large-scale evolution of the ice cover, provide a near-complete history of the processes involved in the seasonal melt of sea ice. We present a preliminary analysis of the contributions of several key processes to the seasonal ice decay. The evolution of surface ponding was observed at several sites with differing ice types and surface morphologies. The records of surface melt and ice thickness demonstrate a key role of ice type in driving the evolution of the ice cover. Analysis of the surface forcing and estimates of solar energy partitioning between the surface and upper ocean is compared to the surface and basal mass balance from the IMBs. The role of ice divergence and deformation in driving sea ice decay - in particular its role in accelerating thermodynamic melt processes - is discussed.

  20. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model...... is initialised with in situ data collected during the May 2004 GreenIce ice camp in the Lincoln Sea (73ºW; 85ºN). Our results show that the snow cover is important for the effective scattering surface depth in sea ice and thus for the range measurement, ice freeboard and ice thickness estimation....

  1. Removing the impact of wind direction on remote sensing of sea surface salinity

    Institute of Scientific and Technical Information of China (English)

    YIN Xiaobin; LIU Yuguang; ZHANG Hande

    2006-01-01

    Using the small-slope approximation model of microwave emission of rough sea surface, the impacts of sea surface wind on brightness temperature variations generated by the surface roughness, i.e. △Th,v, are investigated. Here △T denotes the brightness temperature variation, and "h" and "v" denote the horizontal and vertical polarizations respectively. △Th,v has a linear relation with wind speed, sea surface temperature (SST) and sea surface salinity (SSS) respectively. Further more, the impact of wind direction on SSS retrieval, under small incidence angles, can be removed by calculating (△Th+△Tv). These characteristics provide simple new ways to develop an SSS retrieval algorithm without wind direction factor.

  2. Sea-surface salinity variations in the Northern Caribbean Sea across the mid-Pleistocene transition

    Directory of Open Access Journals (Sweden)

    S. Sepulcre

    2010-06-01

    Full Text Available This study aimed at documenting climate changes in tropical area in response to the Mid-Pleistocene Transition (MPT by reconstructing past hydrologic variations in the Northern Caribbean Sea and its influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC during the last 940 kyr. Using core MD03-2628, we estimated past changes in sea surface salinity (SSS using Δδ18O, the difference between the modern and the past δ18O of seawater (obtained by combining alkenone thermometer data with the δ18O of the planktonic foraminifera Globigerinoides ruber (white and corrected for ice-sheet volume effects. Today, the lowest SSS values in the studied area are associated with the northernmost location of the Inter-Tropical Convergence Zone (ITCZ. The Δδ18O record exhibits glacial/interglacial cyclicity with higher values during all glacial periods spanning the last 940 kyr, indicating increased SSS. At a longer timescale, the Δδ18O exhibits a shift toward lower values for interglacial periods during the last 450 kyr, when compared to interglacial stages older than 650 kyr. A rise in SSS during glacial stages may be related to the southernmost location of the ITCZ, which is induced by a steeper interhemispheric temperature gradient and associated with reduced northward cross equatorial oceanic transport. Therefore, the results suggest a permanent link between the tropical salinity budget and the AMOC during the last 940 kyr. Following the MPT, lower salinities during the last five interglacial stages indicate a northernmost ITCZ location, forced by changes in the interhemispheric temperature gradient that is associated with the poleward position of Southern Oceanic Fronts that amplified the transport of heat and moisture to the North Atlantic. These processes may have contributed to amplification of the climate cycles that

  3. Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition

    Directory of Open Access Journals (Sweden)

    S. Sepulcre

    2011-02-01

    Full Text Available By reconstructing past hydrologic variations in the Northern Caribbean Sea and their influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC during the last 940 ka, we seek to document climate changes in this tropical area in response to the Mid-Pleistocene Transition (MPT. Using core MD03-2628, we estimated past changes in sea surface salinity (SSS using Δδ18O, the difference between the modern, and the past δ18O of seawater (obtained by combining alkenone thermometer data with the δ18O of the planktonic foraminifera Globigerinoides rube (white and corrected for ice-sheet volume effects. Today, the lowest SSS values in the area studied are associated with the northernmost location of the Inter-Tropical Convergence Zone (ITCZ. The Δδ18O record obtained from core MD03-2628 exhibits glacial/interglacial cyclicity with higher values during all glacial periods spanning the last 940 ka, indicating increased SSS. A long-term trend was also observed in the Δδ18O values that exhibited a shift toward lower values for interglacial periods during the last 450 ka, as compared to interglacial stages older than 650 ka. A rise in SSS during glacial stages may be related to the southernmost location of the ITCZ, which is induced by a steeper cross-equator temperature gradient and associated with reduced northward cross-equatorial oceanic transport. Therefore, the results suggest a permanent link between the tropical salinity budget and the AMOC during the last 940 ka. Following the MPT, lower salinities during the last five interglacial stages indicated a northernmost ITCZ location that was forced by changes in the cross-equator temperature gradient and that was associated with the poleward position of Southern Oceanic Fronts that amplify the transport of heat and moisture to the North Atlantic. These processes may have contributed to the amplification of the

  4. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    over this period. In the Indian Ocean and particularly the Pacific Ocean the trends in both sea level and temperature are still dominated by the large changes associated with the El Nino Southern Oscillation. In terms of contribution to the total global sea level change, the contribution of the central...

  5. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  6. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  7. Indian Ocean sea surface salinity variations in a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Vinayachandran, P.N.; Nanjundiah, Ravi S. [Indian Institute of Science, Centre for Atmospheric and Oceanic Sciences, Bangalore (India)

    2009-08-15

    The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years. (orig.)

  8. Indian Ocean sea surface salinity variations in a coupled model

    Science.gov (United States)

    Vinayachandran, P. N.; Nanjundiah, Ravi S.

    2009-08-01

    The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.

  9. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  10. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    Science.gov (United States)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  11. Assimilation of Sea Surface Temperature in a doubly, two-way nested primitive equation model of the Ligurian Sea

    Science.gov (United States)

    Barth, A.; Alvera-Azcarate, A.; Rixen, M.; Beckers, J.-M.; Testut, C.-E.; Brankart, J.-M.; Brasseur, P.

    2003-04-01

    The GHER 3D primitive equation model is implemented with three different resolutions: a low resolution model (1/4^o) covering the whole Mediterranean Sea, an intermediate resolution model (1/20^o) of the Liguro-Provençal basin and a high resolution model (1/60^o) simulating the fine mesoscale structures in the Ligurian Sea. Boundary conditions and the averaged fields (feedback) are exchanged between two successive nesting levels. The model of the Ligurian Sea is also coupled with the assimilation package SESAM. It allows to assimilate satellite data and in situ observations using the local adaptative SEEK (Singular Evolutive Extended Kalman) filter. Instead of evolving the error space by the numerically expensive Lyapunov equation, a simplified algebraic equation depending on the misfit between observation and model forecast is used. Starting from the 1st January 1998 the low and intermediate resolution models are spun up for 18 months. The initial conditions for the Ligurian Sea are interpolated from the intermediate resolution model. The three models are then integrated until August 1999. During this period AVHRR Sea Surface Temperature of the Ligurian Sea is assimilated. The results are validated by using CTD and XBT profiles of the SIRENA cruise from the SACLANT Center. The overall objective of this study is pre-operational. It should help to identify limitations and weaknesses of forecasting methods and to suggest improvements of existing operational models.

  12. Detection of Small Sea-Surface Targets with a Search Lidar

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Bekman, H.H.P.T.; Putten, F.J.M.; Cohen, L.A.

    2007-01-01

    Naval operations in the littoral have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and low velocity, which makes them hard to detect by radar in the presence of sea clutter. Typical threats include periscopes, jet skies, FIAC’s, and speedboats. S

  13. Detection of Small Sea-Surface Targets with a Search Lidar

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Bekman, H.H.P.T.; Putten, F.J.M.; Cohen, L.A.

    2007-01-01

    Naval operations in the littoral have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and low velocity, which makes them hard to detect by radar in the presence of sea clutter. Typical threats include periscopes, jet skies, FIAC’s, and speedboats.

  14. The significance of multiple scattering in bubble measurements near the sea surface

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø; Bjørnø, Irina K.

    1996-01-01

    The acoustic interactions between gas bubbles in bubble plumes formed near the sea surface may significantly change the propagation and attenuation conditions for acoustical signals in the sea. The scattering properties of the bubble plumes have been studied extensively since Foldy's formulation...

  15. Range and geophysical corrections in coastal regions: and implications for mean sea surface determination

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Scharroo, Remko

    2011-01-01

    The determination of sea surface height from the altimeter range measurement involves a number of corrections: those expressing the behavior of the radar pulse through the atmosphere, and those correcting for sea state and other geophysical signals. A number of these corrections need special...

  16. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China's marginal seas

    Science.gov (United States)

    Kang, Yanju; Wang, Xuchen; Dai, Minhan; Feng, Huan; Li, Anchun; Song, Qian

    2009-05-01

    This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China’s marginal seas. BC content ranges from cycling in China’s marginal seas.

  17. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    and the Baltic Sea. The aim is to evaluate their potential use and demonstrate their applicability within the context of offshore wind energy; for the quantication of the wind resources and for the identication of diurnal warming of the sea surface temperature. Space-borne observations of wind are obtained from...

  18. Micro contaminants in surface sediments and macrobenthic invertebrates of the North Sea

    NARCIS (Netherlands)

    Everaarts, J.M.; Fischer, C.V.

    1989-01-01

    Trace metal concentrations (copper, zinc, cadmium and lead) were measured in the silt fraction (grainsize < 63 µm) of surface sediment of the North Sea. The concentrations varied in different areas of the Dutch continental shelf of the North Sea. The trace metal concentrations were highly related wi

  19. Detection of Small Sea-Surface Targets with a Search Lidar

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Bekman, H.H.P.T.; Putten, F.J.M.; Cohen, L.A.

    2007-01-01

    Naval operations in the littoral have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and low velocity, which makes them hard to detect by radar in the presence of sea clutter. Typical threats include periscopes, jet skies, FIAC’s, and speedboats. S

  20. Development of low head Kaplan turbine for power station rehabilitation project

    Science.gov (United States)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  1. Surface microtopographies of tropical sea stars: lack of an efficient physical defence mechanism against fouling.

    Science.gov (United States)

    Guenther, Jana; De Nys, Rocky

    2007-01-01

    The role of surface topography as a defence against fouling in tropical sea stars was investigated. The sea stars Linckia laevigata, Fromia indica, Cryptasterina pentagona and Archaster typicus are not fouled and have paxillae (modified ossicles with a median vertical pillar) on their aboral surfaces, which varied in diameter, height and distance depending on species and position on the aboral surface, providing unique and complex surface microtopographies for each species. The surfaces of the sea stars L. laevigata, F. indica and A. typicus were moderately wettable, with their mean seawater contact angles, calculated from captive bubble measurements, being 60.1 degrees, 70.3 degrees and 57.3 degrees, respectively. The seawater contact angle of C. pentagona could not be measured. To evaluate the effectiveness of the surface microtopographies in deterring the settlement of fouling organisms, field experiments with resin replicas of the four sea star species were conducted at three sites around Townsville, Australia, for 8 weeks during the dry and wet seasons. The fouling community and total fouling cover did not differ significantly between replicas of L. laevigata, F. indica, C. pentagona, A. typicus and control surfaces at any site during the dry season. Significant differences between fouling communities on the replicas of the sea stars and control surfaces were detected at two sites during the wet season. However, these differences were transitory, and the total fouling cover did not differ significantly between replicas of sea stars and control surfaces at two of the three sites. In contrast to recent literature on the effects of biofouling control by natural surfaces in the marine environment, the surface microtopographies of tropical sea stars alone were not effective in deterring the settlement and growth of fouling organisms.

  2. Retrieval of sea surface humidity and back radiation from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    originally proposed by Schlussel in 1995. Results for surface humidity and back radiation over the Arabian Sea for the year 2000 is presented and have shown them to be in agreement with the atmospheric and oceanographic precesses operating during...

  3. New sea surface salinity product in the tropical Indian Ocean estimated from outgoing longwave radiation

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; O'Brien, J.J.

    The sea surface salinity (SSS) product as derived from space-borne satellite measurements of Outgoing Longwave Radiation (OLR), based on the algorithms developed by (1), is discussed for the tropical Indian Ocean (TIO) during the period 1995...

  4. 14 km Sea Surface Temperature for North America, 1986 - present (NODC Accession 0099042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product presents local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST observations collected by...

  5. Extended Reconstructed Sea Surface Temperature (ERSST) Monthly Analysis, Version 3b

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 3b (v3b) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a monthly SST analysis on a 2-degree global grid based on the International...

  6. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  7. Monthly version of HadISST sea surface temperature state-space components

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — State-Space Decomposition of Monthly version of HadISST sea surface temperature component (1-degree). See Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C....

  8. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  9. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  10. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  11. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  12. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  13. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    Science.gov (United States)

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  15. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This high-resolution sea surface temperature (SST) analysis product was developed using an optimum interpolation (OI) technique. The SST analysis has a spatial grid...

  16. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  17. Sea surface height anomaly and geostrophic circulation variations in the South China Sea from TOPEX/POSEIDON altimetry

    Institute of Scientific and Technical Information of China (English)

    刘克修; 马继瑞; 许建平; 韩桂军; 范振华

    2002-01-01

    --The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer.

  18. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  19. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  20. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.

    Science.gov (United States)

    Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou

    2014-06-15

    Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter.

  1. Impact of surface roughness on L-band emissivity of the sea ice

    Science.gov (United States)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  2. Surface diurnal warming in the East China Sea derived from satellite remote sensing

    Science.gov (United States)

    Song, Dan; Duan, Zhigang; Zhai, Fangguo; He, Qiqi

    2017-09-01

    Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature (SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang (Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.

  3. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  4. Observed and modeled surface eddy heat fluxes in the eastern Nordic Seas

    OpenAIRE

    Isachsen, P.E. .; Koszalka, Inga Monika; LaCasce, J. H.

    2012-01-01

    Large-scale budget calculations and numerical model process studies suggest that lateral eddy heat fluxes have an important cooling effect on the Norwegian Atlantic Current (NwAC) as it flows through the Nordic Seas. But observational estimates of such fluxes have been lacking. Here, wintertime surface eddy heat fluxes in the eastern Nordic Seas are estimated from surface drifter data, satellite data and an eddy-permitting numerical model. Maps of the eddy heat flux divergence suggest advecti...

  5. Evaluation of model simulated and MODIS-Aqua retrieved sea surface chlorophyll in the eastern Arabian Sea

    Science.gov (United States)

    Chakraborty, Kunal; Gupta, Anubhav; Lotliker, Aneesh A.; Tilstone, Gavin

    2016-11-01

    In this study we assess the accuracy of sea surface Chlorophyll-a (Chla) retrieved from satellite (MODIS-Aqua), using standard OC3M algorithm, and from a Regional Ocean Modelling System (ROMS) biophysical model against in situ data, measured in surface waters of the eastern Arabian Sea, from April 2009 to December 2012. MODIS-Aqua OC3M Chla concentrations showed a high correlation with the in situ data with slope close to unity and low root mean square error. In comparison, the ROMS model underestimated Chla, though the correlation was significant indicating that the model is capable of reproducing the trend in in situ Chla. Time Series trends in Chla were examined against wind driven Upwelling Indices (UIW) from April 2009 to December 2012 in north-eastern (Gujarat) and south-eastern (Kochi) coastal waters of the Arabian Sea. The annual peak in Chla along the Kochi coast during the summer monsoon was adequately captured by the model. It is well known that the peak in surface Chla along the Kochi and Gujarat coasts during the summer monsoon is the result of coastal upwelling, which the ROMS model was able to reproduce accurately. The maximum surface Chla along the Gujarat coast during the winter monsoon is due to convective mixing, which was also significantly captured by ROMS biophysical model. There was a lag of approximately one week between the maximum surface Chla and the peak in the Upwelling Index.

  6. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  7. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target

    Directory of Open Access Journals (Sweden)

    Chen Xiao-long

    2013-03-01

    Full Text Available Micro-Doppler is one of the target physical characteristics. The radar signature of target with micro-motion can make fine characterization of the shape, structure and moving state of target, which reflects the nonstationary property of radar signal. Hence, it has great superiority in the analysis of sea clutter and target detection in case of high sea state based on micro-Doppler theory. In this paper, modeling of scattering clutter from time-varying sea surface and analysis methods of sea clutter Doppler are firstly reviewed based on the principle and characteristic of micro-Doppler, which shows the necessity of micro-Doppler. Then, applications and technological approaches of micro-Doppler in the sea surface target detection are introduced from the aspects of the micro-motion target modeling and detection methods of micro-motion signature. In the end, future research interests are pointed out according to the problems of present study.

  8. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    Science.gov (United States)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  9. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea.

    Science.gov (United States)

    Robitzch, Vanessa S N; Lozano-Cortés, Diego; Kandler, Nora M; Salas, Eva; Berumen, Michael L

    2016-04-30

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days).

  10. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.

    2015-12-01

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days).

