WorldWideScience

Sample records for kaolin-based particle film

  1. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Science.gov (United States)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  2. Effect of Deficit Irrigation and Kaolin-based Foliar Reflectant Particle Film on Aroma of cv. Merlot (Vitis vinifera L.)

    Science.gov (United States)

    Water deficit during development of red-skinned wine grape enhances berry composition for wine production but increases risk of fruit exposure to deleterious levels of heat and/or solar radiation. Foliar application of a kaolin-based particle film has been shown in many crops to alleviate stress sym...

  3. Potential of Kaolin-based Particle Film Barriers for Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Control

    Science.gov (United States)

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week ...

  4. Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film

    Science.gov (United States)

    The influences on wine volatile composition and wine sensory attributes from a foliar application of a kaolin-based particle film on vines under differing levels of water deficit were evaluated over three consecutive seasons for the cultivar Merlot grown in the high desert region of southwestern Ida...

  5. Kaolin-based foliar reflectant alleviates heat stress in deficit-irrigated Malbec

    Science.gov (United States)

    We evaluated the interaction effects of a kaolin-based particle film and water deficit on leaf and berry surface temperature, light reflectance, gas exchange characteristics, berry composition and yield of Malbec vines under field conditions over three growing seasons to test the hypothesis that the...

  6. Kaolin particle film and water deficit influence red winegrape color under high solar radiation in an arid climate

    Science.gov (United States)

    Main and interactive effects of a kaolin-based particle film and water deficit severity on vine and berry attributes were evaluated in the warm, semi-arid climate of southwestern Idaho over three growing seasons in the cultivars Cabernet Sauvignon and Malbec. Berry concentrations of total anthocyan...

  7. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.

  8. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  9. Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.).

    Science.gov (United States)

    Song, Jianqiang; Shellie, Krista C; Wang, Hua; Qian, Michael C

    2012-09-15

    The effect of deficit irrigation and a kaolin-based, foliar reflectant particle film (PF) on grape composition and volatile compounds in Merlot grapes was investigated over two growing seasons in semi-arid, south-western Idaho. Vines were provided with differential amounts of water based on their estimated crop evapotranspiration (ET(c)) throughout berry development, and particle film was applied to half of the vines in each irrigation main plot. Free and bound volatile compounds in grapes were analyzed using stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS). The concentrations of free C(6) compounds (hexanal, trans-2-hexenal, and 1-hexanol) decreased, and bound terpene alcohols (nerol and geraniol) and C(13)-norisoprenoids (β-damascenone, 3-hydroxy-β-damascenone, 1,1,6-trimethyl-1,2-dihydronaphthalene, and 3-oxo-α-ionol) increased in berries each year in response to severity of vine water stress. Concentrations of C(13)-norisoprenoids and bound forms of nerol and geraniol were positively correlated with their concentrations in the corresponding wines. Particle film application had minimum effect on free and bound volatile composition in the grapes, and there was no interactive effect between particle film and deficit irrigation. However, particle film application enhanced the total amount of berry anthocyanins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Kaolin-based foliar reflectant and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis

    Science.gov (United States)

    The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...

  11. Kaolin-based hemostatic dressing improves hemorrhage control from a penetrating inferior vena cava injury in coagulopathic swine.

    Science.gov (United States)

    Koko, Kiavash R; McCauley, Brian M; Gaughan, John P; Nolan, Ryan S; Fromer, Marc W; Hagaman, Ashleigh L R; Choron, Rachel L; Brown, Spencer A; Hazelton, Joshua P

    2017-07-01

    Retrohepatic inferior vena cava (RIVC) injuries are often lethal due to challenges in obtaining hemorrhage control. We hypothesized that packing with a new kaolin-based hemostatic dressing (Control+; Z-Medica, Wallingford, CT) would improve hemorrhage control from a penetrating RIVC injury compared with packing with standard laparotomy sponges alone. Twelve male Yorkshire pigs received a 25% exchange transfusion of blood for refrigerated normal saline to induce a hypothermic coagulopathy. A laparotomy was performed and a standardized 1.5 cm injury to the RIVC was created which was followed by temporary abdominal closure and a period of uncontrolled hemorrhage. When the mean arterial pressure reached 70% of baseline, demonstrating hemorrhagic shock, the abdomen was re-entered, and the injury was treated with perihepatic packing using standard laparotomy sponges (L; n = 6) or a new kaolin-based hemostatic dressing (K; n = 6). Animals were then resuscitated for 6 hours with crystalloid solution. The two groups were compared using the Wilcoxon rank sum test and Fisher exact test. A p value of 0.05 or less was considered statistically significant. There was no difference in the animal's temperature, heart rate, mean arterial pressure, cardiac output, and blood loss at baseline or before packing was performed (all p > 0.05). In the laparotomy sponge group, five of six pigs survived the entire study period, whereas all six pigs treated with kaolin-based D2 hemostatic dressings survived. Importantly, there was significantly less blood loss after packing with the new hemostatic kaolin-based dressing compared with packing with laparotomy sponge (651 ± 180 mL vs. 1073 ± 342 mL; p ≤ 0.05). These results demonstrate that the use of this new hemostatic kaolin-based dressing improved hemorrhage control and significantly decreased blood loss in this penetrating RIVC model. This is basic science research based on a large animal model, level V.

  12. Self-standing particle-binding ZnO film.

    Science.gov (United States)

    Masuda, Yoshitake; Kato, Kazumi

    2009-01-01

    Self-standing particle-binding ZnO film was fabricated by combination of crystallization in aqueous solution and annealing on FTO (SnO2:F) coated glass substrate. Multi-needle ZnO particles crystallized in a solution of zinc nitrate hexahydrate and ethylenediamine at 60 degrees C. Crystalline particles having an ultrafine surface relief structure were gradually deposited on the substrate to form thick particulate film. The film was then annealed at 950 degrees C for 1 h in air. The ZnO particles formed necks to connect to each other. The glass substrate deformed into a dome shape generating stress between the ZnO film and substrate; on the other hand, FTO layers retained their uneven surface during annealing. ZnO particulate film was successfully peeled off from the substrate as self-standing film. Deformation of glass substrate and FTO joint-insulating layer supported peeling-off of the film. The connected ZnO particles formed continuous white porous film having many spaces and continuous open pores surrounded by multi-needle ZnO particles. The film can be used as self-standing film and be pasted on substrate such as polymer film, metal or paper for application to flexible lightweight devices.

  13. Corrosion of Steel Reinforcements in Fly Ash- and Kaolin-based Geopolymer Concrete Immersed in Distilled Water and ASTM Seawater

    Directory of Open Access Journals (Sweden)

    Astutiningsih S.

    2013-01-01

    Full Text Available Corrosion behavior of steel bar in fly ash- and kaolin-based geopolymer concrete immersed in aggressive media of distilled water and ASTM seawater was compared to Portland cement concrete having similar mix design. An accelerated corrosion by applying 3 V potential on the steel bar was performed to obtain reasonable test results in a relatively short time. The potential and pH of the immersing media were measured from day 1 to day 10 and then plotted on Pourbaix diagram to predict passivation or corrosion state. At day 10, steel bar in Portland cement concrete were in corroded state both in distilled water and seawater. The best corrosion performance was for kaolin- based geopolymer concrete in which at day-10 the steel bar was passivated in both media. Steel bar in fly ash- based geopolymer concrete was passivated in distilled water but corroded in seawater.

  14. Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.

    Science.gov (United States)

    Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar

    2015-03-01

    Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  16. EDR-2 film response to charged particles.

    Science.gov (United States)

    Moyers, M F

    2008-05-21

    A useful tool for verifying segmental or dynamic treatments with multiple multi-leaf collimator positions, spinning range modulator propellors or magnetically scanned beams would be a film with a linear dose response up to several hundred centiGray, as typical for delivered treatments. Kodak has released an extended range film (EDR-2) that may satisfy this desire. In this study, dose response curves were obtained for several electron, proton, carbon ion and iron ion beams of different energies to determine the utility of this film.

  17. Nanostructured films of metal particles obtained by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  18. [Effect of Zirconium Modified Kaolin-Based Cap on Migration and Transformation of Phosphorus Between Sediment and Overlying Water].

    Science.gov (United States)

    Zhang, Zhe; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2016-04-15

    In this study, microcosm incubation experiments were conducted to investigate the effect of zirconium modified kaolin (ZrMK)-based cap on the migration and transformation of phosphorus (P) between sediments collected from a heavily polluted river and overlying waters under anaerobic conditions. The results showed that a large amount of P was released from the sediments into the overlying water column under anaerobic conditions, and the overwhelming majority of P in the overlying water existed in the form of phosphate. The flux of P from the anaerobic sediments was slightly reduced by the kaolin-based cap, while significantly reduced by the ZrMK-based cap. Sequential extraction of P from the kaolin-based cap at the end of incubation experiments suggested that 29% of P adsorbed by kaolin existed as the bicarbonate-dithionite extracted P (BD-P), and 63% of adsorbed P existed as the residual P (Res-P). Sequential extraction of P from the ZrMK-based cap at the end of incubation experiments suggested that 90% of P adsorbed by ZrMK existed as the NaOH extractable P (NaOH-P) and Res-P, which were unlikely to be released under anaerobic conditions. Compared with no capping, sediments capping with ZrMK did not promote BD-P release from the sediments under anaerobic conditions, but promoted the formation of NaOH-P in the sediments. X-ray photoelectron spectroscopy (XPS) and solid state ³¹P nuclear magnetic resonance (NMR) analyses of ZrMK-based caps before and after sediment incubation experiments indicated that the adsorption of P by the ZrMK-based caps followed the ligand exchange and inner-sphere complexing mechanism. Results of this work indicate that ZrMK is a promising active capping material for controlling P release from sediments in heavily polluted rivers.

  19. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  20. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Tina, E-mail: tina@owl.phy.queensu.c [Department of Physics, Engineering Physics, and Astronomy, Queens University, Kingston, Ontario, K7L 3N6 (Canada); Boulay, Mark; Kuzniak, Marcin [Department of Physics, Engineering Physics, and Astronomy, Queens University, Kingston, Ontario, K7L 3N6 (Canada)

    2011-04-11

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882{+-}210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11{+-}5 and 275{+-}10ns.

  1. Thinning of a vertical free-draining aqueous film incorporating colloidal particles.

    Science.gov (United States)

    Tan, Su N; Yang, Yujie; Horn, Roger G

    2010-01-01

    The drainage under gravity of a vertical foam film formed on a wire frame has been investigated. Dual-wavelength optical interferometry was used so that unambiguous fringe order assignments could be made, enabling absolute film thicknesses to be calculated with confidence. Films were stabilized by nonionic polypropylene glycol surfactant. Half-micrometer silica particles with varying degrees of hydrophobicity were added to the film-forming liquid to investigate their effect on film drainage rate and stability. Hydrophilic particles had little or no effect, while hydrophobic particles slowed the drainage of the film and caused a minor increase in film lifetime, from approximately 10 to approximately 30 s. In both the hydrophilic and hydrophobic cases the films ruptured when they reached a thickness of approximately 2 particle diameters. Particles of intermediate hydrophobicity had the most significant effect, increasing film lifetime by an order of magnitude over that for hydrophilic particles. The intermediate particles allowed films to thin down to a thickness less than the particle diameter, indicating that particles bridge across the entire film. This did not occur with more hydrophobic particles even though they were embedded in each of the two film surfaces. These results correlate well with previous literature on particle-laden foams. The film thickness and drainage measurements allow drainage mechanisms for the different particles to be identified, thus providing a mechanistic explanation for the observation by several previous authors that foams formed in the presence of particles, for example during mineral processing, have the greatest stability when the particles are of intermediate hydrophobicity.

  2. High collection efficiency thin film diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A. [CEA/Saclay, Gif-sur-Yvette (France); McKeag, R.D.; Jackman, R.B. [University College, London (United Kingdom)

    1998-12-31

    Diamond is a resilient material with rather extreme electronic properties. As such it is an interesting candidate for the fabrication of high performance solid state particle detectors. However, the commercially accessible form of diamond, grown by chemical vapor deposition (CVD) methods, is polycrystalline in nature and often displays rather poor electrical characteristics. This paper considers ways in which this material may be used to form alpha particle detectors with useful performance levels. One approach adopted has been to reduce the impurity levels within the feed-stock gases that are used to grow the diamond films. This has enabled significant improvements to be achieved in the mean carrier drift distance within the films leading to alpha detectors with up to 40% collection efficiencies. An alternative approach explored is the use of planar device geometries whereby charge collection is limited to the top surface of the diamond which comprises higher quality material than the bulk of the film. This has lead to collection efficiencies of 70%, the highest yet reported for polycrystalline CVD diamond based detectors. Techniques for improving the characteristics of these devices further are discussed.

  3. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  4. Phase equilibria in stratified thin liquid films stabilized by colloidal particles

    OpenAIRE

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-spher...

  5. Size effect on solid solid reaction growth between Cu film and Se particles

    Science.gov (United States)

    Kaito, Chihiro; Nonaka, Akira; Kimura, Seiji; Suzuki, Nobuhiko; Saito, Yoshio

    1998-03-01

    A recently developed experimental method of producing a compound by making use of the reaction between thin film and ultrafine particles has been used for copper selenide crystal formation to elucidate the particle size effect on the reaction process. In the case of reaction between Cu film Se particles with size of μm order, CuSe crystals were grown on Se particles by the diffusion of predominantly Cu atoms. In the case of Se particles of the order of 100 nm, amorphous Se particles changed into copper selenide particles by the mutual diffusion of Cu and Se atoms. If the size of Se particles was less than 20 nm, a part of the Cu film changed to copper selenide crystal due to the diffusion of Se atoms to the Cu film. Morphological differences have also been shown and discussed to be the result of the particle size effect.

  6. Thermal Annealing-Induced Self-Stretching: Fabrication of Anisotropic Polymer Particles on Polymer Films.

    Science.gov (United States)

    Lo, Yu-Ching; Chiu, Yu-Jing; Tseng, Hsiao-Fan; Chen, Jiun-Tai

    2017-10-06

    Designing anisotropic particles of various shapes draws great attention to scientists nowadays. In this work, we develop a facile and simple method to fabricate anisotropic polymer particles from spherical polymer particles. Polyvinyl alcohol (PVA) films spin-coated with polystyrene (PS) microspheres are confined on both sides using binder clips and are heated above the glass transition temperatures of the polymers. During the thermal annealing process, the PS particles sink into the PVA films and transform to anisotropic particles. Depending on the distances to the bound regions, oblate spheroid PS particles or prolate spheroid particles with different aspect ratios can be obtained. The transformation of the particles is mainly driven by the stretching forces and the squeezing forces. The main advantage of this method is that anisotropic particles with different shapes can be fabricated simultaneously on a single film. We expect this novel method can be helpful to various fields including colloids science, suspension rheology, and drug delivery.

  7. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  8. Effects of porous films on the light reflectivity of pigmentary titanium dioxide particles

    Science.gov (United States)

    Liang, Yong; Qiao, Bing; Wang, Tig-Jie; Gao, Han; Yu, Keyi

    2016-11-01

    The light reflectivity of the film-coated titanium dioxide particles (TiO2) as a function of the film refractive index was derived and calculated using a plane film model. For the refractive index in the range of 1.00-2.15, the lower the film refractive index is, the higher is the light reflectivity of the film. It is inferred that the lower apparent refractive index of the porous film resulted in the higher reflectivity of light, i.e., the higher hiding power of the titanium dioxide particles. A dense film coating on TiO2 particles with different types of oxides, i.e., SiO2, Al2O3, MgO, ZnO, ZrO2, TiO2, corresponding to different refractive indices of the film from 1.46 to 2.50, was achieved, and the effects of refractive index on the hiding power from the model prediction were confirmed. Porous film coating of TiO2 particles was achieved by adding the organic template agent triethanolamine (TEA). The hiding power of the coated TiO2 particles was increased from 88.3 to 90.8 by adding the TEA template to the film coating (5-20 wt%). In other words, the amount of titanium dioxide needed was reduced by approximately 10% without a change in the hiding power. It is concluded that the film structure coated on TiO2 particle surface affects the light reflectivity significantly, namely, the porous film exhibits excellent performance for pigmentary titanium dioxide particles with high hiding power.

  9. Garnet composite films with Au particles fabricated by repetitive formation for enhancement of Faraday effect

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H; Nakai, Y [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, Sendai, Miyagi 982-8577 (Japan); Mizutani, Y; Inoue, M [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A A, E-mail: uchida_hn@tohtech.ac.jp [Faculty of Physics, Moscow State University, Moscow 119992 (Russian Federation)

    2011-02-16

    To prepare garnet (Bi : YIG) composite films with Au particles, we used a repetitive formation method to increase the number density of particles. On increasing the number of repetitions, the diameter distribution of the particles changed. After five repetitions using 5 nm Au films, the diameter distribution separated into two size groups. Shift of wavelength-excited localized surface plasmon resonance is discussed relative to the diameter distribution. In the composite films, enhancement of Faraday rotation associated with surface plasmons was observed. With six repetitions, a maximum enhanced rotation of -1.2{sup 0} was obtained, which is 20 times larger than that of a single Bi : YIG film. The figures of merit for the composite films are discussed. The thickness of a Bi : YIG composite film working for enhanced Faraday rotation was examined using an ion milling method.

  10. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  11. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Science.gov (United States)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  12. Predicting the film and lens water volume between soil particles using particle size distribution data

    Science.gov (United States)

    Mohammadi, M. H.; Meskini-Vishkaee, F.

    2012-12-01

    SummaryWe develop four conceptual approaches to quantify the volume of water lenses between soil particles (ɛi) and adsorbed water films (δi) coating soil particles based on soil Particle Size Distribution (PSD) data. Method 1 is based on expression of the ɛi as matric suction independent pendular rings and method 2 is based on expression of the ɛi as function of matric suction. Methods 3 and 4 are based on the coupling of δi estimated with van der Waals and electrostatic forces, with ɛi estimated with methods 1 and 2 respectively. We show that the filling angle of the lens water is independent of surface tension but increases with the porosity. The four methods are applied to predict effects of ɛi and δi on Soil Moisture Characteristics (SMC) in eighty soil samples selected from UNSODA database. The total component of the ɛi in soil water content ranged from 0.0111 (L3 L-3) to 0.1604 (L3 L-3), with the average of 0.0703 (L3 L-3) for method 1 and from 0.0082 (L3 L-3) to 0.0523 (L3 L-3), with the average of 0.0237 (L3 L-3) for method 2. The component of δi is less than 0.0121 of each pore water content. Results showed that for methods 1 and 2, the component of the ɛi in the soil water content was partially relevant for the prediction of SMC, especially in dry range. Moreover, the accuracy of the method 1 was slightly greater than that of the method 2. We attribute the methods error to the roughness of soil particles, high surface energy content of clay particles and, to the simplified pore geometric concepts that does not effectively reflect the pore geometry. We conclude that the main advantage of the present approaches is developing two different methods for estimation of the volume of the lens water by using only the PSD data and bulk density which are measured easily.

  13. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chao [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Luo Fei [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Long Hua [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hu Shaoliu [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Bo [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Youqing [State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: lchwan@hust.edu.cn

    2005-06-15

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials.

  14. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid

    NARCIS (Netherlands)

    Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H.H.M.

    2008-01-01

    Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis

  15. Determination of the solvation film thickness of dispersed particles with the method of Einstein viscosity equation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The dispersion of a solid particle in a liquid may lead to the formation of solvation film onthe particle surface, which can strongly increase the repulsive force between particles and thus strongly affect the stability of dispersions. The solvation film thickness, which varies with the variation of the property of suspension particles and solutions, is one of the most important parameters of the solvation film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on the Einstein viscosity equation of dispersions, for determining the solvation film thickness of particles is developed. This method was tested on two kinds of silica spherical powders (namely M1 and M2) dispersed in ethyl alcohol, in water, and in a water-ethyl alcohol mixture (1:1 by volume) through measuring the relative viscosity of dispersions of the particles as a function of the volume fraction of the dry particles in the dispersion, and of the specific surface area and the density of the particles. The calculated solvation film thicknesses on M1 are 7.48, 18.65 and 23.74 nm in alcohol, water and the water-ethyl alcohol mixture, 12.41, 12.71 and 13.13 nm on M2 in alcohol, water and the water-ethyl alcohol mixture, respectively.

  16. Characterization of Solidified Gas Thin Film Targets via $\\alpha$ Particle Energy Loss

    CERN Document Server

    Fujiwara, M C; Beveridge, J L; Douglas, J L; Huber, T M; Jacot-Guillarmod, R; Kim, S K; Knowles, P E; Kunselman, A R; Maier, M; Marshall, G M; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Zmeskal, J

    1996-01-01

    A method is reported for measuring the thickness and uniformity of thin films of solidified gas targets. The energy of alpha particles traversing the film is measured and the energy loss is converted to thickness using the stopping power. The uniformity is determined by measuring the thickness at different positions with an array of sources. Monte Carlo simulations have been performed to study the film deposition mechanism. Thickness calibrations for a TRIUMF solid hydrogen target system are presented.

  17. Optical properties of multilayer bimetallic films obtained by laser deposition of colloidal particles

    Science.gov (United States)

    Antipov, A.; Arakelian, S.; Vartanyan, T.; Gerke, M.; Istratov, A.; Kutrovskaya, S.; Kucherik, A.; Osipov, A.

    2016-11-01

    The optical properties of multilayer bimetallic films composed of silver and gold nanoparticles have been investigated. The dependence of the transmission spectra of the films on their morphology is demonstrated. A finite-difference time-domain (FDTD) simulation has confirmed that there is a dependence of the transmission spectra on the average distance between particles and the number of deposited layers.

  18. Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2010-07-20

    To obtain evenly distributed pure Ag particles with a narrow size distribution on a polymer membrane, a novel activation procedure with an environmentally friendly, cost-effective method was utilized as a pretreatment before electroless Ag deposition. The pretreatment was first performed on an untreated membrane surface by collecting ultrafine ambient spark-generated Ag aerosol particles. After annealing, the electroless Ag film was fabricated on the collected aerosol particles in the Ag electroless bath. Experimental characterizations showed that the ultrafine Ag particles were uniformly anchored onto the membrane surface through pretreatment, resulting in a pure Ag film of closely packed particles with a narrow size distribution on the membrane, and the properties were comparable to those of an Ag film on wet Sn-Ag-activated membranes.

  19. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang; Li, Li; Li, Jing-Hong; Xu, Bo-Qing [Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2006-04-21

    Conducting polymer composite films comprised of polyaniline (PANI) and single wall carbon nanotubes (SWNT) was prepared by electrochemical codeposition during the electropolymerization in an aniline solution with suspending SWNT. The fabricated composite films are assessed with respect to their potential application as support materials in Pt electrocatalyst for electrochemical oxidation of methanol. The PANI/SWNT composite film incorporated with SWNT has a higher polymeric degree and lower defect density in PANI structure than PANI film. Furthermore, the incorporation of SWNT also leads to higher electrochemically accessible surface areas (S{sub a}), electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which make higher dispersion and utilization for deposited Pt. Therefore, the Pt particles electrodeposited on PANI/SWNT composite polymer film exhibits excellent catalytic activity and stability for the electrooxidation of methanol in comparison to Pt supported on PANI film, which reveals that the composite film is more promising for application in electrocatalyst as a support material. (author)

  20. Influence of Third Particle on the Tribological Behaviors of Diamond-like Carbon Films

    Science.gov (United States)

    Bai, Lichun; Srikanth, Narasimalu; Kang, Guozheng; Zhou, Kun

    2016-12-01

    Tribological mechanisms of diamond-like carbon (DLC) films in a sand-dust environment are commonly unclear due to the complicated three-body abrasion caused by sand particles. This study investigates the three-body abrasion of the DLC film via molecular dynamics simulations. The influence factors such as the load, velocity, shape of the particle and its size are considered. It has been found that the friction and wear of the DLC film are determined by adhesion at a small load but dominated by both adhesion and plowing at a large load. A high velocity can increase the friction of the DLC film but decrease its wear, due to the response of its networks to a high strain rate indicated by such velocity. The shape of the particle highly affects its movement mode and thus changes the friction and wear of the DLC film. It is found that a small-sized particle can increase the friction and wear of the DLC film by enhancing plowing. These unique tribological mechanisms of the DLC film can help to promote its wide applications in a sand-dust environment.

  1. ARTICLES: Dissipative Particle Dynamics Simulation of Microscopic Properties in Diblock Copolymer Films

    Science.gov (United States)

    Xu, Yi; Song, Xiao-yu; Zhang, Zhang; Wang, Yong; Chen, Jie; Zhu, Xian

    2010-06-01

    Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.

  2. Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films.

    Science.gov (United States)

    Meng, Junping; Liang, Jinsheng; Ou, Xiuqin; Ding, Yan; Liang, Guangchuan

    2008-03-01

    Titania composite thin films (T/TiO2) containing tourmaline particles were prepared by a sol-gel method, using alkoxide solutions as precursor. The tourmaline particles and thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and so on. The effects of tourmaline on the photocatalytic activity of TiO2 were measured with methyl orange as an objective photodegradation substance. The results showed that the photocatalytic degradation of methyl orange conformed to the first-order kinetic equation and the composite thin films had better photocatalytic activity due to the cooperation of polarity and the far infrared emission of tourmaline. The T/TiO2 thin films including 0.5 wt% tourmaline exhibited better photocatalytic activity when heat-treated at 250 degrees C for 3 h, than pure TiO2 thin films under the ultraviolet irradiation.

  3. EDR-2 (registered) film response to charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, M F [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354 (United States)], E-mail: MFMoyers@roadrunner.com

    2008-05-21

    A useful tool for verifying segmental or dynamic treatments with multiple multi-leaf collimator positions, spinning range modulator propellors or magnetically scanned beams would be a film with a linear dose response up to several hundred centiGray, as typical for delivered treatments. Kodak has released an extended range film (EDR-2) that may satisfy this desire. In this study, dose response curves were obtained for several electron, proton, carbon ion and iron ion beams of different energies to determine the utility of this film. (note)

  4. Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

    Directory of Open Access Journals (Sweden)

    Iryna Patsora

    2016-12-01

    Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.

  5. Experimental Investigations into the Use of Piezoelectric Film Transducers to Determine Particle Size through Impact Analysis

    OpenAIRE

    Coombes, James Robert; Yan, Yong

    2016-01-01

    Sensors are required to determine the particle size of granular materials in a variety of industries such as energy, chemical manufacturing and food processing. The importance of accurately monitoring the particle size is essential in quality control in these industrial sectors. This paper presents the use of a custom made piezoelectric PVDF film transducer that is capable of determining the particle size of granular material through impact analysis. Experiments were carried out using a purpo...

  6. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi [Department of Mechanical Systems Engineering, Yamagata Univ., Yonezawa, Yamagata (Japan)

    2000-11-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  7. Effect of temperature on the stability of diamond particles and continuous thin films by Raman imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, C. R.; Tiwari, Brajesh; Chandran, Maneesh; Bhattacharya, S. S.; Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Nano Functional Materials Technology Centre (India)

    2013-03-15

    The stability of diamond thin films grown by hot filament CVD (HFCVD) upon thermal treatment was studied using Raman imaging. By adapting two different surface pretreatments, continuous microcrystalline diamond (MCD) thin films (grain size: 100-400 nm; cross-sectional thickness: {approx}300 nm) as well as thin film with isolated and coalesced diamond particles (particle size: 400-600 nm; cross-sectional thickness: {approx}200-300 nm) were grown. The thermal stability of isolated diamond particles and continuous MCD films annealed in air at atmospheric pressure was analyzed by Raman imaging. For Raman imaging, Raman spectra were collected over an area of 85 Multiplication-Sign 85 {mu}m using 532 nm laser (Nd:YAG) before and after thermal treatment. It was observed that the isolated diamond particles were stable for 1 h at {approx}750 Degree-Sign C, whereas for the same annealing duration, continuous MCD films grown under the same HFCVD condition were completely oxidized at 700 Degree-Sign C. From these results and analysis, the reason for the higher oxidation rates in the case of MCD and nanocrystalline diamond films is discussed.

  8. Self-assembly of monolayer-thick alumina particle-epoxy composite films.

    Science.gov (United States)

    Jackson, Bryan R; Liu, Xiangyuan; McCandlish, Elizabeth F; Riman, Richard E

    2007-11-06

    Monolayer-thick composite films composed of alpha-alumina and Spurr's epoxy were prepared via a self-assembly process known as fluid forming. The process makes use of a high-spreading-tension fluid composed of volatile and nonvolatile components to propel particles across the air-water interface within a water bath. Continuous addition of the particle suspension builds a 2D particle film at the air-water interface. The spreading fluid compresses the film into a densely packed array against a submerged substrate. The assembled monolayer is deposited onto the substrate by removing the substrate from the bath. A dispersion containing a narrow size distribution, 10 microm alpha-alumina particles, light mineral oil, and 2-propanol was spread at the air-water interface and the alumina particles were assembled into densely packed arrays with an aerial packing fraction (APF) of 0.88. However, when mineral oil was replaced by Spurr's epoxy nonuniform films with low packing density resulted. It was found that replacing 2-propanol with a mixture of 2-propanol and 1-butanol with a volume ratio of 4:1 produced uniform, densely packed alumina/epoxy composite films. The role of the solvent mixture will be discussed.

  9. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    -containing intermetallic particles incorporated into the anodic oxide films on industrially pure aluminium (AA1050, 99.5 per cent) has been investigated. AA1050 aluminium was anodized in a 100?ml/l sulphuric acid bath with an applied voltage of 14?V at 20°C ±2°C for 10 or 120?min. The anodic film subsequently was analyzed...

  10. Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; FENG Yan-wen; DING Yan

    2006-01-01

    The novel composite films containing clustered TiO2 particles and fine tourmaline particles on the surface of copper webs were prepared by the sol-gel method. The microstructures of the composite films were investigated by scanning electron microscopy (SEM),and the photocatalytic activity of the films was evaluated by photocatalytic degradation of methyl orange,respectively. The results indicate that tourmaline particles can obviously influence the microstructures of TiO2 films and enhance the photocatalytic activity due to their spontaneous permanent polarity and high radiotechnology of far infrared. During preparing the composite films,the clustered TiO2 particles with lots of nano-sized ladder layers can grow on the surface of fine tourmaline particles,the thickness of ladder layer is 10 nm,and the average diameter of nano-sized TiO2 particles is 15 nm.

  11. Repellency of a kaolin particle film to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae), on tomato under laboratory and field conditions.

    Science.gov (United States)

    Peng, Linian; Trumble, John T; Munyaneza, Joseph E; Liu, Tong-Xian

    2011-07-01

    The potato psyllid, Bactericera cockerelli, is a vector of Candidatus Liberibacter solanacearum, causing several diseases in solanaceous crops. Laboratory and field no-choice and choice experiments were conducted to evaluate the repellency of kaolin particle film on adults of B. cockerelli on tomato plants that had been sprayed with kaolin particle film on the upper surface only, on the lower surface only and on both leaf surfaces. In no-choice tests in the laboratory, the numbers of adults on leaves were not different between the kaolin particle film and the water control, regardless of which leaf surface(s) were treated, but numbers of eggs were lower on the leaves treated with kaolin particle film than on those treated with water. In choice tests on plants treated with water/plants treated with kaolin particle film at ratios of 1:1, 6:3 or 8:1, fewer adults and eggs were found on the leaves treated with kaolin particle film than on leaves treated with water. Under field conditions, in caged no-choice or choice tests, fewer adults, eggs and nymphs were found on plants treated with kaolin particle film than on plants treated with water. In an uncaged test under field conditions, plants sprayed with kaolin particle film had fewer psyllids than those sprayed with water. Even though potato psyllid adults could land on plants treated with kaolin particle film when no choice was given, fewer eggs were laid. When given a choice, the psyllids avoided plants treated with kaolin particle film under laboratory and field conditions. Kaolin particle film treatment may be a useful alternative for management of potato psyllids under field conditions. Copyright © 2011 Society of Chemical Industry.

  12. Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles

    Science.gov (United States)

    Richardson, Joseph J.; Björnmalm, Mattias; Gunawan, Sylvia T.; Guo, Junling; LiangPresent Address: Csiro Process Science; Engineering, Clayton, Victoria 3168, Australia, Kang; Tardy, Blaise; SekiguchiPresent Address: Graduate School Of Chemical Sciences; Engineering, Hokkaido University, Sapporo, Japan, Shota; Noi, Ka Fung; Cui, Jiwei; EjimaPresent Address: Institute Of Industrial Science, The University Of Tokyo, Tokyo, Japan, Hirotaka; Caruso, Frank

    2014-10-01

    We report the preparation of polymer particles via convective polymer assembly (CPA). Convection is used to move polymer solutions and cargo through an agarose gel that contains immobilized template particles. This method both coats and washes the particles in a process that is amenable to automation, and does not depend on passive diffusion or electrical currents, thus facilitating incorporation of fragile and nanoscale objects, such as liposomes and gold nanoparticles, into the thin polymer films. Template dissolution leads to the formation of stable polymer particles and capsules.We report the preparation of polymer particles via convective polymer assembly (CPA). Convection is used to move polymer solutions and cargo through an agarose gel that contains immobilized template particles. This method both coats and washes the particles in a process that is amenable to automation, and does not depend on passive diffusion or electrical currents, thus facilitating incorporation of fragile and nanoscale objects, such as liposomes and gold nanoparticles, into the thin polymer films. Template dissolution leads to the formation of stable polymer particles and capsules. Electronic supplementary information (ESI) available: Detailed experimental/instrumental information and supporting figures. See DOI: 10.1039/c4nr04348k

  13. Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films.

    Science.gov (United States)

    Pérez-Gago, M B; Krochta, J M

    2001-02-01

    Lipid particle size effects on water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI)/beeswax (BW) emulsion films were investigated. Emulsion films containing 20 and 60% BW (dry basis) and mean lipid particle sizes ranging from 0.5 to 2.0 microm were prepared. BW particle size effects on WVP and mechanical properties were observed only in films containing 60% BW. WVP of these films decreased as lipid particle size decreased. As drying temperature increased, film WVPs decreased significantly. Meanwhile, tensile strength and elongation increased as BW particle size decreased. However, for 20% BW emulsion films, properties were not affected by lipid particle size. Results suggest that increased protein-lipid interactions at the BW particle interfaces, as particle size decreased and resulting interfacial area increased, result in stronger films with lower WVPs. Observing this effect depends on a large lipid content within the protein matrix. At low lipid content, the effect of interactions at the protein-lipid interfaces is not observed, due to the presence of large protein-matrix regions of the film without lipid, which are not influenced by protein-lipid interactions.

  14. Rapid fitting of particle cascade development data from X-ray film densitometry measurements

    Science.gov (United States)

    Roberts, E.; Benson, Carl M.; Fountain, Walter F.

    1989-01-01

    A semiautomatic method of fitting transition curves to X-ray film optical density measurements of electromagnetic particle cascades is described. Several hundred singly and multiple interacting cosmic ray events from the JACEE 8 balloon flights were analyzed using this procedure. In addition to greatly increased speed compared to the previous manual method, the semiautomatic method offers increased accuracy through maximum likelihood fitting.

  15. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities

    NARCIS (Netherlands)

    Marko, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H.M.

    2010-01-01

    The effects of multiple applications of hydrophobic kaolin particle film on apple orchard bug (Heteroptera), beetle (Coleoptera) and spider (Araneae) assemblages were studied in the Netherlands. Insecticide-free orchard plots served as a control. The kaolin applications significantly reduced the abu

  16. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities

    NARCIS (Netherlands)

    Marko, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H.M.

    2010-01-01

    The effects of multiple applications of hydrophobic kaolin particle film on apple orchard bug (Heteroptera), beetle (Coleoptera) and spider (Araneae) assemblages were studied in the Netherlands. Insecticide-free orchard plots served as a control. The kaolin applications significantly reduced the abu

  17. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities

    NARCIS (Netherlands)

    Marko, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H.M.

    2010-01-01

    The effects of multiple applications of hydrophobic kaolin particle film on apple orchard bug (Heteroptera), beetle (Coleoptera) and spider (Araneae) assemblages were studied in the Netherlands. Insecticide-free orchard plots served as a control. The kaolin applications significantly reduced the

  18. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  19. Screening of Particle Fever film and Comedy Night

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    This documentary brings to life the start-up of the world’s most powerful particle accelerator, the LHC, and the two-year-long global effort that led to the discovery of the Higgs boson. The screening will be followed by a discussion with director Mark Levinson, editor Walter Munch and the scientists featured in the documentary. The second part of the evening will see scientists take to the stage as comedians for the Comedy Night.