  11. Distribution of Organic Matter, Iron, Mangenese in Surface Sediments in the Nansha Islands Sea Area, South China Sea

    Institute of Scientific and Technical Information of China (English)

    Zhou Weihua; Wu Yunhua; Chen Shaoyong; Yin Kedong

    2003-01-01

    Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.

  12. The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface

    Directory of Open Access Journals (Sweden)

    Yiwen Wei

    2015-01-01

    Full Text Available This paper aims at applying a simplified sea surface model into the physical optics (PO method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.

  13. ENSO signature in the SMOS sea surface salinity maps

    Science.gov (United States)

    Ballabrera, J.; Umbert, M.; Hoareau, N.; Turiel, A.; Font, J.

    2012-12-01

    Until recently, the role of salinity observations in the operational simulation and prediction of ENSO was neglected because of the historical lack of observations and because leading intermediate coupled models had significant predictive skill without directly accounting for salinity effects. In Ballabrera-Poy et al., (2002), the potential role of sea surface salinity (SSS) observations on the statistical predictions of ENSO was investigated. It was shown that, although SSS observations would play little role in statistical nowcasts of ENSO, they would provide a significant role in the 6-12 month predictions. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer opportunity mission was launched on November 2, 2009, becoming the first satellite mission addressing the challenge of measuring SSS from space with the help of MIRAS (Microwave Imaging Radiometer with Aperture Synthesis), a novel two-dimensional interferometer operating at L-band (1.4 GHz). Although the L-band frequency is the optimal for ocean salinity measurements, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Maps of 10-day averages of SSS in 1x1 degree boxes are distributed by the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, http://www.smos-bec.icm.csic.es). These maps are derived from the SMOS reprocessing campaign released to the SMOS user community in March 2011, and span the period from January 2010 through December 2011. The current accuracy of these SSS maps ranges from 0.2-0.4, depending on the ocean region being considered (Umbert et al., 2012). During the period of the reprocessing campaign, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with a largest anomalous values in the western warm-fresh pool. The anomalies

  14. Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of TOPEX/POSEIDON altimetry

    Science.gov (United States)

    Larnicol, Gilles; Le Traon, Pierre-Yves; Ayoub, Nadia; de Mey, Pierre

    1995-12-01

    We describe the circulation and mean sea level variations of the Mediterranean Sea from 2 years of TOPEX/POSEIDON altimetric data. It is first shown that the response of the Mediterranean Sea to atmospheric pressure forcing is close to an inverse barometer (except at high frequencies) which means that the adjustment is accompanied by a flow through the Straits of Sicily and Gibraltar. We then use TOPEX/POSEIDON to study the mean sea level variations, representing steric effects and integrated large-scale changes of the mass of the Mediterranean Sea. We observe an annual cycle with a fast drop during winter. Steric effects account for about half of the observed variations. The remaining signal is believed to be driven by evaporation minus precipitation (E - P) forcing and internal hydraulic control in the Straits of Gibraltar. Using suboptimal space-time objective analysis, the classic components of the Mediterranean surface circulation are recovered, despite low signal-to-noise ratio (the rms of sea level variability is less than 10 cm). The variable Mediterranean circulation is seen as a complex combination of mesoscale and large-scale variations. The surface circulation is more complex in the eastern basin than in the western basin. In the east it is composed of subbasin-scale gyres, such as the so-called Mersa-Matruh and Shikmona gyres, which do not have an obvious recurrence period. We also observe an intensification of the large-scale cyclonic winter circulation in the western and in the Ionian basins. Several mesoscale structures, such as the Alboran gyres and the Ierepetra gyre, show a clear seasonal cycle, with a maximum in summer. The good qualitative and quantitative agreement of the results with previous data from the Mediterranean illustrates the improved accurary of TOPEX/POSEIDON over its predecessors.

  15. Video system for monitoring sea-surface characteristics in coastal zone

    Science.gov (United States)

    Konstantinov, Oleg G.; Pavlov, Andrey N.

    2012-11-01

    A method of investigation sea surface roughness by analysis polarization images is suggested. Equipment and software were developed and tested at the Pacific Oceanological Institute (POI) It is shown a possibility to study surface manifestations of hydrodynamic processes in coastal zone, such as the dynamics of vortex structures, internal waves, spatio-temporal properties of surface waves by using the panoramic video system for a sea surface control and by the imaging polarimeter. Analysis of a time sequence of transformed to the plane panoramic images obtained using the system allows to estimate a velocity field of vortex structure, phase velocity of surface manifestations of internal waves, intensity and dynamics of surface films of oil pollution. It is shown an ability of sea surface reconstruction by analyzing time sequence of the imaging polarimeter pictures. The results are compared with the height difference of the floats located on the vertical guides that are in the imaging polarimeter field of view. The float heights obtained from its image coordinates. Field experiments were conducted at the POI marine station in the Japan Sea. Moreover, the developed methods and equipment may be used as a source of unique in situ information on the sea surface roughness during satellite optical and radar sensing.

  16. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    Science.gov (United States)

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  17. Sea surface temperature variability in the Norwegian Sea during the late Pliocene linked to subpolar gyre strength and radiative forcing

    Science.gov (United States)

    Bachem, Paul E.; Risebrobakken, Bjørg; McClymont, Erin L.

    2016-07-01

    The mid-Piacenzian warm period (3.264-3.025 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. However, there is significant disagreement over the magnitude of high latitude warming between data and models for this period of time, raising questions about the driving mechanisms and responsible feedbacks. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea spanning 3.264-3.14 Ma. The SSTs in the Norwegian Sea were 2-3 °C warmer than the Holocene average, likely caused by the radiative effect of higher atmospheric CO2 concentrations. There is notable obliquity-driven SST variability with a range of 4 °C, shown by evolutive spectra. The correlation of SST variability with the presence of IRD suggests a common climate forcing acting across the Nordic Seas region. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least as strong as during the Holocene, and that the northward heat transport by the North Atlantic Current was comparable.

  18. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  19. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    Science.gov (United States)

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  20. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    Science.gov (United States)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  1. Multiresolution infrared optical properties for Gaussian sea surfaces: theoretical validation in the one-dimensional case.

    Science.gov (United States)

    Fauqueux, Sandrine; Caillault, Karine; Simoneau, Pierre; Labarre, Luc

    2009-10-01

    The validation of the multiresolution model of sea surface infrared optical properties developed at ONERA is investigated in the one-dimensional case by comparison with a reference model, using a submillimeter discretization of the surface. Having expressed the optical properties, we detail the characteristics of each model. A set of numerical tests is made for various wind speeds, resolutions, and realizations of the sea surface. The tests show a good agreement between the results except for grazing angles, where the impact of multiple reflections and the effects of adjacent rough surfaces on shadow have to be investigated.

  2. Holocene sea subsurface and surface water masses in the Fram Strait - Comparisons of temperature and sea-ice reconstructions

    Science.gov (United States)

    Werner, Kirstin; Müller, Juliane; Husum, Katrine; Spielhagen, Robert F.; Kandiano, Evgenia S.; Polyak, Leonid

    2016-09-01

    Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high δ18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong

  3. Effects of sea surface winds on marine aerosols characteristics and impacts on longwave radiative forcing over the Arabian Sea

    Directory of Open Access Journals (Sweden)

    Vijayakumar S. Nair

    2008-08-01

    Full Text Available Collocated measurements of spectral aerosol optical depths (AODs, total and BC mass concentrations, and number size distributions of near surface aerosols, along with sea surface winds, made onboard a scientific cruise over southeastern Arabian Sea, are used to delineate the effects of changes in the wind speed on aerosol properties and its implication on the shortwave and longwave radiative forcing. The results indicated that an increase in the sea-surface wind speed from calm to moderate (<1 to 8 m s−1 values results in a selective increase of the particle concentrations in the size range 0.5 to 5 μm, leading to significant changes in the size distribution, increase in the mass concentration, decrease in the BC mass fraction, a remarkable increase in AODs in the near infrared and a flattening of the AOD spectrum. The consequent increase in the longwave direct radiative forcing almost entirely offsets the corresponding increase in the short wave direct radiative forcing (or even overcompensates at the top of the atmosphere; while the surface forcing is offset by about 50%.

  4. Deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

    Directory of Open Access Journals (Sweden)

    L. M. Goddijn-Murphy

    2014-07-01

    Full Text Available Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2 Atlas (SOCAT has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2 is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables.

  5. Sound Scattering From Rough Bubbly Ocean Surface Based on Modified Sea Surface Acoustic Simulator and Consideration of Various Incident Angles and Sub-surface Bubbles’ Radii

    Institute of Scientific and Technical Information of China (English)

    Alireza Bolghasi; Parviz Ghadimi; Mohammad A. Feizi Chekab

    2016-01-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  6. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    Science.gov (United States)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-09-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  7. Global Sea Surface Temperature and Sea Level Rise Estimation with Optimal Historical Time Lag Data

    Directory of Open Access Journals (Sweden)

    Mustafa M. Aral

    2016-11-01

    Full Text Available Prediction of global temperatures and sea level rise (SLR is important for sustainable development planning of coastal regions of the world and the health and safety of communities living in these regions. In this study, climate change effects on sea level rise is investigated using a dynamic system model (DSM with time lag on historical input data. A time-invariant (TI-DSM and time-variant dynamic system model (TV-DSM with time lag is developed to predict global temperatures and SLR in the 21st century. The proposed model is an extension of the DSM developed by the authors. The proposed model includes the effect of temperature and sea level states of several previous years on the current temperature and sea level over stationary and also moving scale time periods. The optimal time lag period used in the model is determined by minimizing a synthetic performance index comprised of the root mean square error and coefficient of determination which is a measure for the reliability of the predictions. Historical records of global temperature and sea level from 1880 to 2001 are used to calibrate the model. The optimal time lag is determined to be eight years, based on the performance measures. The calibrated model was then used to predict the global temperature and sea levels in the 21st century using a fixed time lag period and moving scale time lag periods. To evaluate the adverse effect of greenhouse gas emissions on SLR, the proposed model was also uncoupled to project the SLR based on global temperatures that are obtained from the Intergovernmental Panel on Climate Change (IPCC emission scenarios. The projected SLR estimates for the 21st century are presented comparatively with the predictions made in previous studies.

  8. Some Supplementary Methods for the Analysis of the Delis-Kaplan Executive Function System

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Sutherland, David; Borland, Nicola

    2011-01-01

    Supplementary methods for the analysis of the Delis-Kaplan Executive Function System (Delis, Kaplan, & Kramer, 2001) are made available, including (a) quantifying the number of abnormally low achievement scores exhibited by an individual and accompanying this with an estimate of the percentage of the normative population expected to exhibit at…

  9. Individualism, Nationalism, and Universalism: The Educational Ideals of Mordecai M. Kaplan's Philosophy of Jewish Education

    Science.gov (United States)

    Ackerman, Ari

    2008-01-01

    This article will examine educational ideals by exploring the relation between the individual, the collective, and humanity in Kaplan's Jewish and educational philosophy. Generally the goals of individualism, nationalism, and universalism are seen as mutually exclusive. By contrast, Kaplan argues for the symbiotic relationship between…

  10. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

  11. Computer Aided Design of Kaplan Turbine Piston with\tSolidWorks

    Directory of Open Access Journals (Sweden)

    Camelia Jianu

    2010-10-01

    Full Text Available The paper presents the steps for 3D computer aided design (CAD of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.

  12. Kaplan og Norton bør læses af hele ledelsen

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj

    2009-01-01

    Anmeldelse af "Eksekveringsgevinsten - Øget konkurrencekraft med fokuseret strategi og drift", Robert S. Kaplan & David P. Norton, 2009, Gyldendal Business. Udgivelsesdato: 8. april......Anmeldelse af "Eksekveringsgevinsten - Øget konkurrencekraft med fokuseret strategi og drift", Robert S. Kaplan & David P. Norton, 2009, Gyldendal Business. Udgivelsesdato: 8. april...

  13. Sea surface height variability in the North East Atlantic from satellite altimetry

    Science.gov (United States)

    Sterlini, Paul; de Vries, Hylke; Katsman, Caroline

    2016-08-01

    Data from 21 years of satellite altimeter measurements are used to identify and understand the major contributing components of sea surface height variability (SSV) on monthly time-scales in the North East Atlantic. A number of SSV drivers is considered, which are categorised into two groups; local (wind and sea surface temperature) and remote (sea level pressure and the North Atlantic oscillation index). A multiple linear regression model is constructed to model the SSV for a specific target area in the North Sea basin. Cross-correlations between candidate regressors potentially lead to ambiguity in the interpretation of the results. We therefore use an objective hierarchical selection method based on variance inflation factors to select the optimal number of regressors for the target area and accept these into the regression model if they can be associated to SSV through a direct underlying physical forcing mechanism. Results show that a region of high SSV exists off the west coast of Denmark and that it can be represented well with a regression model that uses local wind, sea surface temperature and sea level pressure as primary regressors. The regression model developed here helps to understand sea level change in the North East Atlantic. The methodology is generalised and easily applied to other regions.

  14. Biweekly Sea Surface Temperature over the South China Sea and its association with the Western North Pacific Summer Monsoon

    Science.gov (United States)

    Vaid, B. H.

    2017-02-01

    The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.

  15. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  16. Sea surface conditions in the southern Nordic Seas during the Holocene based on dinoflagellate cyst assemblages

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Baumann, Astrid; Matthiessen, Jens

    2016-01-01

    Dinoflagellate cyst (dinocyst) records from the southern Nordic Seas were compiled in order to evaluate the evolution of upper ocean conditions, on a millennial timescale and supported by a highly resolved record from the Vøring Plateau. After the transitional phase from the last deglaciation...

  17. Innovative eco-friendly bio- solvent for combating sea surface and sedimented oil pollution

    Science.gov (United States)

    Theodorou, Paraskevas

    2017-04-01

    The combating of oil spill at sea surface by chemical dispersants accelerates the evaporation and disperse the oil into the water column, where it is broken down by natural processes and/or is sedimented at the sea bottom, especially at near coastal shallow areas, ports and marinas. The usual methodology for cleaning the sedimented oil from the sea bottom is mainly carried out via excavation and dumping of the polluted sediment into deeper sea areas, where the contamination is transferred from one area to another. The eco-friendly bio-solvent MSL Aqua 250 is an innovative new solution based mainly on natural constituents. The action mechanism and the effectiveness of this eco-friendly solvent is based on the high surface tension process. Organic compounds, including hydrocarbons upon coming in contact with MSL Aqua 250 solvent generate a significant surface tension reaction, which is able to alter the organic compounds to liquid form and then to drastically evaporate it. The use of MSL Aqua 250 solvent, both at sea surface and at the bottom, has the following advantages compared to the dispersants: • Efficient solution without transferring the pollution from sea surface to the water column and to the bottom or disturbing the Aquatic Eco System. • Non-Toxic. • Environmentally friendly with a restoration of marine life in the Eco System. • Cost effective. The MSL Aqua 250 solvent has been tested in cooperation with the Cyprus Department of Fisheries and Marine Research and the Technological University of Cyprus and used during the years 2015 and 2016 in marinas and fishing shelters in Cyprus faced oil pollution, with high concentration in the sea water and at the sea bottom of chemical parameters (BOD5, COD, FOG, TKN, TP, TPH), with excellent results.

  18. Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-10-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.

  19. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    Science.gov (United States)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  20. Emissivity of rough sea surface for 8-13 num: modeling and verification.

    Science.gov (United States)

    Wu, X; Smith, W L

    1997-04-20

    The emissivity model for rough sea surface [Remote Sensing Environ. 24, 313-329 (1988)] is inspected in light of the measured surface emissivity. In the presence of moderate wind (5 m/s or less), the emissivity model is found to be adequate for small to moderate view angles. For large view angles, the discrepancy between the computed and the measured emissivity is large, but one can reduce this considerably by incorporating the reflected sea surface emission into the emissivity model. In addition, examination of the spectral variation of the observed and computed emissivity suggests the need for refined measurements of the complex refractive index. An improved model is constructed to calculate the rough sea surface emissivity that can be used to provide accurate estimates of sea surface skin temperatures from remotely sensed radiometric measurements. An important feature of the improved model is that the computed sea surface emissivity is only weakly dependent on wind speed for most view angles used in practice.

  1. Summer Monsoon and Annual Variability of Sea Surface Slope and Their Effects on Alongshore Current near Qingdao

    Institute of Scientific and Technical Information of China (English)

    蒲书箴; 程军; 张义钧; 石强; 骆敬新; 范文静

    2004-01-01

    Based on the monthly mean sea level data obtained from 3 years′ (1999-2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter,with an obvious seasonal variability.Furthermore the sea surface height measured at a short distance outside the bay is lower than that in thebay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well, The dynamic action ofthe summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.

  2. Variability in Bias of Gridded Sea Surface Temperature Data Products: Implications for Seasonally Resolved Marine Proxy Reconstructions

    Science.gov (United States)

    Ouellette, G., Jr.; DeLong, K. L.