  20. Submicron writing by laser irradiation on metal nano-particle dispersed films toward flexible electronics

    Science.gov (United States)

    Watanabe, Akira; Aminuzzaman, Mohammod; Miyashita, Tokuji

    2009-02-01

    The requirement for microwiring technology by a wet process has significantly increased recently toward the achievement of printable and flexible electronics. We have developed the metal microwiring with a resolution higher than 1 μm by the laser direct writing technique using Ag and Cu nano-particle-dispersed films as precursors. The technique was applied to the microwiring on a flexible and transparent polymer film. The metallization is caused in a micro-region by focused laser beam, which reduces the thermal damage of the flexible polymer substrate during the metallization process. The laser direct writing technique is based on the efficient and fast conversion of photon energy to thermal energy by direct excitation of the plasmon absorption of a metal nano-particle, which provides Cu microwiring with a low resistivity owing to the inhibition of the surface oxidation of the Cu nano-particle.

  1. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  2. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  3. Polarized polymer films as electronic pulse detectors of cosmic dust particles

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1985-01-01

    A new type of dust particle detector has been developed which consists of a polarized film of polyvinylidene fluoride (PVDF) having conducting electrons on its surface and operating with no bias voltage. Here, the response characteristics of PVDF detectors with areas in the range 4-150 sq cm and thickness in the range 2-28 microns to iron particles accelerated to velocities in the range 1-12 km/s are reported. The discussion also covers the mechanism of detection, fast pulse response, noise characteristics, and the dependence of the detector signal amplitude on particle mass and velocity. The detectors exhibit long-term stability and can be operated for extended periods of time over the temperature range -50 to +50 C; their response to dust particle impacts is unaffected by high background fluxes of charged particles.

  4. Theory for particle settling and shear-induced migration in thin-film liquid flow.

    Science.gov (United States)

    Cook, Benjamin P

    2008-10-01

    Particles suspended in a film flow can either settle out of the flow, remain well mixed, or even advance faster than the fluid, accumulating at the moving contact line. Recent experiments by Zhou et al. [Phys. Rev. Lett. 94, 117803 (2005)] have demonstrated that these three settling behaviors can be achieved by control of the average particle concentration phi and inclination angle theta . This work presents a theory for determining the settling behavior in the Stokes regime by calculating the depth profile of phi and the depth-averaged velocities of the liquid and particle phases. It is found that shear-induced particle fluxes can lead to an inversely stratified flow, in which the particles move on average faster than the liquid. The theory is directly compared to Zhou et al.'s experimental data, and the implications of stratification for lubrication-type models are also discussed.

  5. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  6. Elastic Properties of Natural Sea Surface Films Incorporated with Solid Dust Particles: Model Baltic Sea Studies

    Directory of Open Access Journals (Sweden)

    Adriana Z. Mazurek

    2012-01-01

    Full Text Available Floating dust-originated solid particles at air-water interfaces will interact with one another and disturb the smoothness of such a composite surface affecting its dilational elasticity. To quantify the effect, surface pressure (Π versus film area (A isotherm, and stress-relaxation (Π-time measurements were performed for monoparticulate layers of the model hydrophobic material (of μm-diameter and differentiated hydrophobicity corresponding to the water contact angles (CA ranging from 60 to 140° deposited at surfaces of surfactant-containing original seawater and were studied with a Langmuir trough system. The composite surface dilational modulus predicted from the theoretical approach, in which natural dust load signatures (particle number flux, daily deposition rate, and diameter spectra originated from in situ field studies performed along Baltic Sea near-shore line stations, agreed well with the direct experimentally derived data. The presence of seawater surfactants affected wettability of the solid material which was evaluated with different CA techniques applicable to powdered samples. Surface energetics of the particle-subphase interactions was expressed in terms of the particle removal energy, contact cross-sectional areas, collapse energies, and so forth. The hydrophobic particles incorporation at a sea surface film structure increased the elasticity modulus by a factor K (1.29–1.58. The particle-covered seawater revealed a viscoelastic behavior with the characteristic relaxation times ranging from 2.6 to 68.5 sec.

  7. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    Science.gov (United States)

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-01

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher

  8. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: avilarod@uwalumni.com; Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada)

    2009-11-15

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8 MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  9. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    Science.gov (United States)

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  10. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  11. Rhodium particles supported by thin vanadia films as model systems for catalysis: An electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S. [Institut fuer Physikalische Chemie, Universitaet Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Wang, D. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, D-14195 Berlin (Germany); Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, D-14195 Berlin (Germany); Hayek, K. [Institut fuer Physikalische Chemie, Universitaet Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)]. E-mail: konrad.hayek@uibk.ac.at

    2005-07-22

    Well-shaped Rh particles grown epitaxially on NaCl surfaces were coated with a 25 nm layer of crystalline vanadium oxide by reactive deposition in 10{sup -4} mbar oxygen. The Rh/VO{sub x} film was subjected to consecutive heat treatments in 1 bar oxygen and in 1 bar hydrogen up to 673 K. The structural and morphological changes were monitored by (high-resolution) transmission electron microscopy, selected area electron diffraction and electron energy-loss spectroscopy and compared to the alterations of a bare vanadium oxide film treated under equal conditions. The stoichiometry and structure of the VO{sub x} support depend on the temperature of the NaCl template and on the deposition rate. Low deposition rates and high substrate temperatures favour the generation of a pure V{sub 2}O{sub 3} phase, with both V{sub 2}O{sub 3} and the Rh particles in epitaxial relation to NaCl (001). A treatment in 1 bar O{sub 2} between 300 and 573 K converts the supporting oxide into mixed V{sub 2}O{sub 3}, VO{sub 2} and V{sub 2}O{sub 5} phases. Oxidation at 673 K induces a complete reconstruction into a single V{sub 2}O{sub 5} phase, while an oxygen treatment at 723 K transforms also the Rh particles into ({beta})Rh{sub 2}O{sub 3}. Reduction of the bare V{sub 2}O{sub 5} film in 1 bar hydrogen yields cubic VO at 673 K, but reduction of the Rh/V{sub 2}O{sub 5} film leads to VO formation already at 473 K. Finally, a reduction of vanadia-supported Rh particles at and above 573 K results in the formation of Rh/V alloy structures.

  12. Colloidal interactions between Langmuir-Blodgett bitumen films and fine solid particles.

    Science.gov (United States)

    Long, Jun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob H

    2006-10-10

    In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.

  13. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    Science.gov (United States)

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here.

  14. Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect.

    Science.gov (United States)

    Idrovo Encalada, Alondra M; Basanta, Maria F; Fissore, Eliana N; De'Nobili, Maria D; Rojas, Ana M

    2016-01-20

    The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and phenolics co-extracted with polysaccharides (80%), rich in pectins (15%). CF showed antioxidant activity and produced homogeneous calcium-LMP-based composites. The 53-μm-CF showed the lowest hydration capability and produced the least elastic and deformable composite film due probably to CF bridged by calcium-crosslinked LMP chains. Antioxidant activity associated to the loaded CF was found in composites. When L-(+)-ascorbic acid (AA) was also loaded, its hydrolytic stability increased with the decrease in CF-particle size, showing the lowest stability in the 0%-CF- and 210 μm-CF-LMP films. Below ≈ 250 μm, the particle size determined the hydration properties of pectin-containing CF, affecting the microstructure and water mobility in composites.

  15. Incorporation of ovalbumin into ISCOMs and related colloidal particles prepared by the lipid film hydration method.

    Science.gov (United States)

    Demana, Patrick H; Davies, Nigel M; Berger, Bianca; Rades, Thomas

    2004-07-08

    The aim of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems.

  16. Direct solvent induced microphase separation, ordering and nano-particles infusion of block copolymer thin films

    Science.gov (United States)

    Modi, Arvind; Sharma, Ashutosh; Karim, Alamgir

    2013-03-01

    Kinetics of block copolymer (BCP) microphase separation by thermal annealing is often a challenge to low-cost and faster fabrication of devices because of the slow ordering. Towards the objective of rapid processing and accessing desired nanostructures, we are developing methods that enable a high degree of mobility of BCP phases while maintaining phase separation conditions via control of effective interaction parameter between the blocks in BCP thin films. We study the self-assembly of PS-P2VP thin films in various solvent mixtures. While non-solvent prevents dissolution of film into the bulk solution, the good solvent penetrates the film and makes polymer chains mobile. As a result of controlled swelling and mobility of BCP blocks, solvent annealing of pre-cast BCP thin films in liquid mixture of good solvent and non-solvent is a promising method for rapid patterning of nanostructures. Interestingly, we demonstrate simultaneous BCP microphase separation and infusion of gold nano-particles into selective phase offering a wide range of application from plasmonics to nanoelectronics. University of Akron Research Foundation (UARF)

  17. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Maekawa, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hasumura, Takashi [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Rantonen, Nyrki [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Ishii, Koji [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Nakajima, Yoshikata [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Yoshida, Yoshikazu [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Whitby, Raymond [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom); Mikhalovsky, Sergey [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2007-09-15

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO{sub 2}), the critical temperature and pressure of which are 31.0{sup 0}C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO{sub 2} is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO{sub 2} during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  18. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Science.gov (United States)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-09-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO2), the critical temperature and pressure of which are 31.0°C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  19. FePt films on self-assembled SiO2 particle arrays

    Science.gov (United States)

    Makarov, D.; Brombacher, C.; Liscio, F.; Maret, M.; Parlinska, M.; Meier, S.; Kappenberger, P.; Albrecht, M.

    2008-03-01

    Chemically L10 ordered (001) textured FePt thin films with perpendicular magnetic anisotropy can be grown on amorphous planar SiO2 substrate with an underlayer stack of [Pt (3nm )/Cr (50nm)] adopting a [002] orientation when deposited at 350°C. This knowledge of optimum layer stack was transferred to self-assembled SiO2 particle arrays. While 330nm SiO2 particle arrays reveal perpendicular magnetic anisotropy with a remanence of almost one and a coercivity of 370mT, on 160nm particles, the FePt caps show a (111) texturing, leading to the random orientation of the easy axis of the magnetization.

  20. Degradable polymeric nano-films and particles as delivery platforms for vaccines and immunotherapeutics

    Science.gov (United States)

    Su, Xingfang

    Degradable polymeric materials provide opportunities for the development of improved vaccines and immunotherapies by acting as platforms that facilitate the delivery of molecules to appropriate tissue and cellular locations to achieve therapeutic outcomes. To this end, we have designed and characterized nano-films and particles employing a hydrolytically degradable polymer for the delivery of vaccine antigens and immunotherapeutics. We first describe protein- and oligonucleotide-loaded layer-by-layer (LbL)-assembled multilayer thin films constructed based on electrostatic interactions between a cationic poly(beta-amino ester) (PBAE, denoted Poly-1) with a model protein antigen, ovalbumin (OVA), and/or immunostimulatory CpG oligonucleotides for transcutaneous delivery. Linear growth of nanoscale Poly-I/OVA bilayers was observed. Dried OVA protein-loaded films rapidly deconstructed when rehydrated in saline solutions, releasing OVA as non-aggregated/non-degraded protein, suggesting that the structure of biomolecules integrated into these multilayer films are preserved during release. Using confocal fluorescence microscopy and an in vivo murine ear skin model, we demonstrated delivery of OVA from LbL films into barrier-disrupted skin, uptake of the protein by skin-resident antigen-presenting cells (Langerhans cells), and transport of the antigen to the skin-draining lymph nodes. Dual incorporation of OVA and CpG oligonucleotides into the nanolayers of LbL films enabled dual release of the antigen and adjuvant with distinct kinetics for each component; OVA was rapidly released while CpG was released in a relatively sustained manner. Applied as skin patches, these films delivered OVA and CpG to Langerhans Cells in the skin. To our knowledge, this is the first demonstration of LbL films applied for the delivery of biomolecules into skin. This approach provides a new route for storage of vaccines and other immunotherapeutics in a solid-state thin film for subsequent

  1. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly

    2017-07-03

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumed that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.

  2. Preparation of Nano-Particles (Pb,La)TiO3 Thin Films by Liquid Source Misted Chemical Deposition

    Institute of Scientific and Technical Information of China (English)

    张之圣; 曾建平; 李小图

    2004-01-01

    Nano-particles lanthanum-modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at various temperature. XRD and SEM show that the prepared films have good crystallization behavior and perovskite structure. The crystallite is about 60 nm. The deposition speed is 3 nm/min. This deposition method can exactly control stoichiometry ratios, doping concentration ratio and thickness of PLT thin films. The best annealing process is to bake at 300 ℃ for 10 min and anneal at 600 ℃ for 1 h.

  3. Electric filed induced self-assembly of monolayers of sub-micron sized particles on flexible thin films

    Science.gov (United States)

    Shah, K.; Hossain, M.; Janjua, M.; Aubry, N.; Fischer, I. S.; Singh, P.

    2013-11-01

    We present a technique that uses an electric field in the direction normal to the interface for self-assembling particle monolayers of sub-micron sized particles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.

  4. Simulation Investigation on Particle Transmission Characteristics of Two Different Ion Barrier Films

    Institute of Scientific and Technical Information of China (English)

    LI Ye; FU Shen-cheng; XIANG Rong; WANG Guo-zheng; DUANMU Qing-duo; TIAN Jing-quan

    2008-01-01

    The simulation calculation and analysis of electron transmittance and ion stopping power for ion barrier films (IBFs) of AI2O3 and SiO2 are performed by Monte Carlo methods. The interaction model between particles and solids are described. It is found that at the same conditions, the electron transmittance for SiOz IBF is relatively higher than that of A12O3 IBF, and the ion stopping power of SiO2 IBF is relatively lower than that of A1203 by Monte Carlo simulations. It is also indicated that SiO2 is one of the ideal materials for fabricating IBFs.

  5. Potential of Thin Films for use in Charged Particle Tracking Detectors

    CERN Document Server

    Metcalfe, J; Murphy, J; Quevedo, M; Smith, L; Alvarado, J; Gnade, B; Takai, H

    2014-01-01

    Thin Film technology has widespread applications in everyday electronics, notably Liquid Crystal Display screens, solar cells, and organic light emitting diodes. We explore the potential of this technology as charged particle radiation tracking detectors for use in High Energy Physics experiments such as those at the Large Hadron Collider or the Relativistic Heavy Ion Collider. Through modern fabrication techniques, a host of semiconductor materials are available to construct thin, flexible detectors with integrated electronics with pixel sizes on the order of a few microns. We review the material properties of promising candidates, discuss the potential benefits and challenges associated with this technology, and review previously demonstrated applicability as a neutron detector.

  6. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  7. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications. PMID:27014504

  8. Parallel nanostructuring of GeSbTe film with particle mask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.B.; Hong, M.H.; Wang, Q.F.; Chong, T.C. [Data Storage Institute, DSI Building, 5 Engineering Drive 1, 117608, Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 119260, Singapore (Singapore); Luk' yanchuk, B.S.; Huang, S.M.; Shi, L.P. [Data Storage Institute, DSI Building, 5 Engineering Drive 1, 117608, Singapore (Singapore)

    2004-09-01

    Parallel nanostructuring of a GeSbTe film may significantly improve the recording performance in data storage. In this paper, a method that permits direct and massively parallel nanopatterning of the substrate surface by laser irradiation is investigated. Polystyrene spherical particles were deposited on the surface in a monolayer array by self-assembly. The array was then irradiated with a 248-nm KrF laser. A sub-micron nanodent array can be obtained after single-pulse irradiation. These nanodents change their shapes at different laser energies. The optical near-field distribution around the particles was calculated according to the exact solution of the light-scattering problem. The influence of the presence of the substrate on the optical near field was also studied. The mechanisms for the generation of the nanodent structures are discussed. (orig.)

  9. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Benpeng, E-mail: benpengzhu@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiong; Yang, Xiaofei [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk [Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089-1111 (United States); Wang, Tian; Xiong, Ke [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Shiiba, Michihisa; Takeuchi, Shinichi [Medical Engineering Course, Graduate School of Engineering, Toin University of Yokohama, Yokohama 225-8501 (Japan)

    2016-03-15

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d{sub 33} = 270 pC/N and k{sub t} = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  10. Optical and electrical characterization of tin(II) 2,3-naphthalocyanine thin films containing agglomerated spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Panicker, Nisha S. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India); Gopinathan, T.G. [KE College, Mannanam, Kottayam, Kerala (India); Dhanya, I. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India); Menon, C.S., E-mail: prof.menoncs@gmail.co [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560 (India)

    2010-11-01

    Vacuum deposited tin(II)2,3-naphthalocyanine (SnNc) crystalline thin films were produced. The structural properties of the thin films were characterized using Fourier transform infrared spectroscopy (FTIR), which reveals traces of organic compounds within the as-deposited films. Surface morphological studies by scanning electron microscopy (SEM) were done and the films were found to be grainy in nature, comprising of small agglomerated spherical particles. Heat treatment decreased the optical band gap of the films due to the dependence of dilatation of the lattice and/or electron-lattice interaction. The electrical conductivity of the films at various heat treated stages shows that SnNc has a better conductivity by 10-50 times that of its earlier reported phthalocyanine counterpart and the activation energy was found to increase with annealing temperature.

  11. Influence of heat treatment temperature on bonding and oxidation resistance of diamond particles coated with TiO2 film

    Indian Academy of Sciences (India)

    Xiao-Pan Liu; Dong-Dong Song; Long Wan; Xian-Bing Pang; Zheng Li

    2015-09-01

    In this paper, TiO2 films were coated on the surface of diamond particles using a sol–gel method. The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric–differential scanning calorimetry and compressive strength test. The results showed that when the temperature reached 600°C, the amorphous TiO2 on the diamond particles surface exhibited as a dense anatase film and the Ti–O–C bond formed between TiO2 and the diamond substrates. When temperature reached 800°C, TiO2 films were still in anatase phase and part of the diamond carbon began to graphitize. The graphitizated carbon can also form the Ti–O–C bond with TiO2 film, although TiO2 film would tend to crack in this condition. Meanwhile, the temperature had a serious influence on the oxidation resistance of diamond particles coated with TiO2 films in air. When the heat treatment temperature reached 600°C, the initial oxidation temperature of the coated diamond particles reached the maximum value of 754°C. When the diamond particles were oxidized at 800°C for 0.5 h in air, the weight loss rate reached the minimum value of 6.7 wt% and the compressive strength reached the maximum value of 15.7 N.

  12. Novel sintering behavior of polystyrene nano-latex particles in filming process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Filming process of polystyrene nano-latex (NPS) particles was studied by a combination of various methods. For a constant annealing time of 1 h, the AFM images showed that the deformation and sintering temperatures for NPS particles were ca. 90℃ and 100℃ respectively. In spin-lattice relaxation measurements of solid state NMR, it is found that T1L, T1S and I1L/I0 increased significantly after annealing at 90℃ and above. DSC results showed that there was an exothermic peak near Tg after annealing for 1 h at the selected temperatures below 95℃; otherwise, the exothermic peak disappeared after annealing at 100℃ or above. The apparent density of NPS increased suddenly in the tempera-ture range. The results implied that the macromolecules in NPS particles are in a confined state with higher conforma-tional energy and less cohensional interactions which are the drive force for the sintering at a lower temperature com-pared with the multichain PS particles and the bulk polymer.

  13. Characterisation of poly(methyl methacrylate) film deposited on iron powder particles by electropolymerization

    Science.gov (United States)

    Oriňák, Andrej; Oriňáková, Renáta; Heile, Andreas; Talian, Ivan; Terhorst, Markus; Arlinghaus, Heinrich F.

    2007-09-01

    Iron powder microparticles were coated with a poly(methyl methacrylate) (PMMA) film by electropolymerization in a fluidised bed reactor. The formation of a PMMA coating on the microparticles' surface was studied with pyrolysis gas chromatography (Py-GC) fingerprinting as well as time-of-flight secondary ion mass spectrometry (TOF-SIMS). While Py-GC can provide information about PMMA bulk formation and quick information about PMMA deposition on iron microparticles, TOF-SIMS can give detailed information about particle surface PMMA coatings. A TOF-SIMS study was performed in both, positive and negative ion modes with Bi + and Bi3+ primary ions. Static TOF-SIMS macroscans of powder microparticle surface resulted in the identification of the regions with species related to the PMMA fragments in the negative ion region (Bi3+). TOF-SIMS results confirmed that PMMA coating on the iron powder microparticle surface formed an incoherent and inhomogeneous film. PMMA coating was somewhere very thin to supply a sufficient positive charged secondary ion signal. Plating of metallic powder particles by polymeric coating enables the modification of surface and structural properties of materials used in powder metallurgy. PMMA coated iron powder microparticles can be innovative as lubricants in such a way that, when they are subjected to pressure, they burst and release carbon to metal powder. The main aim of this research work is to characterise PMMA coatings deposited by electropolymerization on the surface of iron powder microparticles.

  14. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  15. Development of a model to describe organic films on aerosol particles and cloud droplets. Final report; Entwicklung eines Modells zur Beschreibung organischer Filme auf Aerosolteilchen und Wolkentropfen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Forkel, R. (ed.); Seidl, W.

    2000-12-01

    Organic substances with polar groups are enriched on water surfaces and can form monomolecular surface films which can reduce the surface tension. A new model to describe surface films is presented, which describes in detail the film forming properties of fatty acids with up to 22 carbon atoms. The model is applied to measured concentrations of fatty acids (from the literature) in rain water and on aerosol particles and cloud droplets. An investigation of the sources of fatty acids has shown, that abrasion of the wax layer on leaves and needles is the main sources for surface film material in the western USA. Anthropogenic sources in urban areas are meat preparation and cigarette smoke. The agreement between model results and measurements when the model was applied to rain water confirms the original assumption that fatty acids are a main compound of surface films in rain water. For humid aerosol particles the application of the model on measured concentrations of fatty acids only showed strongly diluted films. Only for remote forest areas in western USA concentrated films were found, with the surface tension reduced by 20 to 30%. On cloud droplets the surface films is still more diluted than on aerosol particles. For all investigated cases the films was too much diluted to have an effect on the activation process of cloud droplets. (orig.) [German] Organische Substanzen mit polaren Gruppen reichern sich an der Wasseroberflaeche an und koennen monomolekulare Oberflaechenfilme bilden, die zu einer Verringerung der Oberflaechenspannung fuehren. Es wird ein neues Modell zur Beschreibung eines Oberflaechenfilms beschrieben, das detailliert die filmbildenden Eigenschaften der Fettsaeuren mit bis zu 22 Kohlenstoffatomen erfasst. Dieses Modell ist auf gemessene Konzentrationen von Fettsaeuren (Literaturdaten) in Regenwasser und auf atmosphaerischen Aerosolteilchen und Wolkentropfen angewandt worden. Eine Betrachtung der Quellen der Fettsaeuren zeigte, dass der Abrieb der

  16. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of); Yoo, Suk Jae; Lee, Bonju [National Fusion Research Institute, 52, Yuseong-Gu, Deajeon, 305-333 (Korea, Republic of); Hong, MunPyo, E-mail: goodmoon@korea.ac.kr [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of)

    2011-08-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  17. Surface scanning inspection system particle detection dependence on aluminum film morphology

    Science.gov (United States)

    Prater, Walter; Tran, Natalie; McGarvey, Steve

    2012-03-01

    Physical vapor deposition (PVD) aluminum films present unique challenges when detecting particulate defects with a Surface Scanning Inspection System (SSIS). Aluminum (Al) films 4500Å thick were deposited on 300mm particle grade bare Si wafers at two temperatures using a Novellus Systems INOVA® NExT,.. Film surface roughness and morphology measurements were performed using a Veeco Vx310® atomic force microscope (AFM). AFM characterization found the high deposition temperature (TD) Al roughness (Root Mean Square 16.5 nm) to be five-times rougher than the low-TD Al roughness (rms 3.7 nm). High-TD Al had grooves at the grain boundaries that were measured to be 20 to 80 nm deep. Scanning electron microscopy (SEM) examination, with a Hitachi RS6000 defect review SEM, confirmed the presence of pronounced grain grooves. SEM images established that the low-TD filmed wafers have fine grains (0.1 to 0.3 um diameter) and the high-TD film wafers have fifty-times larger equiaxed plateletshape grains (5 to 15 um diameter). Calibrated Poly-Styrene Latex (PSL) spheres ranging in size from 90 nm to 1 μm were deposited in circular patterns on the wafers using an aerosol deposition chamber. PSL sphere depositions at each spot were controlled to yield 2000 to 5000 counts. A Hitachi LS9100® dark field full wafer SSIS was used to experimentally determine the relationship of the PSL sphere scattered light intensity with S-polarized light, a measure of scattering cross-section, with respect to the calibrated PSL sphere diameter. Comparison of the SSIS scattered light versus PSL spot size calibration curves shows two distinct differences. Scattering cross-section (intensity) of the PSL spheres increased on the low-TD Al film with smooth surface roughness and the low-TD Al film defect detection sensitivity was 126 nm compared to 200 nm for the rougher high- TD Al film. This can be explained by the higher signal to noise attributed to the smooth low-TD Al. Dark field defect detection on

  18. Cu and Cu{sub 2}O films with semi-spherical particles grown by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo, E-mail: yskang@sogang.ac.kr

    2012-12-01

    Cu and Cu{sub 2}O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO{sub 3}){sub 2} and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH {>=} 7, the pure Cu{sub 2}O films can be deposited. Especially, at pH = 11, the deposited Cu{sub 2}O films exhibited cubic surface morphology exposing mainly {l_brace}100{r_brace} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: Black-Right-Pointing-Pointer Cu and Cu{sub 2}O films were prepared by facile electrodeposition. Black-Right-Pointing-Pointer Electrodeposition was preformed in electrolyte at different pH values. Black-Right-Pointing-Pointer Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. Black-Right-Pointing-Pointer Semi-spherical Cu{sub 2}O films were obtained with solution at 11 pH and stirred for 2 weeks. Black-Right-Pointing-Pointer The possible growth mechanism of semi-spherical Cu{sub 2}O films was discussed.

  19. Investigation on Behavior of Macro-Particles in TiN Film by Arc Ion Plating.

    Science.gov (United States)

    Lang, W C; Gao, B; Du, H; Xiao, J O; Li, M X; Wang, X H

    2015-09-01

    Macroparticle contamination deteriorates the qualities and performances of protective coatings by arc ion plating, resulting in a limitation in their applications. In this work, the effects of transverse magnetic field (TMF), pulsed bias, gas pressure, and substrate position on behavior of the macro-particles (MPs) in TiN films are quantitatively investigated. It is demonstrated that the key factor of the deposition process on the MPs behavior is magnetic field, which controls the movement of arc spot significantly. At relatively low magnetic field intensity, the MPs behavior is greatly influenced by the other three process parameters. The sensibilities of the three parameters on MPs behavior are decreased with the increasing magnetic field intensity. At high magnetic field intensity, the MPs distribution keeps almost the same even when the other parameters are varied.

  20. Formation of stable submicron peptide or protein particles by thin film freezing

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Keith P.; Engstrom, Joshua; Williams, III, Robert O.

    2017-04-18

    The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm.sup.-1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30.degree. C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm.sup.-1.

  1. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers.

    Science.gov (United States)

    Alvarez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Tejero, Rubén; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2016-04-01

    New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.

  2. A method for sizing submicrometer particles in air collected on formvar films and imaged by scanning electron microscope

    Directory of Open Access Journals (Sweden)

    E. Hamacher-Barth

    2013-06-01

    Full Text Available Here we present a method to systematically investigate single aerosol particles collected on formvar film supported by a copper grid, with Scanning Electron Microscopy (SEM operating at low accelerating voltage. The method enabled us to observe the surface of the sample grid at high resolution. Subsequent processing of the images with digital image analysis provided a statistically and quantitative size resolved information on the particle population including their morphology on the film. The quality of the presented method was established using polystyrene nanospheres as standards in the size range expected for ambient aerosol particles over remote marine areas (20–900 nm in diameter. The sizing was found to be critically dependent on the contrasting properties of the particles towards the collection substrate. The relative standard deviation of the diameters of polystyrene nanospheres was better than 10% for sizes larger than 40 nm and 18% for 21 nm particles compared with the manufacturer's certificate. The size distributions derived from the microscope images of airborne aerosols collected during a research expedition to north of 80° N in the summer of 2008 were compared with simultaneously collected number particle size distributions seen by a Twin Differential Mobility Particle Sizer. We captured a representative fraction of the aerosol particles with SEM and were able to causally relate the determined morphological properties of the aerosol under investigation to aerosol transformation processes in air being advected from the marginal ice edge/open sea south of 80° N.

  3. Repellency of a kaolin particle film to potato payllid, Bactericera cockerelli (Hemiptera: Psyllidae) on tomato under laboratory and field conditions

    Science.gov (United States)

    The potato psyllid, Bactericera cockerelli, is a vector of “Candidatus Liberibacter solanacearum,” the bacterium causing several diseases in solanaceous crops. Laboratory and field no-choice and choice experiments were conducted to evaluate repellency of kaolin particle film on adults of B. cockerel...

  4. Size Control of Nanoscale Silicon Particles Formed in Thermally Annealed A- Si: H Films and Its Photoluminescence

    Institute of Scientific and Technical Information of China (English)

    XUE Qing

    2005-01-01

    A method to control the size of nanoscale silicon grown in thermally annealed hydrogenated amorphous silicon (a-Si : H) films is reported. Using the characterizing techniques of micro-Raman scattering,X-ray diffraction and computer simulation, it is found that the sizes of the formed silicon particles change with the temperature rising rate in thermally annealing the a-Si : H films. When the a-Si: H films have been annealed with high rising rate( ~ 100 C/s), the sizes of nanoscale silicon particles are in the range of 1.6~ 15nm. On the other hand, if the a-Si: H films have been annealed with low temperature rising rate(~1 C/s),the sizes of nanoscale silicon particles are in the range of 23~46 nm. Based on the theory of crystal nucleation and growth, the effect of temperature rising rate on the sizes of the formed silicon particles is discussed. Under high power laser irradiation, in situ nanocrystallization and subsequent nc-Si clusters are small enough for visible light emission, authors have not detected any visible photoluminescence(PL) from these nc-Si clusters before surface passivation. After electrochemical oxidization in hydrofluoric acid, however, intense red PL has been detected. Cyclic hydrofluoric oxidization and air exposure can cause subsequent blue shift in the red emission. The importance of surface passivation and quantum confinement in the visible emissions has been discussed.

  5. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

    Science.gov (United States)

    Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.

    2015-08-01

    In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

  6. Effects of Mineral Tourmaline Particles on Photocatalytic Activities of RE/TiO2 Composite Thin Films

    Institute of Scientific and Technical Information of China (English)

    Meng Junping; Liang Jinsheng; Ding Yan; Xu Gangke

    2004-01-01

    The composite TiO2 films containing the mineral tourmaline particles and rare earth elements (T/RE/TiO2 )were prepared by a sol-gel method using Ti( OC4H9 )4 as raw material. The microstructure and forming mechanism of T/RE/TiO2 films were studied by scanning electron microscope (SEM). Effects of tourmaline on the photocatalytic activities of RE/TiO2 were determined by photocatalytic degradation of formaldehyde. The results show that the photocatalytic degradation ratio of formaldehyde increases by 44.2% with the composite films of Ce/TiO2 containing 0.04%tourmaline, more than that with the thin films of Ce/TiO2 under UV irradiation.

  7. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  8. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  9. Amino-functionalized breath-figure cavities in polystyrene-alumina hybrid films: effect of particle concentration and dispersion.

    Science.gov (United States)

    V, Lakshmi; Raju, Annu; V G, Resmi; Pancrecious, Jerin K; T P D, Rajan; C, Pavithran

    2016-03-14

    We report the formation of breath-figure (BF) patterns with amino-functionalized cavities in a BF incompatible polystyrene (PS) by incorporating functionalized alumina nanoparticles. The particles were amphiphilic-modified and the modifier ratio was regulated to achieve a specific hydrophobic/hydrophilic balance of the particles. The influence of the physical and chemical properties of the particles like particle concentration, the hydrophobic/hydrophilic balance, etc., on particle dispersion in solvents having different polarity and the corresponding changes in the BF patterns have been studied. The amphiphilic-modified alumina particles could successfully assist the BF mechanism, generating uniform patterns in polystyrene films with the cavity walls decorated with the functionalized alumina particles, even from water-miscible solvents like THF. The possibility of fabricating free-standing micropatterned films by casting and drying the suspension under ambient conditions was also demonstrated. The present method opens up a simple route for producing functionalized BF cavities, which can be post-modified by a chemical route for various biological applications.

  10. Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Yanhui Zhao; Guoqiang Lin; Jinquan Xiao; Chuang Dong; Lishi Wen

    2009-01-01

    Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.

  11. Unified Understanding of Giant Magnetoresistance Effect and Magnetization in Granular Films with Two-Particle Size Distribution

    Institute of Scientific and Technical Information of China (English)

    Jian-Qing WANG; Jordan Peck; Finnobarr O'Grady; Nam Kim

    2004-01-01

    @@ The giant magnetoresistance (GMR) effect and magnetization curves of Cu80 Co20 granular thin films are studied and measured in a superparamagnetism temperature (180K). The correlation between the GMR effect and the magnetization is analysed in a unified framework. These two independent properties are fitted by assuming that there are two size distributions in the Co nano-particle population. Under an assumption, good fittings are achieved for both the GMR and the magnetization, using the minimal number of parameters. The obtained average particle sizes for the smaller and larger particles are 1.0nm and 2.8nm, respectively. In fitting the magneto-transport, a power scaling relationship with the particle size for each size population is proposed, and the fitted results reveal that a certain degree of magnetic bulk scattering is present in larger particles.

  12. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation.

    Science.gov (United States)

    Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee

    2010-08-11

    Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance.

  13. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  14. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawawy, Waleed K., E-mail: wkzawawy@yahoo.com [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Ibrahim, Maha M. [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Belgacem, Mohamed Naceur; Dufresne, Alain [Grenoble Institute of Technology (INP) - The International School of Paper, Print Media and Biomaterials (PAGORA), BP 65, 38402 Saint Martin d' Heres cedex, Grenoble (France)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. Black-Right-Pointing-Pointer The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. Black-Right-Pointing-Pointer We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)-lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify

  15. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  16. Influence of TiO2 particles on PVB foils used in silicon based thin film photovoltaic modules

    Science.gov (United States)

    Sinicco, Ivan; Gossla, Mario; Krull, Stefan; Rakusa, Fabia; Roth, Florian

    2010-08-01

    Transparent PVB lamination foils are widely used in thin-film solar modules. The application of a pigmented load composed by TiO2 particles in the foil formulation does not only influence the reflectance properties of this material, it has also a remarkable impact on other material parameters like resistivity and adhesion. The main objective of this study is to illustrate the properties of white lamination films based on polyvinyl butyral materials. A special insight will be on adhesion, foil resistivity and activation energies. Some performance results on modules will be also presented.

  17. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

    Institute of Scientific and Technical Information of China (English)

    陈乐; 王庆康; 沈向前; 陈文; 黄堃; 刘代明

    2015-01-01

    Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation;finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm–800 nm, and the ultimate efficiency increases more than 22%compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances.

  18. Fabrication of Poly-(DL-Lactic Acid)--Wollastonite Composite Films with Surface Modified {beta}-CaSiO3 Particles.

    Science.gov (United States)

    Lingzhi Ye; Jiang Chang; Congqin Ning; Kaili Lin

    2008-03-01

    Bioactive poly-(DL-lactic acid) (PDLLA)-wollastonite composite films are successfully fabricated using surface modified wollastonite (m beta-CaSiO 3) particles through solvent casting-evaporation method. The surface modification of beta-CaSiO3 particles are conducted by reaction of the ceramic particles with dodecyl alcohol. Surface morphology, tensile strength, and bioactivity of the composite films are investigated. The results show that the particle distribution and tensile strength of the composite films with modified beta-CaSiO3 particles are significantly improved while the bioactivity is retained. As a result, the maximum tensile strength is enhanced 52.2% when compared with the PDLLA-beta-CaSiO3 composite films prepared using unmodified beta-CaSiO3 particles when the inorganic filler content is 15 wt%. Scanning electron microscopy (SEM) observation suggests that the modified m beta-CaSiO3 particles are homogeneously dispersed in the PDLLA matrix. The bioactivity of the composite films is evaluated by soaking in a simulated body fluid (SBF) and the result suggests that the modified composite film is still bioactive and can induce the formation of HAp on its surface after the immersion in SBF, despite the bonded dodecyl alkyl on the surface of the inorganic particles. All these results imply that the surface modification of beta-CaSiO3 with dodecyl alcohol is an effective approach to prepare PDLLA-beta-CaSiO3 composite with improved properties.