    2016-12-01

    Seasonally resolved reconstructions of sea surface temperature (SST) are commonly produced using isotopic ratios and trace elemental ratios within the skeletal material of marine organisms such as corals, coralline algae, and mollusks. Using these geochemical proxies to produce paleoclimate reconstructions requires using regression methods to calibrate the proxy to observed SST, ideally with in situ SST records that span many years. Unfortunately, the few locations with in situ SST records rarely coincide with the time span of the marine proxy archive. Therefore, SST data products are often used for calibration and they are based on MOHSST or ICOADS SST observations as their main SST source but use different algorithms to produce globally gridded data products. These products include the Hadley Center's HADSST (5º) and interpolated HADISST (1º), NOAA's extended reconstructed SST (ERSST; 2º), optimum interpolation SST (OISST; 1º), and the Kaplan SST (5º). This study assessed the potential bias in these data products at marine archive sites throughout the tropical Atlantic using in situ SST where it was available, and a high-resolution (4 km) satellite-based SST data product from NOAA Pathfinder that has been shown to closely reflect in situ SST for our locations. Bias was assessed at each site, and then within each data product across the region for spatial homogeneity. Our results reveal seasonal biases in all data products, but not for all locations and not of a uniform magnitude or season among products. We found the largest differences in mean SST on the order of 1-3°C for single sites in the Gulf of Mexico, and differences for regional mean SST bias were 0.5-1°C when sites in the Gulf of Mexico were compared to sites in the Caribbean Sea within the same data product. No one SST data product outperformed the others and no systematic bias was found. This analysis illustrates regional strengths and weaknesses of these data products, and serves as a

  3. Modelling surface radioactive spill dispersion in the Alboran Sea

    Energy Technology Data Exchange (ETDEWEB)

    Perianez, R. [Dpto. Fisica Aplicada I, E.U. Ingenieria Tecnica Agricola, Universidad de Sevilla. Ctra. Utrera km 1, 41013 Sevilla (Spain)]. E-mail: rperianez@us.es

    2006-07-01

    The Strait of Gibraltar and the Alboran Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alboran Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alboran circulation (the well known Western Alboran Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented.

  4. Impacts of Freshwater on the Seasonal Variations of Surface Salinity and Circulation in the Caspian Sea

    Science.gov (United States)

    2010-01-01

    Author’s personal copy Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea A. Birol Kara a, Alan ...circulation. Izv. Atmos. Ocean. Phys. 44, 236–249. Large, W.G., Danabasoglu, G., Doney, S.C., McWilliams , J.C., 1997. Sensitivity to surface forcing and

  5. The effect of wind-generated bubbles on sea-surface backscatter

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since t

  6. Pliocene pre-glacial North Atlantic: A coupled sea surface-deep ocean circulation climate response

    Energy Technology Data Exchange (ETDEWEB)

    Ishman, S.E.; Dowsett, H.J. (Geological Survey, Reston, VA (United States). National Center)

    1992-01-01

    A latitudinal transect of North Atlantic Deep Sea Drilling Project Holes from the equatorial region to 56 N in the 2,300- to 3,000-meter depth range was designed for a high-resolution study of coupled sea surface and deep ocean response to climate change. Precise age control was provided using magnetostratigraphic and biostratigraphic data from the cores to identify the 4.0 to 2.2 Ma interval, a period of warm-to-cool climatic transitions in the North Atlantic. The objective is to evaluate incremental (10 kyr) changes in sea surface temperatures (SST) and deep North Atlantic circulation patterns between 4.0 and 2.2 Ma to develop a coupled sea surface-deep ocean circulation response model. Sea surface temperature (SST) estimates are based on planktic foraminifer-based factor-analytic transfer functions. Oxygen isotopic data from paired samples provide tests of the estimated temperature gradients between localities. Benthic foraminifer assemblage data and [partial derivative]O-18 and [partial derivative]C-13 Isotopic data are used to quantitatively determine changes in deep North Atlantic circulation. These data are used to determine changes in source area (North Atlantic Deep Water (NADW) or Antarctic Bottom Water) and (or) in the components of NADW that were present (Upper or Lower NADW). These paired paleoceanographic sea surface and deep circulation interpretations over a 1.8 my interval form the basis for a coupled sea surface-deep circulation response model for the Pliocene North Atlantic Ocean.

  7. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2012-09-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the south-eastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the Central and Northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore-winds and northwards transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport in both, the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during open water season. A continuing trend toward shoreward winds

  8. Glacial-to-Holocene evolution of sea surface temperature and surface circulation in the subarctic northwest Pacific and the Western Bering Sea

    Science.gov (United States)

    Meyer, Vera D.; Max, Lars; Hefter, Jens; Tiedemann, Ralf; Mollenhauer, Gesine

    2016-07-01

    It has been proposed that North Pacific sea surface temperature (SST) evolution was intimately linked to North Atlantic climate oscillations during the last glacial-interglacial transition. However, during the early deglaciation and the Last Glacial Maximum, the SST development in the subarctic northwest Pacific and the Bering Sea is poorly constrained as most existing deglacial SST records are based on alkenone paleothermometry, which is limited prior to 15 ka B.P. in the subarctic North Pacific realm. By applying the TEXL86 temperature proxy we obtain glacial-Holocene-SST records for the marginal northwest Pacific and the Western Bering Sea. Our TEXL86-based records and existing alkenone data suggest that during the past 15.5 ka, SSTs in the northwest Pacific and the Western Bering Sea closely followed millennial-scale climate fluctuations known from Greenland ice cores, indicating rapid atmospheric teleconnections with abrupt climate changes in the North Atlantic. Our SST reconstructions indicate that in the Western Bering Sea SSTs drop significantly during Heinrich Stadial 1 (HS1), similar to the known North Atlantic climate history. In contrast, progressively rising SST in the northwest Pacific is different to the North Atlantic climate development during HS1. Similarities between the northwest Pacific SST and climate records from the Gulf of Alaska point to a stronger influence of Alaskan Stream waters connecting the eastern and western basin of the North Pacific during this time. During the Holocene, dissimilar climate trends point to reduced influence of the Alaskan Stream in the northwest Pacific.

  9. Retrieval of sea surface winds under hurricane conditions from GNSS-R observations

    Institute of Scientific and Technical Information of China (English)

    JING Cheng; YANG Xiaofeng; MA Wentao; YU Yang; DONG Di; LI Ziwei; XU Cong

    2016-01-01

    Reflected signals from global navigation satellite systems (GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds. The power of GNSS reflectometry (GNSS-R) signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps (DDMs), whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds. However, the bistatic radar cross section (BRCS), which is strongly related to the sea surface roughness, is extensively used in radar. Therefore, a bistatic radar cross section (BRCS) map with a modified BRCS equation in a GNSS-R application is introduced. On the BRCS map, three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed. Airborne Hurricane Dennis (2005) GNSS-R data are then used. More than 16 000 BRCS maps are generated to establish GMFs of the three observables. Finally, the proposed model and classic one-dimensional delay waveform (DW) matching methods are compared, and the proposed model demonstrates a better performance for the high wind speed retrievals.

  10. Impact of Typhoon-induced sea surface cooling on the track of next Typhoon

    Science.gov (United States)

    Ando, Y.; Horiguchi, M.; Kodera, K.; Tachibana, Y.; Yamazaki, K.

    2015-12-01

    Typhoons (TCs) MATMO, HALONG, and NAKRI (2014), which caused Japan catastrophic disaster, landed the western part of Japan. The TCs came to Japan one after another during late July to early August 2014. The tracks of these TCs were similar, i.e., the TCs followed the western edge of the subtropical northwestern Pacific high (SNPH). However, the tracks gradually reached to Japan, which were associated with weakening the westward expansion of the SNPH. It was found that the changes in westward expansion of the SNPH were associated with TC-induced sea surface cooling of previous Typhoon. It has previously been reported that TC-induced sea surface cooling is mainly caused by Ekman upwelling and vertical turbulent mixing. The TCs MATMO, HALONG, and NAKRI passed around the Philippines, and induced sea surface cooling of this area. The sea surface temperatures of this area are important for Pacific-Japan pattern, which was associated with the westward expansion of the SNPH. Consequently, previous Typhoon induced sea surface cooling around the Philippines, which weakening the westward expansion of the SNPH. Then, the tracks of next Typhoon were changed, and gradually reached to Japan.

  11. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    Science.gov (United States)

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    Science.gov (United States)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  13. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  14. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  15. A Primary Study of Interaction Between Monsoon and Sea Surface Temperature in the Neighborhood Sea Area in South Aisa

    Institute of Scientific and Technical Information of China (English)

    LIU Lihong; ZHENG Zuguang; XIA Youlong; WU Hong

    2005-01-01

    Using a coupled ocean-atmosphere model simplified, and the low spectrum method and the equilibria theory, we discussed the interaction of South Asian winter and summer monsoons with sea surface temperature(SST) seasonal variation in the neighbor sea area. The results indicate that, when the winter monsoon is strong, the winter SST is low, and the SST will also be low next summer;and vice versa. When the summer monsoon is strong, the summer SST is high;and vice versa. It is inconspicuous for SST in winter that summer monsoon is strong or weak. Ocean-atmosphere interaction reinforces winter and summer monsoons,while meridional SST gradient reinforces winter monsoon and weakens summer monsoon.

  16. Microwat : a new Earth Explorer mission proposal to measure the Sea surface Temperature and the Sea Ice Concentration

    Science.gov (United States)

    Prigent, Catherine; Aires, Filipe; Heygster, Georg

    2017-04-01

    Ocean surface characterization from satellites is required to understand, monitor and predict the general circulation of the ocean and atmosphere. With more than 70% global cloud coverage at any time, visible and infrared satellite observations only provide limited information. The polar regions are particularly vulnerable to the climate changes and are home to complex mesoscale mechanisms that are still poorly understood. They are also under very persis- tent cloudiness. Passive microwave observations can provide surface information such as Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) regardless of the cloud cover, but up to now they were limited in spatial resolution. Here, we propose a passive microwave conically scanning imager, MICROWAT, in a polar orbit, for the retrieval of the SST and SIC, with a spatial resolution of 15km. It observes at 6 and 10GHz, with low-noise dual polarization receivers, and a foldable mesh antenna of 5m-diameter. Furthermore, MICROWAT will fly in tandem with MetOp-SG B to benefit from the synergy with scatterometers (SCA) and microwave imagers (MWI). MICROWAT will provide global SST estimates, twice daily, regardless of cloud cover, with an accuracy of 0.3K and a spatial resolution of 15km. The SIC will be derived with an accuracy of 3%. With its unprecedented "all weather" accurate SST and SIC at 15km, MICROWAT will provide the atmospheric and oceanic forecasting sys- tems with products compatible with their increasing spatial resolution and complexity, with impact for societal applications. It will also answer fundamental science questions related to the ocean, the atmosphere and their interactions. * Prigent, Aires, Bernardo, Orlhac, Goutoule, Roquet, & Donlon, Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition

  17. Climate Variability in Coastal Ecosystems - Use of MODIS Land Surface and Sea Surface Temperature Observations

    Science.gov (United States)

    Chintalapati, S.; Lakshmi, V.

    2007-12-01

    The intertidal zone, with its complex blend of marine and terrestrial environments, is one of the intensively studied ecosystems, in understanding the effects of climate change on species abundance and distribution. As climatic conditions change, the geographic limits of the intertidal species will likely move towards more tolerable coastal conditions. Traditionally, understanding climate change effects through species physiologic response have involved use of in situ measurements and thermal engineering models. But these approaches are constrained by their data intensive requirements and may not be suitable for predicting change patterns relevant to large scale species distributions. Satellite remote sensing provides an alternate approach, given the regular global coverage at moderate spatial resolutions. The present study uses six years of land surface temperature (LST) and sea surface temperature (SST) data from MODIS/Terra instrument along various coastlines around the globe - East and West Coast US, Southern Africa, Northern Japan and New Zealand. Apart from the dominant annual cycle in LST and SST, the other seasonal cycles vary from dominant semi-annual cycles in lower latitudes to 1.5 and 2 year cycles at higher latitudes. The monthly anomalies show strong spatial structure at lower latitudes when compared to higher latitudes, with the exception of US east coast, where the spatial structure extended almost along the whole coastline, indicating strong regulation from the Gulf Stream. The patterns along different coast lines are consistent with the atmospheric and ocean circulation patterns existing at those regions. These results suggest that the climatology at the coastal regions can be adequately represented using satellite-based temperature data, thus enabling further research in understanding the effects of climate change on species abundance and distribution at larger scales.

  18. Assessment of Sea Surface Temperatures in the Caribbean Sea Associated with Hurricane Tracks Using GOES-East Infrared Measurement

    Science.gov (United States)

    Comeaux, J. C.; Walker, N. D.; Haag, A.; Pino, J. V.

    2016-02-01

    A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.

  19. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  20. The effect of wind-generated bubbles on sea-surface backscatter

    OpenAIRE

    Vossen, R.; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since they mainly contribute to long range propagation. Second, existing theoretical models based on a bubble-free interface underestimate the surface back-scattering strength at larger grazing angles. We...

  1. EUMETSAT and OSI-SAF Sea Surface Temperature: Recent results and future developments

    Science.gov (United States)

    O'Carroll, Anne; Le Borgne, Pierre

    2014-05-01

    The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) delivers operational weather and climate-related satellite data, images and products throughout all day and year. EUMETSAT also has commitments to operational oceanography and atmospheric composition monitoring. Activities over the next twenty years include the continuation of the Mandatory Programmes (MSG, EPS) and future (MTG, EPS-SG), which all include ocean observations of Sea Surface Temperature. The EUMETSAT Ocean and Sea-ice (OSI) Satellite Application Facility (SAF) is lead by Meteo-France with a consortium of institutes from EUMETSAT member states, and provides reliable and timely operational services related to meteorology, oceanography and the marine environment. The OSI-SAF delivers level-2 Sea Surface Temperature products in GHRSST format from a range of EUMETSAT data including Metop AVHRR, IASI; and SEVIRI. EUMETSAT is participating in Copernicus Sentinel-3 in partnership with ESA, where EUMETSAT will operate the satellite and will serve the marine user community. The operational Sea Surface Temperature product delivered by EUMETSAT for Sentinel-3 SLSTR will be in GHRSST L2P format. On-going work towards access to relevant data from third-parties with the preparation of agreements with ISRO, SOA and JAXA, will give EUMETSAT access to an enhanced ocean products catalogue. The presentation will give an overview of activities relating to Sea Surface Temperature at EUMETSAT and the OSI-SAF, and their support to GHRSST, focusing on recent results and future developments.

  2. The impact of sea surface currents in wave power potential modeling

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  3. Phytoplankton assemblages and lipid biomarkers indicate sea-surface warming and sea-ice decline in the Ross Sea during Marine Isotope sub-Stage 5e

    Science.gov (United States)

    Hartman, Julian D.; Sangiorgi, Francesca; Peterse, Francien; Barcena, Maria A.; Albertazzi, Sonia; Asioli, Alessandra; Giglio, Federico; Langone, Leonardo; Tateo, Fabio; Trincardi, Fabio

    2016-04-01

    The Marine Isotope sub-Stage 5e (~ 125 - 119 kyrs BP), the last interglacial period before the present, is believed to have been globally warmer (~ 2°C) than today. Studying this time interval might therefore provide insights into near future climate state given the ongoing climate change and global temperature increase. Of particular interest are the expected changes in polar ice cover. One important aspect of the cryosphere is sea-ice, which influences albedo, deep and surface water currents, and phytoplankton production, and thus affects the global climate system. To investigate whether changes in sea-ice cover occurred in the Southern Ocean close to Antarctica during Marine Isotope sub-Stage 5e dinoflagellate and diatom assemblages have been analyzed in core AS05-10, drilled in the continental slope off the Drygalski basin (Ross Sea) at a water depth of 2377 m. The core was drilled within the frame of the PNRA 2009/A2.01 project, an Italian project with a multidisciplinary approach, and covers the interval from Present to Marine Isotope Stage (MIS) 7. The core stratigraphy is based on diatom bioevents and on the climate cyclicity provided by the variations of the diatom assemblages. For this study we focused on the interval from MIS7 to MIS5. A strong reduction of sea-ice-loving diatom taxa with respect to open water-loving diatom taxa is observed during MIS5. In general the production of phytoplankton increases at the base of MIS5 and then slowly decreases. Dinoflagellate cysts, particularly heterotrophic species, are abundant during MIS5e only. The sea surface temperature reconstruction based on the TEX86L, a proxy based on lipid biomarkers produced by Thaumarcheota, shows a 4°C temperature increase from MIS6 to MIS5e. A slightly smaller temperature increase is observed at the onset of MIS7, but this stage is barren of heterotrophic dinoflagellates. All proxies together seem to indicate that the retreat of the summer sea-ice in the Ross Sea during MIS5e was

  4. Sea surface height determination in the arctic ocean from Cryosat2 SAR data, the impact of using different empirical retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Stenseng, Lars

    2012-01-01

    Cryosat2 Level 1B SAR data can be processed using different empirical retrackers to determine the sea surface height and its variations in the Arctic Ocean. Two improved retrackers based on the combination of OCOG (Offset Centre of Gravity), Threshold methods and Leading Edge Retrieval is used...... to estimate the sea surface height in the Arctic Region. This sea surface height determination is to be compared with the Level2 sea surface height components available in the Cryosat2 data. Further a comparison is done with the marine gravity field for retracker performance evaluation....