  19. Wear Resistances of CO2 Corrosion Product Films in the Presence of Sand Particles

    Institute of Scientific and Technical Information of China (English)

    LI Jinling; ZHU Shidong; LIU Luzhen; QU Chengtun; YAN Yongli; YANG Bo

    2015-01-01

    Wear resistances of CO2 corrosion product iflms formed on P110 carbon steel at different CO2 partial pressures were investigated in water sand two-phase lfow by weight loss method, and the microstructures and compositions of corrosion product iflms were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that the wear rate of CO2 corrosion product iflms increased until a maximum and then decreased with the increasing of the film-forming pressure, and the maximum occurred at 2 MPa. However, the maximal corrosion rate and the loose and porous CO2 corrosion product iflms were obtained at 4 MPa. And the wear rate decreased and then went to be lfat with increasing test time. Furthermore, the microstructures and compositions of corrosion product iflms and the impact and wear of sand particles played an important role on wear resistances. In addition, the wear rate and corrosion rate were iftted by cubic polynomial, respectively, which were well in accordance with the measured results.

  20. Modelling of nodular particle growth in a liquid-solid film during condensation experiments of copper-silver alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, S.; Ny, J. le; Gueneau, C.; Goldstein, S. [DCC/DPE/SPCP/LEPCA, Commissariat a l' Energie Atomique Saclay, Gif-sur-Yvette (France); Camel, D. [DTA/CEREM/DEM/SPCM, Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, Grenoble (France)

    2001-07-01

    Silver-copper alloys are condensed in a liquid-solid domain of the phase diagram on a tilted molybdenum substrate regulated in temperature. After a droplets regime, a film which contains a monolayer of nodular solid crystals forms. The size distribution and density of the particles in the film are measured after different condensation times. Results show that in our experimental conditions a ripening process occurs which is evidenced by a decrease of the number of particles with time, and a broad particle size distribution. However, the decrease rate is smaller than expected without a condensation flux. A model is then developed to interpret and generalize these results. This model results from the modification of the Lifshitz-Slyosov model to take into account the supply from the vapour phase. It is shown that the higher the flux of material to solidify from the vapour phase is, the more the growth from the vapour phase overcomes the ripening process. Once the particle density reaches a characteristic value which is simply proportional to the incoming flux, no more particles are dissolved. The system then tends towards a monomodal distribution with a radius which grows in t{sup 1/3}. (orig.)

  1. Analysis of Electrodeposited Nickel-Iron Alloy Film Composition Using Particle-Induced X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Alyssa A. Frey

    2011-01-01

    Full Text Available The elemental composition of electrodeposited NiFe thin films was analyzed with particle-induced X-ray emission (PIXE. The thin films were electrodeposited on polycrystalline Au substrates from a 100 mM NiSO4, 10 mM FeSO4, 0.5 M H3BO3, and 1 M Na2SO4 solution. PIXE spectra of these films were analyzed to obtain relative amounts of Ni and Fe as a function of deposition potential and deposition time. The results show that PIXE can measure the total deposited metal in a sample over at least four orders of magnitude with similar fractional uncertainties. The technique is also sensitive enough to observe the variations in alloy composition due to sample nonuniformity or variations in deposition parameters.

  2. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  3. Investigation of thickness uniformity of thin metal films by using α-particle energy loss method and successive scanning measurements

    Science.gov (United States)

    Li, Gang; Xu, Jiayun; Bai, Lixin

    2017-03-01

    The metal films are widely used in the Inertial Confinement Fusion (ICF) experiments to obtain the radiation opacity, and the accuracy of the measuring results mainly depends on the accuracy of the film thickness and thickness uniformity. The traditional used measuring methods all have various disadvantages, the optical method and stylus method cannot provide mass thickness which reflects the internal density distribution of the films, and the weighing method cannot provide the uniformity of the thickness distribution. This paper describes a new method which combines the α-particle energy loss (AEL) method and the successive scanning measurements to obtain the film thickness and thickness uniformity. The measuring system was partly installed in the vacuum chamber, and the relationship of chamber pressure and energy loss caused by the residual air in the vacuum chamber was studied for the source-to-detector distance ranging from 1 to 5 cm. The results show that the chamber pressure should be less than 10 Pa for the present measuring system. In the process of measurement, the energy spectrum of α-particles transmitted through each different measuring point were obtained, and then recorded automatically by a self-developed multi-channel analysis software. At the same time, the central channel numbers of the spectrum (CH) were also saved in a text form document. In order to realize the automation of data processing and represent the thickness uniformity visually in a graphic 3D plot, a software package was developed to convert the CH values into film thickness and thickness uniformity. The results obtained in this paper make the film thickness uniformity measurements more accurate and efficient in the ICF experiments.

  4. Structural and magnetic characterization of FePt films deposited onto SiO{sub 2} spherical particle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph; Makarov, Denys; Schatz, Guenter; Albrecht, Manfred [University of Konstanz, Department of Physics, D-78457 Konstanz (Germany); Maret, Mireille; Liscio, Fabiola [Laboratoire de Thermodynamique et Physico-Chimie Metallurgiques, ENSEEG, Saint Martin d' Heres (France)

    2007-07-01

    The growth of FePt films at 450 C on a Pt/Cr buffer layer deposited onto SiO{sub 2} spherical particle arrays and for comparison on flat thermally oxidized Si(001) substrates has been studied. The structural properties of the FePt films, such as the orientation and size of the crystalline grains and the degree of L1{sub 0}-type chemical ordering, were investigated by in-situ RHEED and ex-situ XRD. Magnetic characterization was performed by MFM, polar MOKE and SQUID. Increasing the Cr buffer underlayer thickness favors the formation of the FePt chemically ordered L1{sub 0} phase. An out-of-plane coercivity of the FePt alloy about 4 kOe was thus obtained for a Cr thickness of 50 nm. While the continuous films on oxidized Si(001) substrates show magnetic domain patterns with domain sizes in the range of 50-100 nm, multi-domain states are observed for the FePt alloy grown on the particle arrays. The influence of the Cr underlayer thickness and Pt buffer layer on the magnetic properties of FePt are discussed for various particle arrays and compared to micromagnetic simulations, providing a description of magnetization reversal.

  5. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  6. Evaluation of hydrophobic and hydrophilic kaolin particle films for peach crop, arthropod and disease management.

    Science.gov (United States)

    Lalancette, Norman; Belding, Robert D; Shearer, Peter W; Frecon, Jerome L; Tietjen, William H

    2005-01-01

    Hydrophobic and/or hydrophilic kaolin particle film treatments to peach (Prunus persica (L) Batsch) trees were evaluated for crop and pest management capabilities in six studies from 1997 to 2000. Unsprayed control and standard treatments, the latter consisting of a commercial pesticide program, were included for comparison. Treatments in initial studies were applied via handgun, which resulted in a uniform and heavy deposit of kaolin after the first application. In contrast, treatments in subsequent studies used airblast equipment, which provided a uniform but less dense coverage, even after multiple applications. Results showed that both formulations of kaolin provided control of oriental fruit moth (Grapholita molesta (Busck)), plum curculio (Conotrachelus nenuphar (Herbst)) and Japanese beetle (Popillia japonica Newman) that was comparable with or better than the standard pesticide program. Effective management of late season catfacing insects (tarnished plant bugs Lygus lineolaris (Palisot de Beauvois) and stinkbugs Acrosternum hilare (Say), Euschistus servus (Say), and E tristigmus (Say)) and leafrollers (undetermined species) was also observed, although kaolin applications significantly increased phytophagous mite (Panonychus ulmi (Koch)) levels. In contrast to arthropod management, kaolin failed to control either peach scab (Cladosporium carpophilum (Von Thumen)) or rusty spot (Podosphaera leucotricha (Ell and Ev) ES Salmon) in any of the 4 years of the study. However, hydrophobic kaolin provided effective brown rot (Monilinia fructicola (G Winter) Honey) control when applied via handgun, and partial control when applied via airblast; hydrophilic kaolin failed to provide any control. These results suggest that hydrophobicity and deposit density may be important factors for effective disease management. The application of kaolin significantly delayed fruit maturation, increased fruit size and increased soluble solids relative to the standard. This effect

  7. The Study on the Conductivity Performance and Shielding Effectiveness of Electro-magnetic Radiation of Polyethylene Film with Different Content of Carbon Black Particles

    Institute of Scientific and Technical Information of China (English)

    SUN Run-jun; LAI Kan; ZHANG Jian-chun; HUO Yan

    2004-01-01

    With the help of the testing apparatus made by ourselves for shielding electromagnetic radiation, the electric conductivity and shielding effectiveness of electromagnetic radiation of polyethylene film contained different content of carbon particles was systematically studied in this paper. The results indicate that the electric conductivity and shielding effectiveness of electromagnetic radiation of polyethylene /carbon film have closely relations with content of carbon black particles, which exists a critical content value as 14%~30% and its properties will have a tremendous change.

  8. Films, Needles, and Particles: A Comparative Study on the Ferroic Properties of Complex Oxides Nano-Structured in One, Two, and Three Dimensions

    Science.gov (United States)

    2014-03-01

    complex oxides have been observed to possess the properties of insulators , semiconductors, semimetals, metals, and superconductors (3). Ferroic and...are varied independently. To study the film-to- nano-needle and film-to-nano-particle transitions , we have designed Metal- Insulator -Metal (MIM...9 4. Conclusions 11 5. References 12 6. Transitions 14 6.1 Patent Disclosure

  9. Heterogeneous oxidation of the insecticide cypermethrin as thin film and airborne particles by hydroxyl radicals and ozone.

    Science.gov (United States)

    Segal-Rosenheimer, M; Linker, R; Dubowski, Y

    2011-01-14

    Evaluation of pesticides' fate in the atmosphere is important in terms of environmental effects on non-target areas and risk assessments analysis. This evaluation is usually done in the laboratory using analytical grade materials and is then extrapolated to more realistic conditions. To assess the effect of the pesticide purity level (i.e. analytical vs. technical) and state (i.e. sorbed film vs. airborne particles), we have investigated the oxidation rates and products of technical grade cypermethrin as thin film and in its airborne form, and compared it with our former results for analytical grade material. Technical grade thin film kinetics for both ozone and OH radicals revealed reaction rates similar to the analytical material, implying that for these processes, the analytical grade can be used as a good proxy. Oxidation products, however, were slightly different with two additional condensed phase products: formanilide, N-phenyl and 2-biphenyl carboxylic acid, which were seen with the technical grade material only. OH experiments revealed spectral changes that suggest the immediate formation of surface products containing OH functionalities. For the ozonolysis studies of airborne material, a novel set-up was used, which included a long-path FTIR cell in conjugation with a Scanning Mobility Particle Sizer (SMPS) system. This set-up allowed monitoring of real-time reaction kinetics and product formation (gas and condensed phases) together with aerosol size distribution measurements. Similar condensed phase products were observed for airborne and thin film technical grade cypermethrin after ozonolysis. Additionally, CO, CO(2) and possibly acetaldehyde were identified as gaseous oxidation products in the aerosols experiments only. A kinetic model fitted to our experimental system enabled the identification of both primary and secondary products as well as extraction of a formation rate constant. Kinetic calculations (based on gaseous products formation rate) have

  10. WATER SORPTION PROPERTIES AND ANTIMICROBIAL ACTION OF ZINC OXIDE NANO PARTICLES LOADED SAGO STARCH FILM

    Directory of Open Access Journals (Sweden)

    Sunil Bajpai

    2013-02-01

    Full Text Available In this work, sago starch based films have been loaded with ZnO nanoparticles prepared insitu via using an unique equilibration-cum-hydrothermal approach. The films have been characterized by XRD, DSC,SPR ,FTIR and SEM analysis. The moisture absorption behavior of plain and ZnO nanoparticles loaded films have been studied at 23, 31 and 37o C.The equilibrium moisture uptake data was found to fit well on GAB isotherm model and the monolayer sorption capacity Mo for the plain and ZnO nanoparticles loaded films was 0.089, 0.039 ,0.021 g/g and 0.042, 0.012, 0.007 g/g at 23,31 and 37 oC respectively. Moreover, the water vapor transmission rates (WVTR for plain and ZnO nanoparticles loaded films at 23,31,37 oC were 11.19x10-4, 48.9x10-4, 62.1x10-4 and 3.73 x10-4, 6.21x10-4, 24.8x10-4 respectively. These films have shown excellent antibacterial action against model bacteria E.coli when investigated qualitatively by zone inhibition method. Films exhibit great potential to be used as packaging films to protect food stuff against microbial contaminents.

  11. Mechanochemical synthesis of finite particle of layered double hydroxide-acetate intercalation compound: Swelling, thin film and ion exchange

    Science.gov (United States)

    Kuramoto, Kyoko; Intasa-Ard, Soontaree (Grace); Bureekaew, Sareeya; Ogawa, Makoto

    2017-09-01

    Acetate intercalated Mg-Al layered double hydroxide was successfully synthesized by the solid-state reactions between magnesium acetate and aluminum hydroxide as the starting materials using a planetary mil. The acetate intercalated Mg-Al layered double hydroxide prepared by the present solid-state reaction was finite particle and was processed into stable aqueous suspension with variable transparency and viscosity depending on the concentration. By drying the suspension on a substrate under nitrogen atmosphere, thin film (with the thickness of several micrometers) of the acetate intercalated Mg-Al layered double hydroxide with the basal plane oriented parallel to the substrate was obtained. The ion exchange ability of the film, which is as an advantage of the acetate form of layered double hydroxide, was shown by the ion exchange with coumarin-3-carboxylate to give a photoluminescent film. The solid-solid reaction is advantageous for the preparation of layered double hydroxides due to the simple and eco-friendly nature (no solvent) of the operation, lower possibility of carbonate contamination and finite particles of the products.

  12. Optical and thermoelectric properties of nano-particles based Bi2(Te1-xSex)3 thin films

    Science.gov (United States)

    Adam, A. M.; Lilov, E.; Petkov, P.

    2017-01-01

    Nano-particles of Bi2Te3 and Bi2(Te1-xSex)3 films were deposited using vacuum thermal evaporation technique from previously prepared bulk alloys synthesized by melting method. Optical and thermoelectric properties were studied in the temperature range of 300-473K. The formation of none- and Se-doped Bi2Te3 nano-particles was verified by EDX and XRD analysis. TEM, SEM and AFM analysis showed the prepared films are polycrystalline in nature. The measurements of electrical conductivity and Seebeck coefficient, alongside with thermal conductivity calculations, resulted in the highest values of thermoelectric power at high temperature to be reported. The maximum value of power factor was calculated at 62.82917 μWK-2cm-1 for (Bi2Se0.3Te1.7) sample at 463 K. On the addition of Se to Bi2Te3 film, a significant decrease of the electronic thermal conductivity (Kel) from 2.181 × 10-2 to 0.598 × 10-2 (μW/cm.K) could be achieved. Figure of merit (ZT) calculations showed a maximum value of 0.85 at room temperature, for Bi2Te3. Besides the increase of ZT value for all samples at higher temperature, surprisingly, a value of 2.75 for (Bi2Se1.2Te1.8) was obtained. We believe our results could open avenues for new applications.

  13. Gallium nitride based thin films for photon and particle radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus

    2012-07-23

    Ionization chambers have been used since the beginning of the 20th century for measuring ionizing radiation and still represent the ''gold standard'' in dosimetry. However, since the sensitivity of the devices is proportional to the detection volume, ionization chambers are not common in numerous medical applications, such as imaging. In these fields, spatially resolved dose information is, beside film-systems, usually measured with scintillators and photo-multipliers, which is a relatively complex and expensive technique. For thus much effort has been focused on the development of novel detection systems in the last decades and especially in the last few years. Examples include germanium or silicon photoconductive detectors, MOSFETs, and PIN-diodes. Although for these systems, miniaturization for spatially resolved detection is possible, they suffer from a range of disadvantages. Characteristics such as poor measurement stability, material degradation, and/or a limited measurement range prevent routine application of these techniques in medical diagnostic devices. This work presents the development and evaluation of gallium nitride (GaN) thin films and heterostructures to validate their application in x-ray detection in the medical regime. Furthermore, the impact of particle radiation on device response was investigated. Although previous publications revealed relatively low energy absorption of GaN, it is possible to achieve very high signal amplification factors inside the material due to an appropriate sensor configuration, which, in turn, compensates the low energy absorption. Thus, gallium nitride can be used as a photo-conductor with ohmic contacts. The conductive volume of the sensor changes in the presence of external radiation, which results in an amplified measurement signal after applying a bias voltage to the device. Experiments revealed a sensitivity of the device between air kerma rates of 1 {mu}Gy/s and 20 mGy/s. In this range

  14. Influence of particles on the loading capacity and the temperature rise of water film in Ultra-high speed hybrid bearing

    Science.gov (United States)

    Zhu, Aibin; Li, Pei; Zhang, Yefan; Chen, Wei; Yuan, Xiaoyang

    2015-04-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  15. Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing

    Institute of Scientific and Technical Information of China (English)

    ZHU Aibin; LI Pei; ZHANG Yefan; CHEN Wei; YUAN Xiaoyang

    2015-01-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  16. Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles

    NARCIS (Netherlands)

    Huijs, F; Lang, J

    2000-01-01

    Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were l

  17. Calculation of Clay Permeability Using a Rectangular Particle-Water Film Model by the Double-Scale Asymptotic Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowu Tang

    2016-01-01

    Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.

  18. Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum; Duong, Pham van; Ha, Dong Hyup; Oh, Young Hoon; Kang, Won Nam; Chai, Jong Seo [Sungkunkwan Univeversity, Suwon (Korea, Republic of); Hong, Seung Pyo; Kim, Ran Young [Kore Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2016-06-15

    Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV α-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

  19. Ultrasmall semiconductor particles sandwiched between surfactant headgroups in Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Shuqian Xu; Xiao Kang Zhao, Fendler, J.H. (Syracuse Univ., NY (United States))

    1990-04-01

    Successful sandwiching of size-quantized hexametaphosphate-stabilized CdS particles between monomolecular layers of dioctadecyldimethylammonium chloride (DODAC) surfactants, deposited on solid substrates, was accomplished. Electrostatic forces are responsible for attracting the negatively charged CdS particles onto the cationic headgroups of the substrate-supported DODAC monolayer, immersed in the aqueous subphase. These forces also ensure that, during withdrawal of the DODAC-monolayer-coated substrate, the CdS particles remain in place, attract a second monolayer of DODAC, and thereby form a DODAC-CdS particle-DODAC sandwich.

  20. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  1. Size-dependent structures and properties of metallic particles and thin films

    Science.gov (United States)

    Zhang, Zhenyuan

    Fundamental aspects of metallic nanoparticles, especially size-dependent properties and their interaction with their surrounding have been investigated. Several conclusions were reached as follows, (1) Au and Pt particles form dense SAMs on glass. Interparticle resonance is absent for 15 nm Au particles, but present for 30 nm ones. A new strategy was developed to deposit silica insulation layers in between Au particle monolayers. (2) Au particles, 1.5--20 nm in size, were encapsulated in silica shells. Their melting point was determined and we show that it decreases significantly as particle size decreases, leading to increased self-diffusion coefficient of the Au atoms. (3) Au core particles of different sizes were synthesized and Ag shells of different thickness were deposited on them. XAFS measurements show that Au/Ag alloy is spontaneously formed for the particles with small core size (2.5 nm). The alloy formation is size-dependent and molecular dynamics calculations demonstrate that vacancies at the bimetallic boundary dramatically enhance the rate of mixing. (4) EPR spectroscopy was used to study the interactions between stable free radicals and gold nanoparticles. The EPR signal is reduced upon adsorption of the radicals onto Au particle surface. We propose that the reduction in signal intensity arises from exchange interactions between the unpaired electrons of the adsorbed radicals and conduction-band electrons of the metallic particles. Catalytic autoxidation of TEMPAMINE to TEMPO was also observed and a mechanism for this unexpected reaction is proposed. (5) Redox/galvanic exchange reactions between Au and Pt nanoparticles and Ag(CN)2- were investigated. For Au particles, the exchange reaction is size dependent. 2.5 nm Au particles form an alloy with Ag and the extinction coefficient of the alloy particle linearly depends on the Au/Ag mole fraction. The full exchange for both 2 and 8 nm Pt particles indicates that the atom diffusion rate within particles

  2. CineGlobe Film Festival presents Particle Fever in celebration of CERN's 60th anniversary | 20 September

    CERN Multimedia

    2014-01-01

    The film Particle Fever follows six brilliant scientists during the launch of the Large Hadron Collider, which marked the start-up of the biggest and most expensive experiment in the history of the planet, pushing the boundaries of human innovation.    Seeking to unravel the mysteries of the universe, 10,000 scientists from over 100 countries joined forces in pursuit of a single goal: to recreate the conditions that existed just moments after the Big Bang and find the Higgs boson, potentially explaining the origin of all matter. But our heroes face an even bigger challenge: have we reached the limit of our capacity to understand why we exist? Directed by Mark Levinson, a physicist turned filmmaker, and masterfully edited by Walter Murch (Apocalypse Now, The English Patient), Particle Fever is a celebration of discovery, revealing the very human stories behind this epic machine. The film will be followed by a panel discussion with director Mark Levinson, Academy Award-winning editor Wal...

  3. CineGlobe Film Festival presents Particle Fever in celebration of CERN's 60th anniversary | 20 September

    CERN Multimedia

    2014-01-01

    The film Particle Fever follows six brilliant scientists during the launch of the Large Hadron Collider, which marked the start-up of the biggest and most expensive experiment in the history of the planet, pushing the boundaries of human innovation.    Seeking to unravel the mysteries of the universe, 10,000 scientists from over 100 countries joined forces in pursuit of a single goal: to recreate the conditions that existed just moments after the Big Bang and find the Higgs boson, potentially explaining the origin of all matter. But our heroes face an even bigger challenge: have we reached the limit of our capacity to understand why we exist? Directed by Mark Levinson, a physicist turned filmmaker, and masterfully edited by Walter Murch (Apocalypse Now, The English Patient), Particle Fever is a celebration of discovery, revealing the very human stories behind this epic machine. The film will be followed by a panel discussion with director Mark Levinson, Academy Award-winning editor Walt...

  4. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Science.gov (United States)

    Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif

    2016-03-01

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  5. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin,; Sujito,; Hidayat, Arif [Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145 (Indonesia)

    2016-03-11

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  6. Electrocatalytic Activity of Platinum Particles Electrodeposited onto Poly(vinylpyridine) Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrocatalytic properties of platinum microparticles incorporated into poly- (vinylpyridine) (PVP) films, a conducting polymer with good conductivity and stability, were investigated for hydrogen evolution and formic acid electrooxidation in acidic media. It was found that the catalytic effects depend mainly on the size and amounts of the platinum microparticles dispersed in the polymer layer.

  7. Microstructure controlling of Ti/N particles dissipated energy to superficial layer of titanium nitride film

    Institute of Scientific and Technical Information of China (English)

    MA Zhongquan; ZHANG Qin

    2004-01-01

    The titanium nitride (TiNx) thin film with a controllable surface structure was fabricated by the dc-reactive magnetron sputtering technique, and the variation of microstructure in the surface layer with the energy of condensed adatom was investigated through X-ray diffraction (XRD) pattern and transmission electron microscope (TEM). It was found that the lattice parameters and the full width at half maximum (fwhm) of XRD peak on the top layers in the preferred orientation of (111) and (002) were closely correlated to the impacting induced phase composition, compressive strain, crystallite size and the fault density of the thin films. In the theory, a new means was used to model the atomistic process of per condensed adatom. The average energy at least in the minimum energy state of the incorporate adatom on TiN surface layer was statistically formulized through a careful consideration of dynamical process, which properly interpreted the experimental observations.

  8. Testing of the structure of macromolecular polymer films containing solid active pharmaceutical ingredient (API) particles

    Energy Technology Data Exchange (ETDEWEB)

    Boelcskei, E. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Suevegh, K. [Laboratory of Nuclear Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Marek, T. [Hungarian Academy of Sciences, Research Group for Nuclear Techniques in Structural Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Regdon, G. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Pintye-Hodi, K., E-mail: klara.hodi@pharm.u-szeged.h [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary)

    2011-07-15

    The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration. Films containing 5% of the API exhibited a different behavior during storage (17 {sup o}C, 65% relative humidity (RH)) in consequence of the uptake of water from the air. -- Highlights: {yields} The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. {yields} The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration (). {yields} The API distorts the original polymer structure, but as time goes by, the metastable structure relaxes and it is almost totally restored after 3 weeks of storage (17 {sup o}C, 65% RH).

  9. Hydrophobic perfluoro-silane functionalization of porous silicon photoluminescent films and particles

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.; Laplace, P.; Gallach-Pérez, D.; Pellacani, P.; Martín-Palma, R.J. [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Torres-Costa, V. [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Ceccone, G. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020, Ispra (Italy); Manso Silván, M., E-mail: miguel.manso@uam.es [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain)

    2016-09-01

    Highlights: • Hydrophobic functionalization of porous silicon structures. • Perfluorooctyl group binding confirmed by XPS. • Improved stability face to extreme oxidation conditions. • Perfluorooctyl functionalization compatible with photoluminescence of porous silicon particles. - Abstract: Luminescent structures based on semiconductor quantum dots (QDs) are increasingly used in biomolecular assays, cell tracking systems, and in-vivo diagnostics devices. In this work we have carried out the functionalization of porous silicon (PSi) luminescent structures by a perfluorosilane (Perfluoro-octyltriethoxysilane, PFOS) self assembly. The PFOS surface binding (traced by X-ray photoelectron spectroscopy) and photoluminescence efficiency were analyzed on flat model PSi. Maximal photoluminescence intensity was obtained from PSi layers anodized at 110 mA/cm{sup 2}. Resistance to hydroxylation was assayed in H{sub 2}O{sub 2}:ethanol solutions and evidenced by water contact angle (WCA) measurements. PFOS-functionalized PSi presented systematically higher WCA than untreated PSi. The PFOS functionalization was found to slightly improve the aging of the PSi particles in water giving rise to particles with longer luminescent life. Confirmation of PFOS binding to PSi particles was derived from FTIR spectra and the preservation of luminescence was observed by fluorescence microscopy. Such functionalization opens the possibility of promoting hydrophobic-hydrophobic interactions between biomolecules and fluorescent QD structures, which may enlarge their biomedical applications catalogue.

  10. Effect of particle size on the flux pinning properties of YBa2Cu3O7-δ thin films containing fine Y2O3 nanoprecipitates

    Science.gov (United States)

    Yamasaki, H.

    2016-06-01

    The magnetic-field angle dependence of the critical current density, J c(H, θ), was measured at various temperatures in co-evaporated YBa2Cu3O7-δ (YBCO) thin films. The YBCO films showed volcano-shaped J c(θ) peaks around H//ab, and J c(θ) peaks around H//c were not observed. Film A, deposited at a lower temperature than the commercial standard film B, showed lower J c values at high temperatures (T ≥ 60 K) compared with film B, although film A showed higher J c at T = 20 K. Plan-view transmission electron microscope observations revealed that films A and B contained a high density of fine Y2O3 nanoprecipitates. The modes in the distribution of their cross-sectional areas are 10-20 nm2 in film A and 20-30 nm2 in film B. Because of the smaller particle size, film A showed lower J c at high temperatures owing to the smaller elementary pinning force, f p, but showed higher J c at 20 K where the temperature-dependent coherence length ξ ab (T) was short (˜2 nm) and comparable with the radius of Y2O3 nanoparticles. Film A showed anisotropic scaling behavior at T = 70-80 K, and the T dependence of J c followed ˜(1 - T/T c) m (1 + T/T c)2 (m ≈ 2.5), which was expected from a simple flux-pinning model.

  11. Influence of the near-surface water film thickness on the characteristics and conditions of water-coal fuel particles inflammation

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen

    2017-01-01

    Full Text Available The results of experimental studies of thermal pretreatment processes complex and inflammation of water coal fuel’s particles (WCF, which surface is covered with water film, have been presented there. The research has been carried out with using of three fuel types (cannel coal, coal B and filter cake: they have essentially different thermo physical characteristics. The results of our studies have been shown that the dynamics of the near-surface water film evaporation and fuel inflammation depends significantly on coal type. It has also been analyzed the influence of water layer thickness on the conditions of WCF particles inflammation. It has been established the time of water film evaporation is about 70% due to the whole induction period.

  12. Fabrication of substrates with curvature for cell cultivation by alpha-particle irradiation and chemical etching of PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M.; Tjhin, V.T. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Lin, A.C.C.; Cheng, J.P.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-05-01

    In the present paper, we developed a microfabrication technology to generate cell-culture substrates with identical chemistry and well-defined curvature. Micrometer-sized pits with curved surfaces were created on a two-dimensional surface of a polymer known as polyallyldiglycol carbonate (PADC). A PADC film was first irradiated by alpha particles and then chemically etched under specific conditions to generate pits with well-defined curvature at the incident positions of the alpha particles. The surface with these pits was employed as a model system for studying the effects of substrate curvature on cell behavior. As an application, the present work studied mechanosensing of substrate curvature by epithelial cells (HeLa cells) through regulation of microtubule (MT) dynamics. We used end-binding protein 3-green fluorescent protein (EB3-GFP) as a marker of MT growth to show that epithelial cells having migrated into the pits with curved surfaces had significantly smaller MT growth speeds than those having stayed on flat surfaces without the pits.

  13. S-shaped current-voltage characteristics of polymer composite films containing graphene and graphene oxide particles

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Fefelov, S. A.; Komolov, A. S.; Aleshin, A. N.

    2016-12-01

    The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.

  14. Synthesis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction.

    Science.gov (United States)

    Na, Moonkyong; Park, Hoyyul; Ahn, Myeongsang; Lee, Hyeonhwa; Chung, Ildoo

    2010-10-01

    Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

  15. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions.

    Science.gov (United States)

    Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu

    2017-03-24

    Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10(-6) Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.

  16. Nanobubble and nanodroplet template growth of particle nanorings versus nanoholes in drying nanofluids and polymer films.

    Science.gov (United States)

    Darwich, S; Mougin, K; Vidal, L; Gnecco, E; Haidara, H

    2011-03-01

    Here we demonstrate how confined nanobubbles and nanodroplets, which can either form spontaneously at the suspension/substrate interface, or can more interestingly be purposely introduced in the system, allow assembly of nanoparticles (NPs) into nanoring-like structures with a flexible control of both the size and distribution. As with most wetting-mediated nanopatterning methods, this approach provides an alternative to direct replication from templates. The formation of two-dimensional ring-shaped nanostructures was obtained by drying a nanocolloidal gold (Au) suspension drop confining nanobubbles (or nanodroplets) that are settled at a solid substrate. AFM investigation of the dry nanostructures showed the formation of isolated Au NPs rings having diameters ranging from 200 nm to 500 nm along the dewetting-drying path of the suspension drop. The flexibility of these wetting processes for the variation of the spatial features of the nanoring (size and shape resolution) essentially depends on physical parameters such as the nanobubble/nanodroplet size and concentration, the wettability, and the evaporation rate of the nanofluid drop on the substrate. Furthermore, we show that the underpinning mechanism of this evaporation-assisted assembly of Au NPs into supported functional nanoring patterns is fairly similar to that at work in the spontaneous formation of nanoholes in drying polymer thin films. Finally, the method proves to be a simple and flexible nanofabrication tool to be extended to various nanosize objects, towards specific optical and sensing applications.

  17. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  18. Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells

    Science.gov (United States)

    Xu, Jinlei; Wu, Shufang; Ri, Jin Hyok; Jin, Jingpeng; Peng, Tianyou

    2016-09-01

    A novel bilayer brookite TiO2 film photoanode consisting of quasi nanocube film as underlayer and rice-like submicrometer particle film as overlayer are fabricated for improving the photovoltaic properties of the pure brookite-based dye-sensitized solar cells (DSSCs). The brookite TiO2 nanocubes have a mean size of ∼50 nm, and the brookite TiO2 rice-like particles have diameter of ∼600 nm and length of ∼1100 nm. An optimal photovoltaic conversion efficiency of 5.51% is obtained from the bilayer brookite-based solar cell, with ∼41% improvement in the efficiency as compared to the single brookite nanocube film-based one (3.91%) under AM 1.5G one sun irradiation. The bilayer brookite-based solar cell shows not only reduced charge recombination and dark current, but also prolonged electron lifetime compared to the single brookite nanocube film-based one. All these lead to a higher photocurrent and voltage, and then to the improved efficiency of the brookite-based solar cell. The present results demonstrate a clear advance towards efficient improvement of the photovoltaic performance of pure brookite-based solar cells.

  19. Periodic nanotemplating by selective deposition of electroless gold island films on particle-lithographed dimethyldichlorosilane layers.

    Science.gov (United States)

    Ahn, Wonmi; Roper, D Keith

    2010-07-27

    Uniform hexagonal arrays of diverse nanotemplated metal structures were formed via selective electroless gold plating on particle-lithographed dimethyldichlorosilane layers. Surface-associated water at silica bead interstices was shown to correlate with the formation of silane rings with outer ring diameters ranging from 522.5+/-29.7 to 1116.9+/-52.6 nm and/or spherical gold nanoparticles with diameters from 145.5+/-20.2 to 389.1+/-51.1 nm in the array. Reproducibility and millimeter-size scalability of the array were achieved without the need for expensive and sophisticated lithography or metal deposition equipment. The formation of each structure was explained on the basis of the silanization mechanism and microscopic characterization, as well as dimensional analysis of the nanostructures. This new, facile, and versatile method enables fine fabrication of regular metal nanoparticle array platforms to improve optical and plasmonic features in nanoelectronics and nanophotonic devices.

  20. Thin film depth profiling using simultaneous particle backscattering and nuclear resonance profiling

    Science.gov (United States)

    Barradas, N. P.; Mateus, R.; Fonseca, M.; Reis, M. A.; Lorenz, K.; Vickridge, I.

    2010-06-01

    We report an important extension to the DataFurnace code for Ion Beam Analysis which allows users to simultaneously and self-consistently analyse Rutherford (RBS) or non-Rutherford (EBS) elastic backscattering together with particle-induced gamma-ray (PIGE) spectra. We show that the code works correctly with a well-known sample. Previously it has not been feasible to self-consistently treat PIGE and RBS/EBS data to extract the depth profiles. The PIGE data can be supplied to the code in the usual way as counts versus beam energy, but the differential cross-sections for the PIGE reaction are required. We also compared the results obtained by the new routine with high resolution narrow resonance profiling (NRP) simulations obtained with the stochastic model of energy loss.

  1. Size-dependent photodegradation of CdS particles deposited onto TiO{sub 2} mesoporous films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia, E-mail: hx.wang@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering (Australia)

    2012-09-15

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO{sub 2} films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO{sub 2} films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO{sub 2} films in air under illumination (440.6 {mu}W/cm{sup 2}) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO{sub 4}). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS Multiplication-Sign 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS Multiplication-Sign 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  2. A mechanism for enhanced photocatalytic activity of nano-size silver particle modified titanium dioxide thin films

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ag-TiO2 nanostructured thin films with silver volume fraction of 0–20% were deposited on silicon and quartz substrates by RF magnetron sputtering and annealed in ambient air at 950°C for 1 h. The phase structure and surface topography of the films were characterized by X-ray diffractometer and transmission electron microscope. Photocatalytic activity of the films was evaluated by light induced degradation of methyl orange (C14H14N3NaO3S) solution using a high pressure mercury lamp as lamp-house. The relation of photocatalytic activity and silver content was studied in detail. It was found that silver content influences phase structure of TiO2 thin films, and silver in the films is metallic Ag (Ag0). With increasing silver content from 0 to 20 vol%, photocatalytic activity of the films increases first and then decreases. A suitable amount (2.5–5 vol%) silver addition can significantly enhance the photocatalytic activity of TiO2 films. The enhanced photocatalytic activity was mainly attributed to the extension of visible light absorption region of the films, the presence of anatase phase, the increase of oxy-gen anion radicals O2? and reactive center of surface Ti3+, and the better separation between electrons and holes on the films surface.

  3. Enriching particles on a bubble through drainage: Measuring and modeling the concentration of microbial particles in a bubble film at rupture

    Directory of Open Access Journals (Sweden)

    Peter L. L. Walls

    2017-06-01

    Full Text Available The concentration of microbes and other particulates is frequently enriched in the droplets produced by bursting bubbles. As a bubble rises to the ocean surface, particulates in the bulk liquid can be transported to the sea surface microlayer by attaching to the bubble’s interface. When the bubble eventually ruptures, a fraction of these particulates is often ejected into the surroundings in film droplets with a particulate concentration that is higher than in the liquid from which they formed. The precise mechanisms responsible for this enrichment are unclear, yet such enrichment at the ocean surface influences important exchange processes with the atmosphere. Here we provide evidence that drainage, coupled with scavenging, is responsible for the enrichment. By simultaneously recording the drainage and rupture effects with high-speed and standard photography, we directly measured the particulate concentrations in the thin film of a bubble cap at the moment before it ruptures. We observed that the enrichment factor strongly depends on the film thickness at rupture, and developed a physical model, based on scavenging and drainage, that is consistent with our observations. We have also demonstrated that this model is quantitatively consistent with prior observations of film drop enrichment, indicating its potential for a broader range of applications in the study of the sea surface microlayer and related phenomena.

  4. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  5. Effect of pH on film structure and electrical property of PMMA–Au composite particles prepared by redox transmetalation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong-Mao; Lin, Kuan-Ju [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung [Chemical System Research Division, Chung-Shan Institute of Science and Technology, Long-Tan, Tao-Yuan 325, Taiwan (China); Lu, Fu-Hsing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Tseng, Wenjea J., E-mail: wenjea@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2014-01-15

    Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)–nickel (PMMA–Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl{sub 4}), in water to form predominately core-shell PMMA–Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core–shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10{sup −2} Ω cm.

  6. Fabrication of anode-supported zirconia thin film electrolyte based core-shell particle structure for intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Peng Li; John T.S.Irvinen

    2013-01-01

    With a view to produce intermediate temperature SOFCs, yttria and scandia doped zirconia with a core-shell structure was prepared, then an anode supported fuel cell was fabricated by a spray method. The influences of the scandia content in the electrolyte and atmosphere conditions used in the testing experiments on phase composition, microstructure and fuel cell performance were investigated. The electrolyte was composed of cubic and tetragonal phases and SEM pictures revealed very fine grain sizes and a smooth surface of the electrolyte film, though some defects were observed in samples with high Scandia content. Coating scandia on partially stabilized zirconium particles improves both ionic conductivity of the electrolyte and power density of the fuel cell distinctly below 750 1C. Anodes were pre-sintered at 1200 1C before co-sintering with the electrolyte film to ensure that the shrinkage percentage was close to that of the electrolyte during co-sintering, avoiding warping of cell.

  7. A simple route to morphology-controlled polydimethylsiloxane films based on particle-embedded elastomeric masters for enhanced superhydrophobicity.

    Science.gov (United States)

    Jeong, Dong-Wook; Kim, Seung-Jun; Park, Jong-Kweon; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man

    2014-02-26

    We present a simple route for controlling the surface morphology of polydimethylsiloxane (PDMS) films based on a standard replica molding technique incorporating a microparticle-embedded elastomeric master for enhancing surface wetting properties. The elastomeric masters are simply prepared by embedding microparticles (MPs) firmly into a surface of PDMS substrates using an abrasive air-jetting (AAJ) that can be potentially scaled up to large-area fabrication. The surface geometries of the PDMS masters can be easily controlled by using MPs with different shape and size in the AAJ process, resulting in easy control of the surface morphologies and resultant wetting and optical properties of the PDMS films after replicating. The PDMS masters are found to be highly durable, enabling repeated use to produce superhydrophobic PDMS films with similar characteristics. In addition, the fabricated PDMS films retain almost constant properties even under repetitive compressing and stretching deformations thanks to the mechanical robustness enabled by their all-elastomeric architectures. We show that the fabricated PDMS surfaces can be potentially employed as self-cleaning films in glass-based applications, even with complex surfaces, owing to their enhanced wetting properties, fairly good optical transparency, and superior mechanical stability.

  8. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Energy Technology Data Exchange (ETDEWEB)

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  9. Research progress of particle electro-deposition and functional film within the anodic oxide film of aluminum%铝基氧化膜内粒子电沉积及其功能膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    王梅丰; 倪磊; 陈东初; 常萌蕾; 叶秀芳; 魏红阳

    2015-01-01

    由于铝阳极氧化膜的特殊结构,再加上其制备的功能膜具有一系列独特性能。因此,近年来受到国内外广大科研工作者的广泛关注。本文从溶液组成综述铝基膜内单一粒子和复合粒子电沉积工艺,从电源波形介绍直流、交流和脉冲电沉积工艺,另外也叙述了溶胶凝胶和超声波电沉积工艺。列举了用电沉积方法制备功能性薄膜在催化、光学、太阳能吸收膜以及磁学领域的应用,并对制备功能性氧化膜存在问题与发展方向进行阐述。%Recent years has witnessed worldwide researchers’great attention to Al alloys,due to their excellent properties of anodic oxide film,such as unique properties in functional film as well as special structure. The anodic oxide film of alumi-num within a single particles electro-deposion and composite particles electro-deposion were comprehensively reviewed from the components of the electro-deposion. In addition,the electro-deposition methods were also discussed based on the power supply,such as direct current,alternating current,pulse,sol-gel solution,and ultrasonic. The application of the func-tional film prepared by the electro-deposition method in catalysis,optics,solar energy absorbing coating and magnetic field was introduced. Moreover,the existing problem and the future directions of further study on preparing functional oxide film by the electro-deposition method are also suggested.

  10. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    Science.gov (United States)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  11. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.

    Science.gov (United States)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  12. Enzymatic hydrolysis of gelatin layers of X-Ray films and release of silver particles using keratinolytic serine proteases from Purpureocillium lilacinum LPS # 876.

    Science.gov (United States)

    Cavello, Ivana Alejandra; Hours, Roque Alberto; Cavalitto, Sebastián Fernando

    2013-08-01

    Enzymatic decomposition of gelatin layers on used X-ray films and repeated utilization of the enzyme for potential application in silver recovery were investigated using keratinolytic serine proteases from Purpureocillium lilacinum LPS # 876. At pH 9.0, the enzymatic reaction was enhanced by the increase of enzyme concentration or by the increase of the temperature up to 60℃. Under the conditions of 6.9 U/ml, 60℃, and pH 9.0, hydrolysis of the gelatin layers and the resulting release of silver particles were achieved within 6 min. The protective effect of polyols against thermal denaturation was investigated. The presence of glycerol and propylene glycol increased enzyme stability. When the reusability of the enzyme for gelatin hydrolysis was tested, it could be seen that it could be effectively reused for more cycles when glycerol was added, compared with the enzyme without protective agents. The results of these repeated treatments suggested that a continuous process of recycling silver from used X-ray is feasible. Keeping in mind that recycling is (at the present time) needed and imperative, it can be remarked that, in this research, three wastes were successfully used: hair waste in order to produce serine proteases; glycerol in order to enhance enzyme thermal stability; and used Xray films in order to recover silver and PET films.

  13. Freestanding single crystal chemical vapor deposited diamond films produced using a lift-off method: Response to {alpha}-particles from {sup 241}Am and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Nobuteru, E-mail: nobu-tsubouchi@aist.go.jp [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Mokuno, Y. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kakimoto, A.; Fujita, F.; Kaneko, J.H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamada, H.; Chayahara, A.; Shikata, S. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2012-09-01

    Thick ({approx}100 {mu}m) undoped diamond films were grown homoepitaxially on single crystal (SC) diamond substrates by microwave plasma chemical vapor deposition (CVD). To form a freestanding SC diamond film (plate), the substrate was pre-ion-implanted with high-energy ion beams before the film growth, and after the thick-film deposition, the substrate was eliminated using a lift-off method, resulting in fabrication of a SC CVD diamond plate. Two samples were prepared; sample 1 was grown on a (0 0 1) oriented, nitrogen doped CVD SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.7 kW, while sample 2 was grown on a (0 0 1) oriented, high-pressure high-temperature synthesized type-Ib SC diamond at {approx}900 Degree-Sign C with the input microwave power of 1.25 kW. The formed SC plates have high optical transparencies, indicating no remarkable optical absorptions seen in the wavelength from ultraviolet to near infrared. The photoluminescence (PL) spectra of both samples show strong free exciton FE peaks, while in sample 2 relatively strong optical emissions corresponding to nitrogen related centers were observed in the visible region. After the metal electrodes were formed on both faces of the SC diamond plate to fabricate a sandwich-type diamond particle detector, the energy spectra of 5.486 MeV {alpha}-particles from {sup 241}Am were measured. The charge collection efficiencies (CCEs) of sample 1 were CCE = 98% for a hole transport and CCE = 89% for an electron transport, respectively, while CCEs of sample 2 were CCE = 80% for a hole transport and CCE = 78% for an electron transport, respectively. These results indicate that both holes and electrons in sample 2 were trapped much more than those in sample 1. Possible candidates of carrier capture centers are nitrogen and/or nitrogen-vacancy centers observed in PL, nonradiative defect (complex) centers, extended defects such as threading dislocations observed in micrographs taken with

  14. Coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun

    2003-01-01

    Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.

  15. Composition variations in Cu{sub 2}ZnSnSe{sub 4} thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Dahyun [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Opanasyuk, A.S.; Koval, P.V.; Ponomarev, A.G. [Department of Electronics and Computer Technology, Sumy State University, Sumy UA-40007 (Ukraine); Jeong, Ah Reum; Kim, Gee Yeong; Jo, William [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Cheong, Hyeonsik, E-mail: hcheong@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-07-01

    Compositional and structural studies of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on sodalime glass by co-evaporation. The composition of the films measured by two different methods, EDS and PIXE, showed significant differences. Generally, the Zn/Sn ratio measured by EDS is larger than that measured by PIXE. Both the micro-PIXE and the micro-Raman imaging results indicated the compositional and structural inhomogeneity of the sample. - Highlights: • Particle induced X-ray emission was used to analyze the composition of CZTSe films. • Energy dispersive X-ray spectroscopy tends to underestimate the Sn composition. • Local Raman intensity is related with the composition rather than the crystallinity.

  16. Incorporation of cobalt and nickel metal nano-particles in nano-grain zirconia film matrix by solution route

    Indian Academy of Sciences (India)

    S Jana; P K Biswas

    2000-08-01

    Precursor solutions of cobalt/nickel incorporated nano-grain zirconia films were prepared from aquo-organic solutions of zirconium oxychloride octahydrate and corresponding transition metal nitrate. The films were deposited onto silica glass substrate by the dipping technique. Annealing was made at different temperatures from 450°C to 1200°C ± 5°C in air atmosphere. The range of thickness of the films baked at 450°C was 1800–1870 Å. For cobalt system Co3O4 was formed initially at 450°C which gradually transformed to alpha cobalt and next to cubic cobalt along with a non-stoichiometric compound (Zr0.71Co0.23O0.06) with increasing annealing temperature. On the other hand, for nickel system nickel metal of nano-size was observed in the nano-grain zirconia film matrix at 450°C. By increasing annealing temperature to 1200°C, a compound, ZrNi4O, was formed which was found to be stable for ∼ 30 days.

  17. Nano Particles on Aging Characteristics of Polyimide Film%纳米颗粒对聚酰亚胺膜老化特性的影响

    Institute of Scientific and Technical Information of China (English)

    曹开江; 吴广宁; 张依强; 徐慧慧; 罗杨; 王鹏

    2013-01-01

    为了研究高频方波脉冲电压下高速铁路牵引电机绝缘的老化、失效机理,给电机绝缘结构的设计和优化提供理论基础,本文研究了高频方波脉冲下牵引电机定子绝缘的老化特性.在高频方波脉冲下,对普通和纳米复合薄膜进行了老化,通过扫描电镜分析了试样表面形貌的变化情况,并对试样的剩余击穿场强进行了测试分析.研究表明:老化1小时后两种薄膜的表面形貌都发生了明显改变但变化不同,纳米粒子的添加延缓了局部放电对纳米复合薄膜的老化速率,老化2小时后普通薄膜和纳米复合薄膜的击穿场强分别下降了27.55%和12.90%.%To provide theoretical basis for design and optimization of traction motor insulation structure, an investigation of aging and failure mechanism of insulation materials under high frequency impulse voltage was carried out through inspecting aging characteristics of stator insulation under high frequency square impulse voltage. Electrical aging test was performed on the common and corona resistant polyimide (PI) films with different aging time under high frequency square impulse voltage. The dammage instance of polyimide films' surface was observed under scanning electron microscopy (SEM), and the residual insulation strength was measured and analyzed. Results show that after one hour time aging the surface morphology of the two polyimide film are changed distinctly, but the damage instances were completely different. Nano particles in the corona resistant film slow down the aging rate compared with that of common film. Residual dielectric strength of common and corona resistant polyimide films were reduced by 27. 55% and 12. 90% after two hours aging, respectively.

  18. Integrating Plant Essential Oils and Kaolin for the Sustainable Management of Thrips and Tomato Spotted Wilt on Tomato

    Science.gov (United States)

    Thrips-vectored Tomato spotted wilt virus is one of the most devastating pest complexes affecting tomato in the southern USA and elsewhere. Field trials were conducted over two years to determine the effects of volatile plant essential oils and kaolin based particle films on the incidence of Tomato...

  19. Methods for producing complex films, and films produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  20. 油粒子体积对扩散的影响及油膜粒子化改进%Impact of Size of Oil-particle on Oil Film and Improved Method of Changing Oil Slick into Particles

    Institute of Scientific and Technical Information of China (English)

    杨红; 王珂; 胡松; 林军; 韩众; 解满俊

    2011-01-01

    In the application of oil-particle method to simulate the oil spill, there are a lot of options for the size of characteristic oil-particle and the method of changing oil slick into particles. Effects by different sizes of characteristic oilparticle were analyzed and compared. Results showed that under the same total volume of oil spills, the simulated area of oil spill increased by 14%~25% as the size of the characteristic oil-particle decreased by 50% and simulated area of oil spill increased by 31%~43% as the size of the characteristic oil-particle decreased by 10 times. Two-stage method was proposed to improve the oil-particle method which has a shortage in calculating oil spill area, however, the two-stage method evenly distributed the changing oil slick into particles in space, while the oil film should be normal distributed in space. The method of changing oil slick into particles has been improved, and results show that the two methods are not much different in calculating the oil spill area, but the method improves the calculation of the slickness of oil film calculation according to the actual instance.%在应用油粒子法模拟溢油运动时,特征油粒子在体积和油膜粒子化方法上可以有多种选择,文章就不同特征体积的油粒子对溢油面积的影响进行了分析和比较,结果显示,溢油量相同时,特征油粒子的体积每减小一倍,溢油扩散面积增加14%-25%,减小10倍时,达到31%-43%.针对溢油扩散面积计算不足的情况,已有学者提出用"两阶段"法进行改进.但"两阶段"法在油膜粒子化时采用的是平均分布,而此时的油膜应为正态分布,即中间厚,向四周逐渐减少.因此,文章应用正态分布法对油膜粒子化进行改进,得到自己的油膜粒子化方法.结果显示,两方法在计算溢油面积时并无太大的差别,但在油膜厚度计算方面,文章方法更接近实际情况.

  1. Y{sub 2}O{sub 3}: Eu{sup 3+}, Tb{sup 3+} spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Hui [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Ji, Ruonan [School of Physics, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Han, Linzi; Hao, Yuanyuan; Sun, Qian [School of Physics, Northwest University, Xi’an 710069 (China); Zhang, Dekai [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Fan, Jun [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Bai, Jintao [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); and others

    2015-04-25

    Highlights: • Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were successfully prepared. The as prepared particles can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. • Y{sub 2}O{sub 3} is not only a good photoluminescence host material, but also it has high corrosion resistivity, thermal stability, and transparency from violet to infrared light. Cooperated with SiO{sub 2} sols, it could realize a better anti-reflection property. • As a proof-of-concept application, the as prepared bi-functional films could effectively improve the photoelectric conversion efficiency by 0.23% compared to pure SiO{sub 2} AR coating film and 0.55% compared to glass. - Abstract: In this study, Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were prepared via the simple, cost-effective urea homogeneous precipitation method without additives. The chosen particles were added in the SiO{sub 2} sols to get anti-reflection (AR) and wavelength conversion bi-functional films. Careful investigations were carried out to find the optimum preparation conditions and proper morphology. SEM images showed that the particle sizes reduced as metal ion/urea ratio decreased. Additionally, the extracted particles turned from sphere to lamellar type when the deionized water, which was used as solvent, reduced to a certain extent. The mechanisms of the morphology formation and diversification were proposed as well. The as prepared materials can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. The spherical sample showed better luminescence performance than the one with lamellar morphology. In addition, the optical transmittance spectra indicated that the films adding spherical particles had better anti-reflective performance, and the best adding amount was 0.08 g. Finally, As a proof-of-concept application

  2. The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv 'Zard' grown under warm and semi-arid region of Iran.

    Science.gov (United States)

    Khaleghi, Esmaeil; Arzani, Kazem; Moallemi, Norollah; Barzegar, Mohsen

    2015-01-01

    Kaolin particle film (0%, 3% and 6%; w/v), as an antitranspirant treatment, was applied to mature 'Zard' olive trees (Olea europaea L.). Olive oil was extracted from harvested fruit and fatty acid composition and other oil quality indices of the fruit assessed over crop seasons. Kaolin increased chlorophyll and carotenoid contents, but decreased peroxide and iodine values, and UV absorbance extinction coefficients, of the oil. The highest palmitic acid was observed in the oil obtained from untreated trees (17%). Kaolin increased oleic acid up to 65% and 64% in the first and second crop seasons, respectively, but decreased linoleic and linolenic acid contents. Monounsaturated acids (65%) and oleic acid/linoleic acid ratios (4) were higher in oil obtained from kaolin treated than untreated trees. Therefore it can be expected that extracted olive oil from kaolin treated trees has a higher oxidative stability and shelf life than untreated trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Novel Conductive Poly(3,4-ethylenedioxythiophene-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    Directory of Open Access Journals (Sweden)

    Fangcheng Xu

    2016-03-01

    Full Text Available In this study, we have investigated the contribution of bovine serum albumin (BSA to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene (PEDOT film on a platinum (Pt electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP to construct a functional HRP/AuNPs/PEDOT(BSA/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.

  4. The photoelectrochemical properties of `Q-state` CdS{sub x} Se{sub (1-x)} particles in Langmuir-Blodgett films deposited onto optically transparent glass electrodes (OTE); Propriedades fotoeletroquimicas de particulas `Q-state`em filmes de Langmuir-Blodgett depositados sobre eletrodos de vidro opticamente transparente (OTE)

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman S.; Vasconcelos, Wander L. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica e Engenharia Metalurgica; Grieser, Franz; Urquhart, Robert S.; Furlong, D. Neil [Melbourne Univ., Parkville, VIC (Australia). School of Chemistry

    1995-12-31

    CdS `Q-state` particles, with average diameters varying from 2 nm to 10 nm, grown in arachidic acid Langmuir-Blodgett (LB) films, deposited onto optically transparent glass electrodes (OTES), were exposed to H{sub 2} Se(g) to form the corresponding Q-state Cd S{sub x} Se{sub (1-x)} particles. Those particles are considered to be made up of a core of CdS and coated with a monolayer of Cd Se. Q-state Cd S-x Se{sub (1-x)} particle formation was verified by X-ray photoelectron spectroscopy (XPS) and by monitoring a red shift in the UV-visible absorbance spectra relative to that of Cds. XPS results on 5 nm diameter CdS particles that had been grown in an LB film and then extensively exposed to H{sub 2} S (g) revealed a stable average composition of Cd S{sub 0}.{sub 4} Se{sub 06}. A study of the photoelectrochemical behaviour of these systems was conducted through current the open-circuit voltage and a marked increase in the short-circuit current was observed when LB films with Q-state CdS particles were exposed to H{sub 2} Se(g). (author) 4 figs.

  5. Preparation and optimization of CdWO4-polymer nano-composite film as an alpha particle counter

    Science.gov (United States)

    Ziluei, Hossein; Azimirad, Rouhollah; Mojtahedzadeh Larijani, Majid; Ziaie, Farhoud

    2017-04-01

    In this research work, CdWO4/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO4 powder. The CdWO4 powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO4 powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO4. Also, the responses of all samples were measured using an 241Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm2 has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a 230Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both 241Am and 230Th was nearly equal.

  6. 复合膜中纳米银粒子的光吸收特性研究%The research on optical absorption properties of silver nano-particles in composite film

    Institute of Scientific and Technical Information of China (English)

    李贵安

    2001-01-01

    本文通过溶胶凝胶法,制备出金属纳米银粒子复合膜.电镜(TEM)测量结果表明,复合膜中所掺入的银粒子尺寸属纳米量级.实验测出了复合膜中银粒子的吸收光谱,与其在银胶中吸收谱相比,发现其吸收峰红移52.5nm.并对测试结果进行了细致分析.%In the paper ,we reported composite film of silver nano-particles prepared via the Sol-Gel technique and its measurements of the optical absorption. The TEM photograph of composite film showed that silver particles size was nanoscale. The absorption peak of silver nano-particles in composite film yield red-shift as compared with silver nano-particles in colloidal solution. The results were analyzed and discussed in detail.

  7. Kaolin-based geopolymers with various NaOH concentrations

    Science.gov (United States)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  8. Influence of mixtures of kaolin particle film and synthetic insecticides on mortality of larval obliquebanded leafrollers (Lepidoptera: Tortricidae) from resistant and susceptible populations.

    Science.gov (United States)

    Smirle, Michael J; Lowery, D Thomas; Zurowski, Cheryl L

    2007-12-01

    Experiments were conducted to determine potential interactions between kaolin particle film and three insecticides on neonate larvae of the obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Kaolin did not significantly affect the toxicity of azinphosmethyl or indoxacarb to an insecticide-susceptible population when applied simultaneously with either insecticide in a 7-d leaf disk bioassay. Methoxyfenozide was slightly more toxic to the same leafroller population when coapplied with kaolin. When these bioassays were repeated on a multiresistant laboratory strain of C. rosaceana, mixtures of kaolin with either azinphosmethyl or indoxacarb were significantly more toxic than the insecticides alone, 3.1- and 7.7-fold more toxic for azinphosmethyl:kaolin and indoxacarb:kaolin, respectively. Mixtures of kaolin and methoxyfenozide did not differ in toxicity to the resistant leafroller population from the toxicity of methoxyfenozide alone. Kaolin alone had no effect on leafroller mortality over the 7-d duration of the bioassay. Although the toxicities of mixtures of kaolin with azinphosmethyl or indoxacarb are only moderately higher than those of the insecticides alone, they may be high enough to provide control of leafroller populations that have become difficult to manage due to the development of insecticide resistance.

  9. Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties

    Directory of Open Access Journals (Sweden)

    Chin-Yen Chou

    2016-12-01

    Full Text Available In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor made by mixing the treated AuNPs with N-isopropylacrylamide (NIPAAm solution and then applying UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using the ambient environment resistance test to measure the resistance, the lower critical solution temperature (LCST of AuNPs mixed with NIPAAm hydrogel was found to be 32 °C. In common metallic materials, the resistance increased during environmental temperature enhancement. In this study, at ambient temperatures higher than the LCST, the electrode resistance decreases linearly due to the shrinkage structure with AuNPs contacting the circuit electrode.

  10. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Science.gov (United States)

    Hewson, D.; Vukusic, P.; Eichhorn, S. J.

    2017-06-01

    Evaporation induced self-assembled (EISA) thin films of cellulose nanocrystals (CNCs) have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP) light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP) light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM) images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  11. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Directory of Open Access Journals (Sweden)

    D. Hewson

    2017-06-01

    Full Text Available Evaporation induced self-assembled (EISA thin films of cellulose nanocrystals (CNCs have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  12. 钛颗粒着火过程氧化膜破裂行为的理论研究%Theoretical Research on Oxide Film Fracture Behavior during Titanium Particle Ignition

    Institute of Scientific and Technical Information of China (English)

    弭光宝; 黄旭; 曹京霞; 曹春晓

    2012-01-01

    在着火热自燃理论基础上,通过分析钛颗粒表面氧化膜与基体之间的应力状态,结合实验事实,提出氧化膜最外层首先发生破裂但不形成贯穿裂纹的观点,基于该观点建立模型理论研究外层氧化膜的破裂行为对钛颗粒着火过程的影响,并对钛的着火过程进行物理模拟实验研究.结果表明:在673 ~1373K范围,当环境温度较低时,钛颗粒发生恒温氧化,氧化膜破裂导致氧化动力学曲线由抛物线向直线转化,当处于高温时,氧化膜的破裂使着火温度降低45K,不会对钛颗粒的着火过程产生强烈影响;当钛颗粒尺寸增大时,钛颗粒的着火温度未出现明显升高,与铝颗粒着火过程氧化膜的完全破裂机制不同;氧化膜内应力的变化使由外而内的裂纹扩展到一定程度后停止,即外层氧化膜不完全破裂,从而加速氧在内层氧化膜内扩散,增大了钛颗粒发生着火的敏感性;非等温氧化实验间接验证了外层氧化膜非贯穿破裂对钛着火过程影响的理论研究.%Based on thermal self-ignition theory, in combination with theoretical analysis of the stress between oxide film and matrix with experiment fact, the viewpoint that outermost oxide film fractured first without penetrating crack was put forward, and based on this viewpoint, the model, studying the effect of outer oxide film fracture behavior on titanium particles ignition was established. Further, the physical analogue experiments about titanium ignition were carried out. Research results showed that in lower temperature during 673 -1373K, titanium particles oxidized thermostatically, and oxidation kinetics curve changed into straight line from parabola due to oxide film fracture. While in higher temperature, ignition temperature was reduced by 45K due to oxide film fracture, which had no obvious effect on ignition process of titanium particles. With increasing in size of titanium particle, there was no obvious

  13. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  14. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO{sub 2} particles deposited on glass microrods

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Valtierra, Jorge [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: jormeval@yahoo.com; Garcia-Servin, Josafat [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: josgaser@yahoo.com.mx; Frausto-Reyes, Claudio [Centro de Investigaciones en Optica, A.C., Unidad Aguascalientes, Prol. Constitucion No. 607, Reserva de Loma Bonita, Aguascalientes, Ags., 20200 (Mexico)]. E-mail: cfraus@cio.mx; Calixto, Sergio [Centro de Investigaciones en Optica, A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, Leon, Gto., 37150 (Mexico)]. E-mail: scalixto@cio.mx

    2006-03-15

    Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO{sub 2} were prepared by sol-gel method. TiO{sub 2}-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO{sub 2} was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.

  15. Methods for forming particles

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  16. Methods for forming particles

    Science.gov (United States)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  17. Nano-engineering by implanting Al2O3 nano particle as sandwiched scattering centers in between the Lao.5Pr0.2Sr0.3MnO3 thin film layers.

    Science.gov (United States)

    Markna, J H; Vachhani, P S; Kuberkar, D G; Shah, N A; Misra, P; Singh, B N; Kukreja, L M; Rana, D S

    2009-09-01

    We report the use of non-magnetic Al2O3 nano particles deposited between two ferromagnetic La0.5Pr0.2Sr0.3MnO3 (LPSMO) manganite layers with an aim to improve the electronic and magnetotransport properties of the layered supper lattice grown on single crystal STO(100) substrate using Pulsed Laser Deposition (PLD) technique. We studied the electronic-transport and magnetotransport properties of this system wherein Al2O3 particles are expected to act as insulating scattering centers between two ferromagnetic LPSMO layers. The scattering due to additional scattering centers (insulating Al2O3 nano particles) could be controlled by application of external field, resulting in high magnetoresistance (MR) approximately 72% as compared to pristine LPSMO film (MR approximately 51%) at temperature close to their T(M) values. In addition, incorporation of nanostructured Al2O3 barrier between the two ferromagnetic LPSMO layers results in a 2-3 fold increase in the values of temperature coefficient of resistance (TCR) and the field coefficient of resistance (FCR) as compared to pristine LPSMO film, suggesting the use of such nanoengineered manganite layered structure for better device application.

  18. 基于格子波兹曼方法研究颗粒对缸套-活塞环油膜压力的影响%Influences of solid particles on oil film pressure in cylinder-piston ring based on lattice-Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    韩海燕; 张优云; 王凯

    2016-01-01

    Most liquid lubricating systems are inevitably supplied with lubricant containing contaminant particles. It is certain that some of these particles are suspended in the oil, that is, the size of the solid particle is smaller than the oil film thickness. In this paper, the effects of the suspended particles on the oil film pressure of cylinder-piston ring were mainly studied. In recent years, the lattice Boltzmann method (LBM) has been developed as an alternative to the conventional CFD (Computational Fluid Dynamics) methods. Unlike conventional numerical schemes based on discretization of macroscopic equations, the LBM is based on the statistical physics and describes the microscopic picture of particles movement in an extremely simplified way, but at the macroscopic level it gives a correct average description of the motion. It has been widely used to simulate the two-phase flow. The paper is aimed to study the influence of solid particles on the oil film pressure of piston ring based on L. The lubricate oil with suspended particles was regarded as the two-phase flow. The movement of the lubricate oil with solid particles is described with kinetic equations of distribution function of particles. A discrete Lattice-Boltzmann model of cylinder-piston ring was built in the domain of piston ring lubrication from the perspective of flow field. The implementation of boundary conditions for LBM is very important and has great effect on the accuracy and the stability of method. The bounce-back scheme was used in fluid-solid boundary and wall boundary treatment. The Reynolds boundary condition in the Lattice-Boltzmann Method was developed for the cracked oil film. By programming simulation, the influence of solid particles on the oil film pressure of piston ring was studied by researching the flow of the lubricant with solid particles based on LBM. The effect of particle location, shape and number on the oil film pressure of piston ring at certain crank angle was analyzed

  19. Influence of nano-particle diameter on superconducting properties in BaMO{sub 3}(M = Sn, Hf)/YBa{sub 2}Cu{sub 3}O{sub y} quasi-multilayered films

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, T.; Uraguchi, Y.; Makihara, T.; Suenaga, M.; Sueyoshi, T.; Fujiyoshi, T., E-mail: fuji@cs.kumamoto-u.ac.jp; Mitugi, F.; Ikegami, T.

    2015-11-15

    Highlights: • BSO nanoparticles which grown at higher temperature have larger diameter. • BSO nanoparticles which have large diameter make a broad peak of J{sub c} around B || c. • BSO/YBCO film which grown at 770 °C shows the improvement of J{sub c} at high temperature. • BHO doped YBCO multilayered film does not show the improvement of J{sub c.} - Abstract: In order to investigate the influence of diameter and spatial distribution of three-dimensional (3D) pinning centers on critical current density J{sub c}, BMO (BaSnO{sub 3} (BSO) or BaHfO{sub 3} (BHO)) doped YBa{sub 2}Cu{sub 3}O{sub y} (YBCO) thin films were fabricated by a quasi-multilayering process using a pulsed laser deposition method. The prepared films are referred as BMO(m,n)T{sub s}, where m and n denotes the number of laser pulse on the BMO target and the total number of BMO/YBCO bilayers, respectively and T{sub s} is the growth temperature. BSO(1,100)750 and BSO(1,100)770 show the improvement of J{sub c} in comparison with the pure YBCO sample in wide range of magnetic field directions at 65 K. However, at 77.3 K, improvement of J{sub c} was seen in only BSO(1,100)770. The BSO nano-particles within BSO(1,100)770 are considered to have larger diameter, so that BSO nano-particles can immobilize the flux lines in the high temperature region. In addition, BSO(1,100)770 shows the high peak of J{sub c} centered at θ = 0° in the angular dependence of J{sub c}. On the other hand, the J{sub c} of BHO(1,100)770 falls below that of pure YBCO samples in all magnetic field orientation. In addition, at 65 K, there is no peak of J{sub c} at any angles except for θ = 90°. These results indicates that the diameter of BHO nano-particles in BHO(1,100)770 might be much smaller than that of BSO nano-particle and BHO nanoparticles cannot work as effective pinning center.

  20. Influence of post-annealing on the properties of Fe{sub 50}Pt{sub 50} film and submicron size particles

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Maj E-mail: maj.hanson@fy.chalmers.se; Kazakova, Olga; Svedberg, E.B

    2004-05-01

    The magnetic properties of a 48 nm thick Fe{sub 50}Pt{sub 50} film and submicron size elements made of the film were investigated. The initial film was grown by DC magnetron sputtering and post-annealed during 30 min at 300 deg. C. Arrays of circular dots with diameters d=200, 300 and 550 nm and a reference sample (diameter 1.7 mm) were made of the film by electron lithography and Ar ion milling. After structural analysis by X-ray diffraction (XRD) and characterization by magnetization measurements and magnetic force microscopy, all samples were further annealed during 30 min at 600 deg. C. The XRD scans show that this led to an improvement of the crystalline quality in all samples, to a degree depending on the size of the dots. Both the structural and magnetic measurements imply that after the second heat treatment all samples have the easy magnetocrystalline direction (c-axis) mainly in the plane of the film, while the initial structures were characterized by a random distribution of c-axes.

  1. Deposition of SrTiO{sub 3} films by electrophoresis with thickness and particle size control; Deposicao de filmes de SrTiO{sub 3} por eletroforese com controle de espessura e tamanho de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Junior, W.D.M.; Pena, A.F.V. [Universidade Estadual Paulista Julio de Mesquita Filho (DFQB/UNESP), Presidente Prudente, SP (Brazil); Souza, A.E.; Santos, G.T.A.; Teixeira, S.R. [Instituto Nacional de Ciencia e Tecnologia dos Materiais em Nanotecnologia (INCTMN), Araraquara, SP (Brazil); Senos, A.M.R. [Universidade de Aveiro (CICECO), Aveiro (Portugal); Longo, E., E-mail: snow_dias@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (IQ/UNESP), Araraquara, SP (Brazil)

    2012-07-01

    The SrTiO3 (ST) is a material that exhibits semiconducting characteristics and interesting electrical properties. In room temperature has a structure of high cubic symmetry. The size of the crystallites of this material directly influences this symmetry, changing its network parameters. ST nanoparticles are obtained by hydrothermal method assisted by microwave (MAH). ST films are prepared by electrophoretic deposition (EPD). Approximately 1 g of the powder is dissolved in 100 ml of acetone and 1.5 ml of triethanolamine. The stainless steel substrates are arranged horizontally in the solution. The depositions are performed for 1-10 min and subjected to a potential difference of 20-100 V. The films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). The characterizations show that it is possible to control both the thickness and size of the crystallites of the film depending on the deposition parameters adopted. (author)

  2. PVA-based nanographene film by electrospinning

    Directory of Open Access Journals (Sweden)

    Pang Jing

    2013-01-01

    Full Text Available Two-dimensional polyvinyl alcohol based graphene films with the thickness of less than 20 nm were fabricated directly by using polyvinyl alcohol/graphite solution or polyvinyl alcohol/ash solution by electrospinning. It was found that ash particles are good candidate for substitution of graphite particles to fabricate nanographene films. The relationship between the thickness and width of the film is elucidated, and the periodic morphology of the film is explained.

  3. Film Reviews.

    Science.gov (United States)

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  4. Granulation of core particles suitable for film coating by agitation fluidized bed III. Effect of scale, agitator rotational speed and blade shape on granule properties and development of a high accuracy scale-up theory.

    Science.gov (United States)

    Hamashita, Tomohiro; Ono, Tetsuo; Ono, Masaki; Tsunenari, Yoshinobu; Aketo, Takao; Watano, Satoru

    2009-04-01

    The preparation of core particles suitable for subsequent film coating was examined using different scales of agitation fluidized beds. Specifically, the effects of agitator rotational speed and agitator blade shape in different scales of granulators on granule properties such as mass median diameter, apparent density, friability and shape factor were studied. As the agitator rotational speed was increased or when the agitator blade height and angle were large, the mass median diameter and friability of the granules decreased, while the apparent density and shape factor increased, in a manner independent of the vessel size because the granules were subjected to greater compression, shearing and rolling effects. The same core particles could not be prepared using granulators with different vessel sizes by simply adopting a conventional scale-up theory(1,2)) based on kinetic energy similarity. Here, a novel scale-up theory that takes into account agitator blade shape factors is proposed.(3)) When the two scale-up theories were compared, our new theory was capable of predicting the granule properties more accurately than the conventional theory. By adopting this novel theory, the same core particles could be prepared under different operating conditions in any scale of granulator.