  5. Characterizing Surface Transport Barriers in the South China Sea

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Characterizing Surface Transport Barriers in the South...in mathematical methods for detecting key Lagrangian transport structures in velocity field data sets for spatially complex, time- dependent, ocean...surface flows. Such transport structures are typically not inherently obvious in snapshots of the Eulerian velocity field and require analysis

  6. Comparative Analysis of Sea Surface Temperature Pattern in the Eastern and Western Gulfs of Arabian Sea and the Red Sea in Recent Past Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Neha Nandkeolyar

    2013-01-01

    Full Text Available With unprecedented rate of development in the countries surrounding the gulfs of the Arabian Sea, there has been a rapid warming of these gulfs. In this regard, using Advanced Very High Resolution Radiometer (AVHRR data from 1985 to 2009, a climatological study of Sea Surface Temperature (SST and its inter annual variability in the Persian Gulf (PG, Gulf of Oman (GO, Gulf of Aden (GA, Gulf of Kutch (KTCH, Gulf of Khambhat (KMBT, and Red Sea (RS was carried out using the normalized SST anomaly index. KTCH, KMBT, and GA pursued the typical Arabian Sea basin bimodal SST pattern, whereas PG, GO, and RS followed unimodal SST curve. In the western gulfs and RS, from 1985 to 1991-1992, cooling was observed followed by rapid warming phase from 1993 onwards, whereas in the eastern gulfs, the phase of sharp rise of SST was observed from 1995 onwards. Strong influence of the El Niño and La Niña and the Indian Ocean Dipole on interannual variability of SST of gulfs was observed. Annual and seasonal increase of SST was lower in the eastern gulfs than the western gulfs. RS showed the highest annual increase of normalized SST anomaly (+0.64/decade followed by PG (+0.4/decade.

  7. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Science.gov (United States)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  8. Forward scattering from the sea surface and the van Cittert-Zernike theorem.

    Science.gov (United States)

    Dahl, Peter H

    2004-02-01

    The van Cittert-Zernike theorem is used to generate models for the spatial coherence of a sound field that has been forward scattered from the sea surface. The theorem relates the spatial coherence of an observed wave field to the distant source intensity distribution associated with this field. In this case, the sea surface upon ensonification is taken to be the source, and the sea-surface bistatic cross section corrected for transmission loss is taken as a surrogate for the source intensity distribution. Improvements in methodology for generating an estimate of the 2D autocorrelation function for sea surface waveheight variation, necessary to compute the bistatic cross section, are documented in the Appendix. Upon invoking certain approximations, simple expressions for the characteristic length scales of vertical, horizontal, and horizontal-longitudinal coherence, are derived from the theorem. The three coherence length scales identify a coherence volume for the spatial coherence of a sound field arriving via the surface bounce channel. Models for spatial coherence derived from the van Cittert-Zernike theorem without these approximations compare reasonably well with measurements of complex vertical coherence made at 8 kHz and 20 kHz in the East China Sea as part of the 2001 ASIAEX field program. In terms of the ASIAEX field geometries and sea-surface conditions, at frequency of 20 kHz the coherence volume is a vertical layer 0.5 m thick by 3 m in each of the two horizontal dimensions; at 8 kHz these dimensions increase by a factor of 2.5, representing the ratio of the two frequencies.

  9. CALYPSO: a new HF RADAR network to monitor sea surface currents in the Malta-Sicily channel (Mediterranean sea)

    Science.gov (United States)

    Cosoli, S.; Ciraolo, G.; Drago, A.; Capodici, F.; Maltese, A.; Gauci, A.; Galea, A.; Azzopardi, J.; Buscaino, G.; Raffa, F.; Mazzola, S.; Sinatra, R.

    2016-12-01

    Located in one of the main shipping lanes in the Mediterranean Sea, and in a strategic region for oil extraction platforms, the Malta-Sicily channel is exposed to significant oil spill risks. Shipping and extraction activities constitute a major threat for marine areas of relevant ecological value in the area, and impacts of oil spills on the local ecosystems and the economic activities, including tourism and fisheries, can be dramatic. Damages would be even more devastating for the Maltese archipelago, where marine resources represent important economic assets. Additionally, North Africa coastal areas are also under threat, due to their proximity to the Malta-Sicily Channel. Prevention and mitigation measures, together with rapid-response and decision-making in case of emergency situations, are fundamental steps that help accomplishing the tasks of minimizing risks and reducing impacts to the various compartments. Thanks to state-of-art technology for the monitoring of sea-surface currents in real-time under all sea-state conditions, the CALYPSO network of High-Frequency Radars represents an essential and invaluable tool for the specific purpose. HF radars technology provide a unique tool to track surface currents in near-real time, and as such the dispersion of pollutants can be monitored and forecasted and their origin backtracked, for instance through data assimilation into ocean circulation models or through short-term data-driven statistical forecasts of ocean currents. The network is constituted of four SeaSonde systems that work in the 13.5MHz frequency band. The network is operative since August 2012 and has been extensively validated using a variety of independent platforms and devices, including current meter data and drifting buoys. The latter provided clear evidences of the reliability of the collected data as for tracking the drifting objects. Additionally, data have provided a new insight into the oceanographic characteristics of the region

  10. Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons. Part 1: A GHRSST Multi-Product Ensemble (GMPE)

    Science.gov (United States)

    2012-05-02

    Martin a,n, Prasanjit Dash b,c, Alexander Ignatov b, Viva Banzon d, Helen Beggs e, Bruce Brasnett f, Jean-Francois Cayula g, James Cummings h, Craig...2011.09.003. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan , A., 2003. Global analyses of sea

  11. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  12. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D. K.; Jakuba, M.; Suman, S.; Elliott, S.; Whitcomb, L. L.; McFarland, C.; Gerdes, R.; Boetius, A.

    2015-12-01

    The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (<1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  13. Monthly sea surface temperature records reconstructed by δ18O of reef-building coral in the east of Hainan Island,South China Sea

    Institute of Scientific and Technical Information of China (English)

    HE; Xuexian(何学贤); LIU; Dunyi(刘敦一); PENG; Zicheng(彭子成); LIU; Weiguo(刘卫国)

    2002-01-01

    Stable oxygen isotopic compositions of a coral colony of Porites lutea obtained on a core allowed the reconstruction of a 56-a (1943-1998) proxy record of the sea surface temperatures. This coral δ18O data are from the east of Hainan Island water (22°20′N, 110°39′E), South China Sea. The relationship between δ18O in the skeletal aragonite carbonate and the sea surface temperature (SST) is SST = -5.36 δ18OPDB-3.51 (r = 0.73, n = 470), dδ18O/d(SST) = -0.187‰/ ℃; and the thermometer was set at monthly resolution. The 56-a (1943-1998) proxy record of the sea surface temperatures reflected the same change trend in the northern part of South China Sea as the air temperature change trend in China.

  14. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  15. Freely decaying weak turbulence for sea surface gravity waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C

    2002-09-30

    We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.

  16. The Last Interglacial Labrador Sea: A Pervasive Millennial Oscillation In Surface Water Conditions Without Labrador Sea Water Formation

    Science.gov (United States)

    Hillaire-Marcel, C.; de Vernal, A.

    A multi-proxy approach was developed to document secular to millenial changes of potential density in surface, mesopelagic, and bottom waters of the Labrador Sea, thus allowing to reconstruct situations when winter convection with intermediate or deep water formation occurred in the basin. This approach relies on dinocyst-transfer functions providing estimates of sea-surface temperature and salinity that are used to calibrate past-relationships between oxygen 18 contents in calcite and potential density gradients. The oxygen isotope compositions of epipelagic (Globigerina bul- loides), deeper-dwelling (Neogloboquadrina pachyderma, left coiling), and benthic (Uvigerina peregrina and Cibicides wuellerstorfi) foraminifera, then allow to extrap- olate density gradients between the corresponding water layers. This approach has been tested in surface sediments in reference to modern hydrographic conditions at several sites from the NW North Atlantic, then used to reconstruct past conditions from high resolution studies of cores raised from the southern Greenland Rise (off Cape Farewell). Results indicate that the modern-like regime established during the early Holocene and full developed after 7 ka only. It is marked by weak density gradi- ents between the surface and intermediate water masses, allowing winter convection down to a lower pycnocline between intermediate and deep-water masses, thus the formation of intermediate Labrador Sea Water (LSW). Contrasting with the middle to late Holocene situation, since the last interglacial and throughout the last climatic cycle, a single and dense water mass seems to have occupied the water column below a generally low-density surface water layer, thus preventing deep convection. There- fore, the production of LSW seems to be feature specific to the present interglacial interval that could soon cease to exist, due to global warming, as suggested by recent ocean model experiments and by the fact that it never occurred during the

  17. Kaplan kõneles Iraagis rahust / Raivo Nikiforov ; interv. Eda Post

    Index Scriptorium Estoniae

    Nikiforov, Raivo

    2005-01-01

    Tapa väljaõppekeskuse kaplan leitnant Raivo Nikiforov käis Bagdadis Eesti rahuvalvajatele jõulujumalateenistust pidamas ning eestlaste elu jälgimas. Iraagi missioonist, rahuvalvajate elamistingimustest

  18. Succession of the sea-surface microlayer in the Baltic Sea under natural and experimentally induced low-wind conditions

    Directory of Open Access Journals (Sweden)

    C. Stolle

    2010-05-01

    Full Text Available The sea-surface microlayer (SML is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston compared to the underlying bulk water (ULW were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.

  19. Sea surface freshwater flux estimates from GECCO, HOAPS and NCEP

    Science.gov (United States)

    Romanova, V.; Köhl, A.; Stammer, D.; Klepp, C.; Andersson, A.; Bakan, S.

    2010-08-01

    Surface net freshwater flux fields, estimated from the GECCO ocean state estimation effort over the 50 yr period 1951-2001, are compared to purely satellite-based HOAPS freshwater flux estimates and to the NCEP atmospheric re-analysis net surface freshwater flux fields to assess the quality of all flux products and to improve our understanding of the time-mean surface freshwater flux distribution as well as its temporal variability. Surface flux fields are adjusted by the GECCO state estimation procedure together with initial temperature and salinity conditions so that the model simulation becomes consistent with ocean observations. The entirely independent HOAPS net surface freshwater flux fields result from the difference between SSM/I based precipitation estimates and fields of evaporation resulting from a bulk aerodynamic approach using SSM/I data and the Pathfinder SST. All three products agree well on a global scale. However, overall GECCO seems to have moved away from the NCEP/NCAR first guess surface fluxes and is often closer to the HOAPS data set. This holds for the time mean as well as for the seasonal cycle.

  20. A Berry-Essen Inequality for the Kaplan-Meier L-Estimator

    Institute of Scientific and Technical Information of China (English)

    Qi Hua WANG; Li Xing ZHU

    2001-01-01

    LetFn be the Kaplan-Meier estimator of distribution function F. Let J(.) be a measureablereal-valued function. In this paper, a U-statistic representation for the Kaplan-Meier L-estimator,T(Fn) = xJ(Fn(x))dFn(x), is derived. Furthermore, the representation is also used to establish aBerry-Essen inequality for T(Fn).

  1. Sea surface temperature and sea ice variability in the sub-polar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M.-A.; Khodri, M.; Mignot, J.

    2013-01-01

    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and lo...

  2. Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Gutierrez, Tony; Berry, David; Teske, Andreas; Aitken, Michael D

    2016-07-27

    The Deepwater Horizon (DWH) oil spill led to rapid microbial community shifts in the Gulf of Mexico, including the formation of unprecedented quantities of marine oil snow (MOS) and of a massive subsurface oil plume. The major taxa that bloomed in sea surface oil slicks during the spill included Cycloclasticus, and to a lesser extent Halomonas, Alteromonas, and Pseudoalteromonas-organisms that grow and degrade oil hydrocarbons aerobically. Here, we show that sea surface oil slicks at DWH contained obligate and facultative anaerobic taxa, including members of the obligate anaerobic phylum Fusobacteria that are commonly found in marine sediment environments. Pyrosequencing analysis revealed that Fusobacteria were strongly selected for when sea surface oil slicks were allowed to develop anaerobically. These organisms have been found in oil-contaminated sediments in the Gulf of Mexico, in deep marine oil reservoirs, and other oil-contaminated sites, suggesting they have putative hydrocarbon-degrading qualities. The occurrence and strong selection for Fusobacteria in a lab-based incubation of a sea surface oil slick sample collected during the spill suggests that these organisms may have become enriched in anaerobic zones of suspended particulates, such as MOS. Whilst the formation and rapid sinking of MOS is recognised as an important mechanism by which a proportion of the Macondo oil had been transported to the sea floor, its role in potentially transporting microorganisms, including oil-degraders, from the upper reaches of the water column to the seafloor should be considered. The presence of Fusobacteria on the sea surface-a highly oxygenated environment-is intriguing, and may be explained by the vertical upsurge of oil that provided a carrier to transport these organisms from anaerobic/micro-aerophilic zones in the oil plume or seabed to the upper reaches of the water column. We also propose that the formation of rapidly-sinking MOS may have re-transported these

  3. Magnetic Susceptibility in Surface Sediments in the Southern South China Sea and Its Implication for Sub-sea Methane Venting

    Institute of Scientific and Technical Information of China (English)

    Chen Zhong; Yan Wen; Tang Xianzan; Liu Jianguo; Chen Muhong; Yang Huaping

    2009-01-01

    In order to understand the characteristics of magnetic variability and their possible implication for sub-sea methane venting,magnetic susceptibility (MS) of 145 surface sediment samples from the southern South China Sea (SCS) was investigated.Magnetic particles extracted from 20 representative samples were also examined for their mineral,chemical compositions and micromorphology.Results indicate that MS values range between -7.73×10-8 and 45.06x10-8 m3/kg.The high MS zones occur at some hydrecarbon-bearing basins and along main tectonic zones,and low ones are distributed mainly within the river delta or along continental shelves.Iron concretions and manganese concretions are not main contributors for high MS values in sediments,while authigenic iron sulphide minerals are possibly responsible for the MS enhancement.This phenomenon is suspected to be produced by the reducing environment where the high upward venting methane beneath the seafloor reacts with seawater sulfate,resulting in seep precipitation of highly susceptible intermediate mineral pyrrhotite,greigite and paramagnetic pyrite.It suggests that MS variability is possibly one of the geochemical indicators for mapping sub-sea zones of methane venting in the southern SCS.

  4. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  5. Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface.

    Science.gov (United States)

    Ross, Vincent; Dion, Denis; Potvin, Guy

    2005-11-01

    A statistical sea surface specular BRDF (bidirectional reflectance distribution function) model is developed that includes mutual shadowing by waves, wave facet hiding, and projection weighting. The integral form of the model is reduced to an analytical form by making minor and justifiable approximations. The new form of the BRDF thus allows one to compute sea reflected radiance more than 100 times faster than the traditional numerical solutions. The repercussions of the approximations used in the model are discussed. Using the analytical form of the BRDF, an analytical approximation is also obtained for the reflected sun radiance that is always good to within 1% of the numerical solution for sun elevations of more than 10 degrees above the horizon. The model is validated against measured sea radiances found in the literature and is shown to be in very good agreement.

  6. Phosphorus speciation and distribution in surface sediments of the Yellow Sea and East China Sea and potential impacts on ecosystem

    Institute of Scientific and Technical Information of China (English)

    SONG Guodong; LIU Sumei

    2015-01-01

    For better understanding the phosphorus (P) cycle and its impacts on one of the most important fishing grounds and pressures on the marine ecosystem in the Yellow Sea (YS) and East China Sea (ECS), it is essential to distinguish the contents of different P speciation in sediments and have the knowledge of its distribution and bioavailability. In this study, the modified SEDEX procedure was employed to quantify the different forms of P in sediments. The contents of phosphorus fractions in surface sediments were 0.20–0.89μmol/g for exchangeable-P (Exch-P), 0.37–2.86μmol/g for Fe-bound P (Fe-P), 0.61–3.07μmol/g for authigenic Ca-P (ACa-P), 6.39–13.73μmol/g for detrital-P (DAP) and 0.54–10.06μmol/g for organic P (OP). The distribution of Exch-P, Fe-P and OP seemed to be similar. The concentrations of Exch-P, Fe-P and OP were slightly higher in the Yellow Sea than that in the East China Sea, and low concentrations could be observed in the middle part of the ECS and southwest off Cheju Island. The distribution of ACa-P was different from those of Exch-P, Fe-P and OP. DAP was the major fraction of sedimentary P in the research region. The sum of Exch-P, Fe-P and OP may be thought to be potentially bioavailable P in the research region. The percentage of bioavailable P in TP ranged from 13%to 61%. Bioavailable P burial flux that appeared regional differences was affected by sedimentation rates, porosity and bioavailable P content, and the distribution of bioavailable P burial flux were almost the same as that of TP burial flux.

  7. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo QU

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  8. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  9. Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient

    Indian Academy of Sciences (India)

    E C Monahan

    2002-09-01

    Stage A whitecaps (spilling wave crests) have a microwave emissivity of close to 1. Thus if even a small fraction of the sea surface is covered by these features there will be a detectable enhancement in the apparent microwave brightness temperature of that surface as determined by satellite-borne microwave radiometers. This increase in the apparent microwave brightness temperature can as a consequence be routinely used to estimate the fraction of the sea surface covered by stage A whitecaps. For all but the very lowest wind speeds it has been shown in a series of controlled experiments that the air-sea gas transfer coeffcient for each of a wide range of gases, including carbon dioxide and oxygen, is directly proportional to the fraction of the sea surface covered by these stage A whitecaps.

  10. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Delpeche-Ellmann, Nicole; Mingelaitė, Toma; Soomere, Tarmo

    2017-07-01

    We employ in-situ surface drifters and satellite derived sea surface temperature data to examine the impact that an upwelling event may have on mixing and Lagrangian transport of surrounding surface waters. The test area is located near the southern coast of the Gulf of Finland where easterly winds are known to trigger intense coastal upwellings. The analysis is based on the comparison of motions of three drifters that follow the currents in the uppermost layer with a thickness of 2 m with MODIS-based sea surface temperature data and high-quality open sea wind time series. The presence of an upwelling event superseded the classic Ekman-type drift of the surface layer and considerably slowed down the average speed of surface currents in the region affected by the upwelled cold water jet and its filaments. The drifters tended to stay amidst the surrounding surface waters. The properties of mixing were evaluated using the daily rate of temperature change along several transects. The upwelled cooler water largely kept its identity during almost the entire duration of the upwelling event. Intense mixing started at a later stage of the upwelling and continued after the end of the event when the winds that have driven the entire process began to subside.

  11. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available , there are serious concerns about the recent decline in the number of VOS observations. Closure of global and regional energy balances still cannot be achieved without adjustments to the flux fields and/or the underlying surface meteorological variables. The impact...

  12. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  13. Parameterization of atmosphere–surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Jensen, Bjarne; Glud, Ronnie;

    2014-01-01

    are discussed. We found the flux to be small during the late winter with fluxes in both directions. Not surprisingly we find that the resistance across the surface controls the fluxes and detailed knowledge of the brine volume and carbon chemistry within the brines as well as knowledge of snow cover and carbon...... chemistry in the ice are essential to estimate the partial pressure of pCO2 and CO2 flux. Further investigations of surface structure and snow cover and driving parameters such as heat flux, radiation, ice temperature and brine processes are required to adequately parameterize the surface resistance.......We suggest the application of a flux parameterization commonly used over terrestrial areas for calculation of CO2 fluxes over sea ice surfaces. The parameterization is based on resistance analogy.We present a concept for parameterization of the CO2 fluxes over sea ice suggesting to use properties...

  14. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    Science.gov (United States)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  15. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  16. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread:

  17. Surface sediment diatoms from the western Pacific marginal seas and their correlation to environmental variables

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue; JIANG Hui; Svante Bj(o)rck; LI Tiegang; LU Houyuan; RAN Lihua

    2009-01-01

    Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed. The results of canonical correspondence analysis show that summer sea-surface salinity (SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature (SST) with winter SST. The correlations between SSSs and SSTs are less positively correlated, which may be due to interactions of regional current pattern and monsoon climate. The correlations between diatom species, sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters. The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.

  18. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...

  19. Analysis of some methods for obtaining sea surface temperature from satellite observations

    Science.gov (United States)

    Price, J. C.

    1973-01-01

    Satellite measurements of sea surface temperature must be corrected for atmospheric moisture, cloud contamination, reflected solar radiation and other sources of error. Procedures for reducing errors are discussed. It appears that routine accuracies of 1 C are possible, given low noise spectral measurements in the infrared.

  20. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea

    NARCIS (Netherlands)

    Wijsman, J.W.M.; Middelburg, J.J.; Herman, P.M.J.; Bottcher, M.E.; Heip, C.H.R.

    2001-01-01

    The speciation of sedimentary sulfur (pyrite, acid volatile sulfides (AVS), S-0 H2S, and sulfate) was analyzed in surface sediments recovered at different water depths from the northwestern margin of the Black Sea. Additionally, dissolved and dithionite-extractable iron were quantified, and the sulf

  1. Optimizing Surface Winds using QuikSCAT Measurements in the Mediterranean Sea During 2000-2006

    Science.gov (United States)

    2009-02-28

    r.com/ locate / jmarsysOptimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006 A. Birol Kara a,⁎, Alan J...flux algorithms. J. Geophys. Res. 113, C04009. doi:10.1029/2007JC004324. Large, W.G., Danabasoglu, G., Doney, S.C., McWilliams , J.C., 1997

  2. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  3. Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity

    NARCIS (Netherlands)

    Tecchio, S.; van Oevelen, D.; Soetaert, K.; Navarro, J.; Ramírez-Llodra, E.

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and r

  4. Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef

    NARCIS (Netherlands)

    Roche, R.C.; Perry, C.T.; Smithers, S.G.; Leng, M.J.; Grove, C.A.; Sloane, H.J.; Unsworth, C.E.

    2014-01-01

    We present measurements of Sr/Ca, d18O, and spectral luminescence ratios (G/B) from a mid-Holocene Porites sp. microatoll recovered from the nearshore Great Barrier Reef (GBR). These records were used as proxies to reconstruct sea surface temperature (SST), the d18O of surrounding seawater (d18Osw),

  5. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...

  6. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1

  7. A model study of the seasonal cycle of the Arabian Sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    The annual variation of the SST along a zonal strip from the coast of Somalia to the southwest coast of India was simulated using available data (monthly-mean heat and momentum fluxes across the air-sea interface, surface advective field, etc...

  8. Sea surface temperature variability at the Scripps Institution of Oceanography Pier

    DEFF Research Database (Denmark)

    Checkley, David M.; Lindegren, Martin

    2014-01-01

    Sea surface temperature (SST) has been measured from near the end of the SIO pier daily since 1916. It is one of the world’s longest instrumental time series of SST. It is widely used in studies of climate and marine ecosystems and in fisheries management. We hypothesized that a discontinuity exi...

  9. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009

    DEFF Research Database (Denmark)

    Koldunov, Nikolay V.; Serra, Nuno; Koehl, Armin

    2014-01-01

    The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970-2009) are analyzed. In comparison to observations, all tested mode...

  10. Rose Island, American Samoa, 2006 Sea Surface Temperature and Meterological Standard Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site - Rose Island, American Samoa, -14.5514, -168.16018 ARGOS ID 27267 Time series data from this mooring provide high resolution sea surface temperature, surface...

  11. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply...... this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ∼14...... ± 0.91 psu around 9.9 cal ka BP to a minimum ∼12.3 ± 0.91 psu around 8.5 cal ka BP, reaching current salinities of ∼17.1 ± 0.91 psu around 4.1 cal ka BP. The resolution of our sampling is about 250 years, and it fails to reveal a catastrophic salinization event at ∼9.14 cal ka BP advocated by other...

  12. Lithological and geochemical typification of surface bottom sediments in the Kara Sea

    Science.gov (United States)

    Rusakov, V. Yu.; Kuzhmina, T. G.; Levitan, M. A.; Toropchenova, E. S.; Zhylkina, A. V.

    2017-01-01

    The Kara Sea is part of the Western Arctic shelf of Eurasia. The deposition of sediments in this shallow sea is largely determined by solid runoff from two great Siberian rivers (the Yenisei and Ob) and the glacial periods when the sea area repeatedly (during the Quaternary) dried up and was covered by continental glaciers. The rise of the World Ocean due to Holocene warming resulted in a significant expansion of the sea area to the south and complete degradation of the ice sheet. In this article, new data on the geochemical composition of the surface (0- to 2-cm) layer of sea-bottom sediments are considered, which reflects the spatial distribution of marine sediments during the maximum sea level. Cluster analysis of the variance for 24 chemical elements reveals sediment chemotypes, and critical analysis of their relationship with lithotypes is performed. The presented data have been collected on cruises of the R/V Akademik Boris Petrov in 2000, 2001, and 2003 and the R/V Akademik Mstislav Keldysh in 2015.

  13. AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.3 (PFV53) L3C Sea Surface Temperature data set is a collection of global, twice-daily (Day and Night) 4km sea surface temperature...

  14. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  15. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high. At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  16. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    GEShulan; SHIXuefa; HANYibing

    2003-01-01

    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high.At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  17. Changes in snow distribution and surface topography following a snowstorm on Antarctic sea ice

    Science.gov (United States)

    Trujillo, Ernesto; Leonard, Katherine; Maksym, Ted; Lehning, Michael

    2016-11-01

    Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1-10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.

  18. Study on the photosynthetic performances of Enteromorpha prolifera collected from the surface and bottom of the sea of Qingdao sea area

    Institute of Scientific and Technical Information of China (English)

    LIN APeng; WANG Chao; QIAO HongJin; PAN GuangHua; WANG GuangCe; SONG LiYun; WANG ZhiYuan; SUN Song; ZHOU BaiCheng

    2009-01-01

    In this work, the photosynthetic performances of Enteromorpha prolifera thalli collected from the sur-face and bottom of the sea of Qingdao sea area were studied with chlorophyll fluorescence and oxy-graph technology. The samples with the highest photosynthetic activity among their kinds, the floating thalli from the sea surface of the south of the Qingdao Olympic Sailing Center and the sedimentary thaili from the mud surface of the bottom Tuandao bay, were chosen as representatives of surface thalli and bottom thallil respectively. The results showed that the maximal PSll quantum yield of the floating thalli was significantly lower than the normal level although their photosynthetic activities were relatively high; the photosynthetic potential of the thalli form the mud surface was extremely low. Thus, it is indicated that the floating thalli are seriously stressed by their environment and the thalli from the mud surface are already dead or are dying. On the other hand, the results of the laboratory cultivation showed that the sedimentary thalli cannot regain normal photosynthetic activity even under normal illumination condi-tions. Thus, the thalli from the mud surface cannot become reproductive source of the alga even if they can reach sea surface again. Therefore, a preliminary conclusion can be reached that, up to mid-July 2008, the environmental conditions of the Qingdao sea area are not suitable for the growth of the alga E. prolifera and for this reason the biomass of E. prolifera, in the area, could be declining.

  19. The Impact of Dielectric Constant Model and Surface Reference on Differences Between SMOS and Aquarius Sea Surface Salinity

    Science.gov (United States)

    Dinnat, E. P.; Boutin, J.; Yin, X.; LeVine, D. M.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences.

  20. Effects of the 2003 European heatwave on the Central Mediterranean Sea surface layer: a numerical simulation

    Directory of Open Access Journals (Sweden)

    A. Olita

    2006-05-01

    Full Text Available The effects of anomalous weather conditions on the sea surface layer over the Central Mediterranean were studied with an eddy resolving regional ocean model by performing a 5-year long simulation from 2000 to 2004. The focus was on surface heat fluxes, temperature and dynamics. The analysis of the time series of the selected variables permitted us to identify and quantify the anomalies of the analysed parameters. In order to separate the part of variability not related to the annual cycle and to locate the anomalies in the time-frequency domain, we performed a wavelet analysis of anomalies time series. We found the strongest anomalous event was the overheating affecting the sea surface in the summer of 2003. This anomaly was strictly related to a strong increase of air temperature, a decrease of both wind stress and upward heat fluxes in all their components. The simulated monthly averages of the sea surface temperature were in a good agreement with the remotely-sensed data, although the ocean regional model tended to underestimate the extreme events. We also found, on the basis of the long-wave period of the observed anomaly, this event was not limited to the few summer months, but it was probably part of a longer signal, which also includes negative perturbations of the involved variables. The atmospheric parameters responsible for the overheating of the sea surface also influenced the regional surface and sub-surface dynamics, especially in the Atlantic Ionian Stream and the African Modified Atlantic Water current, in which flows seem to be deeply modified in that period.

  1. Iceberg ploughmark features on bottom surface of the South-Eastern Baltic Sea

    Science.gov (United States)

    Dorokhov, Dmitry; Sivkov, Vadim; Dorokhova, Evgenia; Krechik, Viktor

    2016-04-01

    A detail swath bathymetry, side-scan sonar and acoustic profiling combined with sediment sampling during the 64th cruise of RV "Academic Mstislav Keldysh" (October 2015) allowed to identify new geomorphological features of the South-Eastern Baltic Sea bottom surface. The extended chaotic ploughmarks (furrows) in most cases filled with thin layer of mud were discovered on surface of the Gdansk-Gotland sill glacial deposits. They are observed on the depth of more than 70 m and have depth and width from 1 to 10 m. Most of them are v- or u-shaped stepped depressions. The side-scan records of similar geomorpholoical features are extensively reported from Northern Hemisphere and Antarctica (Goodwin et al., 1985; Dowdeswell et al., 1993). Ploughmarks are attributed to the action of icebergs scouring into the sediment as they touch bottom. We are suggest that furrows discovered in the South-Eastern Baltic Sea are also the result of iceberg scouring during the Baltic Ice Lake stage (more than 11 600 cal yr BP (Bjorck, 2008)). This assumption confirmed by occurrence of fragmental stones and boulders on the sea bottom surface which are good indicators of iceberg rafting (Lisitzin, 2003). Ice ploughmarks at sea bottom surface were not occurred before in the South-Eastern Baltic Sea. The study was financed by Russian Scientific Fund, grant number 14-37-00047. References Bjorck S. The late Quaternary development of the Baltic Sea Basin. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, Heidelberg. 2008. Dowdeswell J. A., Villinger H., Whittington R. J., Marienfeld P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf // Marine Geology. V. 111. N. 1-2. 1993. P. 37-53. Goodwin C. R., Finley J. C., Howard L. M. Ice scour bibliography. Environmental Studies Revolving Funds Report No. 010. Ottawa. 1985. 99 pp. Lisitzin A. P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer

  2. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaoqi; ZHU Jianhua; LIN Mingsen; ZHAO Yili; WANG He; CHEN Chuntao; PENG Hailong; ZHANG Youguang

    2014-01-01

    A scanning microwave radiometer (RM) was launched on August 16, 2011, on board HY-2 satellite. The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations, respectively, from January to June 2012. The wind speed root-mean-square (RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform, respectively. On a global scale, the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat, the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above. With analyzing the global map of a mean difference between HY-2 RM and WindSat, it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions. In the open sea, there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations, while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.

  3. Dissolved Cu, Pb, Zn and Cd in the South China Sea surface waters

    Institute of Scientific and Technical Information of China (English)

    Huo Wenmian; Ji Weidong; Xu Kuncan

    2001-01-01

    A total of 106 surface water samples were collected in the South China Sea during two transects in June and December 1998. The samples were collected with strictly contamination free procedure and trace metals were measured by clean laboratory methods and GFAAS. The mean concentrations for the dissolved fractions are: Cu 0.100 μg/dm3, Pb 0.060 μg/dm3, Zn 0.086 μg/dm3, Cd 0.007 μg/dm3, which is close to the world open ocean's level. The spatial distribution of the trace heavy metals shows higher concentrations in offshore area and lower concentrations in the central in the South China Sea, and the concentrations decrease with the distance from the offshore, which suggests the existence of significant continental shelf input of the trace heavy metals. The correlationship among the elements is better in summer than that in winter. Cu is positively correlated with Cd in both seasons and it is also found for the first time that they are positively correlated with nutrients in the South China Sea surface waters which further indicate the biogeochemical cycle of these elements in the marine environment. The baseline value of Cu, Pb, Zn, Cd in the South China Sea surface waters is obtained through statistical analysis.

  4. Long-term sea surface temperature and climate change in the Australian-New Zealand region

    Science.gov (United States)

    Barrows, Timothy T.; Juggins, Steve; de Deckker, Patrick; Calvo, Eva; Pelejero, Carles

    2007-06-01

    We compile and compare data for the last 150,000 years from four deep-sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest-resolution records, we find that first-order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1-A4 and appear to occur just before Dansgaard-Oeschger events 8, 12, 14, and 17 in Greenland.

  5. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  6. Low-frequency variability of surface air temperature over the Barents Sea: causes and mechanisms

    Science.gov (United States)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, Rune G.

    2016-08-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations in the sea-ice cover, which then cause massive changes in the ocean-atmosphere heat exchanges. Here we describe the mechanism driving surface temperatures and heat fluxes in the Barents Sea based primarily on analyzes of one global coupled climate model. It is found that the ocean drives the low-frequency changes in surface temperature, whereas the atmosphere compensates the oceanic transport anomalies. The seasonal dependence and the role of individual components of the ocean-atmosphere energy budget are analyzed in detail, showing that seasonally-varying climate mechanisms play an important role. Herein, sea ice is governing the seasonal response, by acting as a lid that opens and closes during warm and cold periods, respectively, thereby modulating the surface heat fluxes.

  7. Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set

    Science.gov (United States)

    Krawczyk, D. W.; Witkowski, A.; Moros, M.; Lloyd, J. M.; Høyer, J. L.; Miettinen, A.; Kuijpers, A.