  5. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  6. Thermoluminescent characterization of thin films of aluminium oxide irradiated with beta particles; Caracterizacion termoluminiscente de peliculas delgadas de oxido de aluminio irradiadas con particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Villagran, E.; Escobar A, L.; Camps, E.; Gonzalez, P.R. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    By means of the laser ablation technique has been settled thin films of aluminium oxide on kapton substrates. These films present thermoluminescent response (Tl) when being exposed to beta radiation of a Sr{sup 90} - Y{sup 90} source (E max = 2.28 MeV). The brilliance curves show two peaks, one of them in 112 C degrees and the other one in 180 C degrees. The peak of low temperature is faded in some hours, whereas the high temperature one is more stable, showing a fading in the 15% order after three days of the irradiation. The Tl kinetic parameters were determined using the computerized deconvolution of the brilliance curve (CGDC). The results show that the high temperature peak is composed by four peaks which obey a second order kinetics with their maximum located at 165.7, 188.1, 215.3, and 246.5 C degrees. The depth of the traps (E) has values in the interval between 1.4 and 2.0 eV. The study of the dose response relation, show that the material presents a linear behavior in a dose interval from 150 mGy to 50 Gy. The obtained thin films of aluminium oxide could be a useful tool due to their potential applications in clinical dosimetry, in the determination of distributions of doses produced by penetrating weakly radiation, as well as in interfaces dosimetry. (Author)

  7. Sub-micron ZnO:N particles fabricated by low voltage electrical discharge lithography on Zn{sub 3}N{sub 2} sputtered films

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, C. García, E-mail: carlos.garcia@uam.es [Dpt. de Física Aplicada, Laboratorio de Microelectrónica, Universidad Autónoma de Madrid, 28020 Madrid (Spain); Jiménez-Trillo, J. [Dpt. Ingeniería de Circuitos y Sistemas, EUIT Telecomunicación, Universidad Politécnica de Madrid, Campus Sur, 28031 Madrid (Spain); Vélez, M. García [Dpt. Tecnología Electrónica, Escuela Superior de C.C. Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid (Spain); Piqueras, J.; Pau, J.L. [Dpt. de Física Aplicada, Laboratorio de Microelectrónica, Universidad Autónoma de Madrid, 28020 Madrid (Spain); Coya, C.; Álvarez, A.L. [Dpt. Tecnología Electrónica, Escuela Superior de C.C. Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid (Spain)

    2013-11-15

    This work analyzes the morphological, compositional and electrical modification of zinc nitride (Zn{sub 3}N{sub 2}) films through arc discharges produced by biasing a metal tip at a micrometric distance of the surface. Polycrystalline nitride layers are prepared by radio-frequency magnetron sputtering from a pure Zn target on glass substrates using N{sub 2} as working gas. Film properties after arc discharges are investigated by using scanning electron microscopy (SEM), ion beam analysis (IBA) techniques and four-probe resistivity measurements. Electrical discharge lithography performed at low bias voltages reveals as an effective mechanism to reduce resistivity by electrical breakdown of the thin oxide layer formed on top of the nitride. At higher voltages, electrical discharges along the scan increase nitride resistivity due to the severe modification of the structural properties. Additionally, compositional analysis reveals that nitrogen leaves the structure being replaced by ambient oxygen. This characteristic behavior leads to the formation of facetted submicron ZnO crystals whose size depends on the original Zn{sub 3}N{sub 2} grain size and the probe voltage used. The excess of zinc forms self-assembled microstructures along the scan edge.

  8. Synthesis of Particle-Free Silver Conductive Ink and Investigation of Fabrication of Conductive Film by Printing%无颗粒型银导电墨水的制备及其印刷成膜研究

    Institute of Scientific and Technical Information of China (English)

    聂晓蕾; 王虹; 邹竞

    2012-01-01

    Particle-free conductive ink was prepared, taking stiver citrate as conductive metal precursor, sec-butylamine as com-plexing agent and ethanol as media adjusting the viscosity and wettability. The ink could be printed on PET substrate by gravure printing, and silver conductive film with high electrical conductivity was obtained after thermal treated at low temperature. Silver citrate, silver citrate based conductive ink and silver conductive film were characterized with EDS, STA, IR, XRD, SEM and four point probe method. The results of STA showed that the mass of the conductive ink came to constant at 132 ℃ which is much lower than that of silver citrate (210 ℃); the results of SEM and XRD showed that the silver conductive film cured at 150 ℃ was constituted by compact silver nano particles with high purity; the result of four point probe method showed that its sheet resistance was 1. 83 Ω - □‐1.%以柠檬酸银为导电金属前驱体化合物,仲丁胺为络合剂,并添加乙醇调节粘度和表面张力等物性参数,制备了无颗粒型银导电墨水.该导电墨水可以采用凹版印刷方式印刷在PET片基上,并且在较低的热处理温度下即可获得导电性较好的银导电膜.利用X射线光电子能谱仪、同步热分析仪、红外光谱仪、X射线衍射仪、扫描电子显微镜和四探针测试仪对柠檬酸银、导电墨水以及银导电膜进行表征.结果表明导电墨水在132℃时残留质量即达到恒重,远低于柠檬酸银的210℃;经150℃热处理之后,银导电膜由均匀致密、纯度高的纳米银颗粒组成;经150℃热处理50 min后得到的银导电膜的方块电阻值为1.83 Ω·口-1.

  9. Drying of thin colloidal films

    Science.gov (United States)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  10. DEFORMATION INVESTIGATION ON iPP/SiO2 COMPOSITES: INFLUENCE OF STRETCHING TEMPERATURE AND PARTICLE SIZE ON MORPHOLOGY EVOLUTION AND CRYSTALLINE STRUCTURE OF THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Xiu-qin Zhang; Qian Xing; Rong-bo Li; Rui Wang; Du-jin Wang

    2013-01-01

    In the present work,structure changes during stretching of isotactic polypropylene (iPP) and iPP/silicon dioxide (SiO2) composites have been investigated systematically.The α-form crystal structure of both iPP and iPP/SiO2 composites is destroyed and transforms into the mesophase as the samples are stretched at a low temperature (35℃),while stretching at high temperatures (90℃ and 120℃) can restrain the appearance of defects and keep the perfection of crystal structure.FTIR results reveal that the stretching temperatures show no obvious difference of the effect on the orientation of pure iPP,however,the orientation of iPP/SiO2 composites is greatly changed by the tensile temperature.In the case of micron-sized SiO2 particles (average particle diameter d > 1 μm),the orientation of the composites is lower than that of pure iPP at all stretching temperatures.The above results suggest that the stretching temperature and the SiO2 particle size have great influence on the structure variation and orientation behavior of iPP/SiO2 composites.

  11. SU-E-T-231: Measurements of Gold Nanoparticle-Mediated Proton Dose Enhancement Due to Particle-Induced X-Ray Emission and Activation Products Using Radiochromic Films and CdTe Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J; Cho, S [Dept. of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N [Dept. of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Medical Physics Program, Georgia Institute of Technology, Atlanta, GA (Georgia); Krishnan, S [Dept. of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: There have been several reports of enhanced cell-killing and tumor regression when tumor cells and mouse tumors were loaded with gold nanoparticles (GNPs) prior to proton irradiation. While particle-induced xray emission (PIXE), Auger electrons, secondary electrons, free radicals, and biological effects have been suggested as potential mechanisms responsible for the observed GNP-mediated dose enhancement/radiosensitization, there is a lack of quantitative analysis regarding the contribution from each mechanism. Here, we report our experimental effort to quantify some of these effects. Methods: 5-cm-long cylindrical plastic vials were filled with 1.8 mL of either water or water mixed with cylindrical GNPs at the same gold concentration (0.3 mg Au/g) as used in previous animal studies. A piece of EBT2 radiochromic film (30-µm active-layer sandwiched between 80/175-µm outer-layers) was inserted along the long axis of each vial and used to measure dose enhancement due to PIXE from GNPs. Vials were placed at center-of-modulation (COM) and 3-cm up-/down-stream from COM and irradiated with 5 different doses (2–10 Gy) using 10-cm-SOBP 160-MeV protons. After irradiation, films were cleaned and read to determine the delivered dose. A vial containing spherical GNPs (20 mg Au/g) was also irradiated, and gamma-rays from activation products were measured using a cadmium-telluride (CdTe) detector. Results: Film measurements showed no significant dose enhancement beyond the experimental uncertainty (∼2%). There was a detectable activation product from GNPs, but it appeared to contribute to dose enhancement minimally (<0.01%). Conclusion: Considering the composition of EBT2 film, it can be inferred that gold characteristic x-rays from PIXE and their secondary electrons make insignificant contribution to dose enhancement. The current investigation also suggests negligible dose enhancement due to activation products. Thus, previously-reported GNP-mediated proton dose

  12. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  13. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  14. Flow fields in soap films: Relating viscosity and film thickness

    Science.gov (United States)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  15. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  16. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  17. Dynamic of particle-laden liquid sheet

    Science.gov (United States)

    Sauret, Alban; Jop, Pierre; Troger, Anthony

    2016-11-01

    Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin liquid films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient free liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film as a function of time and the atomization process. We highlight that the presence of particles modifies the thickness and the stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.

  18. Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Badran, Hussain Ali, E-mail: badran_hussein@yahoo.com [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Ajeel, Khalid I. [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Lazim, Haidar Gazy [Misan University, Basic Education College, Science Department, Misan (Iraq)

    2016-04-15

    Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10{sup −7} cm{sup 2}/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO{sub 2} layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V{sub oc}, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO{sub 2} sol–gel, were investigated at different particle sizes, using the z-scan technique.

  19. Three-dimensional Ordered Silica Colloidal Film Self-assembly Deposited on a Vertical Substrate

    Institute of Scientific and Technical Information of China (English)

    刘丽霞; 董鹏; 王晓冬; 程丙英

    2003-01-01

    A method for preparation of particle crystal film constructed trom monodisperse silica colloidal partices in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.

  20. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  1. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  2. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU

    2008-01-01

    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  3. Structure evolution on annealing of copper-doped carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Onoprienko, A.A. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine)]. E-mail: onopr@ipms.kiev.ua; Danilenko, N.I. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine); Kossko, I.A. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine)

    2007-06-13

    Thin copper-doped (8 at.% Cu) carbon film was deposited by direct current magnetron sputtering of composite graphite/copper target in argon plasma. The evolution of film structure on annealing at 600 deg. C in a vacuum has been studied by transmission electron microscopy and electron diffraction. The as-deposited film was amorphous with copper atoms uniformly distributed over the film volume. Annealing resulted in precipitation of copper particles within carbon film followed by the decrease in the density of copper particles and increase in particle average size with annealing time due to diffusion coalescence within the ensemble of copper particles. The coalescence occurred by the mixed mechanism of bulk and surface diffusion of copper atoms within carbon film that contained a large number of structural defects. As a result, the mean radius of copper particles in ensemble changed as R-bar {sup 5} {approx} t.

  4. Progress of SERS Based on Nano-particles/Coupled Metalic Structure between Nano-particles and Film with Micro-nano Structure%金属纳米颗粒/微纳结构金属膜增强拉曼研究进展

    Institute of Scientific and Technical Information of China (English)

    易明芳

    2014-01-01

    被称为“指纹谱”的分子拉曼谱及拉曼散射成像在生物及化学单分子识别领域具有重要应用。问题的关键是分子的拉曼散射截面小,利用金属纳米颗粒(LSP)局域场增强特性及其与金属膜(SPP)相互作用可产生比 LSP ( SPP)更强的局域场及尖角结构金属纳米颗粒的“热点天线”效应,可实现单分子拉曼信号的激发与辐射双共振增强效应。本文综述有关金属纳米颗粒和微纳结构金属膜相耦合增强分子拉曼信号的研究进展。%The “fingerprint” Raman spectra have important application in the field of chemistry or biotechnology which makes it possible to visualize individual molecules with chemical recognition .The key question is that the Raman scattering cross section of a single molecule is very small.The localized field enhancements of the surface plasmon polaritons is the physical basement of surface enhanced Raman spectra( SERS) .The hybrid plasmons which is a kind of coupling electric field between the LSP and SPP will produce stronger electric field than the LSP or SPP alone and the nano-metal particles with sharp corners structure can produce"hot spot"effect.It can realize the double-resonance enhancement for both Raman excitation and Raman emission.This paper will summarize the progress of SERS based on nano-particles/coupled metalic structrue between nano-particles and film with micro-nano structures.

  5. Optical anisotropy in packed isotropic spherical particles: indication of nanometer scale anisotropy in packing structure.

    Science.gov (United States)

    Yamaguchi, Kohei; Inasawa, Susumu; Yamaguchi, Yukio

    2013-02-28

    We investigated the origin of birefringence in colloidal films of spherical silica particles. Although each particle is optically isotropic in shape, colloidal films formed by drop drying demonstrated birefringence. While periodic particle structures were observed in silica colloidal films, no regular pattern was found in blended films of silica and latex particles. However, since both films showed birefringence, regular film structure patterns were not required to exhibit birefringence. Instead, we propose that nanometer-scale film structure anisotropy causes birefringence. Due to capillary flow from the center to the edge of a cast suspension, particles are more tightly packed in the radial direction. Directional packing results in nanometer-scale anisotropy. The difference in the interparticle distance between radial and circumferential axes was estimated to be 10 nm at most. Nanometer-scale anisotropy in colloidal films and the subsequent optical properties are discussed.

  6. Spectrometric characteristics of polystyrene scintillation films

    CERN Document Server

    Astvatsaturov, A R; Gavalyan, V B; Gavalyan, V G

    1999-01-01

    The spectrometric characteristics of five types of polystyrene scintillation films with thicknesses of 10, 30, 50 and 80 mu m and of analogous 250 mu m thick plates irradiated with sup 2 sup 3 sup 9 Pu, sup 2 sup 3 sup 8 Pu and sup 2 sup 2 sup 6 Ra sources of alpha-particles have been studied. The prospects of utilization of scintillation films as radiators for detection of heavy charged particles and measurement of their energy was experimentally shown.

  7. Opening and retraction of particulate soap films

    Science.gov (United States)

    Timounay, Yousra; Lorenceau, Elise; Rouyer, Florence

    2015-07-01

    We study for the first time the bursting dynamics of thin liquid films laden with hydrophobic micronic particles either with free or constrained edges. We highlight that the particles can arrange in bilayer or monolayer configurations and explore a range of particles coverage from zero to random close packing. When the particles bridge the two interfaces (monolayer configuration) of free-edge films, the hole opens intermittently. For the other cases, we observe constant retraction velocities, modeled by balancing liquid and particles inertia against surface tension as in Taylor-Culick theory. But, this approach is only valid up to a critical value of particles coverage due to the interplay between the interfaces and the friction between particles.

  8. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  9. Film Presentation: Die Urknallmaschine

    CERN Multimedia

    Carolyn Lee

    2010-01-01

    Die Urknallmaschine, an Austrian film by Gerd Baldauf, narrated by Norbert Frischauf (Alpha Österreich - ORF, 2009).  In CERN’s gigantic complex particles are accelerated to almost the speed of light, brought to collision and made to divide into even smaller particles. Public opinion of CERN’s research is also divided. Sceptics fear that black holes may be created. Might the goal to study the origin of the world lead to its destruction? The Austrian researcher Norbert Frischauf worked at CERN for many years. With his guidance it is possible to explore the world’s largest research centre, get a glimpse of the fascinating work the scientists do there and take a crash course in particle physics. Die Urknallmaschine will be presented on Friday, 25 June from 13:00 to 14:00 in the Main Auditorium. Language: German

  10. Ultrafine particles

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;

    2013-01-01

    Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when...... the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN...... concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3...

  11. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  12. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  13. Surface roughness and chemical properties of porous inorganic films

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Carrie L.; McAfee, Paul M. [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jin, Yi [China Electric Power Research Institute, Beijing 100192 (China); Lin, Y.S., E-mail: jerry.lin@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2015-09-30

    Porous inorganic films of different materials and pore architecture: mesoporous γ-alumina, mesoporous yttria stabilized zirconia (YSZ), macroporous YSZ and macroporous/microporous zeolite silicalite, were synthesized by the sol–gel spin-coating or dip-coating methods on silicon wafers of different surface roughness. Their surface chemical properties, pore and phase structure, and surface roughness were studied by various surface characterization methods. The pore sizes of these films are determined by their primary particle size. All the films studied are hydrophilic due to the presence of hydroxyl groups on the external crystallite surface, and their hydrophilicity increases in the order: macroporous YSZ < mesoporous YSZ < silicalite < γ-alumina. The γ-alumina films have highly smooth surfaces, while mesoporous YSZ, macroporous YSZ and silicalite films have similar surface roughness much rougher than γ-alumina films. The surface roughness of these coated films does not depend on the coating method, surface roughness of the substrate, surface chemistry or pore structure of the films. It is more controlled by the shape and size of the primary particles and aggregates in the sol or suspension from which the films are obtained. - Highlights: • Porous films of various pore structures are prepared by sol–gel methods. • γ-Alumina films have much smoother surface than thin films of other materials. • Film surface roughness is controlled by the shape and size of particles in the sols.

  14. Performance Comparison of Thin and Thick Film Microstrip Rejection Filters

    OpenAIRE

    Mandhare, M. M.; S.A. Gangal; M. S. Setty; Karekar, R. N.

    1988-01-01

    A performance comparison of microstripline circuits using thin and thick film techniques has been studied, in which a Microstrip rejection filter, in the X-band of microwaves, is used as test circuit. A thick film technique is capable of giving good adhesive films with comparable d.c. sheet resistivity, but other parameters such as open area (porosity), particle size, and edge definition are inferior to thin-film microstrip filters. Despite this drawback, the average value of transmission, tr...

  15. Photoluminescence Study of Copper Selenide Thin Films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  16. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  17. Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

    Science.gov (United States)

    Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.

    2017-01-01

    Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

  18. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  19. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.

    Science.gov (United States)

    Okoye, F N; Durgaprasad, J; Singh, N B

    2015-12-01

    Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].

  20. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  1. ELECTROSTATICALLY SUPPORTED MIXING OF FINE GRAINED PARTICLES

    Institute of Scientific and Technical Information of China (English)

    K.-E.; Wirth; M.; Linsenbühler

    2005-01-01

    The processing of fine-grained particles with diameters between 1 and 10 microns is difficult due to strong van-der-Waals attraction forces. In order to improve the handling properties, the fine-grained particles, i.e. host-particles,are coated with various nanoparticles, i.e. guest-particles. The mixing of fine-grained powders is influenced by particle-particle interactions. If these forces are distinctively used, both interactive and ordered mixtures can be produced.These particle mixtures consist of composite-particles that have new physical properties. These modified properties d epend strongly on the coating process, the diameter- and mass-relationship of the guest- and the host-particles. The properties of the composite-particles can systematically be adjusted to the requirements of industrial applications. For example, a laboratory bubbling fluidized bed can be used to describe the conveying behavior of the functionalized host-particles. Applications for the functionalized particles are in the pharmaceutical and the powder coating industries,e.g. enhanced dry powder inhalers and thin lacquer films. The present research compares three different mixing/coating processes. The composite-particles are characterized by TEM, SEM and with their fluidization characteristics. The coating process itself is monitored by the electrostatic charge of the particles.

  2. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    WEI; Gang; (魏刚); ZHANG; Yuanjing; (张元晶); XIONG; Rongchun; (熊蓉春)

    2003-01-01

    TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3-4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine B degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20-30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.

  3. Demens Film

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner

    2012-01-01

    I forbindelse med opstarten af Demens Film projektet har der været nedsat en ekspertgruppe, som er kommet med en række anbefalinger omkring film til mennesker med demens. Anbefalingerne skal bruges i de næste faser af projektet. Deltagerne i ekspertgruppen var sammensat af en bred gruppe...... fagpersoner inde for forskellige fagområder. Læs mere om gruppens anbefalinger og sammensætning af ekspertgruppen i den kort rapport som er offentlig tilgængelig. Læs Ekspertgruppe anbefalingerne til Demens Film projekt....

  4. Intrinsic stress analysis of sputtered carbon film

    Institute of Scientific and Technical Information of China (English)

    Liqin Liu; Zhanshan Wang; Jingtao Zhu; Zhong Zhang; Moyan Tan; Qiushi Huang; Rui Chen; Jing Xu; Lingyan Chen

    2008-01-01

    Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated.The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses.The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition.By varying argon pressure and target-substrate distance,energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level.The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.

  5. Piezoelectric Film.

    Science.gov (United States)

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  6. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  9. Patterned Poly(dopamine) Films for Enhanced Cell Adhesion.

    Science.gov (United States)

    Chen, Xi; Cortez-Jugo, Christina; Choi, Gwan H; Björnmalm, Mattias; Dai, Yunlu; Yoo, Pil J; Caruso, Frank

    2017-01-18

    Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.

  10. Carbon particles

    Science.gov (United States)

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  11. Experimental study of high temperature particle dropping in coolant liquid

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; LI Xiaoyan; HU Zhihua

    2007-01-01

    A series of experiments of the premixing stage of fuel-coolant interactions (FCI), namely the particles falling into water, were carried out. The force on the particles during the course of falling has been studied. The dropping character of hot particle was influenced by three main parameters, i.e., particle temperature, particle diameter and coolant subcooling that varied over a wide range. A high-speed camera recorded the falling speed of the particle and the moving curves were obtained. The experimental results showed that for the film boiling on the surface of particle and water, the temperature increase of either particle or coolant would slow down the particle falling velocity. The falling velocity of particle in small diameter is lower than that of the bigger particle. The present work can provide an experimental foundation for further investigation of high-speed transient evaporation heat transfer.

  12. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  13. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  14. Measuring and overcoming limits of the Saffman-Delbrück model for soap film viscosities.

    Science.gov (United States)

    Vivek, Skanda; Weeks, Eric R

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.

  15. A biocompatible magnetic film: synthesis and characterization

    OpenAIRE

    Chatterjee, Jhunu; Haik, Yousef; Chen, Ching Jen

    2004-01-01

    Background Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. Methods A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel. Results The surface ...

  16. Electrodeposition and Characterization of Polyaniline Film

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-zhi; ZHANG Peng; ZHANG Wei-guo; YAO Su-wei

    2012-01-01

    Polyaniline film was prepared by electrochemical method in an acidic solution of aniline.The micromorphology of the polyaniline film was transformed to three-dimensional network structure instead of little particles while the deposition time was extended.The peak wavelength of the photoluminescence spectrum was 491 nm.The luminous intensity increased with the extension of deposition time,and so did the electrochemical activity.

  17. Particle Behavior at Anisotropically Curved Liquid Interfaces

    Science.gov (United States)

    McEnnis, Kathleen; Zeng, Chuan; Davidovitch, Benny; Dinsmore, Anthony; Russell, Thomas

    2011-03-01

    A particle bound to an anisotropically curved liquid interface, such as a cylinder or catenoid, cannot maintain a constant contact angle without deforming the interface. Theory suggests that the particles will experience a force that depends on the interfacial shape and migrate to minimize the total interfacial energy. To test these predictions, particles were deposited on top of liquid semi-cylinders of ionic liquid or melted polystyrene confined on chemically patterned surfaces. Particles were also deposited on liquid catenoid structures created by placing a melted polymer film under an electric field. The location of the particles on these structures was observed by optical, confocal, and scanning electron microscopy. The implications for the directed assembly of particles and stability of Pickering emulsions are also discussed.

  18. Some characteristics of fine beryllium particle combustion

    Science.gov (United States)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.

    2007-08-01

    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  19. Role of particle shape anisotropy on crack formation in drying of colloidal suspension

    Science.gov (United States)

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K.; Basavaraj, Madivala G.

    2016-08-01

    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

  20. Effects of hydrazine on the solvothermal synthesis of Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals for particle-based deposition of films

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ming-Hung [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Fu, Yaw-Shyan, E-mail: ysfu@mail.nutn.edu.tw [Department of Greenergy, National University of Tainan, Tainan, Taiwan 700 (China); Shih, Cheng-Hung; Kuo, Chun-Cheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan 701 (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2013-10-01

    The effects of hydrazine on the synthesis of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and Cu{sub 2}CdSnSe{sub 4} (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu{sub 2}Se, and Cu{sub 2}SnSe{sub 3}, and Cu{sub 2}SnSe{sub 3} and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices.

  1. Particle physics

    CERN Document Server

    Kennedy, Eugene

    2012-01-01

    Stimulated by the Large Hadron Collider and the search for the elusive Higgs Boson, interest in particle physics continues at a high level among scientists and the general public. This book includes theoretical aspects, with chapters outlining the generation model and a charged Higgs boson model as alternative scenarios to the Standard Model. An introduction is provided to postulated axion photon interactions and associated photon dispersion in magnetized media. The complexity of particle physics research requiring the synergistic combination of theory, hardware and computation is described in terms of the e-science paradigm. The book concludes with a chapter tackling potential radiation hazards associated with extremely weakly interacting neutrinos if produced in copious amounts with future high-energy muon-collider facilities.

  2. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  3. Particle astrophysics

    CERN Document Server

    Krauss, Lawrence M

    1997-01-01

    Astrophysics and cosmology provide fundamental testing grounds for many ideas in elementary particle physics, and include potential probes which are well beyond the range of current or even planned accelerators. In this series of 3 lectures, I will give and overview of existing constraints, and a discussion of the potential for the future. I will attempt whenever possible to demonstrate the connection between accelerator-based physics and astrophysicas/cosmology. The format of the kectures will be to examine observables from astrophysics, and explore how these can be used to constrain particle physics. Tentatively, lecture 1 will focus on the age and mass density of the universe and galaxy. Lecture 2 will focus on stars, stellar evolution, and the abundance of light elements. Lecture 3 will focus on various cosmic diffuse backgrounds, including possibly matter, photons, neutrinos and gravitational waves.

  4. Film Credits

    Science.gov (United States)

    Borja, Rhea R.

    2006-01-01

    With the advent of easy-to-use digital technology, schools are responding to the interests of their media-savvy students by offering more courses in filmmaking. In this article, the author features different films produced by students. Among other things, she discusses the students' growing interest in filmmaking.

  5. Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics.

    Science.gov (United States)

    Péroval, Claudine; Debeaufort, Frédéric; Despré, Denis; Voilley, Andrée

    2002-07-01

    Arabinoxylans (AX) are natural fibers extracted from maize bran, an industrial byproduct. To promote this polymer as a food ingredient, development of edible coatings and films had been proposed. Indeed, composite arabinoxylan-based films were prepared by emulsifying a fat: palmitic acid, oleic acid, triolein, or a hydrogenated palm oil (OK35). Lipid effects on water vapor permeability (WVP), surface hydrophobicity (contact angles), lipid particle size, and mechanical properties were investigated. Results showed that OK35-AX emulsion films had the lowest WVP. Emulsified films presented a bimodal particle size distribution; however, the smallest particle mean diameter (0.54 microm) was observed in OK35-AX emulsion films. Contact angles of water comparable to those observed for LDPE films (>90 degrees ) are measured on the OK35-AX film surface. Finally, only triolein-AX emulsion films had elongation higher than films without lipid. These results suggest that OK35 enhances functional properties of AX-based films and should be retained for further research.

  6. Particle encapsulation

    OpenAIRE

    Sun, Xiaobin

    2000-01-01

    Several engineering processes are powder based, ranging from food processing to engineering ceramic and composite production. In most of these processes, powders of different composition are mixed together in order to produce the final product, and this combining of powders of different density, shape, and surface properties is often very difficult. Mixtures may be quite inhomogeneous. This research focuses on a method of avoiding such problems, by coating individual particles of one material...

  7. Martian Particle

    Science.gov (United States)

    2008-01-01

    This image of Martian soil was taken by the Phoenix Lander's atomic force microscope on Sol 74 of the mission, which began on May 25, 2008. This image of a flat, smooth-surfaced particle is consistent with the appearance of soil from Earth containing the mineral phyllosilicate. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  8. Particle formation in ambient MALDI plumes.

    Science.gov (United States)

    Musapelo, Thabiso; Murray, Kermit K

    2011-09-01

    The ablated particle count and size distribution of four solid matrix materials commonly used for matrix-assisted laser desorption ionization (MALDI) were measured with a scanning mobility particle sizer (SMPS) combined with a light scattering aerodynamic particle sizer (APS). The two particle sizing instruments allowed size measurements in the range from 10 nm to 20 μm. The four solid matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), 4-nitroaniline (NA), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapic acid (SA). A thin film of the matrix was deposited on a stainless steel target using the dried droplet method and was irradiated with a 337 nm nitrogen laser at atmospheric pressure. The target was rotated during the measurement. A large number of nanoparticles were produced, and average particle diameters ranged from 40 to 170 nm depending on the matrix and the laser fluence. These particles are attributed to agglomeration of smaller particles and clusters and/or hydrodynamic sputtering of melted matrix. A coarse particle component of the distribution was observed with diameters between 500 nm and 2 μm. The coarse particles were significantly lower in number but had a total mass that was comparable to that of the nanoparticles. The coarse particles are attributed to matrix melting and spallation. Two of the compounds, CHCA and SA, had a third particle size distribution component in the range of 10 to 30 nm, which is attributed to the direct ejection of clusters.

  9. Stalking the ultimate particle

    CERN Multimedia

    2003-01-01

    If you missed the ARTE programme entitled "L'Ultime Particule" broadcast in February, you have another chance to catch it in CERN's Main Auditorium on 13 March. "L'Ultime Particule" is a documentary by the French director Michel Andrieu that seeks to explain particle physics through a contemplative quest for the research physicists of matter of today and yesteryear. Invariably kitted out in a red parka and a soft hat, the programme's investigator scours the planet and the archives in search of the research physicists who are stalking the ultimate particle, the Higgs boson, in their quest to understand the structure of matter. Naturally enough, CERN is an important stage of his journey where Michel Andrieu and his team spent several days last year. Both from the physics and metaphysical points of view, "L'Ultime Particule" is worth seeing. The film's director, Michel Andrieu, will introduce his documentary and answer questions from the audience after the documentary has been shown. L'Ultime Particule by Mic...

  10. Floating rings in vertical soap films : capillary driven bidimensional buoyancy

    CERN Document Server

    Adami, N

    2013-01-01

    The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-interpreted thanks to surface tension profiles in soap films. We propose a model involving surface tension profiles in order to describe the motion of buoyant particles in vertical soap films, and compare it to experimental data.

  11. Strontium-Doped Lanthanum Manganite Films Prepared by Magnetic Deposition

    DEFF Research Database (Denmark)

    Menon, Mohan; Larsen, Casper; Andersen, Kjeld Bøhm

    2009-01-01

    Deposition of La0.85Sr0.15MnO3 (LSM) films from suspensions using a magnetic field was found to be a cheap and quick technique. Ninety weight percent of the particles present in the suspensions were deposited within the first minute of the deposition, and the thickness of the film varied linearly...

  12. Light scattering characteristicof TiO2 nanocrystalline porous films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    TiO2 nanocrystalline porous films consisting of binary particles mixture (mean diameters of 12 and 100 nm) are capable of increasing the light absorption due to the possession of large specific surface area and light scattering property. The simultaneous reduction of the film thickness leads to a decrease of the recombination loss during electron transport and an increase of the photocurrent efficiency.

  13. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  14. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen;

    2007-01-01

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  15. Characterization of small particles by micro X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomasin C. [X-ray Optical Systems, Inc., East Greenbush, NY 12180 (United States)]. E-mail: tmiller@xos.com; Langley DeWitt, Helen [Chemistry Division, Analytical Chemistry Science, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Havrilla, George J. [Chemistry Division, Analytical Chemistry Science, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-11-15

    Micro X-ray fluorescence was used to study both homogeneous and heterogeneous particle systems. Specifically, homogeneous glass microspheres and heterogeneous soil particle samples were prepared by both bulk and single particle sample preparation methods for evaluation by micro X-ray fluorescence. Single particle sample preparation methods allow for single particles from a collected sample to be isolated and individually presented to the micro X-ray fluorescence instrument for analysis. Various particle dispersion methods, including immobilization onto Tacky Dot{sup TM} slides, mounting onto double-sided sticky tape affixed to polypropylene film, or attachment to polypropylene film using 3M Artist's Adhesive, were used to separate the sample particles for single particle analysis. These methods were then compared and evaluated for their ability to disperse the particles into an array of single separated particles for optimal micro X-ray fluorescence characterization with minimal background contribution from the particle mounting surface. Bulk methods of particle sample preparation, which included pellet preparation and aerosol impaction, used a large quantity of collected single particles to make a single homogeneous specimen for presentation to the instrument for analysis. It was found that single particle elemental analysis by micro X-ray fluorescence can be performed if the particles are well separated (minimum separation distance = excitation source beam diameter) down to a particle mass of {approx} 0.04 ng and a mean particle diameter of {approx} 0.06 {mu}m. Homogeneous particulates can be adequately characterized by micro X-ray fluorescence using either bulk or single particle analysis methods, with no loss of analytical information. Heterogeneous samples are much harder to characterize, and both single particle as well as bulk analyses must be performed on the sample to insure full elemental characterization by micro X-ray fluorescence.

  16. Particle Physics

    Science.gov (United States)

    Cooper, Necia Grant; West, Geoffrey B.

    1988-06-01

    Preface; Introduction; Part I. Theoretical Framework: 1. Scale and dimension - From animals to quarks Geoffrey B. West; 2. Particle physics and the standard model Stuart Raby, Richard C. Slansky and Geoffrey B. West; QCD on a Cray: the masses of elementary particles Gerald Guralnik, Tony Warnock and Charles Zemach; Lecture Notes - From simple field theories to the standard model; 3. Toward a unified theory: an essay on the role of supergravity in the search for unification Richard C. Slansky; 4. Supersymmetry at 100 GeV Stuart Raby; 5. The family problem T. Goldman and Michael Martin Nieto; Part II. Experimental Developments: 6. Experiments to test unification schemes Gary H. Sanders; 7. The march toward higher energies S. Peter Rosen; LAMPF II and the High-Intensity Frontier Henry A. Thiessen; The SSC - An engineering challenge Mahlon T. Wilson; 8. Science underground - the search for rare events L. M. Simmons, Jr; Part III. Personal Perspectives: 9. Quarks and quirks among friends Peter A. Carruthers, Stuart Raby, Richard C. Slansky, Geoffrey B. West and George Zweig; Index.

  17. Nucleation and growth of thin films of rod-like conjugated molecules

    NARCIS (Netherlands)

    Hlawacek, G.; Teichert, C.

    2013-01-01

    Thin films formed from small molecules are rapidly gaining importance in different technological fields. To explain their growth, methods developed for zero-dimensional atoms as the film-forming particles are applied. However, in organic thin-film growth the dimensionality of the building blocks com

  18. Effect of Solvation Film on the Viscosity of Colloidal Dispersions

    Institute of Scientific and Technical Information of China (English)

    PENG Chang-Sheng; GU Qing-Bao; SONG Shao-Xian

    2005-01-01

    Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein's viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein's equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions.

  19. Gold Nanoparticulate Thin Films Fabricated by the Electrostatic Self-Assembly Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurate, and gold nanoparticles were electrostatically self-assembled with poly(diallyldimethylammonium chloride) into multilayer thin films on silicon and quartz substrates. The particulate thin films were characterized by UV-vis spectroscopy, surface enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles,an obvious collective particle plasmon resonance was observed on UV-vis spectra, and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates, resistivity of the order of 10-4Ω*cm was yielded.

  20. Synthesis of Photochromic AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2012-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 solution, and a liquid-state urethane resin as starting materials. The obtained composite films showed a photochromic property. The rate of darkening of the composite film increased after mixing with CuCl2. The AgCl particle size in the film without heat treatment was 6–20 nm, and that of the heat-treated film was 25–80 nm; these results were confirmed using TEM observations. The fading rate of the film without heat treatment was higher than that of the heat-treated films.

  1. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    Science.gov (United States)

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-06

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  2. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  3. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  4. Experimental study of drop impacts on soap films

    Science.gov (United States)

    Yawar, Ali; Basu, Saikat; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Impinging drops on flowing and static soap films demonstrate at least three distinct types of impact regimes: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow for a moving film and for static films it gets assimilated within the film, and (c) it pierces through the film. The interaction presents a unique opportunity to explore the impact of a quasi one-dimensional object on a two-dimensional fluid, much like a comet impacting on a thin atmosphere. We present a detailed experimental study of droplet impacts on soap film flow, for a number of film inclination angles and falling heights of the drop. Imaging techniques employed include sodium lamp interferometry to measure film thickness fluctuations and particle tracking velocimetry to measure the velocity field. Film thickness measures approximately 10 microns and the drop diameter is 1 mm. We mostly observe the bouncing-off regime for smaller inclination angles. However, at higher impact angles, puncturing of the film becomes a more common occurrence. We show that when the drop bounces off the film, there is a momentum transfer leading to vortex dipole shedding, along with the generation of capillary waves; an impulsive regime that may share correspondence with the locomotion of water striders.