    2017-01-01

    Holocene oceanographic conditions in Disko Bay, West Greenland, were reconstructed from high-resolution diatom records derived from two marine sediment cores. A modern data set composed of 35 dated surface sediment samples collected along the West Greenland coast accompanied by remote sensing data was used to develop a diatom transfer function to reconstruct April sea ice concentration (SIC) supported by July sea surface temperature (SST) in the area. Our quantitative reconstruction shows that oceanographic changes recorded throughout the last 11,000 years reflect seasonal interplay between spring (April SIC) and summer (July SST) conditions. Our records show clear correlation with climate patterns identified from ice core data from GISP2 and Agassiz-Renland for the early to middle Holocene. The early Holocene deglaciation of western Greenland Ice Sheet was characterized in Disko Bay by initial strong centennial-scale fluctuations in April SIC with amplitude of over 40%, followed by high April SIC and July SST. These conditions correspond to a general warming of the climate in the Northern Hemisphere. A decrease in April SIC and July SST was recorded during the Holocene Thermal Optimum reflecting more stable spring-summer conditions in Disko Bay. During the late Holocene, high April SIC characterized the Medieval Climate Anomaly, while high July SST prevailed during the Little Ice Age, supporting previously identified antiphase relationship between surface waters in West Greenland and climate in NW Europe. This antiphase pattern might reflect seasonal variations in regional oceanographic conditions and large-scale fluctuations within the North Atlantic Oscillation and Atlantic Meridional Overturning Circulation.

  8. Modeling the spectrum of infrasonic hydroacoustic radiation generated by the sea surface under storm conditions

    Science.gov (United States)

    Zapevalov, A. S.; Pokazeev, K. V.

    2016-09-01

    Generation of infrasonic radiation into a water medium by sea surface waves is analyzed. The analysis is carried out for the situation in which the infrasound is generated by surface waves with frequencies close to those of dominant waves. The presence of two wave systems on the sea surface is assumed: swell and wind waves. It is shown that if the frequencies of spectral peaks of wind waves and swell diverge by 20%, the maximum value of the radiation spectrum decreases by approximately 40% (if the general directions of the two wave systems are oriented strictly towards each other). A deviation of the general directions of the two wave systems from the opposite direction by 45° leads to a decrease in the maximum value of the radiation spectrum by more than two times.

  9. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  10. Effects of winds, tides and storm surges on ocean surface waves in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; TIAN Jiwei; LI Peiliang; HOU Yijun

    2007-01-01

    Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.

  11. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  12. Global Changes in the Sea Ice Cover and Associated Surface Temperature Changes

    Science.gov (United States)

    Comiso, Josefino C.

    2016-06-01

    The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at -3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  13. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China's marginal seas

    Institute of Scientific and Technical Information of China (English)

    KANG Yanju; WANG Xuchen; DAI Minhan; FENG Huan; LI Anchun; SONG Qian

    2009-01-01

    This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China's marginal seas. BC content ranges from <0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw),which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%,respectively, of the sedimentary organic carbon pool. The concentration of ΣPAH in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest ΣPAH values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and ΣPAH in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.

  14. Pliocene-Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific

    Science.gov (United States)

    McClymont, Erin L.; Elmore, Aurora C.; Kender, Sev; Leng, Melanie J.; Greaves, Mervyn; Elderfield, Henry

    2016-06-01

    Over the last 5 million years, the global climate system has evolved toward a colder mean state, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for climate feedbacks including sea ice distribution and low-high latitude heat transport. Here we reconstruct the Pliocene-Pleistocene history of both sea surface and Antarctic Intermediate Water (AAIW) temperatures on orbital time scales from Deep Sea Drilling Project Site 593 in the Tasman Sea, southwest Pacific. We confirm overall Pliocene-Pleistocene cooling trends in both the surface ocean and AAIW, although the patterns are complex. The Pliocene is warmer than modern, but our data suggest an equatorward displacement of the subtropical front relative to present and a poleward displacement of the subantarctic front of the Antarctic Circumpolar Current (ACC). Two main intervals of cooling, from ~3 Ma and ~1.5 Ma, are coeval with cooling and ice sheet expansion noted elsewhere and suggest that equatorward expansion of polar water masses also characterized the southwest Pacific through the Pliocene-Pleistocene. However, the observed trends in sea surface temperature and AAIW temperature are not identical despite an underlying link to the ACC, and intervals of unusual surface ocean warmth (~2 Ma) and large-amplitude variability in AAIW temperatures (from ~1 Ma) highlight complex interactions between equatorward displacements of fronts associated with the ACC and/or varying poleward heat transport from the subtropics.

  15. Impact of Assimilating Surface Velocity Observations on the Model Sea Surface Height Using the NCOM-4DVAR

    Science.gov (United States)

    2016-09-26

    atmospheric pressure , and surface heat flux is provided by the 0.58 NOGAPS model every 3h (Rosmond et al. 2002); river forcing is provided via an...horizontal pressure -gradient force in an oceanic model with nonaligned vertical grid. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047. ——, and... Model Sea Surface Height Using the NCOM-4DVAR 0602435N 73-4727-14-5 MATTHEW J. CARRIER, HANS E. NGODOCK, PHILIP MUSCARELLA, AND SCOTT SMITH Naval

  16. Summer and Fall Sea Ice Processes in the Amundsen Sea: Bottom melting, surface flooding and snow ice formation

    Science.gov (United States)

    Ackley, S. F.; Perovich, D. K.; Weissling, B.; Elder, B. C.

    2011-12-01

    Two ice mass balance buoys were deployed on the Amundsen Sea, Antarctica, ice pack near January 1, 2011. Below freezing air and snow temperatures and sea ice and seawater temperatures at the freezing point at this time indicated that summer melt had not yet commenced. Over the next two months, however, while snow depths changed by less than 0.1m, ice thickness decreased, from bottom melting, by 0.9-1.0m. As snow temperature records did not show temperatures ever reaching the melting point, no surface melt was recorded during the summer period and the small snow depth changes were presumed to occur by consolidation or wind scouring. Water temperatures above the freezing point caused the observed bottom melting from mid January to late February. During the ice loss periods, progressive flooding by sea water at the base of the snow pack was recorded by temperature sensors, showing an increase in the depth of flooded snow pack of 0.4m by the end of the summer period in late February. We hypothesize that progressive flooding of the surface snow pack gives a mechanism for nutrient replenishment in these upper layers, and continuous high algal growth can therefore occur in the flooded snow layer during summer. An underice radiometer recorded light transmission through the ice and snow at selective wavelengths sensitive to chlorophyll. These radiometric results will be presented to examine this algal growth hypothesis. This flooded layer then refroze from the top down into snow ice as air temperatures dropped during March and April, showing that the layer had refrozen as snow ice on the top surface of the ice. Refreezing of the flooded layer gives an ice growth mechanism at the end of summer of 0.2 m to 0.4m of new ice growth over the majority of the ice pack. The snow ice growth in areas covered with pack ice gives salt fluxes commensurate with new ice growth in the autumn expansion of the ice edge over open water. These high salt fluxes therefore represent a marked

  17. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey;

    2017-01-01

    that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound-Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...

  18. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable...

  19. Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation

    Directory of Open Access Journals (Sweden)

    M.-A. Sicre

    2013-06-01

    Full Text Available Sea surface temperatures (SSTs were reconstructed over the last 25 000 yr using alkenone paleothermometry and planktonic foraminifera assemblages from two cores of the central Mediterranean Sea: the MD04-2797 core (Siculo–Tunisian channel and the MD90-917 core (South Adriatic Sea. Comparison of the centennial scale structure of the two temperature signals during the last deglaciation period reveals significant differences in timing and amplitude. We suggest that seasonal changes likely account for seemingly proxy record divergences during abrupt transitions from glacial to interglacial climates and for the apparent short duration of the Younger Dryas (YD depicted by the alkenone time series, a feature that has already been stressed in earlier studies on the Mediterranean deglaciation.

  20. NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.

  1. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    Science.gov (United States)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  2. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  3. Comparison of two Centennial-scale Sea Surface Temperature Datasets in the Regional Climate Change Studies of the China Seas

    Science.gov (United States)

    Qingyuan, Wang; Yanan, Wang; Yiwei, Liu

    2017-08-01

    Two widely used sea surface temperature (SST) datasets are compared in this article. We examine characteristics in the climate variability of SST in the China Seas.Two series yielded almost the same warming trend for 1890-2013 (0.7-0.8°C/100 years). However, HadISST1 series shows much stronger warming trends during 1961-2013 and 1981-2013 than that of COBE SST2 series. The disagreement between data sets was marked after 1981. For the hiatus period 1998-2013, the cooling trends of HadISST1 series is much lower than that of COBE SST2. These differences between the two datasets are possibly caused by the different observations which are incorporated to fill with data-sparse regions since 1982. Those findings illustrate that there are some uncertainties in the estimate of SST warming patterns in certain regions. The results also indicate that the temporal and spatial deficiency of observed data is still the biggest handicap for analyzing multi-scale SST characteristics in regional area.

  4. Influence of Working Environment on Fatigue Life Time Duration for Runner Blades of Kaplan Turbines

    Directory of Open Access Journals (Sweden)

    Ana-Maria Budai

    2010-10-01

    Full Text Available The paper present an analytical analyzes refer to influence of working environment on life time duration in service of runner blades of Kaplan turbines. The study are made using only analytical method, the entry dates being obtained from measurements made in situ for a Kaplan turbine. To calculate the maximum number of stress cycles whereupon the runner blades work without any damage it was used an analytical relation known in specialized literatures under the name of Morrow’s relation. To estimate fatigue life time duration will be used a formula obtained from one of most common cumulative damage methodology taking in consideration the real exploitation conditions of a specified Kaplan turbine.

  5. Surface Elevation Distribution of Sea Waves Based on the Maximum Entropy Principle

    Institute of Scientific and Technical Information of China (English)

    戴德君; 王伟; 钱成春; 孙孚

    2001-01-01

    A probability density function of surface elevation is obtained through improvement of the method introduced byCieslikiewicz who employed the maximum entropy principle to investigate the surface elevation distribution. The densityfunction can be easily extended to higher order according to demand and is non-negative everywhere, satisfying the basicbehavior of the probability. Moreover because the distribution is derived without any assumption about sea waves, it isfound from comparison with several accepted distributions that the new form of distribution can be applied in a widerrange of wave conditions. In addition, the density function can be used to fit some observed distributions of surface verti-cal acceleration although something remains unsolved.

  6. Model study on the dependence of primary marine aerosol emission on the sea surface temperature

    Directory of Open Access Journals (Sweden)

    S. Barthel

    2014-01-01

    Full Text Available Primary marine aerosol composed of sea salt and organic material is an important contributor to the global aerosol load. By comparing measurements from two EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air-pollutants in Europe intensive campaigns in June 2006 and January 2007 with results from an atmospheric transport model this work shows that accounting for the influence of the sea surface temperature on the emission of primary marine aerosol improves the model results towards the measurements in both months. Different sea surface temperature dependencies were evaluated. Using correction functions based on Sofiev et al. (2011 and Jaeglé et al. (2011 improves the model results for coarse mode particles. In contrast, for the fine mode aerosols no best correction function could be found. The model captures the low sodium concentrations at the marine station Virolahti II (Finland, which is influenced by air masses from the low salinity Baltic Sea, as well as the higher concentrations at Cabauw (Netherlands and Auchencorth Moss (Scotland. These results indicate a shift towards smaller sizes with lower salinity for the emission of dry sea salt aerosols. Organic material was simulated as part of primary marine aerosol assuming an internal mixture with sea salt. A comparison of the model results for primary organic carbon with measurements by a Berner-impactor at Sao Vincente (Cape Verde indicated that the model underpredicted the observed organic carbon concentration. This leads to the conclusion that the formation of secondary organic material needs to be included in the model to improve the agreement with the measurements.

  7. Vernal distribution and turnover of dimethylsulfide (DMS) in the surface water of the Yellow Sea

    Science.gov (United States)

    Li, Cheng-Xuan; Yang, Gui-Peng; Wang, Bao-Dong; Xu, Zong-Jun

    2016-10-01

    The spatial and interannual variations of dimethylsulfide (DMS) and its precursors, dissolved and particulate dimethylsulfoniopropionate (DMSP), were discussed on the basis of field observations in the surface waters of the Yellow Sea during spring 2007. Maxima of dimethylated sulfur compounds and low chlorophyll a concentrations were found in the central southern Yellow Sea, whereas low concentrations of DMS and DMSP were detected at the boundary between the northern and southern parts of the Yellow Sea. This frontal region is influenced by active water currents, air-sea interface exchanges, and biological turnover. The horizontal variations in DMS production and consumption rates showed a decreasing tendency from the coastal to offshore areas mainly due to the complicated biological features. DMS positively correlated with dissolved CH4 and CO2 but negatively correlated with nutrients (nitrite and phosphate). Particulate DMSP concentrations and DMS production rates positively correlated with dinoflagellate abundances but negatively correlated with diatom cell densities. DMS and DMSP concentrations, as well as DMS production and consumption rates, exhibited approximately 2.0-2.8 fold increases from 2005 to 2012. This finding was likely caused by shifts in the phytoplankton communities from diatoms to dinoflagellates and the increases in abundances of zooplankton and bacteria. Average sea-to-air DMS fluxes were estimated to be 8.12 ± 1.24 µmol·(m-2·d-1), and DMS microbial consumption was approximately 1.68 times faster than the DMS sea-air exchange. These findings imply that biological consumption, relative to ventilation, is a predominant mechanism in DMS removal from the surface water.

  8. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  9. AVHRR Pathfinder Version 5.2 Level 3 Collated (L3C) Global 4km Sea Surface Temperature for 1981-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  10. 4 km AVHRR Pathfinder v5.0 Global Day-Night Sea Surface Temperature Monthly and Yearly Averages, 1985-2009 (NODC Accession 0077816)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a set of monthly and yearly global day-night sea surface temperature averages, derived from the AVHRR Pathfinder Version 5 sea surface...

  11. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  12. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  13. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  14. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  15. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  16. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  17. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  18. The Response of Snow on Tibetan Plateau in Winter to Indian Ocean Sea Surface Temperature Anomaly

    Science.gov (United States)

    Jia, Lha; Xiao, Tiangui; Wang, Chao; Du, Jun; Zhou, Xiaoli

    2017-04-01

    By using the daily snow depth and snow cover days data at 100 meteorological stations in Tibetan Plateau during 1979-2013, the methods of EOF, REOF and SVD were used to analyze the distribution characteristic and time series variation of snow in Tibetan Plateau. The coupling relationship between snow in Tibetan Plateau in winter and Indian Ocean sea surface temperature in winter, and the lag response of the snow in Tibetan Plateau in winter to Indian Ocean sea surface temperature were also studied. Main conclusions are as follows: 1.Snow depth and snow cover reaches the maximum value in January and reaches the minimum value in July; accumulated snow depth and snow cover days shows an increasing tendency during 1980s to 1990s and has a decreasing tendency since then. The accumulated snow depth and snow cover days decrease in summer and increase in autumn. 2. There were 4 high-frequency centers of snow cover days and accumulated snow depth: the southern Himalayas area, the area between the Tanggula Mountains and the Nyainqentanglha Mountains, the area around Bayankela Mountains and the area around Qilian Mountains. 3. The first pattern of SVD between snow in Tibetan Plateau in winter and Indian Ocean sea surface temperature in winter has the feature that Indian Ocean sea surface temperature increase in the whole area and snow has an opposite trend in the western and southeastern Plateau and the northern and southern Plateau. The second pattern shows that Indian Ocean sea surface temperature has an opposite trend in the western ocean and the eastern ocean and snow has an opposite trend in the western Plateau and the southeastern Plateau. There is a significant negative correlation between Indian Ocean sea surface temperature in June and July and snow in Tibetan Plateau in winter. Key words: Tibetan Plateau; snow; Indian Ocean; SVD Acknowledgements This study was supported by National Natural Science Foundation of China Fund Project (91337215, 41575066),National Key

  19. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  20. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    Science.gov (United States)

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-04-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  1. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmos- phere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G. Sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed. Consequently, three cooling events (E1-E3) were identified, each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4 kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  2. A sea surface salinity dipole mode in the tropical Indian Ocean

    Science.gov (United States)

    Zhang, Yuhong; Du, Yan; Qu, Tangdong

    2016-10-01

    Based on the 10 years sea surface salinity (SSS) data from Argo, we identified a salinity dipole mode in the tropical Indian Ocean, termed S-IOD: a pattern of interannual SSS variability with anomalously low-salinity in the central equatorial and high-salinity in the southeastern tropical Indian Ocean. The S-IOD matures in November-December, lagging the Indian Ocean dipole (IOD) mode derived from sea surface temperature (SST) by 2 months. For the period of observations, the S-IOD persists longer than the IOD, until the following September-October. Oscillations of the two S-IOD poles are governed by different processes. Ocean advection associated with equatorial current variability dominates the SSS anomalies of the northern pole, while surface freshwater flux variability plays a key role in the SSS anomalies of the southern pole, where anomalous precipitation is sustained by preformed sea surface temperature anomalies. The S-IOD concurs with the strong IOD, reflecting an ocean-atmosphere coupling through the SST-precipitation-SSS feedback.