  5. Unambiguous optical characterization of nanocolloidal gold films

    NARCIS (Netherlands)

    Wormeester, Herbert; Kooij, E. Stefan; Poelsema, Bene

    2003-01-01

    The thin island film theory developed by Bedeaux and Vlieger [Optical Properties of Surface (Imperial College Press (2002)], is used to unambiguously analyze spectroscopic ellipsometry spectra of thin layers of nanocolloidal gold particles on silicon substrates covered by a natural oxide layer, for

  6. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  7. Layer-by-layer assembly of nanocomposite films with thickness up to hundreds of nanometers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling-de; YAN Yu-hua; YU Hai-hu; GU Er-dan; JIANG De-sheng

    2006-01-01

    Polyelectrolyte/polyelectrolyte, organic molecule/colloidal CdS and polyelectrolyte/MWCNT films were fabricated via the layer-by-layer assembling technique. The assembled films were characterized by UV-vis spectrophotometer, X-ray diffractometry,nano profilometer and scanning electron microscopy. The results demonstrate that the layer-by-layer assembling technique can be used to make the nanoscaled films from polyelectrolytes and thicker composite films from suitable precursor materials. Both organic molecule/colloidal CdS films and PEI/MWCNT films with thickness of hundreds of nanometers were obtained. For the organic molecule/colloidal CdS films, a reasonable explanation for the result is that both the organic molecules and the CdS particles aggregate in the films. For the PEI/MWCNT films, obviously, it is the MWCNT that makes the great contribution to the film thickness.

  8. A photoluminescence study of film structure in CdTe nanoparticle thin films.

    Science.gov (United States)

    Gardner, H C; Gallardo, D E; Dunn, S; Gaponik, N; Eychmüller, A

    2008-05-01

    The layer-by-layer deposition of thin films of CdTe nanoparticles and three different polyelectrolytes has been investigated. Photoluminescence spectra were used to monitor the energy transfer properties within the films. As the number of bilayers in a thin film was increased a decrease in the energy of the light emitted was observed. The wavelength change is a two-stage process. Deposition of the first one to two bi-layers of a thin film produced a sharp energy change (626 nm to 637 nm with the addition of a single bi-layer) whereas deposition of subsequent bi-layers produced a more gradual energy change (642 nm-646 nm with the addition of 5 bi-layers). A space-filling mechanism is suggested to account for these changes; smaller nanoparticles penetrate the earlier levels of a thin film and increase the inter-particle energy transfer opportunities within the layers.

  9. Desirable Elements for a Particle System Interface

    Directory of Open Access Journals (Sweden)

    Daniel Schroeder

    2014-01-01

    Full Text Available Particle systems have many applications, with the most popular being to produce special effects in video games and films. To permit particle systems to be created quickly and easily, Particle System Interfaces (PSIs have been developed. A PSI is a piece of software designed to perform common tasks related to particle systems for clients, while providing them with a set of parameters whose values can be adjusted to create different particle systems. Most PSIs are inflexible, and when clients require functionality that is not supported by the PSI they are using, they are forced to either find another PSI that meets their requirements or, more commonly, create their own particle system or PSI from scratch. This paper presents three original contributions. First, it identifies 18 features that a PSI should provide in order to be capable of creating diverse effects. If these features are implemented in a PSI, clients will be more likely to be able to accomplish all desired effects related to particle systems with one PSI. Secondly, it introduces a novel use of events to determine, at run time, which particle system code to execute in each frame. Thirdly, it describes a software architecture called the Dynamic Particle System Framework (DPSF. Simulation results show that DPSF possesses all 18 desirable features.

  10. Fabrication, Characterization, and Surface-Enhanced Raman Activity Study of Silver Coated Gold Nanoparticulate Films

    Institute of Scientific and Technical Information of China (English)

    FANG,Jing-Huai; ZHONG,Chong-Gui; MU,Ren-Wang; SHI,Jian-Zhen; GE,Cun-Wang

    2007-01-01

    This paper reports a study on the preparation of Ag-clad Au colloidal monolayer films by a combination of colloid self-assembly and liquid phase microwave high-pressure technique. Firstly, monodisperse Au nanoparticles prepared by microwave heating method were assembled onto a quartz slide. Then, these Au colloidal particles on the quartz surface acted as seeds for growing the Ag-clad Au composite particulate films. The obtained particulate films were characterized by UV-Vis spectra and atomic force microscopy. It was found that the thickness of the shell and thus the size of particles in the composite colloidal films could be controlled by deposition of Ag on the preformed Au colloidal particle film in the microwave reaction system, and such films significantly increased the surface-enhanced Raman scattering enhancement (SERS) ability compared with Au colloidal particle films. Their strong enhancement ability may mainly stem from relatively large particle consisting of Ag cladding as well as effective coupling among particles in the Ag-clad Au particle films.

  11. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  12. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  13. Particle-vortex symmetric liquid

    Science.gov (United States)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  14. Reactive Ar ion beam sputter deposition of TiO{sub 2} films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Lautenschläger, T.; Thelander, E. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Spemann, D. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany)

    2017-03-15

    Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Thickness, growth rate, structure, mass density, composition, optical properties. • All TiO{sub 2} films are amorphous with systematic variations in mass density. • Considerable amount of inert process gas correlated with scattering angle. • Correlation of mass density and index of refraction. - Abstract: Several sets of TiO{sub 2} films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  15. Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles.

    Science.gov (United States)

    Li, Zifu; Harbottle, David; Pensini, Erica; Ngai, To; Richtering, Walter; Xu, Zhenghe

    2015-06-16

    Two distinct uniform hybrid particles, with similar hydrodynamic diameters and comparable zeta potentials, were prepared by copolymerizing N-isopropylacrylamide (NIPAM) and styrene. These particles differed in their styrene to NIPAM (S/N) mass ratios of 1 and 8 and are referred to as S/N 1 and S/N 8, respectively. Particle S/N 1 exhibited a typical behavior of soft particles; that is, the particles shrank in bulk aqueous solutions when the temperature was increased. As a result, S/N 1 particles were interfacially active. In contrast, particle S/N 8 appeared to be rigid in response to temperature changes. In this case, the particles showed a negligible interfacial activity. Interfacial shear rheology tests revealed the increased rigidity of the particle-stabilized film formed at the heptane-water interface by S/N 1 than S/N 8 particles. As a result, S/N 1 particles were shown to be better emulsion stabilizers and emulsify a larger amount of heptane, as compared with S/N 8 particles. The current investigation confirmed a better performance of emulsion stabilization by soft particles (S/N 1) than by rigid particles (S/N 8), reinforcing the importance of controlling softness or deformability of particles for the purpose of stabilizing emulsions.

  16. The Evolution of Film: Rethinking Film Studies

    OpenAIRE

    Harbord, Janet P.

    2007-01-01

    How is film changing? What does it do, and what do we do with it? This book examines the reasons why we should be studying film in the twenty-first century, connecting debates from philosophy, anthropology and new media with historical concerns of film studies.

  17. 固体颗粒对流化床多相蒸发海水淡化操作浓缩比及膜传热系数的影响%Effects of solid particles on experimental concentration factor of seawater desalination and film heat transfer coefficient in fluidized bed with multi-phase evaporation

    Institute of Scientific and Technical Information of China (English)

    弓凯雷; 王德武; 刘燕; 张少峰

    2012-01-01

    Increasing seawater desalination concentration factor can improve the performance ratio and effectively reduce the post-treatment cost of the concentrated seawater that is reused, therefore, it is one of the keys to realizing low-cost zero discharge of seawater desalination. The experiment was carried out in a multi-phase circulating fluidization bed (CFB) evaporator.It aimed to study the effects of particle volume fraction on seawater desalination concentration factor and film heat transfer coefficient. The main components of the scaling were also analyzed. The operations of vapor-liquid two-phase boiling flow and vapor-liquid-solid three-phase boiling flow were investigated in the experiment. The results showed that calcium sulfate is the main component of the scaling, and it was firstly separated out in the seawater desalination experiment. In the vapor-liquid two-phase boiling flow, the film heat transfer coefficient was kept at 1. 75 kW · m~2 · K-1 and concentration factor reached 3. 8. In the vapor-liquid-solid three-phase boiling flow, the result revealed that solid particles remarkably enhanced heat transfer and jmproved the prevention and removal of fouling. When particle volume fraction was 4% and film heat transfer coefficient was kept at 2. 3 kW · m-2 · K -1 , seawater desalination concentration factor reached more than 5. 8.%提高海水淡化操作浓缩比,不仅可以提高造水比,还可以有效降低淡化后浓海水再利用的后处理成本,故其是实现低成本零排放的关键之一.在一套循环流化床多相蒸发海水淡化实验装置上,分别采用汽-液两相及汽-液-固三相操作,考察固体颗粒对海水淡化操作浓缩比及膜传热系数的影响,并分析垢层的主要成分.实验表明:高温下CaSO4首先析出,是形成垢层的主要成分;采取汽-液两相操作,膜传热系数保持在1.75 kW·m-2·K-1左右,操作浓缩比可达到3.8左右;采取汽-液-固三相操作,固体颗粒强化

  18. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  19. Dynamic Deposition of Nanocopper Film on the β-SiCp Surface by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2015-01-01

    Full Text Available The uniform nanocopper film was deposited on the surface of micron β-SiC particle by magnetron sputtering technology successfully. The surface morphology and phase constitution of the β-SiC particle with nanocopper film were analyzed and dynamic deposition behavior was investigated in detail. The concept of dynamic deposition was put forward to interpret formation mechanism of copper nanofilm on the surface of β-SiC particles.

  20. Low-Threshold Random Laser with One Mirror and Feedbacks in PMMA Nano-Composite Films

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Hong; TAO Xiao-Ming; XUE Pu; KWAN Kai-Cheong; DENG Jian-Guo

    2005-01-01

    @@ A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle concentration on light emission is explored, and the optimum particle concentration is obtained. Optical microscopy and scanning probe microscopy are used to investigate the film structure, and the principle of incoherent and coherent laser is analysed.

  1. Improved optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles with a hierarchical structure for light diffuser film applications.

    Science.gov (United States)

    Suthabanditpong, W; Takai, C; Fuji, M; Buntem, R; Shirai, T

    2016-06-28

    This study successfully improved the optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles having a hierarchical structure. The particles were synthesized by an inorganic particle method, which involves two steps of sol-gel silica coating around the template and acid dissolution removal of the template. The pH of the acid was varied to achieve different hierarchical structures of the particles. The morphologies and surface properties of the obtained particles were characterized before dispersing in a UV-curable acrylate monomer solution to prepare dispersions for fabricating light diffuser films. The optical properties and the light diffusing ability of the fabricated films were studied. The results revealed that the increased pH of the acid provides the particles with a thinner shell, a larger hollow interior and a higher specific surface area. Moreover, the films with these particles exhibit a better light diffusing ability and a higher diffuse transmittance value when compared to those without particles. Therefore, the composite films can be used as light diffuser films, which is an essential part of optical diffusers in the back-light unit of LCDs. In addition, utilizing the hierarchical particles probably reduces the number of back-light units in the LCDs leading to energy-savings and subsequently lightweight LCDs.

  2. Evaluation of column flotation results with a film flotation method; Film fusenho wo mochiita column fusen kekkan no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Matsukata, M.; Ueyama, K. [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1996-10-28

    Change in wettability of coal particle surfaces due to kerosene adsorption was studied by using a film flotation method. The applicability of a film flotation method to coals modified by kerosene adsorption was first confirmed. In experiment, film flotation was applied to Illinois coal modified by aqueous methanol solution and kerosene adsorption, and the weight percent of residual particles on a gas-liquid interface and kerosene in aqueous methanol solution were analyzed to verify the applicability of a film flotation method. Film flotation was applied to Datong and Illinois coals modified by kerosene adsorption, and the weight percent of residual particles on a gas-liquid interface was plotted to surface tension of liquid. As a result, the weight percent of hydrophobic particles within 50mN/m in surface tension slightly increased in Datong coal and remarkably increased in Illinois coal with kerosene addition. It was thus suggested that in addition to surface tension, the distributions of hydrophilic and hydrophobic strengths on the surface of each coal particle should be considered to understand attachment of coal particles and bubbles. 6 refs., 4 figs.

  3. Ion-assisted sputtering on TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.; Kadlec, S. (Inst. of Physics, Czechoslovak Academy of Sciences, Prague (Czechoslovakia)); Valvoda, V.; Kuzel, R. Jr.; Cerny, R. (Dept. of Semiconductor Physics, Charles Univ., Prague (Czechoslovakia))

    1990-12-05

    Ion bombardment of growing films is one of the possible ways to produce films with specific properties. As yet there are no general rules for the production of these films. The quality of TiN films produced depends on the deposition conditions. A sharp transition from porous, black TiN films to compact, dense, bright gold TiN films is observed at a substrate bias U{sub s} of about -40 V. Recent experiments have indicated that the microstructure of TiN films and the transition mentioned above can be controlled by the ion energy delivered to the growing film per deposited particle E{sub p}=eU{sub s}{nu}{sub i}/{nu}{sub m}. This paper investigates the transition from porous, soft TiN films with a zone I microstructure to compact, hard TiN films with a zone T microstructure as a function of i{sub s}, U{sub s} and the deposition rate a{sub D} at constant temperature T{sub s}=350deg C and pressure p{sub T}=5 Pa. Correlations between the microhardness HV, the macrostress, {sigma}, the microstrain, e, the lattice parameters, the intensities of the X-ray reflections and the colour and appearance of the film are discussed. The zone I to zone T transition is observed at E{sub p}{approx equal}150 eV atom{sup -1}. (orig.).

  4. Film Festivals and Migration

    NARCIS (Netherlands)

    de Valck, M.; Ness, I.

    2013-01-01

    Film festivals have become a widespread phenomenon since their inception at the Venice Film Festival in 1932, the first festival to be organized on a regular basis. Film festivals proliferated in particular from the late 1960s onward. Today a film festival takes place every day somewhere: the

  5. The Film Spectator

    NARCIS (Netherlands)

    Buckland, Warren

    1995-01-01

    This is the first collection of essays in English to give prominence to the work of European film scholars whose aim is 'to understand how film is understood'. The Film Spectator raises fundamental issues that have confronted film theory for the past thirty years, but which have never been adequatel

  6. Polyelectrolytes: Influence on Evaporative Self-Assembly of Particles and Assembly of Multilayers with Polymers, Nanoparticles and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tatiana Bukreeva

    2010-12-01

    Full Text Available Assembling polyelectrolyte multilayers in a bottom-up approach is reported for polymers, particles, nanoparticles, and carbon nanotubes. Effects of polyelectrolyte multilayers on evaporative self-assembly of particles, which are of interest to a number of applications including photonic crystals, films and substrates, are investigated. Polyelectrolyte multilayer coatings bring multifunctionality to spherical particles and planar films. Studying the construction of polyelectrolyte assemblies is convenient in the planar layout: it is reported here for incorporation of gold and magnetic nanoparticles as well as of carbon nanotubes. Gold nanoparticles concentration is controlled within the films. Potential applications of both spherical structures and planar films are highlighted.

  7. Can phoretic particles swim in two dimensions?

    CERN Document Server

    Sondak, David; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-01-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows and ultimately the swimming velocity, may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Pecl...

  8. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available provides a formal proof that each particle converges to a stable point. An empirical analysis of multidimensional stochastic particles is also presented. Experimental results are provided to support the conclusions drawn from the theoretical findings...

  9. Durable solar mirror films

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  10. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-08

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications.

  11. Study of airborne particles during the impact of droplets on a dry surface or on a liquid film; Etude de la mise en suspension de micro-gouttelettes lors de l'impact d'une goutte sur une surface seche ou sur un film liquide

    Energy Technology Data Exchange (ETDEWEB)

    Motzkus, C.; Gensdarmes, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Service d' Etudes et de Recherches en Aerodispersion des polluants et en Confinement, 91 - Gif sur Yvette (France); Motzkus, C.; Gehin, E. [Paris-12 Univ., Centre d' Etudes et de Recherches en Thermique, Environnement et Systeme, 94 - Creteil (France)

    2007-07-01

    The safety analyses of the nuclear facilities require extensive knowledge on the airborne micro-droplet, in order to assess the potential sources of contamination in the case of hypothetical scenarios of accidental falls of liquids caused by leakage or discharge from a container. There are very few data in the literature in the case of the impaction of millimeter-size droplets on the airborne particles. The objective of our work is to study experimentally the emission of the particles during the impaction on a dry or wet plane surface, in order to understand the mechanisms leading to the airborne icles. First experiments are carried out in order to study the airborne particles produced by the free falls of droplet according to the fall height. These results are faced with a semi empirical correlation, which describes the transition between deposition and splash. In the case of a dripping of 3.84 mm-diameter droplets, our results show that the splash occurs for a fall height above 30 cm, which leads to resuspension fractions between 1,9 10{sup -6} at 46 cm and 7,5 10{sup -6} at 80 cm. (authors)

  12. Preparation and characterisation of novel thick sol-gel titania film photocatalysts.

    Science.gov (United States)

    Mills, Andrew; Elliott, Nicholas; Hill, George; Fallis, David; Durrant, James R; Willis, Richard L

    2003-05-01

    The preparation and characterization of thick (9 microns), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003, using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.

  13. Preparation and Characterization of Keratin Blended Films using Biopolymers for Drug Controlled Release Application

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    2016-08-01

    Full Text Available Keratin solution was separately blended with collagen, gelatin, sericin and starch for films preparation. All the blended films had smooth surfaces without phase separation, except the keratin/starch blend film. The native keratin film showed small particles embedded in all the film surfaces that resulted in them being rough. The structure of the native keratin film changed from beta-sheet to random coil at high blend ratio of other substances. This result increased the dissolution of the films especially the keratin/starch blend. The results relate directly to the decreased thermal stability of this film. However, the changes in structure did not affect the chlorhexidine release pattern. It is possible that the interaction between the drug and blending substances, and the substances to water molecules are the main factor influencing the drug release pattern from the films.

  14. Structure and UV photoluminescence of nanocrystalline ZnO films prepared by thermal oxidation of ZnS films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.D. [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics of Chinese Academy of Sciences, Dingxi Road, No. 1295, Shanghai 200050 (China)]. E-mail: xdgao@mail.sic.ac.cn; Li, X.M. [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics of Chinese Academy of Sciences, Dingxi Road, No. 1295, Shanghai 200050 (China); Yu, W.D. [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics of Chinese Academy of Sciences, Dingxi Road, No. 1295, Shanghai 200050 (China)

    2004-11-15

    Nanocrystalline ZnO films were fabricated using thermal oxidation of ZnS films deposited by successive ionic layer adsorption and reaction (SILAR) method. The crystalline structure and morphology of obtained films were characterized by X-ray diffraction (XRD) and scanning electronic microscope (SEM). Optical properties including the optical absorption coefficient and photoluminescence were investigated. Results show that obtained ZnO film exhibits excellent crystalline structure with the preferential orientation of <1 0 0>, dense morphology with particle size of 20-50 nm, high transmittance over 80% in vis-near-infrared band, and sharp absorption edge near 380 nm. At the excitation of 340 nm photon, the film shows a strong and sharp ultraviolet emission at 390 nm and several weak emissions in blue band, illustrating its high optical quality. The oxygen content in the annealing atmosphere has significant effects on the structure and optical properties of ZnO film.

  15. Impact of X-ray irradiation on PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Saman, E-mail: saman.khan343@gmail.com [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Rafique, Muhammad Shahid [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Anjum, Safia [Physics Department, Lahore College for Woman University, Lahore (Pakistan); Hayat, Asma [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Iqbal, Nida [Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia (UTM) (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PMMA thin films were deposited at 300 Degree-Sign C and 500 Degree-Sign C using PLD technique. Black-Right-Pointing-Pointer These films were irradiated with different fluence of laser produced X-rays. Black-Right-Pointing-Pointer Irradiation affects the ordered packing as well as surface morphology of film. Black-Right-Pointing-Pointer Hardness of film decreases up to certain value of X-ray fluence. Black-Right-Pointing-Pointer Absorption in UV-visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 Degree-Sign C and 500 Degree-Sign C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm{sup -2}. Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV-vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 Degree-Sign C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 Degree-Sign C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV-visible region.

  16. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid.

    Science.gov (United States)

    Rubentheren, V; Ward, Thomas A; Chee, Ching Yern; Nair, Praveena; Salami, Erfan; Fearday, Christopher

    2016-04-20

    This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form.

  17. Preparation and Characterization of Nano-Structured SiO2 Thin Films on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Dong Zhou YAN; Gang WEI

    2003-01-01

    Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon steel.

  18. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.

    2002-01-01

    to the interface. At still higher coverages and at temperatures below the bulk melting point at T-b=341 K, solid bulk particles coexist on top of the "perpendicular film." For higher temperatures in the range T-bT-s, a uniformly thick fluid film wets to the parallel film phase. This structure of the alkane/SiO2...

  19. Magnetism and magnetoresistance from different origins in Co/ZnO:Al granular films

    Science.gov (United States)

    Quan, Zhiyong; Liu, Xia; Song, Zhilin; Xu, Xiaohong

    2016-12-01

    Co/ZnO:Al granular films were made on glass substrates by sequential magnetron sputter deposition of ultrathin Co layer and ZnO:Al layer at room temperature. The as-deposited films consist of superparamagnetic Co particles dispersed in ZnO:Al ( 2% Al) semiconductor matrix. Distinguished magnetoresistance effect at room temperature was obtained in the as-deposited films, which obviously reduced after annealing due to the growth of Co particles. The size of important magnetic particles was analyzed by Langevin function for hysteresis loops and magnetoresistance curves at room temperature. It was found that small magnetic particle contribute to magnetoresistance behavior and large particles dominate the room temperature magnetism in Co/ZnO:Al granular films.

  20. Magnetism and magnetoresistance from different origins in Co/ZnO:Al granular films

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Zhiyong, E-mail: quanzy@sxnu.edu.cn; Liu, Xia; Song, Zhilin; Xu, Xiaohong, E-mail: xuxh@dns.sxnu.edu.cn

    2016-12-01

    Co/ZnO:Al granular films were made on glass substrates by sequential magnetron sputter deposition of ultrathin Co layer and ZnO:Al layer at room temperature. The as-deposited films consist of superparamagnetic Co particles dispersed in ZnO:Al (~2% Al) semiconductor matrix. Distinguished magnetoresistance effect at room temperature was obtained in the as-deposited films, which obviously reduced after annealing due to the growth of Co particles. The size of important magnetic particles was analyzed by Langevin function for hysteresis loops and magnetoresistance curves at room temperature. It was found that small magnetic particle contribute to magnetoresistance behavior and large particles dominate the room temperature magnetism in Co/ZnO:Al granular films.

  1. Effect of particle size on lead absorption from the gut

    Energy Technology Data Exchange (ETDEWEB)

    Barltrop, D.; Meek, F.

    1979-07-01

    The relationship between particle size and absorption of lead particles from the gastrointestinal tract of the rat has been investigated. Preparations of metallic lead of particle size between 0. and 250..mu.. were incorporated in laboratory rat diets and absorption determined by measurement of tissue lead concentrations attained under standard conditions. An inverse relationship was found between particle size and lead absorption; this relationship was most marked in the 0 to 100..mu.. range. A five-fold enhancement of absorption was observed from the diet with lead particles of mean size 6..mu.., compared with 197..mu.. particle size. Lead absorption from dried paint films containing lead chromate and lead octoate was measured using a similar technique. a marked enhancement of absorption was observed for both paints when particle size was reduced from 500 to 1000..mu.. to < 50..mu...

  2. Research on Identification of Dust Particles on COF

    Directory of Open Access Journals (Sweden)

    Zhang Jiayi

    2016-01-01

    Full Text Available Chip On Film(COF is the key component of electronic products, and is different from Printed Circuit Board(PCB. The properties of high flexibility, thin thickness, lightweight and high wiring density make it difficult to inspect COF, especially dust particles interference. Dust particles are similar to defects, and it is hard to identify dust particles from defects, so dust particles interference of quality test is the difficulty of automatic surface defect detection. In this paper, a new method to identify dust particles is discussed from abnormal area called junction points detection and machine learning method Support Vector Machine(SVM according to the characteristics of dust particles. As a result, a 94.8% correct rate of dust particles images identification has been achieved with the method.

  3. Synthesis and morphological modification of semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Jaime S., E-mail: jsanchez@imp.mx [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); López-Salinas, Esteban [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); Prince, Julia [Universidad Anáhuac México Norte, Av. Universidad Anáhuac # 46, Huixquilucan, Edo. de México 52786 (Mexico); González, Ignacio; Acevedo-Peña, Prospero [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Apdo. Postal 55-534, 09340 México D.F. (Mexico); Ángel, Paz del [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico)

    2014-09-15

    Layered double hydroxide (LDH) thin films with different chemical compositions (MgZnAl, MgZnGa, MgGaAl) and varying thicknesses were easily prepared by sol–gel method followed by dip-coating. Films were chemically uniform, transparent and well adhered to a conductive indium tin oxide (ITO) substrate. Structure, chemical composition and morphology of the thin films were characterized by XRD-GADDS, SEM-EDS and AFM. Additionally, the semiconducting properties of all the prepared films were studied through the Mott–Schottky relationship; such properties were closely related to the chemical compositions of the film. The films were characterized after electrochemical treatment and important modifications regarding surface morphology, particle and crystal sizes were observed. An in-depth study was conducted in order to investigate the effect of several different electrochemical treatments on the morphology, particle size distribution and crystal size of LDH thin films. Upon electrochemical treatment, the films' surface became smooth and the particles forming the films were transformed from flaky open LDH platelets to uniformly distributed close-packed LDH nanoparticles. - Highlights: • Semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films prepared by sol–gel. • LDH thin films show a turbostratic morphology made up of porous flakes. • Electrochemical treatments change the flaky structure into a nanoparticle array.

  4. Photoactive composite films prepared from mixtures of polystyrene microgel dispersions and poly(3-hexylthiophene) solutions.

    Science.gov (United States)

    Chen, Mu; Cui, Zhengxing; Edmondson, Steve; Hodson, Nigel; Zhou, Mi; Yan, Junfeng; O'Brien, Paul; Saunders, Brian R

    2015-11-14

    Whilst polystyrene microgels belong to the oldest family of microgel particles, their behaviours when deposited onto substrates or prepared as composites have received little attention. Because polystyrene microgels are solvent-swellable, and inherently colloidally stable, they are well suited to form composites with conjugated polymers. Here, we investigate the morphology and light absorption properties of spin coated composite films prepared from mixed dispersions of polystyrene microgels and poly(3-hexylthiophene) (P3HT) for the first time. We compare the morphologies of the composite films to spin coated microgel films. The films were studied using optical microscopy, SEM, AFM, wide-angle X-ray diffraction and UV-visible spectroscopy. The films contained flattened microgel particles with an aspect ratio of ∼10. Microgel islands containing hexagonally close packed particles were evident for both the pure microgel and microgel/P3HT composite films. The latter were electrically conducting. The composite film morphology was dependent on the microgel and P3HT concentration used for film preparation and a morphology phase diagram was constructed. The P3HT phase acted as an electrically conducting cement and increased the robustness of the films to solvent washing. The composite films were photoactive due to the P3HT component. The absorbance for the films was tuneable and increased linearly with both microgel and P3HT concentration. The results of the study should apply to other organic swellable microgel/conjugated polymer combinations and may lead to new colloidal composites for future optoelectronic applications.

  5. Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties

    Science.gov (United States)

    Bundesmann, C.; Lautenschläger, T.; Thelander, E.; Spemann, D.

    2017-03-01

    Several sets of TiO2 films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  6. Particle processing technology

    Science.gov (United States)

    Yoshio, Sakka

    2014-02-01

    includes two papers on the fabrication of mechanically reliable nanocomposites by dispersing graphene into a ceramic matrix, and on supercapacitors with high energy densities in a Co(OH)2 system decorated with graphene and carbon nanotubes. As a novel preparation method of oxide films, the fabrication of alumina films with laminated structures by ac anodization is reviewed. Moreover a new type of nanosheet has been fabricated by the exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as Mn + 1AXn phases (or MAX phases) where M is an early transition metal, such as Ti or Nb, A is an A group element, such as Si or Al, X is carbon and/or nitrogen and n = 1-3 [4]. Among the MAX phases, those containing Mo have been theoretically calculated by first-principles calculations to be a source for obtaining Mo2C nanosheets with potentially unique properties. As an example of improving bulk ceramic properties, texturing by using a high magnetic field [5] and sintering by the electric current activated/assisted sintering (ECAS) technology [6] have been demonstrated for ultra-high temperature ceramics with high-temperature strength. A project on the development of materials and particle processing for the field of environment and energy has been ongoing at the National Institute for Materials Science since April 2011. This project employs various core competence technologies for particle processing such as ion beam irradiation for nanoparticle fabrication [7], fullerene nanomaterial processing using liquid-liquid interface precipitation [8], a gas reduction nitridation process to obtain Si3N4-based phosphor materials [9], advanced phosphors via novel processing [10, 11], ultra-high pressure technology for processing and in situ analysis [12, 13], colloidal processing in a high magnetic field to obtain laminated, textured ceramics [1, 3, 5], the ECAS process for nanostructuring ceramics [6] and so forth. Here, I would like to introduce some research

  7. Microstructure of titanium nitride thin films controlled by ion bombardment in a magnetron-sputtering device

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, R. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Kuzel, R. Jr. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Valvoda, V. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Kadlec, S. (Czechoslovak Academy of Sciences, Prague (Czechoslovakia). Inst. of Physics); Musil, J. (Czechoslovak Academy of Sciences, Prague (Czechoslovakia). Inst. of Physics)

    1994-05-01

    The structure of titanium nitride thin films deposited by unbalanced magnetron sputtering on high chromium steel substrates was studied by X-ray diffraction. In order to characterize relations between the microstructure of sputtered TiN films and the deposition conditions, the parameter E[sub p] was introduced as the average energy transmitted from bombarding particles (ions, electrons, neutrals, photons) to one condensing particle of the film. A transition from a porous to a compact microstructure was found with increasing E[sub p]. The possible inhomogeneity of titanium nitride films is discussed. (orig.)

  8. Formation of multilayered structures in the layer by layer deposition of colloid particles.

    Science.gov (United States)

    Adamczyk, Zbigniew; Weroński, Paweł; Barbasz, Jakub

    2008-01-01

    Theoretical calculations of particle film formation in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to twenty) was simulated for two kinds of particles of equal size. The interaction of two particles of different kind resulted in irreversible and localized adsorption upon contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm particle coverage (2D density) and volume fraction (3D density) were calculated as well as the film thickness as a function of the number of layers. Additionally, the structure of the film was quantitatively characterized in terms of the 2D and 3D pair correlation functions. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. It was also predicted theoretically that the averaged value of particle volume fraction in the uniform film region was rho(LbL)=0.42, which is very close to the maximum packing density equal to 0.382 predicted from the 3D RSA model. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was shown that for low precursor layer density the film thickness increased with the number of layers in a nonlinear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was close to the hexagonal layer thickness equal to 1.73a p. It was concluded that our theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and polyelectrolytes.

  9. Surface Morphology of Annealed Lead Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    P.Kalugasalam,

    2010-06-01

    Full Text Available The thin films of Lead Phthalocyanine (PbPc on glass substrates were prepared by Vacuum deposition. The thickness of the films was 450 nm. The sample annealed in high vacuum at 373 K temperature. The sample has been analysed by X-ray diffraction, scanning electron microscopy and atomic force microscopy in order to get structural and surface morphology of the PbPc thin film. The formation of XRD patterns of PbPc shows a triclinic grains (T seen along with monoclinic (M forms of PbPc. The sample is annealed at 373 K temperatures; the film shows peaks that assigned to the triclinic phase. SEM and AFM are the best tools to investigate the surface smoothness and to find the grain size of the particles. The grain size is calculated for all films of different thicknesses. The annealed AFM micrograph shows that the surface of the films consists of large holes. The annealed AFM image indicates a smooth surface. It is very clear that the grain size decreases with increase in the annealing temperature. The roughness also decreases with the increase in film annealing temperature. Annealed film leads to the oxidation of the hthalocyanine with oxygen absorbed or diffused. Therefore, the heat is responsible for the increase in film thickness. Since the films expand, it is believed that the porosity is increased.

  10. Particle growth in hydrogen-methane plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. [Centre for Interdisciplinary Plasma Science, Max-Planck Institute for extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany); Jacob, W. [Centre for Interdisciplinary Plasma Science, Max-Planck Institute for Plasma Physics, Boltzmanstr. 2, D-85748 Garching (Germany); Thomas, H. [Centre for Interdisciplinary Plasma Science, Max-Planck Institute for extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany); Morfill, G. [Centre for Interdisciplinary Plasma Science, Max-Planck Institute for extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany); Abe, T. [Department of Electronic Device and Materials, Tohoku Institute of Technology, 35-1, Kasumi-cho, Yagiyama, Taihaku-ku, Sendai 982-8577 (Japan); Watanabe, Y. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Sato, N. [Centre for Interdisciplinary Plasma Science, Max-Planck Institute for extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany); Professor Emeritus, Tohoku University, 05, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2006-05-26

    Particle growth and the behavior of particle clouds in hydrogen-methane capacitively coupled rf plasmas are investigated. At room temperature, most for different wall temperatures and gas compositions of these particles are due to flakes of layers delaminated from the electrode surfaces. Heating of the electrodes up to 800 K and dilution by hydrogen (up to H{sub 2}:CH{sub 4} = 20:1) suppresses the production of the particles from the electrode surfaces. The electron temperature in the particle levitation region is controlled by introducing an additional electrode made from a grid (= gridded electrode) in between the levitation electrode and the driven electrode. If we introduce diamond seed particles ({approx} 2.8 {mu}m in diameter) into the plasma with the gridded electrode in place, we observe nucleation of new grains ({approx} 100 nm) on the surfaces of the diamond particles. On the other hand, without the gridded electrode, we do not observe nucleation but growth of amorphous carbon films on them.

  11. Chemisorption of CO on Pd particles supported on mica

    Science.gov (United States)

    Thomas, M.; Poppa, H.; Dickinson, J. T.; Pound, G. M.

    1978-01-01

    A UHV technique is presented for evaluating the adsorption-desorption properties of UHV vapor-deposited metal particles supported on insulating substrates. Desorption studies of CO from particulate and continuous Pd films supported on mica were performed. The desorption results indicate that: the CO desorption energies from the deposited metals are much lower than those from bulk single crystals; two desorption states exist for the vapor-deposited films; and the lower energy desorption peak of the vapor-deposited films is coverage dependent. Possible reasons for the difference between previously reported CO desorption studies on bulk substrates and the present results are discussed.

  12. Film Name Translation

    Institute of Scientific and Technical Information of China (English)

    师晓晓

    2014-01-01

    <正>1.Introduction A good translation of the name should convey the information of the film and attract the audience’s desire for going to the cinema.Translation of film names should have business,information,culture,aesthetic features,while a short eye-catching name aims to leave the audience an unforgettable impression.This thesis discusses the translation of English film names from the aspects of the importance of English film name translation,principles for translating English film names and methods of English film name translation.

  13. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  14. Dynamics of Carroll particles

    NARCIS (Netherlands)

    Bergshoeff, Eric; Gomis, Joaquim; Longhi, Giorgio

    2014-01-01

    We investigate particles whose dynamics are invariant under the Carroll group. Although a single, free such Carroll particle has no non-trivial dynamics (the Carroll particle does not move), we show that non-trivial dynamics exists for a set of interacting Carroll particles. Furthermore, we gauge th

  15. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  16. Systematic study of pre-irradiation effects in high efficiency CVD diamond nuclear particle detectors

    CERN Document Server

    Marinelli, M; Milani, E; Paoletti, A; Pillon, M; Tucciarone, A; Verona-Rinati, G

    2002-01-01

    Many outstanding properties of diamond can, in principle, lead to the development of radiation detectors with interesting capabilities. In particular, diamond-based nuclear particle detectors are good candidates to replace silicon-based detectors in several fields, e.g. in high-flux applications such as next generation particle-accelerator experiments or beam monitoring. However, the high concentration of defects (grain boundaries, impurities) in synthetic diamond films can strongly limit the detector's performance. A significant increase in the efficiency of CVD diamond detectors is achieved by means of pre-irradiation (pumping) with beta particles. We report here on a systematic study of the effects of pumping in high-quality microwave CVD diamond films. The efficiency (eta) and charge collection distance (CCD) of nuclear particle detectors based on these films depend on the methane content in the growth gas mixture and on the film thickness. Both efficiency and CCD behave in a markedly different way in the...

  17. Structural and optical properties of ZnS thin film grown by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennayaka, H.M.M.N.; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2013-12-02

    ZnS thin films were grown on indium–tin-oxide coated glass substrates using pulsed electrodeposition and the effect of the deposition temperature on the structural and optical properties of the ZnS films was investigated. Polycrystalline cubic ZnS films were obtained at all the deposition temperatures. At temperatures below 70 °C, less dense films were obtained and particle agglomeration was visible. On the other hand, at temperatures above 70 °C, more dense films with well-defined grains were obtained. With increasing deposition temperatures, the optical transmittance and bandgap of the ZnS films decreased. These results are attributed to the increase in the thickness of ZnS films and their particle size. The ZnS films grown at 90 °C exhibited the highly (200) preferred orientation and n-type conductivity with a wide bandgap of 3.75 eV. - Highlights: • This study describes the effect of the deposition temperature on the growth of the ZnS thin films. • ZnS thin films were grown using pulsed electrodeposition. • ZnS thin films exhibited the good crystal quality and chemical composition. • ZnS thin films exhibited n-type conductivity with a wide bandgap of 3.75 eV.

  18. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  19. The Educational Film Industry

    Science.gov (United States)

    Tortora, Vincent R.; Schillaci, Peter

    1975-01-01

    Increased dialog is needed among educational film producers, distributors, and consumers in order to be sure that what is being produced meets educators' needs and also to help solve the financial problems of the film industry. (LS)

  20. Film som kunst

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2013-01-01

    connotations of the African-print fabric, which are also central to the critique of power in Un Ballo in Maschera. Its critical agenda is then analysed and put into historical perspective by relating the film to Black British film. A comparison with the Black Audio Film Collective’s key work Handsworth Songs......Films by artists induce scholars to work across art, film and cultural history. Accordingly, this article adopts an interdisciplinary approach to the British-Nigerian artist Yinka Shonibare’s film Un Ballo in Maschera (2004). The film is grounded in Shonibare’s unique use of African-print fabric...... in conjunction with references to European cultural and political history, but the film is also – it is alleged – rooted in Black British cinema and the transnational postcolonialism which emerged in the UK of the 1980s. The article starts with a general introduction to Shonibare’s art and the colonial...

  1. Film som kunst

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2013-01-01

    Films by artists induce scholars to work across art, film and cultural history. Accordingly, this article adopts an interdisciplinary approach to the British-Nigerian artist Yinka Shonibare’s film Un Ballo in Maschera (2004). The film is grounded in Shonibare’s unique use of African-print fabric...... connotations of the African-print fabric, which are also central to the critique of power in Un Ballo in Maschera. Its critical agenda is then analysed and put into historical perspective by relating the film to Black British film. A comparison with the Black Audio Film Collective’s key work Handsworth Songs...... in conjunction with references to European cultural and political history, but the film is also – it is alleged – rooted in Black British cinema and the transnational postcolonialism which emerged in the UK of the 1980s. The article starts with a general introduction to Shonibare’s art and the colonial...

  2. MOF thin films: existing and future applications.

    Science.gov (United States)

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  3. Defining Documentary Film

    DEFF Research Database (Denmark)

    Juel, Henrik

    2006-01-01

    A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film......A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film...

  4. Lars von Triers film

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Overgaard

    2007-01-01

    Afhandlingen undersøger Lars von Triers filmæstetik, som den kommer til udtryk i spillefilmene fra perioden 1984-2007. Afhandlingen analyserer de enkelte films stil, virkningsstrategi og betydningsdannelse.......Afhandlingen undersøger Lars von Triers filmæstetik, som den kommer til udtryk i spillefilmene fra perioden 1984-2007. Afhandlingen analyserer de enkelte films stil, virkningsstrategi og betydningsdannelse....

  5. Automatic scanning of NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At the European Laboratory for Particle Physics CERN, personal neutron monitoring for over 4000 collaborators is performed with Kodak NTA film, one of the few suitable dosemeters in the stray radiation environment of a high energy accelerator. After development, films are scanned with a projection microscope. To overcome this lengthy and strenuous procedure an automated analysis system for the dosemeters has been developed. General purpose image recognition software, tailored to the specific needs with a macro language, analyses the digitised microscope image. This paper reports on the successful automatic scanning of NTA films irradiated with neutrons from a /sup 238/Pu-Be source (E approximately=4 MeV), as well as on the extension of the method to neutrons of higher energies. The question of detection limits is discussed in the light of an application of the method in routine personal neutron monitoring. (9 refs).

  6. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    Science.gov (United States)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  7. Combination of TiO2-Film Photocatalysis and Ultrafiltration to Treat Wastewater

    OpenAIRE

    Shu-Hai You; Ming-Hua Guo

    2013-01-01

    In this study, a combination of TiO2-film photocatalysis reactor and ultrafiltration was used treat the secondary effluent from the manufacturing of thin film transistor-liquid crystal display (TFT-LCD). TiO2 particles, as a photocatalyst, were immobilized on silica glass to form TiO2-film by the sol-gel and dip coating methods. TiO2-film photocatalysis was done within three parameters, including number of coating times of TiO2-film, wavelengths of UV light source, and operating time. During...

  8. Literature and Film.

    Science.gov (United States)

    Richardson, Robert

    The differences, similarities, and common goals of film and literature, as well as the ways in which each form and its associated criticism is able to illuminate the other, are discussed in this book. Individual chapters are "Literature and Film,""Literary Origins and Backgrounds of the Film,""Griffith and Eisenstein: The Uses of Literature in…

  9. Getting into Film.

    Science.gov (United States)

    London, Mel

    This book describes the various aspects of the film industry and the many jobs related to filmmaking, stressing that no "formula" exists for finding a successful career in the film industry. Chapters provide information on production, writing for film, cinematography, editing, music, sound, animation and graphics, acting and modeling, the "unsung…

  10. Film Front Weimar

    NARCIS (Netherlands)

    Kester, te Bernadet

    2002-01-01

    This first book-length study shows how Germany tried to reconcile the horrendous experiences of the FirstWorld War through the films made in 1919-1933. Drawing on the analysis of twenty-five such films, and covering a wide range of documentaries as well as feature films on the reasons for the outbre

  11. Teaching Culture Through Films

    Institute of Scientific and Technical Information of China (English)

    徐婷

    2016-01-01

    Cultural teaching is an issue which is associated with complexity and paradox and also it is a big challenge for faculty. Teaching culture through films has become an important way of cross-cultural teaching This paper focuses on the reasons for teaching culture through films, the value and how it works. And finally it leads out the prospects of cultural teaching through films.

  12. Getting into Film.

    Science.gov (United States)

    London, Mel

    This book describes the various aspects of the film industry and the many jobs related to filmmaking, stressing that no "formula" exists for finding a successful career in the film industry. Chapters provide information on production, writing for film, cinematography, editing, music, sound, animation and graphics, acting and modeling, the "unsung…

  13. Fabrication and Modification of Nanoporous Silicon Particles

    Science.gov (United States)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.

  14. Preparation and gas sensing properties of novel CdS-supramolecular organogel hybrid films

    Science.gov (United States)

    Xia, Huiyun; Peng, Junxia; Liu, Kaiqiang; Li, Chen; Fang, Yu

    2008-05-01

    A novel CdS-supramolecular organogel hybrid film with unusual morphology has been fabricated by exposing a supramolecular organogel film containing Cd(Ac)2 in an H2S atmosphere at room temperature. The organogel film was prepared by spin-coating a LMOG (low-molecular weight organic gelator) gel of dmethyl sulfoxide onto a glass plate substrate. XRD, SEM, EDS, TG-DTA, UV-vis, PL (photoluminescence) spectroscopy and PL lifetime measurements were employed to characterize the film. It was shown that the organogel film had functioned as a template to control the morphology of the final hybrid film. The quantities and sizes of the CdS particles embedded in the organogel films can be easily altered by varying the initial concentration of Cd(Ac)2. Importantly, the PL of the hybrid film is sensitive to the presence of some volatile organic monoamines and diamines. The selectivity and reversibility of the sensing process were investigated.

  15. Sol-gel-derived Hybrid Conductive Films for Electro magnetic Interference (EMI) Shielding

    Institute of Scientific and Technical Information of China (English)

    XIE Jiyuan; GUO Wenfeng; WANG Jianzhong

    2011-01-01

    The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix, and the hybrid films were obtained by a sol-gel method. The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process. Hybrid films were dip-coated on silicon wafer and cured at 120 ℃ for 60minutes. The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraetion (XRD). The electrical properties of the films were examined with four-point probe. Hybrid films showed to be relatively dense, uniform and defect free. The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film. It was observed that there was the percolation threshold for the film's electrical properties.

  16. Inclusion of solid particles in bacterial cellulose.

    Science.gov (United States)

    Serafica, G; Mormino, R; Bungay, H

    2002-05-01

    Depending upon the strain and the method of cultivation, bacterial cellulose can be reticulated filaments, pellets, or a dense, tough gel called a pellicle. The pellicular form is commonly made by surface culture, but a rotating disk bioreactor is more efficient and reduces the time of a run to about 3.5 days instead of the usual 12-20 days. Particles added to the medium as the gel is forming are trapped to form a new class of composite materials. Particles enter the films that are forming on the disks at rates depending on the size and geometry of the particle, as well as the rotational speed and concentration of the suspension.

  17. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  18. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  19. Lubrication Mechanism of Micro/Nano-particles on Sialon

    Institute of Scientific and Technical Information of China (English)

    ZHANGWen-guang; LIUWei-min

    2004-01-01

    The tribologieal properties of Sialon sliding against MS152100 steel bull under the lubrication of solid particle additives,, as micro-borate particle and nanoPbS particle, were evaluated by a SRV ball-on-disctest rig. The chemical composition of the worn surface was characterized by X-ray pohotoelectron spectroscopy(XPS).The morphologies of the wont surfaces of Sialon were analyzed by scanning electron microscopy (SEM).The results show that the particles can redace the friction coefficient of the pairs and the wear volume of Siulon significantly. The wear resitaace of micro-borate is superior to that of nano-PbS while the friction-reducing abilityof PBS is better than that of borate. According to the XPS and SEM results, the wear resistance of Pbs is mainly depended on the tribochemical film mainly composed of PbSO4, which deposited on the wont surface with goodbonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, uidieating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.

  20. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.

    Science.gov (United States)

    Dang, Tan Hiep; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Biodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis). The as-prepared catalyst was advantageous not only for its easy preparation, but also for its cost-efficiency and superior catalysis in transesterification of vegetable oils in excess methanol to produce fatty acid methyl esters (FAMEs). Conversion efficiencies of soybean and palm oils to biodiesel over the as-prepared catalysts reached 97.0±3.0% and 95.4±3.7%, respectively, under optimal conditions. Activation energies of transesterification reactions of soybean and palm oils in excess methanol using these catalysts are 14.09 kJ/mol and 48.87 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Processing and characterization of high porosity aerogel films

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L.W.; Poco, J.F.

    1994-11-22

    Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.

  2. Suspended hybrid films assembled from thiol-capped gold nanoparticles.

    Science.gov (United States)

    Zhang, Yu Xin; Huang, Ming; Hao, Xiao Dong; Dong, Meng; Li, Xin Lu; Huang, Jia Mu

    2012-01-01

    In this work, we explored the formation processes of suspended hybrid thin films of thiol-capped Au nanoparticles (AuNPs) inside metal oxide tubular structures. We found that a balance between in-film interactions of the AuNPs and boundary interactions with metal oxides is a key in making these special organic-inorganic thin films. The hybrid films process many processing advantages and flexibilities, such as controllable film thickness, interfacial shape and inter-AuNPs distance, tuning of particle sizes, thiol population, chain lengths, and other new properties by introducing functional groups to thiol chains. Among their many unique features, the assembly-disassembly property may be useful for future on-off or store-release applications.

  3. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  4. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  5. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  6. 360 graders film

    OpenAIRE

    Hansen, Mie Maria Græsvænge; Johansen, Morten Dalgaard; Lilleås, Lauge Bro; Nielsen, Sabine Murholt; Nielsen, Jon Vraamose Møller; Poulsen, Thomas Heltborg

    2012-01-01

    This study is about how to produce and test the effects of a 360° film. In classical film production there are four steps – preproduction, production, post production and distribution. The four steps are being explored with the purpose of finding challenges and potentials in 360° film production. This is done by testing existing techniques and methods and re-using and adapting these in 360° film. To test how people use and react to the effect of a produced 360° film, a group of nine individua...

  7. Air-stable silver-coated copper particles of sub-micrometer size.

    Science.gov (United States)

    Jung, D S; Lee, H M; Kang, Y C; Park, S B

    2011-12-15

    Silver-coated copper particles with various silver loading were prepared by a direct liquid-to-particle conversion process in spray pyrolysis reactor system. The prepared particles were completely densified at 900°C within a residence time of 2.1 s and had core-shell structure, of which formation mechanism was proposed. The mean diameter of particles was 0.45 μm. Copper particles of 20 wt.% of silver loading were stable under air and 95% of copper remained as metallic copper even after 1 month of exposure to air. This enhanced air-stability contributed to the enhanced electrical property of conductive film obtained from the coated particles. The conductive film obtained from 15 wt.% of silver-coated copper particles had a sheet resistance of 1.2 mΩ square(-1). This low resistance resulted from the lack of oxide layer and low sintering temperature of silver layer.

  8. Langmuir-Blodgett films of alkane chalcogenice (S, Se, Te) stabilized gold nanoparticles

    DEFF Research Database (Denmark)

    Brust, M.; Stuhr-Hansen, N.; Norgaard, K.

    2001-01-01

    films. The films were transferred to solid supports of freshly cleaved mica and were studied by atomic force microscopy (AFM). The particles were found to have an average core diameter of 2 nm. The stability of the particles under ambient conditions increased in the order Te ...Gold nanoparticles stabilized by alkanethiolates, alkaneselenides, and alkanetellurides have been prepared by analogous methods. Chloroform solutions of thiolate and selenide stabilized particles were spread and evaporated on the water/air interface where the particles formed well-defined Langmuir...

  9. The Structure and Emission Properties of SiO2 Nanometer Film Containing Ag

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Colloidal silver particles are formed on float glass by heat treatment with coated silica film containing Ag by sol-gel process.The Sn2+on surface of float glass influences the formation of colloidal Ag particles.The microstructure of the film and the granularity of silver particles were studied by TEM and HEED.The emission property of the samples was measured.The results show that aggregation of metal particles degrades emission intensity,and that content of Ag,withdrawing speed and heat treatment temperature of samples has a greater effect on photoluminescence.

  10. Chronicles of foam films.

    Science.gov (United States)

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  11. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  12. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

    Science.gov (United States)

    Lee, Jong-Gun; Cha, You-Hong; Kim, Do-Yeon; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Woo-Young; Park, Jieun; Lee, Dongyun; James, Scott C.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-08-01

    Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature's effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

  13. The Structural and Electrical Properties of Nanostructures ZnO Thin Films on Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Nur Sa’adah Muhamad Sauki

    2017-06-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on Teflon substrates by radio frequency (RF magnetron sputtering method at different substrate temperature. The dependence of residual stress on the substrate temperature was investigated in this work due to the growth process, the bombardment of energetic particles and process heating to the deposited thin films. From field emission scanning electron microscope (FESEM images, samples that deposited at various substrate temperatures consists nano-sized particles. The obtained X-ray diffraction (XRD results, it suggested that ZnO thin film deposited at 40oC with highly c-axis oriented shows unstressed film compared to other thin films. Besides that, the ZnO thin films deposited at 40oC shows improved electrical properties.

  14. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  15. Particle physics: Axions exposed

    Science.gov (United States)

    Lombardo, Maria Paola

    2016-11-01

    Physicists are hunting for a particle called the axion that could solve two major puzzles in fundamental physics. An ambitious study calculates the expected mass of this particle, which might reshape the experimental searches. See Letter p.69

  16. Uptake of Water Onto Organic Films Containing Oxidized Functional Groups

    Science.gov (United States)

    Demou, E.; Donaldson, D. J.

    There is increasing evidence that atmospheric particles may contain significant mass fractions of organic compounds. Such particles may be predominantly organic (as in SOA condensates) or may have mixed aqueous-organic character. In either case, the particle surface exposed to the atmosphere, if it has organic character, is subject to oxidation by OH, O3 and NO3 gas phase molecules. Surface oxidation is expected to alter the hydrophobic nature of an organic surface layer, and thus perhaps facilitate the particle's ability to act as a cloud condensation nucleus. We have used a quartz crystal microbalance (QCM) to measure the mass uptake of water by organic films as a func- tion of the ambient relative humidity. Results for the room-temperature condensation of water onto films composed of aliphatic hydrocarbons, mono- and di-alcohols and mono- and di-acids will be presented.

  17. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  18. Surface plasmon effect in nanocrystalline copper/DLC composite films by electrodeposition technique

    Indian Academy of Sciences (India)

    S Hussain; A K Pal

    2006-11-01

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in the absorbance spectra of the films was observed with the reduction in size and volume fraction of metal particles. Mie theory was found to describe the experimental spectra quite well.

  19. Iridium thin films deposited via pulsed laser deposition for future applications as transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, M. E-mail: galeazzi@physics.miami.edu; Chen, C.; Cohn, J.L.; Gundersen, J.O

    2004-03-11

    The University of Miami has recently started developing and studying high-resolution microcalorimeters operating near 100 mK for X-ray and particle physics and astrophysics. These detectors will be based on Transition Edge Sensors technology fabricated using iridium thin films deposited via the Pulsed Laser Deposition technique. We report here the preliminary result of the room temperature characterization of the Ir thin films, and an overview of future plans to use the films as transition edge sensors.

  20. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  1. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    We are developing particle methods as a general framework for large scale simulations of discrete and continuous systems in science and engineering. The specific application and research areas include: discrete element simulations of granular flow, smoothed particle hydrodynamics and particle...... vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...

  2. Analysis of Western Film' influence on Chinese Film Culture

    Institute of Scientific and Technical Information of China (English)

    罗淞译

    2015-01-01

    Western countries are the place where the international film culture originated. The western film has a far-reaching influence on the development of film and television industry all over the world. As China's film and television industry is in the era of reform, it is an essential part to use the experience in development of western films which can provide Chinese film culture with guidance in various fields. The present thesis firstly gives an analysis into characteristics of the western film culture and summarizes its influences on Chinese film culture, and then provides film art reform with some feasible suggestions.

  3. Diffraction radiation from an inhomogeneous dielectric film on the surface of a perfect conductor

    NARCIS (Netherlands)

    Ryazanov, MI; Strikhanov, MN; Tishchenko, AA

    2004-01-01

    Diffraction radiation generated by a charged particle moving uniformly parallel to the surface of a perfect conductor coated with a dielectric film is considered; the thickness of the film is an arbitrary function of coordinates. A particular case is considered when this function is periodic in one

  4. Enhanced pinning in YBCO films with BaZrO.sub.3 nanoparticles

    Science.gov (United States)

    Driscoll, Judith L.; Foltyn, Stephen R.

    2010-06-15

    A process and composition of matter are provided and involve flux pinning in thin films of high temperature superconductive oxides such as YBCO by inclusion of particles including barium and a group 4 or group 5 metal, such as zirconium, in the thin film.

  5. Aspects of thin film deposition on granulates by physical vapor deposition

    Science.gov (United States)

    Eder, Andreas; Schmid, Gerwin H. S.; Mahr, Harald; Eisenmenger-Sittner, Christoph

    2016-11-01

    Thin film and coating technology has entered fields which may show significant deviations from classical coating applications where films are deposited on plane, sometimes large substrates. Often surfaces of small and irregularly shaped bodies have to be improved in respect to electrical, thermal or mechanical properties. Film deposition and characterization on such small substrates is not a trivial task. This specially holds for methods based on Physical Vapor Deposition (PVD) processes such as sputter deposition and its ion- and plasma assisted varieties. Due to their line of sight nature a key issue for homogenous films is efficient intermixing. If this problem is mastered, another task is the prediction and determination of the film thickness on single particles as well as on large scale ensembles thereof. In this work a mechanism capable of uniformly coating up to 1000 cm3 of granulate with particle sizes ranging from approx. 10 μm to 150 μm by magnetron sputtering is thoroughly described. A method for predicting the average film thickness on the particles is presented and tested for several differently shaped objects like microspheres, irregular grains of sinter powder or micro diamonds. For assessing the film thickness on single particles as well as on particle ensembles several complementary methods based on optics, X-ray analysis and gravimetry are employed. Their respective merits and limitations are discussed. Finally an outlook on adapting the described technology for surface modification by plasma based reactive and non-reactive processes is given.

  6. A new fluorescent film sensor for Pb(II) ions developed by simulating bio-mineralization process synthesizing of ZnS/CS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shan, E-mail: shanwang2005@163.com [School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi Province (China) and Department of Applied Chemistry, Xi' an Jiaotong University, Xi' an, 710049, Shaanxi Province (China); Yu Demei; Wu Guangwen [Department of Applied Chemistry, Xi' an Jiaotong University, Xi' an, 710049, Shaanxi Province (China); Guo Jinchan; Lei Cao [School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi Province (China)

    2011-07-25

    Highlights: > Chitosan/zinc sulfide (CS/ZnS) nano-composite films have been prepared by simulating bio-mineralization process.the sensing properties of nano-composite films to lead ions have been systematically investigated. > SEM and TEM observations showed that the size of ZnS particles in the CS films. > The fluorescence emission of the nanocomposite films is very sensitive to the presence of Pb ions and the emission is hardly affected by common ions in water, except for the iron ions. > The films may be developed as excellent sensing films for Pb ions in water. - Abstract: Chitosan/zinc sulfide (CS/ZnS) nano-composite films have been prepared by simulating bio-mineralization process. Factors affecting the hydrothermal stability and fluorescence properties of the films have been studied. Furthermore, the sensing properties of nano-composite films to lead ions have been systematically investigated. SEM and TEM observations showed that the size of ZnS particles is 70 nm, and the particles are evenly distributed within the CS films. The fluorescence emission of the nano-composite films indicates that the sizes of real fluorescing ZnS particles are less than 20 nm. This suggests that ZnS particles observed via SEM and TEM may be aggregates of smaller ZnS particles, and the smaller particles may be separated by the organics. The fluorescence emission (363 nm) of the nano-composite films is very sensitive to the presence of Pb ions. C{sub (Pb}{sup 2+}{sub )} increased from 0 to 664.2 mg L{sup -1} increases the emission dramatically. The emission is hardly affected by common ions in water, except for the iron ions. The films may be developed as excellent sensing films for Pb ions in water.

  7. When is a Particle?

    Science.gov (United States)

    Drell, Sidney D.

    1978-01-01

    Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…

  8. Massless interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Kosyakov, B P [Russian Federal Nuclear Center, Sarov, 607190 Nizhnii Novgorod Region (Russian Federation)], E-mail: kosyakov@vniief.ru

    2008-11-21

    We show that classical electrodynamics of massless charged particles and the Yang-Mills theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a conformally invariant version of the direct interparticle action theory for these systems.

  9. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  10. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  11. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2011-03-01

    The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, then the emission energy of the particles will satisfy = /360.

  12. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  13. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  14. Langmuir and Langmuir-Blodgett films of bidisperse silica nanoparticles.

    Science.gov (United States)

    Detrich, Adám; Deák, András; Hild, Erzsébet; Kovács, Attila L; Hórvölgyi, Zoltán

    2010-02-16

    We present the studies on the structure and optical properties of bidisperse Stöber silica nanoparticulate Langmuir films prepared at the air/water interface in a Wilhelmy film balance and transferred onto glass slides using the Langmuir-Blodgett technique. Three different compositions (covered area ratios: 4:1; 1:1, and 1:4) of two bidisperse systems were used in the experiments. Bidisperse samples (B1 and B2) were prepared by mixing the appropriate amount of monodisperse sols of particles with 61 and 100 nm diameters (B1) and those with 37 and 100 nm diameters (B2). By surface pressure-area isotherms and (transmission and scanning) electron microscopy images we provide information about the structure of the films. Optical properties of the supported films were measured with UV-vis spectroscopy and the transmittance spectra were evaluated in terms of an optical model which allows monotonous in-depth variation of the refractive index across the film. (1) We have found that the refractive index decreased from the substrate-layer interface toward the air-layer interface when the smaller particles were in majority, and increased otherwise. That would suggest that the smaller particles of each bidisperse system can be positioned at the air side of the film if they are in minority in the sample and they can be situated on the substrate if they are in majority. The scanning electron microscope images of bidisperse films supported the in-depth film structure suggested by optical studies.

  15. Film: Genres and Genre Theory

    DEFF Research Database (Denmark)

    Bondebjerg, Ib

    2015-01-01

    Genre is a concept used in film studies and film theory to describe similarities between groups of films based on aesthetic or broader social, institutional, cultural, and psychological aspects. Film genre shares similarities in form and style, theme, and communicative function. A film genre...... is thus based on a set of conventions that influence both the production of individual works within that genre and audience expectations and experiences. Genres are used by industry in the production and marketing of films, by film analysts and critics in historic analysis of film, and as a framework...... for audiences in the selection and experience of films....

  16. Primordial Particles; Collisions of Inelastic Particles

    Science.gov (United States)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  17. The Particle Enigma

    CERN Document Server

    Marsh, Gerald E

    2016-01-01

    The idea that particles are the basic constituents of all matter dates back to ancient times and formed the basis of physical thought well into modern times. The debate about whether light was a wave or a stream of particles also lasted until relatively recently. It was the advent of de Broglie's work and its implications that revolutionized the concept of an elementary particle -- but unfortunately did not banish the idea of a point particle despite its difficulties in both classical and quantum physics. Some of these problems are discussed in this essay, which covers chiral oscillations, Penrose's "zigzag" picture of particles satisfying the Dirac equation, and some ideas derived from string theory.

  18. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  19. In vitro cytotoxicity evaluation of natural rubber latex film surface coated with PMMA nanoparticles.

    Science.gov (United States)

    Anancharungsuk, Waranya; Polpanich, Duangporn; Jangpatarapongsa, Kulachart; Tangboriboonrat, Pramuan

    2010-07-01

    In order to increase surface roughness of the sulphur-prevulcanized natural rubber (SPNR) film and, hence, decrease the direct contact between the rubber and skin, the poly(methyl methacrylate) (PMMA) latex particles were deposited onto the SPNR film grafted with polyacrylamide (SPNR-g-PAAm). The surface coverage of PMMA particles on the SPNR-g-PAAm increased with increasing latex immersion time, particle size and concentration. Prior to the in vitro cytotoxicity evaluation on L-929 fibroblasts, the SPNR and SPNR-g-PAAm coated with PMMA particles were extracted by using the culture medium. Results showed that the cytotoxicity effect could be significantly reduced by coating PMMA particles onto the rubber film. At the extract concentrations of < or =12.5% for 24h at 37 degrees C, no toxicity potential was detected. The study will be helpful for development of gloves designed for the hypersensitive person.

  20. Film Music. Factfile No. 8.

    Science.gov (United States)

    Elsas, Diana, Ed.; And Others

    Organizations listed here with descriptive information include film music clubs and music guilds and associations. These are followed by a representative list of schools offering film music and/or film sound courses. Sources are listed for soundtrack recordings, sound effects/production music, films on film music, and oral history programs. The…

  1. Fluidization of spherocylindrical particles

    Science.gov (United States)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  2. Fluidization of spherocylindrical particles

    Directory of Open Access Journals (Sweden)

    Mahajan Vinay V.

    2017-01-01

    Full Text Available Multiphase (gas-solid flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD and discrete element method (DEM approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  3. Particle separator scroll vanes

    Energy Technology Data Exchange (ETDEWEB)

    Lastrina, F. A.; Mayer, J. C.; Pommer, L. M.

    1985-07-09

    An inlet particle separator for a gas turbine engine is provided with unique vanes distributed around an entrance to a particle collection chamber. The vanes are uniquely constructed to direct extraneous particles that enter the engine into the collection chamber and prevent the particles from rebounding back into the engine's air flow stream. The vanes are provided with several features to accomplish this function, including upstream faces that are sharply angled towards air flow stream direction to cause particles to bounce towards the collection chamber. In addition, throat regions between the vanes cause a localized air flow acceleration and a focusing of the particles that aid in directing the particles in a proper direction.

  4. Can phoretic particles swim in two dimensions?

    Science.gov (United States)

    Sondak, David; Hawley, Cory; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-12-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.

  5. Demagnetization in photomagnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Pajerowski, Daniel M., E-mail: daniel@pajerowski.com [NIST Center for Neutron Research, Gaithersburg, Maryland 20899 (United States); Hallock, Scott J. [NIST Center for Neutron Research, Gaithersburg, Maryland 20899 (United States); Winston Churchill High School, Potomac, Maryland 20854 (United States)

    2012-05-15

    We present a model for demagnetization in photomagnetic films, and investigate different regimes for the magnetizing process using finite element analysis. It is found that the demagnetizing factor may depend strongly upon the high-spin fraction of the film, and the specifics of the dependence are dictated by the microscopic morphology of the photomagnetic domains. This picture allows for facile interpretation of existing data on photomagnetic films, and can even explain an observed photoinduced decrease in low-field magnetization concurrent with increase in high-spin fraction. As a whole, these results reiterate the need to consider demagnetizing effects in photomagnetic films. - Highlights: Black-Right-Pointing-Pointer Finite element methods are used to examine demagnetization in photomagnetic films. Black-Right-Pointing-Pointer Under the right conditions, photomagnetic films may show a photoinduced decrease. Black-Right-Pointing-Pointer Demagnetization in photomagnets will be important to consider in possible devices.

  6. Ultrathin permalloy films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In view of the principle of glow-discharge, ultrathin Ni81Fe19(12 nm) films were prepared at an ultrahigh base vacuum. The anisotropic magnetoresistance coefficient (AR/R %) for Ni81Fe19(12 nm) film reaches 1.2%, while the value of its coercivity is 127 A/m (i.e. 1.6Oe). Ultrathin Ni81Fe19(12 nm) films were also prepared at a lower base vacuum. The comparison of the structure for two kinds of films shows that the films prepared at an ultrahigh base vacuum have a smoother surface, a denser structure with a few defects; the films prepared at a lower base vacuum have a rougher surface, a porouser structure with some defects.

  7. Formation of Ultrafine Metal Particles and Metal Oxide Precursor on Anodized Al by Electrolysis Deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a film of Ni oxide precursor was developed on the surface of the porous oxide film. The Ni particles and the Ni oxide precursor were examined by SEM, TEM and X-ray diffraction. The thickness of the barrier layer of the porous oxide film was thin and it attributed to the formation of the metal particles, while the formation of the oxide precursor was associated with the surface pits which were developed in the pretreatment of Al.

  8. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  9. Stress development during deposition of CNx thin films

    Science.gov (United States)

    Broitman, E.; Zheng, W. T.; Sjöström, H.; Ivanov, I.; Greene, J. E.; Sundgren, J.-E.

    1998-05-01

    We have investigated the influence of deposition parameters on stress generation in CNx (0.3films deposited onto Si(001) substrates by reactive magnetron sputtering of C in pure N2 discharges. Film stress, σ, which in all cases is compressive, decreases with an increase in the N2 pressure, PN2, due to structural changes induced by the pressure-dependent variation in the average energy of particles bombarding the film during deposition. The film stress σ is also a function of the film growth temperature, Ts, and exhibits a maximum value of ˜5 GPa at 350 °C. Under these conditions, the films have a distorted microstructure consisting of a three-dimensional, primarily sp2 bonded, network. In contrast, films deposited at Ts<200 °C with a low stress are amorphous. At 350 °Cfilms grown at 350 °C exhibit the highest hardness and elasticity.

  10. Renaissance of the Film.

    Science.gov (United States)

    Bellone, Julius, Ed.

    The post-World War II period was one of the liveliest in the history of the cinema. This is a collection of 33 critical articles on some of the best films of the perd. Most of the essays explicate the themes and symbols of the films. The essays deal with these films: "The Apu Trilogy,""L'Avventura,""Balthazar,""Blow-Up,""Bonnie and Clyde," Citizen…

  11. Den danske independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    2014-01-01

    at producere film, og derved er filmproduktion potentielt gjort tilgængelig for en større gruppe personer som både afsender og modtager. For det fjerde implicerer diskussionen af de to film også genre- og stilmæssige spørgsmål om dansk filmkultur, fordi indiefilmen både i film og uden for filmene italesætter...

  12. Den danske independent film

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    2014-01-01

    at producere film, og derved er filmproduktion potentielt gjort tilgængelig for en større gruppe personer som både afsender og modtager. For det fjerde implicerer diskussionen af de to film også genre- og stilmæssige spørgsmål om dansk filmkultur, fordi indiefilmen både i film og uden for filmene italesætter...

  13. When stars meet particles

    CERN Multimedia

    2009-01-01

    On 12 February CERN hosted a visit from actors Tom Hanks and Ayelet Zurer and director Ron Howard as they unveiled some exclusive footage from their new film adaptation of Dan Brown’s novel Angels and Demons.

  14. Towards an optimum design for thin film phase plates

    Energy Technology Data Exchange (ETDEWEB)

    Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de

    2016-01-15

    A variety of physical phase plate designs have been developed to maximize phase contrast for weak phase objects in the transmission electron microscope (TEM). Most progress towards application in structural biology has been made with Zernike PPs consisting of a ~30 nm film of amorphous carbon with a central hole. Although problems such as beam-induced deterioration of Zernike PPs remain unsolved, it is likely that thin film phase plates will be applied routinely in TEM of ice-embedded biological specimens in the near future. However, the thick carbon film of thin film PPs dampens high-resolution information, which precludes their use for single-particle electron cryo-microscopy at atomic resolution. In this work, an improved design for a thin film phase plate is proposed, combining the advantages of Zernike PPs and 2D materials, such as graphene. The improved design features a disc of phase-shifting material mounted on an ultrathin support film. The proposed device imparts a phase shift only to electrons scattered to low angles, whereas contrast at high resolution is generated by conventional defocusing. The device maximizes phase contrast at low spatial frequencies, where defocus contrast is limiting, while damping of information at high spatial frequencies is avoided. Experiments demonstrate that the fabrication of such a device is feasible. - Highlights: • Thin film phase plates enable in-focus TEM imaging of biological specimens. • The thick amorphous carbon film causes damping of high-resolution information. • New thin film phase plate design imparts phase shift only to low spatial frequencies. • Improved design holds promise to facilitate cryo-EM of single particles.

  15. Conceiving Landscape through Film

    DEFF Research Database (Denmark)

    Farsø, Mads; Petersen, Rikke Munck

    2015-01-01

    This article shows how the media of film can be integrated, explored and can add value to architectural design studios and practice. It elucidates how film may offer an alternative position in architecture, where landscapes and cities are thought, planned and developed in closer relation to their......This article shows how the media of film can be integrated, explored and can add value to architectural design studios and practice. It elucidates how film may offer an alternative position in architecture, where landscapes and cities are thought, planned and developed in closer relation...

  16. Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.

    Science.gov (United States)

    Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A

    2009-06-08

    Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.

  17. An AFM study of the morphology and local mechanical properties of superconducting YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Ya.M.; Verdyan, A.; Azoulay, J.; Kazakevich, M.; Rabkin, E

    2004-02-01

    The morphology of thin superconducting YBCO films deposited on sapphire and on SrTiO{sub 3} was studied with the help of atomic force and scanning electron microscopies. The intrinsic mechanical properties in the flat, particles-free and chemically homogeneous regions of the films were determined with the aid of nanoindenting atomic force microscope. Also the microscopy studies revealed the difference in topography of the films, the nanohardness and Young's modulus of two films were very close to each other. For the indents shallower than 0.2 of the film thickness the Young's modulus and hardness of the films on two different substrates converged to the values of 210 and 8.5 GPa, respectively. The possible deformation mechanisms determining the localized deformation of intrinsically brittle ceramic films are discussed.

  18. An AFM study of the morphology and local mechanical properties of superconducting YBCO thin films

    Science.gov (United States)

    Soifer, Ya. M.; Verdyan, A.; Azoulay, J.; Kazakevich, M.; Rabkin, E.

    2004-02-01

    The morphology of thin superconducting YBCO films deposited on sapphire and on SrTiO 3 was studied with the help of atomic force and scanning electron microscopies. The intrinsic mechanical properties in the flat, particles-free and chemically homogeneous regions of the films were determined with the aid of nanoindenting atomic force microscope. Also the microscopy studies revealed the difference in topography of the films, the nanohardness and Young’s modulus of two films were very close to each other. For the indents shallower than 0.2 of the film thickness the Young’s modulus and hardness of the films on two different substrates converged to the values of 210 and 8.5 GPa, respectively. The possible deformation mechanisms determining the localized deformation of intrinsically brittle ceramic films are discussed.