  3. Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics.

    Science.gov (United States)

    Bourlier, Christophe

    2005-07-10

    The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.

  4. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico

    Science.gov (United States)

    Etnoyer, Peter; Canny, David; Mate, Bruce R.; Morgan, Lance E.; Ortega-Ortiz, Joel G.; Nichols, Wallace J.

    2006-02-01

    Sea-surface temperature (SST) fronts are integral to pelagic ecology in the North Pacific Ocean, so it is necessary to understand their character and distribution, and the way these features influence the behavior of endangered and highly migratory species. Here, telemetry data from sixteen satellite-tagged blue whales ( Balaenoptera musculus) and sea turtles ( Caretta caretta, Chelonia mydas, and Lepidochelys olivacea) are employed to characterize 'biologically relevant' SST fronts off Baja California Sur. High residence times are used to identify presumed foraging areas, and SST gradients are calculated across advanced very high resolution radiometer (AVHRR) images of these regions. The resulting values are compared to classic definitions of SST fronts in the oceanographic literature. We find subtle changes in surface temperature (between 0.01 and 0.10 °C/km) across the foraging trajectories, near the lowest end of the oceanographic scale (between 0.03 and 0.3 °C/km), suggesting that edge-detection algorithms using gradient thresholds >0.10 °C/km may overlook pelagic habitats in tropical waters. We use this information to sensitize our edge-detection algorithm, and to identify persistent concentrations of subtle SST fronts in the Northeast Pacific Ocean between 2002 and 2004. The lower-gradient threshold increases the number of fronts detected, revealing more potential habitats in different places than we find with a higher-gradient threshold. This is the expected result, but it confirms that pelagic habitat can be overlooked, and that the temperature gradient parameter is an important one.

  5. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  6. Concentration of iodine-129 in surface seawater at subarctic and subtropical circulations in the Japan Sea

    Science.gov (United States)

    Suzuki, Takashi; Otosaka, Shigeyoshi; Togawa, Orihiko

    2013-01-01

    To investigate the migration of anthropogenic 129I in the environment, we measured 129I concentrations at both subarctic (above 40oN) and subtropical (below 40oN) circulations in the surface seawater of the Japan Sea. The averaged concentrations of stations 193, 194, 201, 206 and 210 above 200 m were (2.1 ± 0.3) × 1010 atoms/m3, (2.0 ± 0.2) × 1010 atoms/m3, (1.6 ± 0.3) × 1010 atoms/m3, (1.4 ± 0.3) × 1010 atoms/m3 and (1.7 ± 0.3) × 1010 atoms/m3, respectively. The averaged concentration at the subarctic circulation in the Japan Sea above 200 m (1.9 × 1010 atoms/m3) was higher than that in the subtropical circulation (1.5 × 1010 atoms/m3). This latitudinal distribution pattern of 129I is not consistent with those of bomb-derived radionuclides such as 14C, 90Sr and 137Cs. Taking into account latitudinal location and the total amount of releases from reprocessing plants, this discriminating latitudinal distribution of 129I in the Japan Sea would indicate that a significant amount of 129I originating from active reprocessing plants in Europe is supplied to the surface of the Japan Sea.

  7. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    Science.gov (United States)

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  8. Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kontoyiannis, H.; Papadopoulos, V.; Georgopoulos, D. [Hellenic Center for Marine Research, Attica (Greece); Kazmin, A.; Zatsepin, A. [P.P. Shirshov Institute of Oceanography, Moscow (Russian Federation)

    2012-09-15

    Non-smoothed yearly temperature records with minimal statistical uncertainties are constructed for winter and summer of the period 1950-2000 in two areas in the Aegean Sea, for the sub-surface layer of 80-120 m, and two areas in the Black Sea, for the sub-surface layer of sigma-theta isopycnals between 14.5 and 15.4. The specific areas are selected mostly because of the dense hydrographic-data coverage they have during the period 1950-2000. Two trend regimes appear in both Seas: a period of decreasing sea temperatures from the early/mid 1960s to the early/mid 1990s and an apparent warming afterwards. Trends in sea temperatures correlate with trends in the North Atlantic Oscillation (NAO) and partly the East Atlantic West Russian (EAWR) indexes, but the signs of NAO and/or EAWR cannot sufficiently justify the winter-to-winter temperature changes in the entire study area. In examining the wind flows in the sea-level-pressure maps for characteristic winters in which local peaks in the sea-temperature records occur, we identify particular sea-level-pressure structures that are not accounted for by the typical North-Atlantic or East Atlantic-West Russia positive or negative dipoles. In addition, there are winters when the Siberian High induces local maxima in sea-temperatures in the study area. A spectral-coherence analysis of the unfiltered winter sea-temperature and the corresponding teleconnection NAO/EAWR records, shows that common spectral and coherence peaks exist at {proportional_to}5-6, {proportional_to}9-10 and {proportional_to}15-17 years. (orig.)

  9. Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing

    Science.gov (United States)

    Kontoyiannis, H.; Papadopoulos, V.; Kazmin, A.; Zatsepin, A.; Georgopoulos, D.

    2012-09-01

    Non-smoothed yearly temperature records with minimal statistical uncertainties are constructed for winter and summer of the period 1950-2000 in two areas in the Aegean Sea, for the sub-surface layer of 80-120 m, and two areas in the Black Sea, for the sub-surface layer of sigma-theta isopycnals between 14.5 and 15.4. The specific areas are selected mostly because of the dense hydrographic-data coverage they have during the period 1950-2000. Two trend regimes appear in both Seas: a period of decreasing sea temperatures from the early/mid 1960s to the early/mid 1990s and an apparent warming afterwards. Trends in sea temperatures correlate with trends in the North Atlantic Oscillation (NAO) and partly the East Atlantic West Russian (EAWR) indexes, but the signs of NAO and/or EAWR cannot sufficiently justify the winter-to-winter temperature changes in the entire study area. In examining the wind flows in the sea-level-pressure maps for characteristic winters in which local peaks in the sea-temperature records occur, we identify particular sea-level-pressure structures that are not accounted for by the typical North-Atlantic or East Atlantic-West Russia positive or negative dipoles. In addition, there are winters when the Siberian High induces local maxima in sea-temperatures in the study area. A spectral-coherence analysis of the unfiltered winter sea-temperature and the corresponding teleconnection NAO/EAWR records, shows that common spectral and coherence peaks exist at ~5-6, ~9-10 and ~15-17 years.

  10. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments

    Science.gov (United States)

    Pflaumann, Uwe; Duprat, Josette; Pujol, Claude; Labeyrie, Laurent D.

    1996-02-01

    We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times. An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the username and GUESTas the password. Go to the right directory by typing CD APPEND. TypeLS to see what files are available. Type GET and the name of the file toget it. Finally type EXIT to

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the KNORR in the Andaman Sea or Burma Sea, Arabian Sea and others from 1994-12-01 to 1996-01-21 (NODC Accession 0115589)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115589 includes chemical, meteorological, physical and underway - surface data collected from KNORR in the Andaman Sea or Burma Sea, Arabian Sea, Bay...

  12. Carbon isotopic record of foraminifers in surface sediments from the South China Sea and its significance

    Institute of Scientific and Technical Information of China (English)

    CHENG Xinrong; WANG Pinxian; HUANG Baoqi; LIU Chuanlian; JIAN Zhimin; ZHAO Quanhong; LI Jianru; TIAN Jun; XU Jian

    2005-01-01

    The study is based on stable carbon isotopic measurements of 112 foraminiferal samples from surface sediments at 40 sites in the South China Sea (SCS).δ13C of foraminifers and △δ13C between planktonic and benthic foraminiferal species exhibit a low value area at the northeastern and southern ends of the SCS. It is correlated with the nutrient distributional pattern in the SCS and circumjacent area, the influence of the northeastern and southwestern monsoons on water flow and water chemistry in the SCS. The monsoons have not only brought nutrients to the upper part of the sea but also disturbed water and decreased difference between the surface and bottom water. Its influence is most obvious at both ends, which resulted in the low value areas in δ13C and △δ13C at the ends. The distributional pattern of the stable carbon isotope in the SCS is a reflection of the East Asian monsoons.

  13. Calibration approach and plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter

    2014-01-01

    The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, the infrared calibration sources, and the alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally, the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.

  14. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    Science.gov (United States)

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.

    2014-01-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.

  15. Study on Dissolved Trace Metals in Sea Surface Microlayer in Daya Bay

    Institute of Scientific and Technical Information of China (English)

    张正斌; 刘春颖; 刘莲生; 于琳; 王肇鼎

    2004-01-01

    Glass-plate sampling during 1988-1999 in Daya Bay and suitable corresponding analytical methods were used for the measurement of dissolved trace metals, dissolved organic carbon, biological oxygen demand, chemical oxygen demand, salinity of the sea surface microlayer and subsurface water. Apparent enrichment mechanism and diurnal variation have been revealed for dissolved trace metals in the microlayer in Daya Bay. The more dissolved organic matter was enriched in the sea surface microlayer, the more dissolved trace metals were enriched in the layer. The organic matter played an important role in the enrichment process. The diurnal variations of dissolved trace metals showed that their concentration was apparently inversely related to the tide activity that the concentration was low during rising tide, but high during falling tide. The behavior of dissolved trace metals expressed by the diurnal variation was clearly opposite to that of salinity.

  16. Comparison of SMOS and Aquarius Sea Surface Salinity and Analysis of Possible Causes for the Differences

    Science.gov (United States)

    Dinnat, E. P.; Boutin, J.; Yin, X.; Le Vine, D. M.; Waldteufel, P.; Vergely, J. -L.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both mission on these differences.

  17. Grain-size related nitrogen distribution in southern Yellow Sea surface sediments

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Forty-eight surface sediments of the southern Yellow Sea are separated into three grain-size fractions. Four forms of extractable nitrogen (nitrogen in ion-exchangeable form (Nie), nitrogen in weak-acid extractable form (Nwa), nitrogen in strong-alkali extractable form (Nsa) and nitrogen in strong-oxidant form (Nso)) are obtained by the sequential extraction. The results show that the contents and the distributions of the extractable nitrogen in the southern Yellow Sea surface sediments are closely related to sediment grain size. The distributions of Nie, Nso and total nitrogen (TN) present positive correlations with fine particles content, while Nwa and Nsa does not have such correlation. The net contents of all the forms of nitrogen increase with sediment grain size finer.

  18. Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea.

    Science.gov (United States)

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Shim, Won Joon

    2015-10-01

    Microplastic contamination of the marine environment is a worldwide concern. The abundance of microplastics was evaluated in the sea surface microlayer in Jinhae Bay, on the southern coast of Korea. The microplastics in this study are divided into paint resin particles and plastics by polymer type. The mean abundance of paint resin particles (94 ± 68 particles/L) was comparable to that of plastics (88 ± 68 particles/L). Fragmented microplastics, including paint resin particles, accounted for 75 % of total particles, followed by spherules (14 %), fibers (5.8 %), expanded polystyrene (4.6 %), and sheets (1.6 %). Alkyd (35 %) and poly(acrylate/styrene) (16 %) derived from ship paint resin were dominant, and the other microplastic samples consisted of polypropylene, polyethylene, phenoxy resin, polystyrene, polyester, synthetic rubber, and other polymers. The abundance of plastics was significantly (p sea. The floating microplastic abundance in surface water was the highest reported worldwide.

  19. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?

    Science.gov (United States)

    Newman, Matthew; Sardeshmukh, Prashant D.

    2017-08-01

    The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.

  20. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than _ is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  1. Near Sea-Surface Mobile Radiowave Propagation at 5 GHz: Measurements and Modeling

    Directory of Open Access Journals (Sweden)

    Yee Hui Lee

    2014-09-01

    Full Text Available Near sea-surface line-of-sight (LoS radiowave propagation at 5 GHz was investigated through narrowband measurements in this paper. Results of the received signal strength with a transmission distance of up to 10 km were examined against free space loss model and 2-ray path loss model. The experimental results have good agreements with the predicted values using the 2-ray model. However, the prediction ability of 2-ray model becomes poor when the propagation distance increases. Our results and analysis show that an evaporation duct layer exists and therefore, a 3-ray path loss model, taking into consideration both the reflection from sea surface and the refraction caused by evaporation duct could predict well the trend of LoS signal strength variations at relatively large propagation distances in a tropical maritime environment.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2010-05-07 to 2013-06-25 (NODC Accession 0109901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109901 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Caribbean Sea, Cordell Bank...

  3. Satellite SAR observation of the sea surface wind field caused by rain cells

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; YUAN Xinzhe; DING Jing; XIE Xuetong; ZHANG Yi; XU Ying

    2016-01-01

    Rain cells or convective rain, the dominant form of rain in the tropics and subtropics, can be easy detected by satellite Synthetic Aperture Radar (SAR) images with high horizontal resolution. The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops, as well as the downward airflow. In this study, we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study. We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data, Advance Scatterometer (ASCAT) onboard European MetOp-A satellite and microwave scatterometer onboard Chinese HY-2 satellite, respectively. The root-mean-square errors (RMSE) of these SAR wind speeds, validated against NCEP, ASCAT and HY-2, are 1.48 m/s, 1.64 m/s and 2.14 m/s, respectively. Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed (or sea surface roughness) variety caused by downdraft associated with rain cells. The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80. The background wind speed, the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve. Eight cases interpreted and analyzed in this study all show the same conclusion.

  4. Sea surface temperature for climate from the along-track scanning radiometers

    OpenAIRE

    Embury, Owen

    2014-01-01

    This thesis describes the construction of a sea surface temperature (SST) dataset from Along-Track Scanning Radiometer (ATSR) observations suitable for climate applications. The algorithms presented here are now used at ESA for reprocessing of historical ATSR data and will be the basis of the retrieval used on the forthcoming SLSTR instrument on ESA’s Sentinel-3 satellite. In order to ensure independence of ATSR SSTs from in situ measurements, the retrieval uses physics-based m...

  5. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    Science.gov (United States)

    2014-09-30

    Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface Peter H. Dahl Applied Physics Laboratory University of Washington...To understand and predict key properties of the signal intensity vector field as it propagates away from an active sound source, with emphasis is on...exploit acoustic vector field properties (velocity, acceleration, intensity) much more than today’s. Furthermore, advancement of current Navy

  6. A Multivariate Regression Approach to Adjust AATSR Sea Surface Temperature to In Situ Measurements

    OpenAIRE

    TANDEO, Pierre; Autret, Emmanuelle; Piolle, Jean-francois; Tournadre, Jean; Ailliot, Pierre

    2009-01-01

    The Advanced Along-Track Scanning Radiometer (AATSR) onboard Envisat is designed to provide very accurate measurements of sea surface temperature (SST). Using colocated in situ drifting buoys, a dynamical matchup database (MDB) is used to assess the AATSR-derived SST products more precisely. SST biases are then computed. Currently, Medspiration AATSR SST biases are discrete values and can introduce artificial discontinuities in AATSR level-2 SST fields. The new AATSR SST biases presented in t...

  7. Controls on pH in surface waters of northwestern European shelf seas

    Directory of Open Access Journals (Sweden)

    V. M. C. Rérolle

    2014-01-01

    Full Text Available We present here a high resolution surface water pH dataset obtained in the Northwest European shelf seas in summer 2011. This is the first time that pH has been measured at such a high spatial resolution (10 measurements h–1 in this region. The aim of our paper is to investigate the carbonate chemistry dynamics of the surface water using pH and ancillary data. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The study highlights the impact of biological activity, temperature and riverine inputs on the carbonate chemistry dynamics of the shelf seas surface water. For this summer cruise, the biological activity formed the main control of the pH distribution along the cruise transect. Variations in chlorophyll and nutrients explained 29% of the pH variance along the full transect and as much as 68% in the northern part of the transect. In contrast, the temperature distribution explained ca. 50% of the pH variation in the Skagerrak region. Riverine inputs were evidenced by high dissolved organic carbon (DOC levels in the Strait of Moyle (northern Irish Sea and the southern North Sea with consequent remineralisation processes and a reduction in pH. The DOC distribution described 15% of the pH variance along the full transect. This study highlights the high spatial variability of the surface water pH in shelf seawaters where a range of processes simultaneously impacts the carbonate chemistry.

  8. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Directory of Open Access Journals (Sweden)

    J. Boutin

    2012-10-01

    Full Text Available The sea surface salinity (SSS measured from space by the Soil Moisture and Ocean Salinity (SMOS mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days 100 × 100 km2 in the open ocean and estimated by comparison to ARGO SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The mean SSS −0.1 bias observed in the Tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS rainy events, as detected on SSMIs rain rates, are removed from the SMOS-ARGO comparisons. The SMOS freshening is linearly correlated to SSMIs rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with rainy ARGO measurements collocated with non rainy SMOS measurements, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.

  9. Plasticity of noddy parents and offspring to sea-surface temperature anomalies.

    Directory of Open Access Journals (Sweden)

    Carol A Devney

    Full Text Available Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus, during two breeding seasons. The first season had anomalously high sea-surface temperatures and 'low' prey availability, while the second was a season of below average sea-surface temperatures and 'normal' food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited.