  19. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  20. Novel transparent and flexible nanocomposite film prepared from chrysotile nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun, E-mail: kliu@csu.edu.cn [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhu, Binnan; Feng, Qiming [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Duan, Tao [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621010 (China)

    2013-10-01

    In the present study, chrysotile nanofibres, obtained from physicochemical dispersion of natural chrysotile, were used to prepare nanofibre sheets by vacuum filtration. As-prepared sheets were then impregnated by UV-curable resin and cured by ultraviolet light to fabricate the flexible and transparent nanocomposite films. Observed from SEM, the transparent films showed a smooth surface and a typical sandwich structure in cross section, viz. nanofibre sheet filled with resin was sandwiched by two layers of resin. XRD patterns indicated the amorphous nature of cured resin and characteristic crystallographic structure of chrysotile in nanocomposite films. Though the nanofibre sheets were white in colour, and nanofibre contents in nanocomposites were as much as 43.4 wt%, the nanocomposite films displayed an excellent optical transparency with about 85% light transmittance in the visible light range. Tensile tests showed that the addition of nanofibres resulted in a great improvement in mechanical strength of the nanocomposite films; with the increase of nanofibre contents, the modulus and tensile strength of nanocomposite films increased gradually. - Graphical abstract: Photos show the experimental phenomenon. The white nanofibre sheets can be written or printed like paper, and it's very interested that the handwriting is clearly visible from the front and back of the transparent films prepared from nanofibre sheets by vacuum impregnation and UV curing. This phenomenon can be attributed to the increase of transparency of film, which results from the replacement of air interstices in nanofibre sheet by resin with higher refractive index. Visible light can pass easily through the transparent film without obvious loss, but can be apparently adsorbed and scattered by ink particles that adhered to nanofibres and embedded in resin. - Highlights: • A flexible and transparent film is prepared from chrysotile nanofibres. • The nanofibre sheet is sandwiched by two

  1. Enhancement of CO2 Absorption under Taylor Flow in the Presence of Fine Particles

    Institute of Scientific and Technical Information of China (English)

    CAI Wangfeng; ZHANG Jiao; ZHANG Xubin; WANG Yan; QI Xiangjuan

    2013-01-01

    The physical absorption of CO2 in water containing different types of particles was studied in a microchannel operated under Taylor flow.The maximum enhancement factors of 1.43-2.15 were measured for activated carbon(AcC)particles.The analysis shows that the enhancement effect can be attributed to the shuttle mechanism.Considering the separate contributions of mass transfer from bubble cap and liquid film,a heterogeneous enhancement model is developed.According to this model,the enhancement factors ECap,EFilm and Eov are mainly determined by mass transfer coefficient KL(KLCap and KL Film),adsorptive capacity of particles m,and coverage fraction of particles at gas-liquid interface ζ.With,both effects of particle-to-interface adhesion and apparent viscosity included,the model predicts the enhancement effect of AcC particles reasonably well.

  2. Fuzzy Logic Particle Tracking

    Science.gov (United States)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  3. Many flaked particles generated by electric field stress working as an impulsive force in mass-production plasma etching equipment

    Science.gov (United States)

    Kasashima, Yuji; Uesugi, Fumihiko

    2015-09-01

    Particles generated in plasma etching significantly lower production yield. In plasma etching, etching reaction products adhere to the inner chamber walls, gradually forming films, and particles are generated by flaking of the deposited films due to electric field stress that acts boundary between the inner wall and the film. In this study, we have investigated the mechanism of instantaneous generation of many flaked particles using the mass-production reactive ion etching equipment. Particles, which flake off from the films on the ground electrode, are detected by the in-situ particle monitoring system using a sheet-shaped laser beam. The results indicate that the deposited films are severely damaged and flake off as numerous particles when the floating potential at the inner wall suddenly changes. This is because the rapid change in floating potential, observed when unusual wafer movement and micro-arc discharge occur, causes electric field stress working as an impulsive force. The films are easily detached by the impulsive force and many flaked particles are instantaneously generated. This mechanism can occur on not only a ground electrode but a chamber walls, and cause serious contamination in mass-production line. This work was partially supported by JSPS KAKENHI Grant Number B 26870903.

  4. Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles

    DEFF Research Database (Denmark)

    Hensel, V.; Godt, A.; Popovitz-Biro, R.

    2002-01-01

    Composite materials of quantum particles (Q-particles) arranged in layers within crystalline powders of pi-conjugated, rodlike dicarboxylic acids are reported. The synthesis of the composites, either as three-dimensional crystals or as thin films at the air-water interface, comprises a two...... analysis of the solids and grazing incidence X-ray diffraction analysis of the films on water. 2) Topotactic solid/gas reaction of these salts with H2S to convert the metal ions into Q-particles of CdS or PbS embedded in the organic matrix that consists of the acids 6(H) and 8(H). These hybrid materials...

  5. Formation and control of excimer of a coumarin derivative in Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com

    2014-01-15

    In this communication we report the formation and control of excimer of a coumerin derivative 7-Hydroxy-N-Octadecyl Coumarin-3-Carboxamide (7HNO3C) assembled onto Langmuir–Blodgett (LB) films. Surface pressure–area per molecule isotherm revealed that 7HNO3C formed stable Langmuir monolayer at the air–water interface. Spectroscoipic characterizations confirmed the formation of excimer of 7HNO3C in the LB film prepared at 20 mN/m surface pressure. The excimer band remains present even when 7HNO3C molecules are diluted with a long chain fatty acid stearic acid in LB films. The excimer formation of 7HNO3C can be controlled by incorporating clay particle laponite in the LB film. The excimer band is totally absent in the hybrid 7HNO3C–laponite LB films. In-situ fluorescence imaging microscopy and atomic force microscopy confirmed the incorporation of clay laponite onto LB films. -- Highlights: • Formation of Langmuir monolayer and Langmuir–Blodgett (LB) film of a coumarin derivative. • Presence of excimeric species in the LB film lifted at 20 mN/m surface pressure is confirmed from the spectroscopic studies. • Control of excimer formation by incorporating clay particle laponite on to the LB film. • In-situ fluorescence imaging microscopy and atomic force microscopy confirmed the incorporation of clay laponite onto LB films.

  6. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  7. Synthesis of cadmium sulphide in pure and mixed Langmuir-Blodgett films of -octadecylsuccinic acid

    Indian Academy of Sciences (India)

    G Hemakanthi; Balachandran Unni Nair; Aruna Dhathathreyan

    2000-04-01

    Cadmium sulphide (CdS) nanoparticles were grown by the reaction of sodium sulphide (Na2S) with Langmuir-Blodgett (LB) films of cadmium salts of -octadecylsuccinic acid (ODSU) and with LB films of ODSU in mixtures of octadecylamine and octadecyl alcohol. The results indicate that heterogeneous nucleation and aggregation in the pure ODSU LB films due to processes like Ostwald ripening are destabilized by the presence of the long-chain amine and alcohol in mixed systems. CdS nanoparticles in the LB films were monitored by UV-visible absorption spectra, which allow an estimation of the size of the particles. The morphology, size and nature of the nanocrystallites formed depend on whether the sulphidation was done on the pure film or in the mixed films. It is seen that particles of size around 1.6 nm were formed in ODSU/octadecylalcohol and ODSU/octadecylamine mixed LB films while in pure ODSU films the size was about 2.7 nm. These films showed typical needle-shaped structures, as observed by the optical microscopic technique. Mean size and morphology were confirmed by transmission and scanning electron microscopy, while selective area electron diffraction patterns showed six-fold symmetry and indicated that the CdS crystals grow epitaxially with respect to the monolayer. Further, the crystallisation enhanced in the mixed LB films showed a characteristic zinc oxide (Wurtzite) structure compared with the pure ODSU matrix.

  8. A novel method for alpha dosimetry using peeled-off Gafchromic EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang-Ho; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    One can estimate dose imposed to film by measuring the optical density of film. EBT3 film has been used in dose measurement for photon, proton, and electron beams but not for alpha particles. Both sides of diacetylene monomer layer are covered with 100 μm-thick polyester coating layers, through which alpha particles even at several MeV cannot penetrate. A recent study demonstrated the use of EBT3 film in alpha dosimetry by peeling off one side of polyester coating layer. Their study did not inform the reliability of measurement using the peeled-off films. In this study, we evaluated the feasibility of EBT3 film as a substitute for conventional alpha dosimeters and checked the uncertainty of dose measurements obtained with peeled-off EBT3 films. We also applied this film dosimeter to measuring of the fluence distribution at cell targets in a culture dish set in the alpha irradiation chamber of the Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU). In this work, we confirmed the feasibility of using Gafchromic EBT3 films for alpha dosimetry. The peeled-off EBT3 films can make a convenient alpha dosimeter by carrying an uncertainty less than 9 %.

  9. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...

  10. Generation of strength in a drying film: How fracture toughness depends on dispersion properties

    Science.gov (United States)

    Birk-Braun, Natalie; Yunus, Kamran; Rees, Eric J.; Schabel, Wilhelm; Routh, Alexander F.

    2017-02-01

    The fracture toughness of colloidal films is measured by characterizing cracks which form during directional drying. Images from a confocal microscope are processed to measure the crack width as a function of distance from the crack tip. Applying theory for thin elastic films the fracture toughness is extracted. It is found that the fracture toughness scales with the particle size to the -0.8 power and that the critical energy release rate scales with the particle size to the -1.3 power. In addition, the fracture toughness is found to increase at lower evaporation rates, but the film thickness does not have a significant effect.

  11. Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces

    OpenAIRE

    Merve Yeşilbaş; Jean-François Boily

    2016-01-01

    Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All f...

  12. Particulate environment around the shuttle as determined by the particle analysis cameras for shuttle (PACS) experiment

    Science.gov (United States)

    Green, B. David; Yates, G. Kenneth; Ahmadjian, Mark; Miranda, Henry

    1987-01-01

    The Particle Analysis Cameras for Shuttle (PACS) Experiment was flown on Mission STS61C (Columbia) in January 1986. This experiment involved a pair of cameras in a stereo viewing configuration and an associated strobe light flash to permit particle observation during the entire orbit. Although only one camera functioned properly, significant trends and particle counts were still obtained from the film data. We report here the preliminary analysis and conclusions from that mission.

  13. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  14. LHCb unveils new particles

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The LHCb collaboration announces the observation of four “exotic” particles from its analysis of the LHC data.   The LHCb experimental cavern. On 28 June, the LHCb collaboration reported the observation of three new "exotic" particles and confirmation of the existence of a fourth one in data from the LHC. These particles each appear to be formed by four quarks (the fundamental constituents of the matter inside all the atoms of the universe): two quarks and two antiquarks (that is, a tetraquark). Due to their non-standard quark content, the newly observed particles have been included in the broad category of so-called exotic particles, although their exact theoretical interpretation is still under study.            The quark model, proposed by Murray Gell-Mann and George Zweig in 1964, is considered to be the most valid scheme for the classification of hadrons (all the composite particles) that has been fou...

  15. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  16. Film: Genres and Genre Theory

    DEFF Research Database (Denmark)

    Bondebjerg, Ib

    2015-01-01

    Genre is a concept used in film studies and film theory to describe similarities between groups of films based on aesthetic or broader social, institutional, cultural, and psychological aspects. Film genre shares similarities in form and style, theme, and communicative function. A film genre...... is thus based on a set of conventions that influence both the production of individual works within that genre and audience expectations and experiences. Genres are used by industry in the production and marketing of films, by film analysts and critics in historic analysis of film, and as a framework...

  17. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  18. Massless interacting particles

    CERN Document Server

    Kosyakov, B P

    2007-01-01

    We show that classical electrodynamics of massless charged particles and the Yang--Mills--Wong theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a version of the direct interparticle action theory for such systems, which offers promise as a useful tool in studying the physics of quark-gluon plasma.

  19. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  20. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  1. Thin film calorimetry of polymer films

    Science.gov (United States)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  2. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting

    Science.gov (United States)

    Oh, Yoonseok; Lee, Myeongkyu

    2017-03-01

    In this study, we show that Ag thin films deposited on glass can be transformed into nanoparticles by laser-induced dewetting using a nanosecond-pulsed Nd:YAG laser. The film could be completely dewetted by a single pulse and the pulse energy density required for a 10 nm-thick Ag film was 86 mJ/cm2 at λ = 1064 nm. This made it possible to dewet a film area of ∼10 cm2 by a single pulse with energy of 850 mJ. The produced particles exhibited a monomodal size distribution and the mean particle size increased as the initial film thickness increased. Repeated exposure to pulses induced no noticeable change in the particle size distribution. The initial film thickness was the only factor that determined the mean particle size. The absorption spectra of dewetted films were well consistent with the surface plasma resonance behaviors of metal nanoparticles. This process provides a facile and scalable method of forming metal nanoparticle arrays for plasmonic and other applications.

  3. Physiochemical Characterization of Iodine (V Oxide Part II: Morphology and Crystal Structure of Particulate Films

    Directory of Open Access Journals (Sweden)

    Brian K. Little

    2015-11-01

    Full Text Available In this study, the production of particulate films of iodine (V oxides is investigated. The influence that sonication and solvation of suspended particles in various alcohol/ketone/ester solvents have on the physical structure of spin or drop cast films is examined in detail with electron microscopy, powder x-ray diffraction, and UV-visible absorption spectroscopy. Results indicate that sonicating iodine oxides in alcohol mixtures containing trace amounts of water decreases deposited particle sizes and produces a more uniform film morphology. UV-visible spectra of the pre-cast suspensions reveal that for some solvents, the iodine oxide oxidizes the solvent, producing I2 and lowering the pH of the suspension. Characterizing the crystals within the cast films reveal their composition to be primarily HI3O8, their orientations to exhibit a preferential orientation, and their growth to be primarily along the ac-plane of the crystal, enhanced at higher spin rates. Spin-coating at lower spin rates produces laminate-like particulate films versus higher density, one-piece films of stacked particles produced by drop casting. The particle morphology in these films consists of a combination of rods, plates, cubes, and rhombohedra structure.

  4. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    We are developing particle methods as a general framework for large scale simulations of discrete and continuous systems in science and engineering. The specific application and research areas include: discrete element simulations of granular flow, smoothed particle hydrodynamics and particle vor...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....... vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...

  5. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  6. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  7. Bioactivation of particles

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  8. Southern California Particle Center

    Data.gov (United States)

    Federal Laboratory Consortium — At the Southern California Particle Center, center researchers will investigate the underlying mechanisms that produce the health effects associated with exposure to...

  9. Eesti film sai auhindu

    Index Scriptorium Estoniae

    2011-01-01

    Anu Auna film "Vahetus" võitis Rooma sõltumatu filmi festivalil (Rome Independent Film Festival) parima välismaise lühifilmi preemia ning Olga ja Priit Pärna "Elu ilma Gabriella Ferrita" Lissaboni animafilmide festivalil Monstra eripreemia

  10. Dental Training Films.

    Science.gov (United States)

    Veterans Administration Medical Center, Washington, DC.

    This dental training films catalog is organized into two sections. Section I is a category listing of the films by number and title, indexed according to generalized headings; categories are as follow: anatomy, articulator systems, complete dentures, dental assisting, dental laboratory technology, dental materials, dental office emergencies,…

  11. Filming for Television.

    Science.gov (United States)

    Englander, A. Arthur; Petzold, Paul

    Film makers, professional or amateur, will find in this volume an extensive discussion of the adaptation of film technique to television work, of the art of the camera operator, and of the productive relationships between people, organization, and hardware. Chapters include "The Beginnings," an overview of the interrelationship between roles in…

  12. Film, Neuroaesthetics, and Empathy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh; Kramer, Mette

    2014-01-01

    The article analyzes the link between film viewing and human 'ultra-sociality' (Boyd and Richardson 1998), describing how empathy is supported by mirror resonances but also modified by appraisal mechanisms and how emotions are communicated, It further discusses how 'attainment' to film builds...

  13. Fra bog til film

    DEFF Research Database (Denmark)

    Schepelern, Peter

    2010-01-01

    Efter en historisk oversigt over samspillet mellem film og litteratur i dansk film, opstilles en råkke begreber, som filmatiseringer kan analyseres ud fra. Der ses pa det litteråre vårks status — evt. som klassiker eller bestseller. Der ses pa de centrale filmatiseringsproblemer, forhold som pråg...

  14. Malaysian Cinema, Asian Film

    NARCIS (Netherlands)

    Heide, van der William

    2002-01-01

    This title series departs from traditional studies of national cinema by accentuating the intercultural and intertextual links between Malaysian films and Asian (as well as European and American) film practices. Using cross-cultural analysis, the author characterizes Malaysia as a pluralist society

  15. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  16. Film As Art.

    Science.gov (United States)

    Arnheim, Rudolf

    The thesis of this classic, the major part of which was originally published in 1933, is that the peculiar virtues of film as art derive from an exploitation of the limitations of the medium: the absence of sound, the absence of color, the lack of three-dimensional depth. Silent-film artists made virtues of these necessities and were on their way…

  17. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  18. Creative Film-Making.

    Science.gov (United States)

    Smallman, Kirk

    The fundamentals of motion picture photography are introduced with a physiological explanation for the illusion of motion in a film. Film stock formats and emulsions, camera features, and lights are listed and described. Various techniques of exposure control are illustrated in terms of their effects. Photographing action with a stationary or a…

  19. On Teaching Ethnographic Film

    Science.gov (United States)

    Clarfield, Geoffrey

    2013-01-01

    The author of this article, a developmental anthropologist, illustrates how the instructor can use ethnographic films to enhance the study of anthropology and override notions about the scope and efficacy of Western intervention in the Third World, provided the instructor places such films in their proper historical and cultural context. He…

  20. What Is Film Phenomenology?

    NARCIS (Netherlands)

    Hanich, Julian; Ferencz-Flatz, Christian

    2016-01-01

    In this article Christian Ferencz-Flatz and I try to give an answer to the question what film phenomenology actually is. We proceed in three steps. First, we provide a survey of five different research practices within current film phenomenological writing: We call them excavation, explanation, exem

  1. Construction of Meaning: Film.

    Science.gov (United States)

    Pryluck, Calvin

    1995-01-01

    Notes that film has no clear set of rules, unlike all languages, which are deductive systems interpreted according to clear sets of rules. Suggests that film is an inductive system whose interpretation is based on a general understanding of events depicted as modified by production variables such as lighting, camera angles, and the context of…

  2. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    Science.gov (United States)

    Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej

    1994-01-01

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  3. On biofouling of microplastic particles of different shapes - some mathematics

    Science.gov (United States)

    Bagaeva, Margarita; Chubarenko, Irina

    2016-04-01

    Transport of microplastic particles in marine environment is difficult to quantify because their physical properties may vary with time. We made an attempt to analyse the behaviour of slightly buoyant particles (e.g., polyethylene, polypropylene), most critical process for which is their fouling: it leads to an increase in the mean particle density and its sinking. Fouling covers the surface of a relatively light particle by a denser growing film; thus, the rate of increase in the total mass is directly proportional to the surface area, and the faster the fouling process is - the sooner the mean particle density reaches the water density; the particle begins sinking, leaves the surface layer with stronger currents and can no longer be transported too far. A simplified model of biofouling in marine environment of a slightly buoyant microplastics (ρp ρw) increases with time at constant rate, and thus it can be considered as time. Geometrical considerations link surface area of particles of different shapes with time rate of increase in its mass due to fouling up to the water density. Geometrical calculations demonstrate that, for the same mass of plastic material, many small particles have larger surface area than one single large particle, and this way - macroplastics will stay longer at the water surface than microplastics. For spherical particles, the time of fouling up to the water density is directly proportional to the radius of a sphere: τsink ˜ R0/ 3n, where n = R0/ R, i.e., if the particle of radius R0reaches the water density in time τsink, the particle of radius R0/3 requires only τsink/9. Spherical shape has (for the given mass m0) the minimum surface area among all other possible shapes in 3-d space. The calculations performed for the same mass m0 have shown that the ratio of surface areas of a sphere (diameter 5 mm), a film (thickness of 15-30 microns) and a fibre (diameter of 30-100 microns) is about 1 / (50- 100) / (30-110) and thus, fibres

  4. Stratification of a Foam Film Formed from a Nonionic Micellar Solution: Experiments and Modeling.

    Science.gov (United States)

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2016-05-17

    Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.

  5. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  6. Porous squeeze-film flow

    KAUST Repository

    Knox, D. J.

    2013-11-14

    © 2013 © The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation, an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage.

  7. Microwave characteristics of low density flaky magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Wenqiang, Zhang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); College of Engineering, China Agricultural University, Beijing 100083 (China); Deyuan, Zhang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Jun, Cai, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2013-04-15

    Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm{sup 3}) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber.

  8. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  9. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  10. Low energy radiation stability of nano-crystalline cubic Zirconia films

    Science.gov (United States)

    Kalita, Parswajit; Ghosh, Santanu; Avasthi, Devesh K.

    2016-07-01

    The radiation stability of nano-crystalline cubic Zirconia films was investigated under 41 keV He ion irradiation. These ions were chosen to simulate alpha particles (produced during fission events) because of the similar electronic energy loss in Zirconia. The ZrO2 films, with an average grain size of 8 nm, were grown on Si (1 0 0) substrates by electron beam assisted thermal evaporation. Although the cubic structure was retained upon irradiation, a slight reduction in crystallinity in the irradiated films was detected as compared to the as-deposited film. No bulk amorphization was however observed for any of the fluences and hence these films are radiation tolerant to alpha particles.

  11. Non-Porod scattering and non-integer scaling of resistance in rough films

    Science.gov (United States)

    Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay

    2017-04-01

    In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.

  12. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    OpenAIRE

    2005-01-01

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared ...

  13. Study of photoconductivity in Ni doped CdS thin films prepared by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gangrade, Mohan; Nath, R.; Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandawa Road, Indore 452001 (India); Ajay, Akhil [Physics Department, University of Delhi, Delhi-110007 (India); Wala, Arwa Dewas [Holkar Science College, Indore - 452001 (India); N, Kiran [Physics Department, University of Mysore, Mysore-570005 (India); Panda, Richa [AITR, Bhopal-462044 (India)

    2014-04-24

    Ni-doped cadmium sulphide [Cd{sub 1−x}Ni{sub x}S, (x=0, 0.03, 0.05 and 0.20)] thin films were investigated for photoconductive properties. The films were prepared by spray Pyrolysis technique (SPT). AFM and two probe resistivity measurements were carried out to analyze the morphological and electrical properties of the films. AFM shows the note worthy changes in the morphology where the nanorod structures in CdS is changed into nano particles with the Ni doping. The presence of persistence photo current is demonstrated and extensive photoconductivity analysis has been studied on these films.

  14. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  15. Preparation and characterization of ZnTe thin films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.S. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Seoul 133-791 (Korea, Republic of); Mane, R.S. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Seoul 133-791 (Korea, Republic of); Pathan, H.M. [Eco-Nano Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Chongryang, Seoul 130-650 (Korea, Republic of); Shaikh, A.V. [AKI' s Poona College of Arts, Science and Commerce, Pune (India); Joo, Oh-Shim [Eco-Nano Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Chongryang, Seoul 130-650 (Korea, Republic of); Han, Sung-Hwan [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Seoul 133-791 (Korea, Republic of)]. E-mail: shhan@hanyang.ac.kr

    2007-02-28

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47.

  16. Preparation and characterization of ZnTe thin films by SILAR method

    Science.gov (United States)

    Kale, S. S.; Mane, R. S.; Pathan, H. M.; Shaikh, A. V.; Joo, Oh-Shim; Han, Sung-Hwan

    2007-02-01

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47.

  17. Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films

    Science.gov (United States)

    Sygnatowicz, Michael; Keyshar, Kunttal; Tiwari, Ashutosh

    2010-07-01

    Silver-doped hydroxyapatite nanopowders were prepared using a solution based sol-gel method and thoroughly characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Antibacterial tests showed silver-doped HAP powders prevented the growth and reproduction of bacteria. Silver-doped HAP powders were pressed into pellets and on these pellets a pulsed laser deposition (PLD) technique was employed to grow amorphous and crystalline thin films on sapphire substrates. Crystalline films had silver nano-particles present within the HAP matrix. Film stability tests showed crystalline films to be far more stable in prolonged solution submersion than their amorphous counterparts.

  18. Optical Properties of Semiconductor-Metal Composite Thin Films in the Infrared Region

    Science.gov (United States)

    Nagendra, C. L.; Lamb, James L.

    1993-01-01

    Germanium:Silver (Ge:Ag) composite thin films having different concentrations of Ag, ranging from 7% to 40% have been prepared by dc co-sputtering of Ge an Ag and the films' surface morphology and optical properties have been characterized using transmission electron microscopy (TEM) and infrared spectrophotometry. It is seen that while the films containing lower concentrations of Ag have island-like morphology (i.e. Ag particles distributed in a Ge matrix), the higher metallic concentration films tend to have symmetric distribution of Ag and Ge.

  19. Hydrophobic coating of solid materials by plasma-polymerized thin film using tetrafluoroethylene

    Science.gov (United States)

    Hozumi, K.; Kitamura, K.; Kitade, T.

    1980-01-01

    Glass slides were coated with plasma-polymerized tetrafluoroethylene films of different thickness using the glow discharge technique in a tube-shaped chamber, and the plasma conditions, film growth rates, light permeability of the polymer films, and particle bond strength in the polymer films were studied. Ashed sections of mouse organs and ashed bacillus spores were also coated to give them hydrophobic treatment without damaging their shapes or appearance. The hydrophobic coating of the specimens was successful, and the fine ash patterns were strongly fixed onto the glass slides, making permanent preparations.

  20. Harmonic generation in ZnO nanocrystalline laser deposited thin films

    Science.gov (United States)

    Narayanan, V.; Thareja, R. K.

    2006-04-01

    ZnO plasma produced by third harmonic 355 nm of Nd:YAG laser at various ambient pressures of oxygen was used for depositing quality nanocrystalline ZnO thin films. Time and space resolved optical emission spectroscopy is used to correlate the plasma properties with that of deposited thin films. The deposited films showed particle size of 8 and 84 nm at ambient oxygen pressure of 100 and 900 mTorr, respectively. Third harmonic generation observed in ZnO thin films deposited under 100 mTorr of ambient oxygen is reported.

  1. Action of colloidal silica films on different nano-composites

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  2. Proton radiation effects on optical constants of Al film reflector

    Institute of Scientific and Technical Information of China (English)

    Liu Hai; Wei Qiang; He Shi-Yu; Zhao Dan

    2006-01-01

    The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film,the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800 nm on the Al film reflector.

  3. Optical properties of ZnO/PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kulyk, B., E-mail: bohdan_kulyk@yahoo.co [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Kapustianyk, V.; Tsybulskyy, V. [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Krupka, O. [Department of Chemistry, Kyiv Taras Shevchenko National University, 60 Volodymyrska Str., Kyiv (Ukraine); Sahraoui, B. [Institute of sciences and molecular technologies of Angers, MOLTECH Anjou - UMR CNRS 6200, Molecular interaction nonlinear optics and structuring MINOS, 2 bd Lavoisier, 49045 Angers Cedex 2 (France)

    2010-07-16

    The ZnO nanocrystals (ZnO NCs) with particle size, less than 100 nm, have been blended with polymethylmethacrylate (PMMA) by solution mixing to prepare PMMA/ZnO nanocomposite films. The structure of ZnO/PMMA nanocomposite films was characterized using X-ray diffractometry. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurements of temperature evolution of the photoluminescence (PL) spectra show intensive UV emission peak corresponding to the donor-bound excitons with binding energy of 51 meV and green emission band related to the intrinsic defects in ZnO. The temperature evolution of the emission peaks energy position, intensity and integral intensity in ZnO/PMMA nanocomposite films were examined.

  4. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    Science.gov (United States)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  5. Surface plasmons in porous gold films

    Science.gov (United States)

    Rudenko, S. P.; Stetsenko, M. O.; Krishchenko, I. M.; Maksimenko, L. S.; Kaganovich, E. B.; Serdega, B. K.

    2016-04-01

    The surface plasmon resonance effects in porous gold (por-Au) films—nanocomposite porous films containing an ensemble of disordered gold nanoparticles—have been investigated by modulation-polarization spectroscopy. Por-Au films have been obtained by pulsed laser deposition (using a direct particle flow from an erosion torch formed by a YAG:Nd3+ laser in argon). The spectral and angular dependences of the polarization difference ρ(λ, θ) of internal-reflection coefficients of s- and p-polarized radiation in the Kretschmann geometry and the spectral dependences of isotropic reflection angles at ρ(θ) = 0 are measured. Two types of surface plasmon resonance are found: one occurs on isolated nanoparticles (dipole and multipole modes), and the other is due to the dipole-dipole interaction of neighboring nanoparticles. The frequency of electron plasma oscillations for the nanoparticle ensemble and the frequencies and decay parameters of resonances are determined. Dispersion relations for the radiative and nonradiative modes are presented. The negative sign of the dispersion branch of nonradiative modes of dipole-dipole interaction is explained by the spatial dispersion of permittivity. The relationships between the formation conditions of the films, their structure, and established resonance parameters (determining the resonant-optical properties of films) are discussed.

  6. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  7. A Mathematical Model of the Single Aluminium Diboride Particle Ignition

    Directory of Open Access Journals (Sweden)

    D. A. Yagodnikov

    2014-01-01

    Full Text Available The paper presents a developed mathematical model of ignition of the single aluminum diboride particle as an aluminum-boron alloy in the oxidizing environment of a complicated chemical composition containing oxygen, water vapor, and carbon dioxide. The mathematical model is based on the theory of parallel chemical reactions proceeding on the appropriate parts of the particle surface occupied by each element in proportion to their molar share in the alloy. The paper considers a possibility to establish a thermodynamic balance between components over a particle surface in the gas phase. The composition of components is chosen as a result of thermodynamic calculation, namely В g , B2O3 g , BO, B2O2, BO2, Alg , AlO, Al2O, N2. The mathematical model is formed by a system of the differential equations of enthalpy balance, mass of aluminum diboride particle, and of formed oxides, which become isolated by initial and boundary conditions for temperature and size of particles, concentration of an oxidizer, and temperature of gas. The software package “AlB2“ is developed. It is a complete independent module written in Fortran algorithmic language, which together with a package of the subroutines “SPARKS” is used to calculate parameters of burning aluminum diboride particle by the Runge-Kutt method.For stoichiometry of chemical reactions of interaction between aluminum diboride and oxygen, a dynamics of changing temperature of a particle and thickness of an oxide film on its surface is calculated. It was admitted as initial conditions that the aluminum diboride particle radius was 100μ and the reference temperature of environment was 500 K, 1000 K, 2300 K, and 3000 K. Depending on this temperature the aluminum diboride particle temperature was calculated. Changing thickness of the oxide film on the particle surface at various initial gas temperatures characterizes its increase at the initial heating period of ~ 0,01 s and a gradual slowdown of the

  8. Particle contamination formation and detection in magnetron sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Selwyn, G.S. [Los Alamos National Lab., NM (United States); Weiss, C.A. [Materials Research Corp., Congers, NY (United States). Sputtering Systems Div.; Sequeda, F.; Huang, C. [Seagate Peripherals Disk Div., Milpitas, CA (United States)

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  9. Violation of Particle Anti-particle Symmetry

    CERN Document Server

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  10. Particle Swarm Optimisation with Spatial Particle Extension

    DEFF Research Database (Denmark)

    Krink, Thiemo; Vesterstrøm, Jakob Svaneborg; Riget, Jacques

    2002-01-01

    In this paper, we introduce spatial extension to particles in the PSO model in order to overcome premature convergence in iterative optimisation. The standard PSO and the new model (SEPSO) are compared w.r.t. performance on well-studied benchmark problems. We show that the SEPSO indeed managed...

  11. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    increase of the effective refractive index of the diffractive medium, resulting in the red-shift of the optical stop bands. The wavelength shift is linearly proportional to the vapor partial pressure for a spectrum of vapors. Optical simulation and theoretical prediction based on Kelvin equation suggest that a liquid film is formed on the walls of the macropores during vapor condensation. The third topic describes introducing doctor blade coating fabricated large area and low cost macroporous films for thermochromic smart windows, which are useful for energy control in glazed buildings. The fabricated macroporous polymer films exhibit brilliant colors and are capable of reflecting solar radiation when in-situ heated, and become transparent as cavities are filled with a solvent which has the same refractive index as that of the polymer when cooled to building temperature. The fourth topic reports the roll-to roll fabricated excellent water-repelling and self-cleaning macroporous polymer films. The size of the voids can be easily controlled by tuning the duration of an oxygen reactive-ion etching process prior to the removal of the templating silica spheres from silica colloidal-polymer composites. After surface functionalization with fluorosilane, superhydrophobic surface with large apparent water contact angle and small sliding angle can be obtained. The self-cleaning functionality can be achieved on superhydrophobic macroporous coatings by preventing bacterial contamination is further demonstrated. The fifth topic presented is that the template macroporous polymer films with interconnected voids and uniform interconnecting nanopores can be directly used as filtration membranes to achieve size-exclusive separation of particles. The results also demonstrate that more than 85% of small sized particles are recovered after filtration. The results also demonstrate that Escherichia coli can be filtrated by the from macroporous polymer films aqueous solution.

  12. Synthesis of ZnSe Films by Hydrochemical Sedimentation Method

    Directory of Open Access Journals (Sweden)

    D.S. Sofronov

    2014-04-01

    Full Text Available Zinc selenide films were obtained by hydrochemical sedimentation by interplay of zinc ions with selenium in the presence of hydrazine. It is found that during the deposition from ammonia solutions zinc oxide phase was present. It formed by coalescence between spherical particles with sizes 1-1.5 microns. During the deposition from sodium hydroxide solution with concentration of 0.5-3 M there was formation of sphalerite phase of zinc selenide and films was formed by spherical particles with dimensions розмірами 0,15-0,20 microns. Increasing of concentration of alkali from 0,5 to 3 М does not change the size of the particles in layers.

  13. Film Theory and Hugo Munsterberg's "The Film": A Psychological Study.

    Science.gov (United States)

    Wicclair, Mark R.

    1978-01-01

    Hugo Munsterberg's "The Film: A Psychological Study" is one of the earliest essays in the area of film theory. Unfortunately, it has remained relatively unknown since its publication in 1916. The author discusses two concepts raised by Munsterberg: the contrast between films in the theatrical mode and films in the cinematic mode.…

  14. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  15. On the structure of small palladium particles

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, R.; Avalos-Borja, M.; Schabes-Retchkiman, P.; Romeu, D.; Jose-Yacaman, M. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica); Ponce, F. (Xerox Palo Alto Research Center, CA (USA))

    1989-09-01

    The study of small noble metal particles is becoming increasingly important in many fields in physics (1). The advent of high-resolution electron microscopy (HREM) has allowed a deeper understanding of structural aspects of small particles. This work reports the study of particles of palladium with a diameter less than 3 nm. Specimens were prepared by in-situ deposition of Pd onto thin carbon films under near-UHV conditions in the specimen preparation chamber. Faulted decahedral MTP was grown using a recursive (R) growth model which generates infinite, space-filling structures reproducing the structure of crystals, twinned particles and quasicrystals. R growth consists of the formation of a cluster by iterative addition of points (atoms) from a given star vector. The method presented sheds some light on a point that has been controversial in the past about the nature of MTP's. Some authors have claimed that these structures can be considered as FCC twins with a disclination to close the resulting gap. The fact that they can be obtained quite simply from stable smaller units appears to make the disclination unnecessary.

  16. Teaching German Modal Particles.

    Science.gov (United States)

    Rosler, Dietmar

    1982-01-01

    Believes modern linguistics has done little to explore German modal particles because by focusing on sentences as the basic category for linguistic thinking these words did not seem to matter. Describes model which gives students experience with these particles in meaningful communication. (Author/BK)

  17. Solar Energetic Particles

    Science.gov (United States)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  18. Particle Physics Instrumentation

    OpenAIRE

    Riegler, Werner

    2014-01-01

    This report summarizes a series of three lectures aimed at giving an overview of basic particle detection principles, the interaction of particles with matter, the application of these principles in modern detector systems, as well techniques to read out detector signals in high-rate experiments.

  19. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  20. Particles, contacts, bulk behavior

    NARCIS (Netherlands)

    Luding, Stefan; Tomas, J.

    2014-01-01

    Granular matter consists of discrete “particles”. These can be separate sand-grains, agglomerates (made of many primary particles), or solid materials like rock, composites, or metal-alloys—all with particulate inhomogeneous, possibly anisotropic micro-structure. Particles can be as small as