  10. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  11. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface.

    Science.gov (United States)

    D'Alimonte, Davide; Kajiyama, Tamito

    2016-04-18

    Above-water radiometry depends on estimates of the reflectance factor ρ of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on ρ values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on ρ simulations reduces from ∼17 to ∼10% when the wind speed increases from 0 to 14m s-1. An opposite tendency characterizes the modeling of the sea-surface slope variance, with ρ differences up to ∼12% at a wind speed of 10m s-1. The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range ∼13 to ∼18%. The ρ changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40° with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field.

  12. Remote Sensing of Sea Surface Wind of Hurricane Michael by GPS Reflected Signals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the propagating geometry and the waveform of the GPS reflected signals are expatiated in detail. Furthermore, the principle and the method of retrieving sea surface wind are presented. In order to test the feasibility of retrieval, the experiment data obtained by NASA in Hurricane Michael are used. The result shows that the retrieval accuracy of wind speed is about 2 m/s.

  13. Experimental Evaluation of the Atmospheric Energy Input to Sea Surface Waves

    Science.gov (United States)

    2011-09-30

    with sonic anemometers , cups , vanes, measuring airflow velocity, sensitive barometers. Instruments for GPS and inertial navigation were positioned...constant, Ω is the Instruments Quantity measured Height/Location 7 Sonic Anemometers Wind velocity, Air temperature On the mast 5 RMY Prop... Anemometers Wind speed & direction At 5 levels on the mast 8 Pressure Instruments Atmospheric pressure On the mast 2 Wave Wires Sea surface elevation At

  14. Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments

    Science.gov (United States)

    2017-01-19

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9702 Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e

  15. Kinematics of fluid particles on the sea surface. Part 1. Hamiltonian theory

    CERN Document Server

    Fedele, Francesco; Farazmand, Mohammad

    2015-01-01

    We derive the John-Sclavounos equations describing the motion of a fluid particle on the sea surface from first principles using Lagrangian and Hamiltonian formalisms applied to the motion of a frictionless particle constrained on an unsteady surface. The main result is that vorticity generated on a stress-free surface vanishes at a wave crest when the horizontal particle velocity equals the crest propagation speed, which is the kinematic criterion for wave breaking. If this holds for the largest crest, then the symplectic two-form associated with the Hamiltonian dynamics reduces instantaneously to that associated with the motion of a particle in free flight, as if the surface did not exist. Further, exploiting the conservation of the Hamiltonian function for steady surfaces and traveling waves we show that particle velocities remain bounded at all times, ruling out the possibility of the finite-time blowup of solutions.

  16. Effects of surface current-wind interaction in an eddy-rich general ocean circulation simulation of the Baltic Sea

    Science.gov (United States)

    Dietze, Heiner; Löptien, Ulrike

    2016-08-01

    Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth) are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current-wind effects inhibits the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however (e.g. off the southern coast of Sweden and Finland) the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current-wind effects drive substantial local upwelling of cold and nutrient-replete waters.

  17. Sea surface height and transport stream function of the South China Sea from a variable-grid global ocean circulation model

    Institute of Scientific and Technical Information of China (English)

    魏泽勋; 方国洪; 崔秉昊; 方越; 何宜军

    2003-01-01

    A fine-grid model (1/6°) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3°) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

  18. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  19. Spectral analysis of quasi-stationary sea surface topography from GRACE mission

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zizhan; LU Yang

    2005-01-01

    During the last two decades satellite altimetry has offered an abundance of measurements of the sea surface resulting in the improvement of global mean sea surface height (MSSH) and marine geoid determination. On the other hand, with the launching of new generation gravity satellites, some high accuracy long-wavelength gravity models are available. These breakthroughs give us a great opportunity for new estimation of quasi-stationary sea surface topography (QSST). In this paper, the new gravity model GGM01C derived from GRACE mission is briefly presented, and a new global high precision and high-resolution QSST is determined based on the GGM01C model and the global MSSH. The spectral features of the QSST estimated by GGM01C and EGM96 gravity model to degree/order 200 are discussed by spectral analysis. As a result, the QSST is mainly composed of long waves, medium waves partially and short waves scarcely, its power spectral structures are different between the zonal direction and the meridional direction, there are great differences between the two models, which maybe explain why the ocean currents derived from the two gravity models by Tapley show different patterns.

  20. On the observability of bottom topography from measurements of tidal sea surface height

    Science.gov (United States)

    Zaron, Edward D.

    2016-06-01

    The question of whether features of the ocean bottom topography can be identified from measurements of water level is investigated using a simplified one-dimensional barotropic model. Because of the nonlinear dependence of the sea surface height on the water depth, a linearized analysis is performed concerning the identification of a Gaussian bump within two specific depth profiles, (1) a constant depth domain, and, (2) a constant depth domain adjoining a near-resonant continental shelf. Observability is quantified by examining the estimation error in a series of identical-twin experiments varying data density, tide wavelength, assumed (versus actual) topographic correlation scale, and friction. For measurements of sea surface height that resolve the scale of the topographic perturbation, the fractional error in the bottom topography is approximately a factor of 10 larger than the fractional error of the sea surface height. Domain-scale and shelf-scale resonances may lead to inaccurate topography estimates due to a reduction in the effective number of degrees of freedom in the dynamics, and the amplification of nonlinearity. A realizability condition for the variance of the topography error in the limit of zero bottom depth is proposed which is interpreted as a bound on the fractional error of the topography. Appropriately designed spatial covariance models partly ameliorate the negative impact of shelf-scale near-resonance, and highlight the importance of spatial covariance modeling for bottom topography estimation.

  1. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  2. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz.

    Science.gov (United States)

    van Vossen, Robbert; Ainslie, Michael A

    2011-11-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoretical predictions of scattering strength require a good understanding of physical mechanisms giving rise to the scattering and the relative importance of these. In this paper, scattering from individual resonant bubbles is introduced as a potential mechanism and a scattering model is derived that incorporates the contribution from these together with that of rough surface scattering. The model results are fitted to Critical Sea Test (CST) measurements at a frequency of 940 Hz, treating the number of large bubbles, parameterized through the spectral slope of the size spectrum for bubbles whose radii exceed 1 mm, as a free parameter. This procedure illustrates that the CST data can be explained by scattering from a small number of large resonant bubbles, indicating that these provide an alternative mechanism to that of scattering from bubble clouds.

  3. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  4. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  5. THE LAW OF THE ITERATED LOGARITHM OF THE KAPLAN-MEIER INTEGRAL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    HE SHUYUAN; WANG YANHUA

    2004-01-01

    For right censored data, the law of the iterated logarithm of the Kaplan-Meier integral is established. As an application, the authors prove the law of the iterated logarithm for weighted least square estimates of randomly censored linear regression model.

  6. Rediscovery of Trust: Erikson, Kaplan, and the Myth of Foster Care.

    Science.gov (United States)

    Ocasio, Jeannette; Knight, Janette

    Trust, in much the same way as hope, represents one of the essential components of a healthy upbringing. This article investigates the concept of trust as set forth in Eric Erikson's and Louise Kaplan's theories of basic trust, with particular emphasis on definition and development. The article analyzes some of the criteria that have been…

  7. The Educational Philosophies of Mordecai Kaplan and Michael Rosenak: Surprising Similarities and Illuminating Differences

    Science.gov (United States)

    Schein, Jeffrey; Caplan, Eric

    2014-01-01

    The thoughts of Mordecai Kaplan and Michael Rosenak present surprising commonalities as well as illuminating differences. Similarities include the perception that Judaism and Jewish education are in crisis, the belief that Jewish peoplehood must include commitment to meaningful content, the need for teachers to teach from a position of…

  8. Fatigue Analysis of an Outer Bearing Bush of a Kaplan Turbine

    Directory of Open Access Journals (Sweden)

    Doina Frunzaverde

    2011-01-01

    Full Text Available The paper presents the fatigue analysis of an outer bearing bush of aKaplan turbine. This outer bush, together with an inner one, bear thepin lever - trunion - blade subassembly of the runner blade operatingmechanism. For modeling and simulation, SolidWorks software is used.

  9. Community Music during the New Deal: The Contributions of Willem Van de Wall and Max Kaplan

    Science.gov (United States)

    Krikun, Andrew

    2010-01-01

    Willem Van de Wall (1887-1953) and Max Kaplan (1911-98) built careers spanning music performance, music education, adult education, sociology, social work, music therapy and community music. Willem Van de Wall was a seminal influence on the development of the fields of music therapy and adult education--researching the role of music in…

  10. Labrador Sea surface temperature control on the summer weather in the Eastern Europe

    Science.gov (United States)

    Gnatiuk, Natalia; Vihma, Timo; Bobylev, Leonid

    2016-04-01

    Many studies have addressed the linkages between the Arctic Amplification and mid-latitude weather patterns. Most of them have focused on the effects of changes in sea ice, terrestrial snow or open ocean SST on the air temperature in selected mid-latitude areas. However, when analysing such potential linkages, one should be aware that from the point of view of the atmosphere it is almost the same whether the thermal forcing originates from the sea ice melt, snowmelt, or changes in SST. Most important is to quantify how the atmosphere responds to anomalies in the surface temperature and then affects weather patterns in remote areas. For this purpose, we studied the hemispheric-scale relationships between anomalies in the Northern Hemisphere Earth surface temperature (Ts) and 2-m air temperature (T2m) in mid-latitudes (Central and Eastern Europe). Using regression analyses based on the ERA-Interim reanalysis data, we assessed the said temperature relationships with focus on the lagged monthly and inter-seasonal linkages. Technically we divided the Northern Hemisphere in equal areas with a size of 15x10 degrees and calculated correlation coefficients for the monthly mean temperatures between all defined regions from one side and the Central/East European study regions from another side over the period 1979-2014. Using this approach, we found that the strongest links in the considered kind of relationships take place between spring sea surface temperature in the Labrador Sea and summer air (T2m) temperature in the Eastern Europe. In order to confirm the correlation results obtained, to identify thermal forcing factors and to assess their relative importance, we analysed the multiyear averages and anomalies of various meteorological parameters for 10 coldest and 10 warmest springs and summers in the period 1979-2014: surface pressure, total precipitation, sea-ice and total cloud cover, wind components, surface solar radiation downwards, surface heat fluxes and air

  11. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data

    Science.gov (United States)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.

    2014-12-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  12. Surface elevation change and susceptibility of coastal wetlands to sea level rise in Liaohe Delta, China

    Science.gov (United States)

    Wang, Guo-dong; Wang, Ming; Lu, Xian-guo; Jiang, Ming

    2016-10-01

    The Liaohe Delta in China is an ecologically and commercially important wetland system under threat from sea level rise and marsh subsidence. Sediments deposited in coastal marshes could offer wetlands a potentially important means for adjusting surface elevation with rising sea level, yet coastal wetland stability in Liaohe Delta is not well understood due to limited data from long-term experiments. In this study, wetland surface elevation and vertical accretion were measured from 2011 to 2015 using a surface elevation table (SET) and feldspar marker horizons in two Phragmites and two Suaeda marshes receiving Liaohe River water. The analysis shows that the Phragmites marshes exhibited higher rates of marsh accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.8 and 9.3 mm yr-1, vertical accretion at 17.4 and 17.6 mm yr-1, and shallow subsidence at 8.6 and 8.3 mm yr-1. The average rates of elevation change, vertical accretion, and shallow subsidence at two Suaeda marsh sites were 5.8 and 6.3 mm yr-1, 13.6 and 14.8 mm yr-1, and 7.8 and 8.5 mm yr-1, respectively. The trends suggest that coastal marshes in Liaohe Delta are experiencing changes in average soil elevation that range from a net increase of 0.3 mm y-1 to 6.9 mm y-1 relative to averaged sea level rise in Bohai Sea reported by the 2016 State Oceanic Administration People's Republic of China projection (2.4-5.5 mm y-1), which indicated that the four wetland sites would adjust to the sea level rise and even continue to gain elevation, especially for the Phragmites sites. Nevertheless, the vulnerability of coastal wetlands in Liaohe Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery owing to anthropogenic activities such as dam constructions in the river basin.

  13. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    Science.gov (United States)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  14. Surface mixed layer deepening through wind shear alignment in a seasonally stratified shallow sea

    Science.gov (United States)

    Lincoln, B. J.; Rippeth, T. P.; Simpson, J. H.

    2016-08-01

    Inertial oscillations are a ubiquitous feature of the surface ocean. Here we combine new observations with a numerical model to investigate the role of inertial oscillations in driving deepening of the surface mixed layer in a seasonally stratified sea. Observations of temperature and current structure, from a mooring in the Western Irish Sea, reveal episodes of strong currents (>0.3 m s-1) lasting several days, resulting in enhanced shear across the thermocline. While the episodes of strong currents are coincident with windy periods, the variance in the shear is not directly related to the wind stress. The shear varies on a subinertial time scale with the formation of shear maxima lasting several hours occurring at the local inertial period of 14.85 h. These shear maxima coincide with the orientation of the surface current being at an angle of approximately 90° to the right of the wind direction. Observations of the water column structure during windy periods reveal deepening of the surface mixed layer in a series of steps which coincide with a period of enhanced shear. During the periods of enhanced shear gradient, Richardson number estimates indicate Ri-1 ≥ 4 at the base of the surface mixed layer, implying the deepening as a result of shear instability. A one-dimensional vertical exchange model successfully reproduces the magnitude and phase of the shear spikes as well as the step-like deepening. The observations and model results therefore identify the role of wind shear alignment as a key entrainment mechanism driving surface mixed layer deepening in a shallow, seasonally stratified sea.

  15. A cold and fresh ocean surface in the Nordic Seas during MIS 11 : Significance for the future ocean

    NARCIS (Netherlands)

    Kandiano, Evgenia S.; van der Meer, M.T.J.; Bauch, H.A.; Helmke, Jan; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve th

  16. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    An analysis of the heat budgets of the near-surface Arabian Sea and Bay of Bengal shows significant differences between them during the summer monsoon (June-September). In the Arabian Sea the winds associated with the summer monsoon are stronger...

  17. Distribution of total mercury in surface sediments of the western Jade Bay, Lower Saxonian Wadden Sea, southern North Sea.

    Science.gov (United States)

    Jin, Huafang; Liebezeit, Gerd; Ziehe, Daniel

    2012-04-01

    A total of 114 surface sediment samples was equidistantly collected in the western part of the Jade Bay, southern North Sea, to analyse total mercury contents as well as grain size distribution and total organic carbon (TOC) contents. Total mercury was determined by oxygen combustion-gold amalgamation. Validation, precision and accuracy of the method were evaluated and controlled with two certified reference materials (HISS-1 and MESS-3). Total mercury contents varied between 8 and 243 ng/g dry sediment with a mean value of 103 ng/g dw. The mercury levels in surface sediments showed an inhomogeneous spatial distribution with higher contents in near-dike areas. The values are mostly in the range of natural background values (50–100 ng/g dw) and positively related to TOC and clay/silt contents (Jade Bay are not mercury contaminated. These results also suggested that the current mercury contents of Jade Bay surficial sediments are mostly affected by atmospheric deposition and re-emission.

  18. Improving the WRF model's (version 3.6.1) simulation over sea ice surface through coupling with a complex thermodynamic sea ice model (HIGHTSI)

    Science.gov (United States)

    Yao, Yao; Huang, Jianbin; Luo, Yong; Zhao, Zongci

    2016-06-01

    Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice scheme, which is the only option in the current Weather Research and Forecasting (WRF) model (version 3.6.1), has a problem of energy imbalance due to its simplification in snow processes and lack of ablation and accretion processes in ice. Validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations, Noah underestimates the sea ice temperature which can reach -10 °C in winter. Sensitivity tests show that this bias is mainly attributed to the simulation within the ice when a time-dependent ice thickness is specified. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) uses more realistic thermodynamics for snow and ice. Most importantly, HIGHTSI includes the ablation and accretion processes of sea ice and uses an interpolation method which can ensure the heat conservation during its integration. These allow the HIGHTSI to better resolve the energy balance in the sea ice, and the bias in sea ice temperature is reduced considerably. When HIGHTSI is coupled with the WRF model, the simulation of sea ice temperature by the original Polar WRF is greatly improved. Considering the bias with reference to SHEBA observations, WRF-HIGHTSI improves the simulation of surface temperature, 2 m air temperature and surface upward long-wave radiation flux in winter by 6, 5 °C and 20 W m-2, respectively. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information results in the best simulation among the available methods. If no observational information is available, we present a new method in which the sea ice thickness is initialized from empirical estimation and its further change is predicted by a complex thermodynamic

  19. Anomalous wave as a result of the collision of two wave groups on sea surface

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of the sea surface has shown that the collision of two groups of relatively low waves with close but noncollinear wave vectors (two or three waves in each group with a steepness of about 0.2) can result in the appearance of an individual anomalous wave whose height is noticeably larger than that in the linear theory. Since such collisions quite often occur on the ocean surface, this scenario of the formation of rogue waves is apparently most typical under natural conditions.

  20. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    Science.gov (United States)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the